
Utility-Based Acceleration
of Multithreaded Applications
on Asymmetric CMPs

José A. Joao*
M. Aater Suleman*

Onur Mutlu‡
Yale N. Patt*

* HPS Research Group

University of Texas at Austin
‡ Computer Architecture Laboratory

Carnegie Mellon University

Asymmetric CMP (ACMP)

 One or a few large, out-of-order cores, fast

 Many small, in-order cores, power-efficient

 Critical code segments run on large cores

 The rest of the code runs on small cores

2

Large core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core
Small

 core

Small

 core

???

Bottlenecks

T0

T1

T2

T3

Barrier 1 Barrier 2

T0

T1

T2

T3

Barrier 1 Barrier 2

Accelerating Critical Sections (ACS), Suleman et al., ASPLOS’09

Bottleneck Identification and Scheduling (BIS), Joao et al., ASPLOS’12

3

Lagging Threads

T0

T1

T2

T3

Barrier 1

Progress P0 =

 P1 =

 P2 =

 P3 =

10

11

6

10

Barrier 2 t1 Barrier 2

Previous work about progress of multithreaded applications:

 Meeting points, Cai et al., PACT’08

 Thread criticality predictors, Bhattacharjee and Martonosi, ISCA’09

 Age-based scheduling (AGETS), Lakshminarayana at al., SC’09

Lagging thread = potential future bottleneck

4

T2: Lagging thread

Two problems

 1) Do we accelerate bottlenecks or lagging threads?

 2) Multiple applications: which application do we accelerate?

T0

T1

T2

T3

Application 1

T0

T1

T2

T3

Application 2

t1

5

Two problems

 1) Do we accelerate bottlenecks or lagging threads?

 2) Multiple applications: which application do we accelerate?

T0

T1

T2

T3

Application 1

T0

T1

T2

T3

Application 2

t1

Acceleration decisions need to consider both:

 - the criticality of code segments

 - how much speedup they get

for lagging threads and bottlenecks

6

Utility-Based Acceleration (UBA)

 Goal: identify performance-limiting bottlenecks or
lagging threads from any running application
and accelerate them on large cores of an ACMP

 Key insight: a Utility of Acceleration metric that
combines speedup and criticality of each code segment

 Utility of accelerating code segment c of length t
on an application of length T:

T

T
Uc

t

T

T

t

t

t

7

L R G

L: Local acceleration of c

How much code segment c is accelerated

 Estimate S = estimate performance on a large core
while running on a small core

 Performance Impact Estimation (PIE, Van Craeynest et al.,
ISCA’12) : considers both instruction-level parallelism (ILP)
and memory-level parallelism (MLP) to estimate CPI

t

tLargeCore

c running on small core

c running on large core

∆t

GRLUc

S

1
1

t

tt

t

t
L

eCoreargL

8

S: speedup of c

R: Relevance of code segment c

How relevant code segment c is for the application

tlastQ T

Q

GRLUc

T

t
R

Q

t
R

lastQ

estimated

9

Q

t

Q: scheduling quantum

G: Global effect of accelerating c

How much accelerating c reduces total execution time

∆t ∆T G=1

c running on small core

c running on large core

t

GRLUc

t

T
G

 Criticality of c

10

 Acceleration of c

 Acceleration of application

Single thread

G: Global effect of accelerating c

How much accelerating c reduces total execution time

Critical sections: classify into strongly-contended and
weakly-contended and estimate G differently (in the paper)

GRLUc

ThreadsLaggingofNumber

1
G

T1

T2

T3

Barrier

Idle

G=0

2 quanta to get the benefit of 1

G=1/2

11

t

T
G

 Criticality of c

 Acceleration of c

 Acceleration of application

Utility-Based Acceleration (UBA)

Bottleneck
Identification

Lagging Thread
Identification

Acceleration
Coordination

Set of Highest-Utility

Lagging Threads

Set of Highest-Utility

Bottlenecks

Large core control

12

Lagging thread identification

 Lagging threads are those that are making the least progress

 How to define and measure progress? Application-specific problem

 We borrow from Age-Based Scheduling (SC’09)

 Progress metric (committed instructions)

 Assumption: same number of committed instructions between barriers

 But we could easily use any other progress metric…

 Minimum progress = minP

 Set of lagging threads = { any thread with progress < minP + ∆P }

 Compute Utility for each lagging thread

13

Utility-Based Acceleration (UBA)

Bottleneck
Identification

Lagging Thread
Identification

Acceleration
Coordination

Set of Highest-Utility

Lagging Threads

Set of Highest-Utility

Bottlenecks

Large core control

1 per large core

14

Bottleneck identification

 Software: programmer, compiler or library

 Delimit potential bottlenecks with BottleneckCall and

BottleneckReturn instructions

 Replace code that waits with a BottleneckWait instruction

 Hardware: Bottleneck Table

 Keep track of threads executing or waiting for bottlenecks

 Compute Utility for each bottleneck

 Determine set of Highest-Utility Bottlenecks

 Similar to our previous work BIS, ASPLOS’12

 BIS uses thread waiting cycles instead of Utility

15

Utility-Based Acceleration (UBA)

Bottleneck
Identification

Lagging Thread
Identification

Acceleration
Coordination

Set of Highest-Utility

Lagging Threads

Set of Highest-Utility

Bottlenecks

Large core control

16

Acceleration coordination

17

Large

Cores

Small

Cores

LT1 LT2 LT3 LT4

ULT1 > ULT2 > ULT3 > ULT4

LT assigned to each large core every quantum

Set of Highest-Utility

 Lagging Threads

Bottleneck Acceleration

Utility Threshold (BAUT)

LT: lagging

 threads

U: utility

Acceleration coordination

18

Large

Cores

Small

Cores

LT1 LT2 LT3

LT4

ULT1 > ULT2 > ULT3 > ULT4

Bottleneck Acceleration

Utility Threshold (BAUT)
B1

UB1 > BAUT

LT: lagging

 threads

U: utility

B: bottlenecks

Bottleneck B1 will preempt lagging thread LT3

Acceleration coordination

19

Large

Cores

Small

Cores

LT1 LT2

LT3 LT4

ULT1 > ULT2 > ULT3 > ULT4

B1

B2

UB2 > BAUT

Scheduling Buffer

LT: lagging

 threads

U: utility

B: bottlenecks

Bottleneck B2 will be enqueued

Acceleration coordination

20

Large

Cores

Small

Cores

LT1 LT2

LT3 LT4

ULT1 > ULT2 > ULT3 > ULT4

LT assigned to each large core every quantum
Scheduling Buffer

No more bottlenecks

 LT3 returns to large core

LT: lagging

 threads

U: utility

 Workloads
 single-application: 9 multithreaded applications

with different impact from bottlenecks

 2-application: all 55 combinations of (9 MT + 1 ST)

 4-application: 50 random combinations of (9 MT + 1 ST)

 Processor configuration
 x86 ISA

 Area of large core = 4 x Area of small core

 Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 4GHz, in-order, 2-wide, 5-stage

 Private 32KB L1, private 256KB L2, shared 8MB L3

 On-chip interconnect: Bi-directional ring, 2-cycle hop latency

Methodology

21

Comparison points

 Single application

 ACMP (Morad et al., Comp. Arch. Letters’06)

 only accelerates Amdahl’s serial bottleneck

 Age-based scheduling (AGETS, Lakshminarayana et al., SC’09)

 only accelerates lagging threads

 Bottleneck Identification and Scheduling (BIS, Joao et al., ASPLOS’12)

 only accelerates bottlenecks

 Multiple applications

 AGETS+PIE: select most lagging thread with AGETS and
use PIE across applications

 only accelerates lagging threads

 MA-BIS: BIS with shared large cores across applications

 only accelerates bottlenecks

22

Single application, 1 large core
Optimal number of threads, 28 small cores, 1 large core

23

Limiting critical sections: benefit from BIS and UBA

Single application, 1 large core
Optimal number of threads, 28 small cores, 1 large core

24

Lagging threads: benefit from AGETS and UBA

Single application, 1 large core
Optimal number of threads, 28 small cores, 1 large core

25

Neither bottlenecks

nor lagging threads

Single application, 1 large core
Optimal number of threads, 28 small cores, 1 large core

UBA outperforms both AGETS and BIS by 8%

UBA’s benefit increases with area budget and number of large cores

26

Multiple applications

2-application workloads, 60 small cores, 1 large core

UBA improves Hspeedup over AGETS+PIE and MA-BIS by 2 to 9%

27

55 1

Summary

 To effectively use ACMPs:
 Accelerate both fine-grained bottlenecks and lagging threads

 Accelerate single and multiple applications

 Utility-Based Acceleration (UBA) is a
cooperative software-hardware solution to both problems

 Our Utility of Acceleration metric combines a measure of
acceleration and a measure of criticality to allow meaningful
comparisons between code segments

 Utility is implemented for an ACMP but is general enough to be
extended to other acceleration mechanisms

 UBA outperforms previous proposals for single applications and
their aggressive extensions for multiple-application workloads

 UBA is a comprehensive fine-grained acceleration proposal for
parallel applications without programmer effort

28

Thank You!

Questions?

Utility-Based Acceleration
of Multithreaded Applications
on Asymmetric CMPs

José A. Joao*
M. Aater Suleman*

Onur Mutlu‡
Yale N. Patt*

* HPS Research Group

University of Texas at Austin
‡ Computer Architecture Laboratory

Carnegie Mellon University

