Hyesoon Kim
Onur Mutlu
University of Texas at
Austin

Jared Stark
Intel Corp.

Yale N. Patt
University of Texas at
Austin

WISH BRANCHES:

ENABLING
ADAPTIVE AND AGGRESSIVE
PREDICATED EXECUTION

THE GOAL OF WISH BRANCHES IS TO USE PREDICATED EXECUTION FOR HARD-TO-

PREDICT DYNAMIC BRANCHES, AND BRANCH PREDICTION FOR EASY-TO-PREDICT

DYNAMIC BRANCHES, THEREBY OBTAINING THE BEST OF BOTH WORLDS. WISH

LOOPS, ONE CLASS OF WISH BRANCHES, USE PREDICATION TO REDUCE THE

MISPREDICTION PENALTY FOR HARD-TO-PREDICT BACKWARD (LOOP) BRANCHES.

e o 0000 Predicated execution has been used
to avoid performance loss because of hard-to-
predict branches. This approach eliminates a
hard-to-predict branch from the program by
converting the control dependency of the
branch into a data dependency.’ Traditional
predicated execution is not adaptive to run-
time (dynamic) branch behavior. The com-
piler decides to keep a branch as a conditional
branch or to predicate it based on compile-
time profile information. If the runtime
behavior of the branch differs from the com-
pile-time profile behavior, the hardware does
not have the ability to override the compiler’s
choice. A predicated branch remains predi-
cated for all its dynamic instances even if it
turns out to be very easy to predict at runtime.
Though such a branch is rarely mispredicted,
the hardware needs to fetch, decode, and exe-
cute instructions from both control flow
paths. Hence, predicated execution sometimes
results in a performance loss because it

Published by the IEEE Computer Society

requires the processing overhead of addition-
al instructions—sometimes without provid-
ing any performance benefit.

We want to eliminate the performance loss
resulting from predicated execution’s overhead
by letting the hardware choose whether or not
to use predicated execution for a branch. The
compiler is not good at deciding which
branches are hard to predict because it does
not have access to runtime information. In
contrast, the hardware has access to accurate
runtime information about each branch.

We propose a mechanism in which the com-
piler generates code that can be executed either
as predicated code or nonpredicated code (that
is, code with normal conditional branches).
The hardware decides whether to execute the
predicated or nonpredicated code based on a
runtime confidence estimation of the branch’s
prediction. The compiler-generated code is the
same as predicated code, except the predicat-
ed conditional branches are 70t removed—

0272-1732/06/$20.00 © 2006 IEEE

they are left intact in the program code. These
conditional branches are called wish branches.
When the hardware fetches a wish branch, it
estimates whether or not the branch is hard to
predict using a confidence estimator. If the
wish branch is hard to predict, the hardware
executes the predicated code to avoid a possi-
ble branch misprediction. If the wish branch
is easy to predict, the hardware uses the branch
predictor to predict the direction of the wish
branch and ignores the predicate information.
Hence, wish branches provide the hardware
with a way to dynamically choose between
branch prediction and predicated execution,
depending on accurate runtime information
about the branch’s behavior.

Predicated execution overhead

Because it converts control dependencies
into data dependencies, predicated execution
introduces two major sources of overhead in
the dynamic execution of a program, which
do not occur in conditional branch predic-
tion. First, the processor must fetch additional
instructions that are guaranteed to be useless
because their predicates will be “false.” These
instructions waste fetch and possibly execu-
tion bandwidth, and occupy processor
resources that useful instructions could oth-
erwise use. Second, an instruction that
depends on a predicate value cannot execute
until the predicate value it depends on is ready.
This introduces additional delay into the exe-
cution of predicated instructions and their
dependents, and thus may increase the pro-
gram’s execution time. In our previous paper,
we analyzed the performance impact of these
two overhead sources on an out-of-order
processor model that implements predicated
execution. We showed that these two over-
head sources, especially the execution delay
because of predicated instructions, signifi-
cantly reduce the performance benefits of
predicated execution. When we model the
overhead of predicated execution faithfully,
the predicated binaries do not improve the
average execution time of a set of SPEC
CPU2000 integer benchmarks. In contrast,
if we ideally eliminate all overhead, the pred-
icated binaries would provide 16.4 percent
improvement in average execution time.

In addition, one of the limitations of pred-
icated execution is that it cannot eliminate all

Microarchitectural support for predicated execution
in out-of-order execution processors

Processor designers implemented predicated execution in in-order processors,'? but the tech-
nique can be used in out-of-order processors as well.* Since our research aims to reduce the
branch misprediction penalty in aggressive high-performance processors, we model predicated
execution in an out-of-order processor. Here, we briefly provide background information on the
microarchitecture support needed to use predicated execution in an out-of-order processor.

In an out-of-order processor, predication complicates register renaming because a pred-
icated instruction might or might not write into its destination register, depending on the value
of the predicate. Researchers have proposed several solutions to handle this problem: con-
verting predicated instructions into C-style conditional expressions,® breaking predicated
instructions into two micro-ops,® using the select-micro-op mechanism,* and using predicate
prediction.® We briefly describe our baseline mechanism, C-style conditional expressions.
Our previous paper also evaluates the select-micro-op mechanism.’

Our baseline mechanism transforms a predicated instruction into another instruction that
is similar to a C-style conditional expression. For example, we convert the (p1) r1 =12 +r3
instruction to the micro-op r1 =p1 ? (r2 + r3):r1. If the predicate is true, the instruction per-
forms the computation and stores the result into the destination register. If the predicate is
false, the instruction simply moves the old value of the destination register into its destina-
tion register, which is architecturally a no-op operation. Hence, regardless of the predicate
value, the instruction always writes into the destination register, allowing the correct renam-
ing of dependent instructions. This mechanism requires four register sources (the old desti-
nation register value, the source predicate register, and the two source registers).

References

1. B.R.Rauetal., “The Cydra 5 Departmental Supercomputer,” Computer, vol. 22,
no. 1, Jan. 1989, pp. 12-35.

2. IA-64 Intel Itanium Architecture Software Developer’'s Manual Volume 3:
Instruction Set Reference, Intel Corp., 2002; http://www.intel.com/design/
itanium2/documentation.htm.

3. E. Sprangle and Y. Patt, “Facilitating Superscalar Processing via a Combined
Static/Dynamic Register Renaming Scheme,” Proc. 27th ACM/IEEE Int’l Symp.
Microarchitecture (Micro-27), |IEEE CS Press, 1994, pp. 143-147.

4. P.H. Wang et al., “Register Renaming and Scheduling for Dynamic Execution
of Predicated Code,"” Proc. 7th IEEE Int’l Symp. High Performance Computer
Architecture (HPCA 7), IEEE CS Press, 2001, pp. 15-26.

5. Alpha 21264 Microprocessor Hardware Reference Manual, Compag Computer
Corp., 1999; http://ftp.digital.com/pub/Digital/info/semiconductor/literature/
dsc-library.html.

6. W. Chuang and B. Calder, “Predicate Prediction for Efficient Out-of-Order
Execution,” Proc. 17th Int’l Conf. on Supercomputing (ICS 03), ACM Press, 2003,
pp. 183-192.

7. H.Kimetal., “Wish Branches: Combining Conditional Branching and Predication
for Adaptive Predicated Execution,” Proc. 38th ACM/IEEE Int'l Symp.
Microarchitecture (Micro-38), IEEE CS Press, 2005, pp. 43-54.

branches. For example, backward (loop)
branches, which constitute a significant pro-
portion of all branches, cannot be eliminated
using predicated execution.'?

JANUARY—FEBRUARY 2006 49

MICRO TOP PICKS

A
Wish jump
A A /
Not taken Taken B B
Wish join
If (condition) { c c y
b=0; D
C
else { D
b=1;
}
D
Al hp11 =_|£C°”dtiti°”) A p1 = (condition) A p1 = (condition)
rancn pi, large B| (Ip1) movb, 1 wish.jump p1, Target
B mov b, 1 _ _ C| (p1) movb, 0 B| (lp1) movb, 1
branch.unconditional Join wish.join !p1, Join
c | Target: C | Target:
mov b, 0 (p1) movb, 0
D | Join: | D | Join : |
(a) (b) (c)

Figure 1. Source code and the corresponding control flow graphs and assembly code for normal branch (a), predicated (b),

and wish jump/join (c) codes.

5” [EEE MICRO

In this article, we propose the use of wish
branches to dynamically reduce the overhead
sources in predicated execution and to make
predicated execution’s benefits applicable to
backward branches. These improvements
would increase the viability and effectiveness
of predicated execution in high-performance,
out-of-order execution processors (for back-
ground, see sidebar, “Microarchitectural sup-
port for predicated execution in out-of-order
execution processors’).

Wish jumps and wish joins

Figure 1 shows a simple source code exam-
ple and the corresponding control flow graphs
as well as assembly code for a normal branch,
predicated execution, and a wish jump/join.
The main difference between the wish
jump/join code and the normal branch code is
that the instructions in basic blocks B and C
are predicated in the wish jump/join code (as
Figure 1c shows), but they are not predicated
in the normal branch code (Figure 1a). The
first conditional branch in the normal branch
code becomes a wish jump instruction, and
the following control-dependent uncondi-
tional branch becomes a wish join instruction
in the wish jump/join code. The difference

between the wish jump/join code and the
predicated code (Figure 1b) is that the wish
jump/join code has branches (wish jump and
wish join), but the predicated code does not.
Wish jump/join code can execute in two dif-
ferent modes (high-confidence mode and low-
confidence mode) at runtime. The mode is
determined by the confidence of the wish
jump prediction. When the processor fetches
the wish jump instruction, it generates a pre-
diction for the direction of the wish jump
using a branch predictor, just like it does for a
normal conditional branch. A hardware con-
fidence estimator provides confidence estima-
tion for this prediction. If the prediction has
high confidence, the processor enters high-
confidence mode. If it has low confidence, the
processor enters low-confidence mode.
High-confidence mode is the same as using
normal conditional branch prediction; in this
mode the processor predicts the wish jump
instruction using the branch predictor. The
source predicate value (p1 in Figure 1¢) of the
wish jump instruction is predicted based on the
predicted branch direction so that the instruc-
tions in basic block B or C can be executed
before the predicate value is ready. When the
processor predicts the wish jump to be taken,

h loop

Taken
\
X X
Wis
Not taken Not taken
Y
do (Y
a++; Y Y
i++;
} while (i<N)
H mov p1, 1
X | Loop:
add a, a,1 X | Loop:
add i, .i, 1 (p1) add a, a, 1
p1 = (i<N) (p1) add i, i, 1
branch p1, Loop (p1) p1 = (i<N)
v wish.loop p1, Loop
Exit: |
Y | Exit:
(a) (b)

Figure 2. Do-while loop source code and the corresponding control flow graphs and assembly code for normal backward

branch (a) and wish loop (b) codes.

it sets the predicate value to true (and does not
fetch block B, which contains the wish join).
When it predicts the wish jump to be not
taken, it sets the predicate value to be false and
it predicts the wish join to be taken.
Low-confidence mode is the same as using
predicated execution, except it has addition-
al wish branch instructions. In this mode, the
wish jump and the following wish join are
always predicted to be not taken. The proces-
sor does not predict the source predicate value
of the wish jump instruction, and the instruc-
tions that depend on the predicate only exe-
cute when the predicate value is ready.
When the confidence estimate for the wish
jump is accurate, the processor either avoids
the overhead of predicated execution (high-
confidence mode) or eliminates a branch mis-
prediction (low-confidence mode). When the
processor mispredicts the wish jump in high-
confidence mode, it needs to flush the pipeline
just as in the case of a normal branch mispre-
diction. However, in low-confidence mode,
the processor never needs to flush the pipeline,
even when the branch prediction is incorrect.

Like conventional predicated code, the
instructions that are not on the correct control
flow path will become no-ops because all
instructions that are control-dependent on the
branch are predicated by the compiler.

Wish loops

A wish branch can also be used for a back-
ward branch. We call this a wish loop instruc-
tion. Figure 2 contains the source code for a
simple loop body and the corresponding con-
trol flow graphs and assembly code for a nor-
mal backward branch and a wish loop. We
compare wish loops only with normal branch-
es since predication cannot directly eliminate
backward branches.! A wish loop uses predi-
cation to reduce the branch misprediction
penalty of a backward branch without elimi-
nating the branch.

The main difference between the normal
branch code (Figure 2a) and the wish loop code
(Figure 2b) is that in the wish loop code the
instructions in block X (the loop body) are pred-
icated with the loop branch condition. Wish
loop code also contains an extra instruction in

JANUARY—FEBRUARY 2006

[EEE MICRO

MICRO TOP PICKS

the loop header to initialize the predicate to 1
(true). To simplify the explanation of the wish
loops, we use a do-while loop example in
Figure 2. Similarly, a while loop or a for
loop can also use a wish loop instruction.

When it first encounters the wish loop
instruction, the processor enters either high-
or low-confidence mode, depending on the
confidence of the wish loop prediction.

In high-confidence mode, the processor
predicts the direction of the wish loop with
the loop/branch predictor. If it predicts the
wish loop to be taken, it also predicts the pred-
icate value (p1 in Figure 2b) to be true, so the
instructions in the loop body can be execut-
ed without waiting for the predicate to
become ready. If the wish loop is mispredict-
ed in high-confidence mode, the processor
flushes the pipeline, just like in the case of a
normal branch misprediction.

If the processor enters low-confidence mode,
it stays in this mode until it exits the loop. In
low-confidence mode, the processor still pre-
dicts the wish loop with the loop/branch pre-
dictor. However, it does not predict the
predicate value. Hence, in low-confidence
mode, the processor executes the loop itera-
tions as predicated code (that s, the processor
fetches them but does not execute them until
the predicate value is known). There are three
misprediction cases in this mode:

* Early exit. The loop iterates fewer times
than it should.

* Late exit. The loop iterates only a few
more times than it should, and the front
end has already exited the loop when the
wish loop misprediction is signaled.

* No exit. The loop is still iterating when
the wish loop misprediction is signaled
(as in the late-exit case, the loop iterates
more times than necessary).

For example, consider a loop that iterates
three times. The correct loop branch direc-
tions are TTN (taken, taken, not taken) for
the three iterations, and the front end must
fetch blocks X, X,X,Y, where X is the 7th iter-
ation of the loop body. An example for each
of the three misprediction cases is as follows.

In the early-exit case, the predictions for the
loop branch are TN, so the processor front
end fetches blocks X, X,Y. One example of the

late-exit case is when the predictions for the
loop branch are TTTTN so the front end
fetches blocks XX, XX, X.Y. For the no-exit
case, the predictions for the loop branch are
TTTTT ... T so the front end fetches blocks
XXX Xs o X

In the early-exit case, the processor needs to
execute X at least one more time (in the exam-
ple just mentioned, exactly one more time for
block Xj), so it flushes the pipeline just as in the
case of a normal mispredicted branch.

In the late-exit case, fall-through block Y
has been fetched before the predicate for the
first extra block X, has been resolved. There-
fore, it is more efficient to simply allow X, and
subsequent extra block X to flow through the
data path as no-ops (with predicate value p1
= false) than to flush the pipeline. In this case,
the wish loop performs better than a normal
backward branch because it reduces the
branch misprediction penalty. The smaller the
number of extra loop iterations fetched, the
larger the reduction in the branch mispredic-
tion penalty.

In the no-exit case, the front end has not
fetched block Y at the time the predicate for
the first extra block X, has been resolved.
Therefore, it makes more sense to flush X, and
any subsequent fetched extra blocks, and then
fetch block Y, similar to the action taken for
a normal mispredicted branch. We could let
X, X; ... X,y become no-ops as in the late-exit
case, but that would increase energy con-
sumption without improving performance.

Wish branches in complex control flow

Wish branches are not only for simple con-
trol flow. They can also be used in complex
control flow where there are multiple branch-
es, some of which are control-dependent on
others. Figure 3 shows a code example with
complex control flow and the control flow
graphs of the corresponding normal branch,
predicated, and wish branch codes.

When there are multiple wish branches in
a given region, the first wish branch is a wish
jump and the following wish branches are
wish joins. We define a wish join instruction
to be a wish branch instruction that is con-
trol-flow dependent on another wish branch
instruction. Hence, the prediction for a wish
join depends on the confidence estimations
made for the previous wish jump, any

Block A

(if(cond1] Il [cond2)]{

Block C

// Block B

A

else {
// Block D

wittaken
Take!
C
} Taken | Not taken
B

\i

mjfiw|Oo|lO|>»

(@)

Figure 3. A complex control flow graph example with wish branches: Normal branch (a), predicated (b), and wish branch

codes (c).

previous wish joins, and the current wish join
itself. If the previous wish jump, any of the
previous wish joins, or the current wish join
is low-confidence, the current wish join is
predicted to be not taken. Otherwise, the cur-
rent wish join is predicted using the branch
predictor.

Support for wish branches

Since wish branches are an instruction set
architecture (ISA) construct, they require
support from the ISA, the compiler, and the
hardware.

ISA support

We assume that the baseline ISA supports
predicated execution. Wish branches are
implementable in the existing branch instruc-
tion format using the hint bit fields. Two hint
bits are necessary to distinguish between a
normal branch, a wish jump, a wish join, and
a wish loop.

Compiler support

The compiler needs to support the wish
branch code generation algorithm. The algo-
rithm decides which branches to predicate,
which to convert to wish branches, and which
to keep as normal branches based on estimat-
ed branch misprediction rates, compile-time

D

(b)

heuristics, and information about branch
behavior.?

Hardware support

An accurate confidence estimator? is essen-
tial to maximize the benefits of wish branch-
es. In addition, wish branches require
hardware support in the processor front end
and the branch misprediction detection/
recovery module. Our previous paper provides
detailed descriptions of the required hardware
changes.?

Advantages and disadvantages of wish hranches
In summary, the advantages of wish branch-
es are as follows:

o Wish jumps/joins provide a mechanism to
dynamically eliminate the performance over-
head of predicated execution. These instruc-
tions allow the hardware to dynamically
choose between using predicated execu-
tion versus conditional-branch prediction
for each dynamic instance of a branch
based on the runtime confidence estima-
tion of the branch’s prediction.

o Wish jumps/joins allow the compiler to gen-
erate predicated code more aggressively and
using simpler heuristics, since the processor
can correct the poor compile-time decisions

JANUARY—FEBRUARY 2006

Y

@D

SO =04 =>

Y

MICRO TOP PICKS

at runtime. In previous research, a static

branch instruction either remained a

conditional branch or was predicated for

all its dynamic instances, based on less
accurate compile-time information; if the
compiler made a poor decision to predi-
cate, there was no way to dynamically
eliminate the overhead of this poor com-
pile-time decision. For this reason, com-
pilers have been conservative in
producing predicated code and have
avoided large predicated code blocks.

o Wish loops provide a mechanism to exploit
predicated execution to reduce the branch
misprediction penalty for backward (loop)
branches. In previous research, it was not
possible to reduce the branch mispredic-
tion penalty for a backward branch sole-
ly using predicated execution."” Hence,
predicated execution was not applicable
to a significant fraction of hard-to-predict
branches.

o Wish branches will also reduce the need to
recompile the predicated binaries whenev-
er the machine configuration and branch
prediction mechanisms change from one
processor generation to another (or even
during compiler development). A branch
that is hard to predict in an older proces-
sor might become easy to predict in a
newer processor with a better branch pre-
dictor. If an old compiler conventional-
ly predicates that branch, the
performance of the old code will degrade
on the new processor because predicated
execution would not improve but in fact
would degrade the performance of the
now easy-to-predict branch. Hence, to
get the benefits of the new processor, the
old code would have to be recompiled.
In contrast, if the compiler converts such
a branch to a wish branch, the old bina-
ry’s performance would not degrade on
the new processor, since the new proces-
sor can dynamically decide not to use
predicated execution for the easy-to-
predict wish branch. Thus, wish branch-
es reduce the need to frequently
recompile by providing flexibility
(dynamic adaptivity) to predication.

The disadvantages of wish branches com-
pared to conventional predication are as follows:

Wish branches require extra branch instruc-
tions. These instructions would consume
machine resources and instruction cache
space. However, the larger the predicat-
ed code block, the less significant this
becomes.

o The extra wish branch instructions increase
the contention for branch predictor table
entries. This might increase negative
interference in the pattern history tables.
We found that performance loss due to
this effect is negligible.

o Wish branches reduce the size of the basic
blocks by adding control dependencies into
the code. Larger basic blocks can provide
more opportunities for compiler opti-
mizations. If the compiler that generates
wish branch binaries is unable to perform
aggressive code optimizations across basic
blocks, the presence of wish branches
might constrain the compiler’s scope for
code optimization.

Performance evaluation

We have implemented the wish branch
code generation algorithm in the state-of-the-
art Open Research Compiler (ORC).> We
chose the IA-64 ISA to evaluate the wish
branch mechanism because of its full support
for predication, but we converted the IA-64
instructions to micro-ops to execute on our
out-of-order superscalar processor model.

The processor we model is eight micro-ops
wide and has a 512-entry instruction window,
30-stage pipeline, 64-Kbyte two-cycle instruc-
tion cache, 64-Kbyte two-cycle data cache,
1-Mbyte six-cycle unified L2 cache, and a
300-cycle-minimum main-memory latency. We
model a very large and accurate hybrid branch
predictor (a 64K entry, gshare/Per Address (PA)
hybrid) and a 1 Kbyte confidence estimator.
Our previous paper also evaluates less aggres-
sive out-of-order processors.?

We use two predicated code binaries (PRED-
SEL and PRED-ALL) as our baselines because
neither binary performs the best for all bench-
marks. The compiler selectively predicates
branches based on a cost-benefit analysis to pro-
duce the PRED-SEL binary. The compiler con-
verts a// branches suitable for if-conversion to
predicated code to produce the PRED-ALL
binary. Hence, the PRED-ALL binary contains
more aggressively predicated code. A wish

2.02

1.20
1.15

= PRED-SEL

1.10

= PRED-ALL

1.05 |

1.00 |

W Wish jump/join/loop (real-confidence)
@ Wish jump/join/loop (real-confidence)
m Wish jump/join/loop (perfect-confidence)

0.95 |
0.90 |
0.85 |
0.80 |
0.75 |
0.70 |-
0.65 |
0.60 |
0.55 |
0.50

Execution time normalized to no prediction

gzip

vpr

Figure 4. Wish branch performance.

branch binary contains wish branches, tradi-
tional predicated code, and normal branches.
We used very simple heuristics to decide which
branches to convert to wish branches. Our pre-
vious paper explains the detailed experimental
methodology and heuristics.”

Results

Figure 4 shows the performance of wish
branches when the code uses wish jumps, joins,
and loops. We normalized execution times with
respect to normal branch binaries (that is, non-
predicated binaries). With a real confidence esti-
mator, the binaries using wish jumps, joins, and
loops (wish branch binaries) improve the aver-
age execution time by 14.2 percent compared to
the normal branch binaries and by 13.3 percent
compared to the best-performing (on average)
predicated-code binaries (PRED-SEL). An
improved confidence estimator has the poten-
tial to increase the performance improvement
up to 16.2 percent over the performance of the
normal branch binaries. Even if we exclude mcf,
which skews the average, from the calculation of
the average execution time, the wish branch
binaries improve the average execution time by
16.1 percent compared to the normal branch
binaries and by 6.4 percent compared to the

best-performing predicated code binaries
(PRED-ALL), with a real confidence estimator.

vortex bzip2

We also compared the performance of wish
branches to the best-performing binary for
each benchmark. To do so, we selected the
best-performing binary for each benchmark
from among the normal branch binary,
PRED-SEL binary, and PRED-ALL binary,
based on the execution times of these three
binaries, which are obtained via simulation.
This comparison is unrealistic because it
assumes that the compiler can, at compile
time, predict which binary would perform the
best for the benchmark at runtime. This
assumption is not correct because the compil-
er does not “know” the runtime behavior of
the branches in the program. Even worse, the
runtime behavior of the program can also vary
from one run to another. Hence, depending
on the input set to the program, a different
binary could be the best-performing binary.

Table 1 shows, for each benchmark, the
reduction in execution time achieved with the
wish branch binary compared to the normal
branch binary (column 2), the best-perform-
ing predicated code binary for the benchmark
(column 3), and the best-performing binary
(that does not contain wish branches) for the
benchmark (column 5). Even if the compiler
were able to choose and generate the best-per-
forming binary for each benchmark, the wish
branch binary outperforms the best-

Average AverageNoMcf

JANUARY—FEBRUARY 2006 55

MICRO TOP PICKS

Table 1. Execution time reduction percentage of the wish branch binaries over the best-performing binaries
on a per-benchmark basis (using the real confidence mechanism).*
Execution time reduction of the wish jump/join/loop binaries versus other binaries
(percentage)
Best Best
Best predicated Best non-wish-

Normal predicated code non-wish- branch
Benchmark branch code Binary* branch Binary*
gzip 12.5 3.8 PRED-ALL 3.8 PRED-ALL
vpr 36.3 23.9 PRED-ALL 23.9 PRED-ALL
mcf -1.5 183 PRED-SEL -1.5 Branch
crafty 16.8 0.4 PRED-ALL 0.4 PRED-ALL
parser 23.1 8.3 PRED-ALL 8.3 PRED-ALL
gap 4.9 2.5 PRED-ALL 2.5 PRED-ALL
vortex 3.2 4.3 PRED-SEL -4.3 PRED-SEL
bzip2 3.6 -1.2 PRED-SEL -1.2 PRED-SEL
twolf 29.8 13.8 PRED-ALL 13.8 PRED-ALL
average 14.2 6.7 NA B, 1 NA

* PRED-SEL, PRED-ALL, and Branch (normal branch) indicate which binary is the best performing binary for a given benchmark.

[EEE MICRO

performing binary for each benchmark by 5.1
percent on average, as column 5 shows.

Wish branches improve performance by
dividing the work of predication between the
compiler and the microarchitecture. The
compiler does what it does best: analyzing the
control-flow graphs and producing predicat-
ed code, and the microarchitecture does what
it does best: making runtime decisions as to
whether or not to use predicated execution or
branch prediction for a particular dynamic
branch based on dynamic program informa-
tion unavailable to the compiler.

This division of work between the compil-
er and the microarchitecture enables higher
performance without a significant increase in
hardware complexity. As current processors
are already facing power and complexity con-
straints, wish branches can be an attractive
solution to reduce the branch misprediction
penalty in a simple and power-efficient way.
Hence, wish branches can make predicated
execution more viable and effective in future
high performance processors.

he next step in our research is to develop
compiler algorithms and heuristics to
decide which branches to convert to wish
branches. For example, an input-dependent
branch, whose accuracy varies significantly
with the program’s input data set, is the per-

fect candidate for conversion to a wish branch.
Since an input-dependent branch is some-
times easy-to-predict and sometimes hard-to-
predict, depending on the input set, the
compiler is more apt to convert such a branch
to a wish branch rather than predicating it or
leaving it as a normal branch. Similarly, if the
compiler can identify branches whose predic-
tion accuracies change significantly, depend-
ing on the program phase or the control flow
path leading to the branch, it would be more
apt to convert them into wish branches.

We have devised a mechanism for identify-
ing input-dependent branches by profiling
with only one input set. We call our mecha-
nism 2D-profiling® because the profiling com-
piler collects profile information in two
dimensions during the profiling run: predic-
tion accuracy of a branch over time. If the pre-
diction accuracy of the branch changes
significantly during the profiling run with a
single input data set, then the compiler pre-
dicts that its prediction accuracy will also
change significantly across input sets. We have
found that 2D-profiling works well because
branches that show phased behavior in pre-
diction accuracy tend to be input-dependent.

Other compile-time heuristics or profiling
mechanisms that would lead to higher-quali-
ty wish branch code are also an area of future
work. For example, if the compiler can iden-

tify that converting a branch into a wish
branch (as opposed to predicating it) will sig-
nificantly reduce code optimization opportu-
nities, it could be better off predicating the
branch. This optimization would eliminate the
cases where wish branch code performs worse
than conventionally predicated code because
of the reduced scope for code optimization,
such as for the vortex benchmark in Table 1.

Similarly, if the compiler can account for
the execution delay from data dependencies
on predicates when estimating the execution
time of wish branch code on an out-of-order
processor, it can perform a more accurate cost-
benefit analysis to determine what to do with
a branch. Such heuristics will also be useful in
generating better predicated code for out-of-
order processors.

On the hardware side, more accurate confi-
dence estimation mechanisms are interesting to
investigate since they would increase the per-
formance benefits of wish branches . A special-
ized hardware wish loop predictor could also
increase the benefits of wish loops. R
Acknowledgments

We thank David Armstrong, Robert Cohn,
Hsien-Hsin S. Lee, HP TestDrive, Roy Ju,
Derek Chiou, and the members of the HPS
research group. We gratefully acknowledge
the commitment of the Cockrell Foundation,
Intel Corp., and the Advanced Technology
Program of the Texas Higher Education Coor-
dinating Board for supporting our research at
the University of Texas at Austin.

References
1. J.R. Allen et al., “"Conversion of Control

Dependence to Data Dependence,” Proc.
10th ACM SIGACT-SIGPLAN Symp. Princi-
ples of Programming Languages (POPL 83),
ACM Press, 1983, pp. 177-189.

2. H.Kim et al., “Wish Branches: Combining
Conditional Branching and Predication for
Adaptive Predicated Execution,” Proc. 38th
ACMY/IEEE Int’l Symp. Microarchitecture
(Micro-38), IEEE CS Press, 2005, pp. 43-54.

3. Y. Choi et al., “The Impact of If-Conversion
and Branch Prediction on Program Execution
on the Intel Itanium Processor,” Proc. 34th
ACMY/IEEE Int'l Symp. Microarchitecture
(Micro-34), IEEE CS Press, 2001, pp. 182-191.

4. E. Jacobsen, E. Rotenberg, and J.E. Smith,

“Assigning Confidence to Conditional
Branch Predictions,” Proc. 29th ACM/IEEE
Int’l Symp. Microarchitecture (Micro-29),
|IEEE CS Press, 1996, pp. 142-152.

5. ORC, “Open Research Compiler for [tanium
Processor Family,” http://ipf-orc.sourceforge.
net/.

6. H.Kimetal., “2D-Profiling: Detecting Input-
Dependent Branches with a Single Input
Data Set,” to appear in Proc. 4th Annual
International Symposium on Code Genera-
tion and Optimization (CGO 4), 2006.

Hyesoon Kim is a PhD candidate in electri-
cal and computer engineering at the Univer-
sity of Texas at Austin. Her research interests
include high-performance energy-efficient
microarchitectures and compiler-microarchi-
tecture interaction. Kim has master’s degrees
in mechanical engineering from Seoul
National University, and in computer engi-
neering from UT Austin. She is a student
member of the IEEE and the ACM.

Onur Mutlu is a PhD candidate in computer
engineering at the University of Texas at
His
computer architectures, with a focus on high-

Austin. research interests include
performance energy-efficien microarchi-
tectures, data prefetching, runahead execution,
and novel latency-tolerance techniques. Mutlu
has an MS in computer engineering from UT
Austin and BS degrees in psychology and com-
puter engineering from the University of
Michigan. He is a student member of the

IEEE and the ACM.

Yale N. Patt is the Ernest Cockrell, Jr. Cen-
tennial Chair in Engineering at the Universi-
ty of Texas at Austin. His research interests
include harnessing the expected fruits of
future process technology into more effective
microarchitectures for future microprocessors.
He is co-author of Introduction to Computing
Systems: From Bits and Gates to C and Beyond
(McGraw-Hill, 2nd edition, 2004). His hon-
ors include the 1996 IEEE/ACM Eckert-
Mauchly Award and the 2000 ACM Karl V.
Karlstrom Award. He is a Fellow of both the
IEEE and the ACM.

Jared Stark is a computer architect at Intel’s
Israel Development Center in Haifa, Israel.

JANUARY—FEBRUARY 2006 5]

MICRO TOP PICKS

His research interests include front-end
microarchitecture, in particular, branch
prediction; dynamic instruction sched-
uling; and techniques for tolerating
cache and memory latencies. Stark has a
BSE in electrical engineering and MSE
and PhD in computer science and engi-
neering from the University of Michi-
gan, Ann Arbor. He is a member of the
IEEE.

Direct questions and comments about this
article to Hyesoon Kim, Department of Elec-
trical and Computer Engineering, University
of Texas at Austin, 1 University Station
C0803, Austin, TX 78712; hyesoon@ece.
utexas.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

ADVERTISER / PRODUCT

INDEX

JANUARY/FEBRUARY 2006

March/April 2006: Marian Anderson

Advertising Coordinator
Hot Chips 17 Phone: +1 714 821 8380

Fax: +1714 8214010

Email: manderson@computer.org
May/June 2006: Sandy Brown

|IEEE Computer Society,
Business Development Manager
Phone: +1 714 821 8380

Fax: +1714 821 4010

Email: sh.ieeemedia@ieee.org

High-Performance On-Chip Interconnects

July/August 2006:

For production information, conference and classified advertising, con-
tact Marian Anderson, /EEE Micro, 10662 Los Vaqueros Circle, Los
Alamitos, CA 90720-1314; phone +1 714 821 8380; fax +1 714 821
4010; manderson@computer.org.

Computer Architecture Simulation and
Modeling

http://www.computer.org

[EEE MICRO

