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Asymmetric CMP (ACMP) 

 One or a few large, out-of-order cores, fast 

 Many small, in-order cores, power-efficient 
 

 Critical code segments run on large cores 

 The rest of the code runs on small cores 
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Accelerating Critical Sections (ACS), Suleman et al., ASPLOS’09 

Bottleneck Identification and Scheduling (BIS), Joao et al., ASPLOS’12 
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Lagging Threads 
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Barrier 2 t1 Barrier 2 

Previous work about progress of multithreaded applications: 

 Meeting points, Cai et al., PACT’08 

 Thread criticality predictors, Bhattacharjee and Martonosi, ISCA’09 

 Age-based scheduling (AGETS), Lakshminarayana at al., SC’09 

Lagging thread = potential future bottleneck 
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T2: Lagging thread 



Two problems 

 1) Do we accelerate bottlenecks or lagging threads? 

 2) Multiple applications: which application do we accelerate? 
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Two problems 

 1) Do we accelerate bottlenecks or lagging threads? 

 2) Multiple applications: which application do we accelerate? 
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Acceleration decisions need to consider both: 

 - the criticality of code segments 

 - how much speedup they get 

for lagging threads and bottlenecks 
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Utility-Based Acceleration (UBA) 

 Goal: identify performance-limiting bottlenecks or 
lagging threads from any running application  
and accelerate them on large cores of an ACMP 
 

 Key insight: a Utility of Acceleration metric that 
combines speedup and criticality of each code segment 
 

 Utility of accelerating code segment c of length t  
on an application of length T: 
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L: Local acceleration of c 

How much code segment c is accelerated 

 

 

 

 
 

 

 

 

 

 

 Estimate S = estimate performance on a large core  
while running on a small core 
 

 Performance Impact Estimation (PIE, Van Craeynest et al., 
ISCA’12) : considers both instruction-level parallelism (ILP) 
and memory-level parallelism (MLP) to estimate CPI 
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S: speedup of c 



R: Relevance of code segment c 

How relevant code segment c  is for the application 
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Q: scheduling quantum 



G: Global effect of accelerating c 

How much accelerating c reduces total execution time 
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 Acceleration of c 

 Acceleration of application 

Single thread 



G: Global effect of accelerating c 

How much accelerating c reduces total execution time 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Critical sections: classify into strongly-contended and  
weakly-contended and estimate G differently (in the paper) 
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Utility-Based Acceleration (UBA) 
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Lagging thread identification 

 Lagging threads are those that are making the least progress 

 How to define and measure progress?  Application-specific problem 

 We borrow from Age-Based Scheduling (SC’09) 

 Progress metric (committed instructions) 

 Assumption: same number of committed instructions between barriers 

 But we could easily use any other progress metric… 

 

 Minimum progress = minP 

 Set of lagging threads =  { any thread with progress < minP + ∆P } 

 Compute Utility for each lagging thread 
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Utility-Based Acceleration (UBA) 
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Bottleneck identification 

 Software: programmer, compiler or library  

 Delimit potential bottlenecks  with BottleneckCall and 

BottleneckReturn instructions 

 Replace code that waits with a BottleneckWait instruction 
 

 Hardware: Bottleneck Table 

 Keep track of threads executing or waiting for bottlenecks 

 Compute Utility for each bottleneck 

 Determine set of Highest-Utility Bottlenecks 
 

 Similar to our previous work BIS, ASPLOS’12 

 BIS uses thread waiting cycles instead of Utility 

15 



Utility-Based Acceleration (UBA) 
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Acceleration coordination 
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Acceleration coordination 
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Acceleration coordination 
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Acceleration coordination 
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 Workloads 
 single-application: 9 multithreaded applications  

with different impact from bottlenecks 

 2-application: all 55 combinations of (9 MT + 1 ST) 

 4-application: 50 random combinations of (9 MT + 1 ST) 
 

 Processor configuration 
 x86 ISA 

 Area of large core = 4 x Area of small core 

 Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage 

 Small core: 4GHz, in-order, 2-wide, 5-stage 

 Private 32KB L1, private 256KB L2, shared 8MB L3 

 On-chip interconnect: Bi-directional ring, 2-cycle hop latency 

Methodology 
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Comparison points 

 Single application 

 ACMP (Morad et al., Comp. Arch. Letters’06) 

 only accelerates Amdahl’s serial bottleneck 

 Age-based scheduling (AGETS, Lakshminarayana et al., SC’09)  

 only accelerates lagging threads 

 Bottleneck Identification and Scheduling (BIS, Joao et al., ASPLOS’12) 

 only accelerates bottlenecks 

 

 Multiple applications 

 AGETS+PIE: select most lagging thread with AGETS and  
use PIE across applications 

 only accelerates lagging threads 

 MA-BIS: BIS with shared large cores across applications 

 only accelerates bottlenecks 
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Single application, 1 large core 
Optimal number of threads, 28 small cores, 1 large core 
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Limiting critical sections: benefit from BIS and UBA 



Single application, 1 large core 
Optimal number of threads, 28 small cores, 1 large core 
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Lagging threads: benefit from AGETS and UBA 



Single application, 1 large core 
Optimal number of threads, 28 small cores, 1 large core 
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Neither bottlenecks 

nor lagging threads 



Single application, 1 large core 
Optimal number of threads, 28 small cores, 1 large core 

UBA outperforms both AGETS and BIS by 8% 

UBA’s benefit increases with area budget and number of large cores 
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Multiple applications 

2-application workloads, 60 small cores, 1 large core 

UBA improves Hspeedup over AGETS+PIE and MA-BIS by 2 to 9% 
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Summary 

 To effectively use ACMPs: 
 Accelerate both fine-grained bottlenecks and lagging threads 

 Accelerate single and multiple applications 
 

 Utility-Based Acceleration (UBA) is a  
cooperative software-hardware solution to both problems 
 

 Our Utility of Acceleration metric combines a measure of 
acceleration and a measure of criticality to allow meaningful 
comparisons between code segments 
 

 Utility is implemented for an ACMP but is general enough to be 
extended to other acceleration mechanisms 
 

 UBA outperforms previous proposals for single applications and 
their aggressive extensions for multiple-application workloads 
 

 UBA is a comprehensive fine-grained acceleration proposal for 
parallel applications without programmer effort 
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Thank You! 

Questions? 
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