
Improving GPU Performance via
Large Warps and Two-Level Warp Scheduling

Veynu Narasiman Chang Joo Lee Michael Shebanow† Rustam Miftakhutdinov Onur Mutlu‡ Yale N. Patt

High Performance Systems Group
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas 78712-0240

†NVIDIA Research
Santa Clara, CA 95050

‡Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213-3890

TR-HPS-2010-006
December 2010

This page is intentionally left blank.

Improving GPU Performance via
Large Warps and Two-Level Warp Scheduling

Abstract
Due to their massive computational power, graphics processing units (GPUs) have become a popular platform for

executing general purpose parallel applications. GPU programming models allow the programmer to create thousands
of threads, each executing the same computing kernel. GPUs exploit this parallelism in two ways. First, before execu-
tion, threads are grouped into fixed-size SIMD batches knownaswarps, and second, many such warps are concurrently
executed on a single GPU core. Despite these techniques, thecomputational resources on GPU cores are still under-
utilized, resulting in performance far short of what could be delivered. Two reasons for this are conditional branch
instructions and stalls due to long latency operations.

To improve performance of GPUs, the computational resources available must be more effectively utilized. To accom-
plish this, this paper proposes two independent ideas: the large warp microarchitecture and a two-level warp scheduling
policy. We show that when combined, our mechanisms improve performance by 17.0% over traditional GPU cores for
a wide variety of general purpose parallel applications that heretofore have not been able to exploit the available
resources of the GPU chip.

1. Introduction

Over the past few years,graphics processing units(GPUs) have become a popular platform for executing

general purpose parallel applications. Programming systems such as CUDA [23], ATI Stream Technology [1],

and OpenCL [14] allow programmers to parallelize an application into thousands of threads each of which

executes the same code. These threads are executed by a GPU inparallel thereby significantly reducing the

execution time of the application. Previous work [26, 10] has shown that some applications experience an

order of magnitude speedup when run on a GPU instead of a CPU. GPUs are able to achieve such speedups

because of the sheer amount of computational power they possess in relation to CPUs. They exploit this

power by utilizing thethread-level parallelism(TLP) exposed by the programmer.

GPU cores take advantage of TLP in two major ways. First, before execution, GPUs statically group

threads executing the same code into fixed sized batches known aswarps.1 These warps are executed on a

processing core that employs a scalar front end (fetch and decode) and a SIMD (single instruction, multiple

data) backend. The number of threads in a warp is usually equal to the SIMD width of the core so that a warp

can execute an instruction for all its threads across the SIMD resources in parallel. In a given cycle, each

thread belonging to the same warp executes the same instruction, yet on a different piece of data. This style

of processing amortizes the cost of fetch and decode across all threads in a warp thereby allowing more chip

area to be dedicated to data processing (i.e., computational resources) rather than control [23].

Second, GPU cores concurrently execute multiple warps on a single core. For example, 32 warps, each

consisting of 32 threads (for a total of 1024 threads), can all be assigned to execute on the same core. When

1Warp sizes for current NVIDIA [23] and ATI [1] GPUs are 32 and 64 respectively.

3

one warp is stalled, other warps can continue to execute which helps tolerate data dependencies, branch

penalties, and long latency operations, especially memoryrequests that miss in the cache.

The Problem: Underutilized Computational ResourcesDespite these techniques, the computational re-

sources on a GPU core are still underutilized. For example, grouping threads into warps is only efficient if

those threads remain on the same dynamic execution path (i.e., same PC) throughout their execution. Al-

though this holds true for many graphics applications, somegeneral purpose parallel applications exhibit

more complex control flow behavior among the parallel threads due to frequent conditional branches in the

code. Conditional branch instructions can cause threads ina warp to take different dynamic execution paths,

or diverge. Since existing GPU implementations allow a warp to have only one active PC at any given time,

these implementations must execute each path sequentially. First, the warp executes the threads that follow

the taken path of the branch (the not taken threads are maskedoff). Then the warp executes the not taken path

threads (masking off the taken path threads). This leads to lower utilization of SIMD resources while warps

are on divergent control-flow paths because the warp must execute with a fewer number of active threads than

the SIMD width of the core. This loss of efficiency continues until the divergent paths finish and a control

flow merge point is reached. At this time, the warp is brought back to its original active thread count (i.e., the

active thread count before the divergent branch instruction) and execution proceeds efficiently.

Another example of unused computational resources occurs when a GPU core is unable to effectively

hide the latency of long latency operations. The warp instruction fetch scheduling policy employed on a

GPU core can significantly affect the core’s ability to hide such latencies. For example, commonly-employed

scheduling policies that give equal priority to each warp (i.e., round-robin scheduling) tend to result in all

the warps arriving at the same long latency operation at roughly the same time. Therefore, there are no other

warps to execute to hide the latency. On the other hand, allowing warps to progress at very different rates can

result in starvation and destroy the data locality among thewarps. For example, data brought into the cache

and row buffers opened by one warp are likely to be accessed again by other warps. However, allowing warps

to progress very unevenly may destroy this locality.

Figure 1 illustrates the unused computational resources onGPU cores for a set of general purpose parallel

benchmarks. Each benchmark is represented by a stacked bar indicating the percentage of cycles a certain

number of the computational resources (i.e., functional units) are active. For this experiment, both the SIMD

width and warp size is set to 32, and 32 warps are concurrentlyexecuting on the same core using a round-

robin scheduling policy. As previously mentioned, branch divergence results in a reduction of the number

of active threads in a warp which leads to underutilization of the computational resources. The leftmost five

benchmarks suffer from this problem indicated by the fact that there is a large percentage of cycles where

only a fraction of the FUs are active. On the other hand, the rightmost benchmarks suffer less from branch

4

divergence but rather experience a significant fraction of cycles where none of the FUs are active (idle FU

cycles). The main reason for these idle cycles is that all (ormost) warps are stalled waiting on a long latency

operation (e.g., waiting on data from memory). Even with so many warps concurrently executing (32 warps

for this experiment), several benchmarks show a significantfraction of idle cycles. For example, the bfs

benchmark spends approximately 95% of its execution time stalling.

 0

 20

 40

 60

 80

 100

bla
ck

jac
k

so
rt

vit
er

bi

km
ea

ns

de
cr

yp
t

bla
ck

sc
ho

les

ne
ed

lem
an

ho
tsp

ot

m
at

rix
_m

ult

re
du

cti
on

his
to

gr
am bf

s

P
er

ce
nt

ag
e

of
 T

ot
al

 C
yc

le
s

Active FUs:

32

24-31

16-23

8-15

1-7

0

Figure 1. Computational resource utilization, SIMD width a nd warp size is 32

Our Goal is to improve application performance on GPUs by better utilizing computational resources. To

this end, we propose two mechanisms each of which aims to reduce one of the two major causes of resource

underutilization: branch divergence and long latency operations.

Key Ideas To alleviate the performance penalty due to branch divergence, we propose thelarge warp

microarchitecture(LWM). Existing GPU cores statically create many warps eachwith a modest number of

threads (usually equal or close to the SIMD width of the core). Instead, we propose creating fewer but

correspondingly larger warps (that have significantly larger number of threads than the SIMD width of the

core), and dynamically creating SIMD width sized sub-warpsfrom the active threads in a large warp. The key

insight is that even in the presence of branch divergence, there will likely be a large number of active threads

in the large warp. These active threads can be dynamically grouped together into fully populated sub-warps

that can better utilize the SIMD resources on the core.

To reduce the number of idle FU cycles, we propose a novel two-level round-robin warp instruction fetch

scheduling policy which can be applied on top of conventional GPU core architectures as well as the LWM.

This policy assigns a set of warps into a fetch group (e.g., 32warps could be split up into 4 fetch groups of

8 warps each). The scheduling policy selects a fetch group toprioritize and schedules warps fromonly that

fetch group in a round-robin fashion until no warp from that fetch group can be scheduled (i.e., all of the

warps in the fetch group are stalled). At this point, the nextfetch group is selected and the policy repeats.

Note that the scheduling policy within a fetch group is round-robin, and switching from one fetch group to

another is also done in a a round-robin fashion (hence two-level round-robin). The key insight is that each

fetch group reaches a long latency instruction at differentpoints in time; as such, when the warps in one fetch

5

group are stalled, warps from another fetch group can be executing thereby effectively tolerating the latency.

Since a fair round-robin policy is used at each level of scheduling, our two-level policy is still able to exploit

the data locality between warps (which the conventional round-robin scheduling policy does very well). The

overall result is reduced idle FU cycles leading to performance improvement.

Contributions: In this paper, we make the following contributions:

1. We propose a novel microarchitecture to mitigate the performance loss due to branch divergence on

GPU cores. Our proposal introduces large warps and includesa dynamic mechanism to break down large

warps into fully populated (or close to fully populated) sub-warps.

2. We propose a new two-level warp instruction fetch scheduling policy and show that such a policy

significantly reduces the number of idle execution cycles due to long latency instructions. We show that this

policy can be used with either an existing GPU microarchitecture or with the large warp microarchitecture.

3. We show that our two proposals can be combined. Together, they significantly improve performance (by

17.0% on average) over a wide range of general purpose parallel applications by more efficiently utilizing the

massive computational resources found on GPU cores.

2. Background

We first describe in detail the microarchitecture of a singleGPU core.2 Although we discuss and evaluate

only a single GPU core, it should be noted that many such coresare replicated on the GPU.

2.1. GPU Core Pipeline

Figure 2 illustrates the baseline architecture of a single GPU core composed of a scalar front end (fetch

and decode) and a SIMD backend. GPU programming models allowthe programmer to create thousands of

threads, each executing the same code. Before execution, those threads are grouped into fixed size SIMD

batches called warps. Each warp contains threads with consecutive thread IDs and the number of threads in

the warp is equal to the SIMD width of the core (N in Figure 2). Many warps (M warps in Figure 2 for a total

of M × N threads) are assigned to execute concurrently on a single GPU core.

In the fetch stage, the scheduler selects a warp from the listof ready warps. The baseline fetch scheduling

policy uses a round-robin scheduler giving equal priority to each warp [9, 17]. Associated with each warp is

a warp ID, a bit vector called the active mask, and a single Program Counter (PC). The active mask indicates

whether or not the corresponding thread in a warp is currently active. When a warp is originally created, all

of its threads are active.3 However, branch divergence can cause threads within a warp tobecome inactive.

Our baseline processor imposes a strict barrel processing model[30, 28] where once a warp is selected in

the fetch stage, it cannot be selected again until the warp completes execution. After a warp is selected by

2Our term “GPU core” corresponds to a single Streaming Multiprocessor (SM) in NVIDIA’s terminology [20].
3If the total number of threads is not a multiple of the warp size, then a single warp may be created without all threads active.

6

the scheduler, the instruction cache is accessed at the PC ofthe warp and the instruction is decoded thereby

completing the scalar portion of the pipeline. Next, the register values for all threads in the warp are read in

parallel from the register file which is indexed by warp ID andregister ID as shown in Figure 2. These register

values are then fed into the SIMD backend of the pipeline and are processed in parallel across multiple SIMD

lanes. Once a warp reaches the final stage of the pipeline, itsPC and active mask are updated and the warp is

again considered for scheduling.

2.2. Memory Model

...... ...

. . .
.

.
...

.

.

.

Global
memory
D−cache

Decoder

PC

Scheduler

Th N−1

...

Th 0

La
ne

 N
−

1

La
ne

 1

La
ne

 0

Memory access unit

La
ne

 N
−

1

La
ne

 1

La
ne

 0

Writeback

x30000000

Warp ID

7

1

Active mask

101.....1011

001.....0000 x50020200

I−cache

..

Fetch unit

Register files

{Warp 0’s reg file

Warp ID.Reg ID

Warp M−1’s reg file{

Private
memory

Figure 2. GPU core pipeline

Figure 2 also illustrates the memory model for the baseline GPU

core. All threads have access to global memory and data from global

memory is cached on chip in the global memory D-cache. An entire

cache line can be read (or written) in parallel in a single transaction and

therefore a warp accessing global memory can be satisfied in asingle

transaction if all threads in the warp access data in the samecache line.

If the threads within a warp access different cache lines, those accesses

will be serialized resulting in stalls in the pipeline. Thisis similar to the

scatter/gather support in Intel’s Larrabee microarchitecture [27]. If one

or more threads in the warp access a line not present in the cache, the

entire warp stalls and is put aside, allowing other warps to flow through

the pipeline while the data is fetched from global memory.

In addition to the global memory data cache, each thread alsohas ac-

cess to a small amount of on-chip private memory which storesprivate

data of each thread (i.e., local variables). This helps avoid costly accesses to main memory for applications

where each thread’s private data is too large for the register file. This on-chip memory is highly banked (one

bank per SIMD lane) so that threads in a warp can read private data efficiently in parallel. This memory

corresponds to private memory in OpenCL [14].

2.3. Conditional Branch Handling

Figure 3, adapted from Fung et al. [9, 8], illustrates the baseline branch handling mechanism currently

employed by GPU cores. In this example, there is only a singlewarp consisting of four threads, each of

which is executing the same static code whose control flow graph is shown in Figure 3(a). Since a warp can

only have a single active PC at any given time, when branch divergence occurs, one path must be chosen first

and the other is pushed on a divergence stack associated withthe warp so that it can be executed later. The

divergence stack is also used to bring the warp back togetheronce the divergent paths have been executed

and all threads have reached a control flow merge (CFM) point.A divergence stack entry consists of three

7

fields: a re-convergence PC, an active mask, and an execute PC. Executing the divergent paths serially but

then re-converging at the CFM point can be accomplished by doing the following:

1) When the branch outcomes for the threads in the warp are notthe same (i.e., a divergent branch), push

a join entry onto the divergence stack. The join entry has both the re-convergence PC and execute PC fields

equal to the compiler identified control flow merge (CFM) point of the branch. The active mask field is set

to the current active mask (i.e., the active mask when the branch instruction was executed). Next, one of the

two divergent paths is selected to execute first and the current PC and active mask of the warp are updated

accordingly. Lastly, another entry, thedivergententry, is pushed on the divergence stack. The execute PC

and active mask of this entry correspond to the divergent path that was not selected to be executed first. The

re-convergence PC for this entry is set equal to the CFM pointof the divergent branch.

2) When a warp reaches the last stage of the pipeline, its re-convergence stack is accessed to see if the next

PC of the warp is equal to the re-convergence PC at the top of the stack. If so, the entry is popped, and the

active mask and execute PC fields of the entry become the current active mask and PC of the warp.

Rec PC Active

1111D D

Active mask: 0100

Current PC: C

Divergence stack

(d) After executing B

Execute
mask PC

Rec PC Active

Active mask: 1111

Current PC: D

Divergence stack

(e) After executing C

Execute
mask PC

1111

0100

1111

PC: A

PC: B PC: C

(a) Control flow graph

Current PC: A

Active mask: 1111

Reconvergence Active

Divergence stack

1011

(b) Initial state

(Rec) PC mask
Execute

PC

Divergent
entry

Rec PC Active

0100

1111

D

D

C

D

Active mask: 1011

Current PC: B

Divergence stack

(c) After executing A

Execute
PCmask

Join entry Join entry

PC: D
Control flow
merge point

Divergent
branch

Figure 3. Stack based re-convergence for baseline GPU cores

Figures 3(b) through (e) show the state of the current PC, thecurrent active mask, and the divergence stack

for a warp at relevant points in time as it executes the control flow graph of Figure 3(a). Inside each basic

block of Figure 3(a) is a bit vector indicating whether or notthe corresponding thread in the warp needs to

execute the instructions in that basic block, i.e., the current active mask of the warp. The SIMD lanes are

fully utilized as the instructions in block A execute but areunderutilized as the divergent paths (blocks B and

C) execute. Once all threads reach block D, the warp is restored to having four active threads and execution

once again proceeds efficiently. However, the under-utilization of SIMD resources before re-convergence at

the control flow merge point can lead to significant performance degradation.

3.. Solution: Large Warp Microarchitecture and Two-level Warp Scheduling

In this section we describe our two new mechanisms: the LargeWarp Microarchitecture, and the two-

level round-robin warp instruction fetch scheduling policy. We first describe each mechanism separately, then

discuss how the two can be combined.

8

3.1. The Large Warp Microarchitecture

To alleviate the performance penalty due to branch divergence, we propose thelarge warp microarchitec-

ture (LWM). While existing GPUs assign several warps to concurrently execute on the same GPU core, we

propose having fewer but correspondingly larger warps. Thetotal number of threads and the SIMD width of

the core stay the same. The key benefit of having large warps isthat fully populated sub-warps can be formed

from the active threads in a large warp even in the presence ofbranch divergence.

...

..

. . .

. . .

. . .

. . .ThN(K−1)+1ThN(K−1) ThNK−1

Th0

ThN

Th2N

Th1

ThN+1

Th2N+1

...

..
...
..

...

..

ThN−1

Th2N−1

Th3N−1

Row K−1

Large warp width = SIMD width = N

La
rg

e
w

ar
p

de
pt

h
=

 K Row 0

Row 1

Row 2

Figure 4. Large warp active mask

3.1.1. Large Warp Microarchitecture Basic Operation A

large warp is statically composed of consecutive threads and has

a warp ID and a single PC. It also has an active mask organized

as a two dimensional structure where the number of columns is

equivalent to the SIMD width of the core. Figure 4 shows the

organization of the active mask of a large warp of size K× N

threads executing on a core with a SIMD width of N. Each cell

in Figure 4 is a single bit indicating whether or not the corresponding thread is currently active. Notice that the

actual storage cost does not change compared to the baseline. The baseline processor would have K separate

N-bit wide active masks instead (i.e., it would have K separate warps).

.

. . .

.

Sub−warp logic

Sub−warp

. . . .
...

0

0 0

00

1 1

1

1

10

1

Large warp active mask

From fetch stage

To register read stage

Figure 5. sub-warping logic

Once a large warp is selected in the fetch stage, the instruction cache is

accessed at the PC of the large warp and the instruction is decoded in the

following cycle just as in the baseline processor. In parallel with decode,

SIMD-width sized sub-warps are created which can then flow through the rest

of the pipeline. Figure 5 shows the hardware structures added to support the

large warp microarchitecture. When forming sub-warps, thegoal is to pack

as many active threads as possible into a sub-warp so as to best utilize the

SIMD resources further down the pipeline. To accomplish this, specialized

sub-warping logic examines the two dimensional active maskof the large

warp and aims to pick one active thread from each column.

Sub-warp Creation: When determining how to pack active threads into a sub-warp,the design of the

register file must be taken into consideration since it is imperative that the register values for a sub-warp can

be sourced in parallel. Figure 6(a) shows the design of the register file for the baseline microarchitecture (no

large warps). Since consecutive threads are statically grouped into warps and this assignment never changes,

the register file can be conceptually designed as a very wide single banked structure indexed by warp ID

9

concatenated with the register ID as shown in Figure 6(a).4 However, having a single address decoder does

not give enough flexibility for the LWM to pack threads into sub-warps. Ideally, we want to allow any set of

active threads to be packed into a sub-warp. This would require the register file to have a number of ports

equivalent to the SIMD width of the core. Such a design would require considerable increase in area and

power. Therefore, we use a register file design similar to theone used by Jayasena et al. [11] and Fung et

al. [9, 8] and shown in Figure 6(b). The register file is split up into separately indexable banks, one bank per

SIMD lane. This design is cost-effective and provides much more flexibility in grouping active threads into

sub-warps than the baseline register file. Using this design, we can now group threads into a sub-warp as long

as they come from different columns in the large warp’s active mask.

.

....

.

.
....

....
....

.

.

.
Bank 0 Bank 1Lane 0 Lane 1 Lane N−1

A
dd

re
ss

 d
ec

od
er

(1, 2)
Warp ID.Reg ID

Large warp 0’s register files

A
dd

re
ss

 d
ec

od
er

(0, 1, 2)

A
dd

re
ss

 d
ec

od
er

(0, 0, 2)

A
dd

re
ss

 d
ec

od
er

(0, 0, 2)
Large Warp ID. Row. Reg ID

Warp 0’s{

Warp 2’s

{Warp M−1’s
reg file

reg file

reg file

Large warp 1’s
register files{

} Warp 1’s
reg file

Lane 0 Lane 1 Lane N−1

(b) Large warp microarchitecture register files(a) Baseline register files

Bank N−1

Figure 6. Large warp vs baseline register file design

Figure 7 illustrates the dynamic creation of sub-warps froma large warp of 32 threads executing on a core

with a SIMD width of four. Due to branch divergence, the largewarp is shown with only a subset of its threads

active in Figure 7(a). Each cycle, the hardware searches each column of the active mask in parallel for an

active thread and if found, selects those threads to be grouped together into a sub-warp. Once an active thread

is selected, the corresponding bit in the active mask is cleared. If there are still active threads remaining, a

stall signal is sent to the fetch stage of the pipeline since the large warp has not yet been completely broken

down into sub-warps. Once all bits in the active mask have been cleared, sub-warping for the current warp

is complete and sub-warping for the next large warp (selected in the fetch stage) begins. Figure 7 illustrates

how a large warp is dynamically broken down into four sub-warps over four successive cycles. Notice that

in each cycle an active mask and row IDs are created for the newly formed sub-warp. The selected threads

are highlighted each cycle and the newly created sub-warp’sactive mask and row IDs are shown beneath the

large warp’s active mask.

Note that the baseline processor would form eight differentwarps of four threads each rather than grouping

all 32 threads into a large warp. Therefore, while the divergent code executes, SIMD resources will be

underutilized since each warp contains fewer active threads than the SIMD width. However, with large warps,

4Such large SRAMs can’t be built due to timing/energy considerations [4], so even the baseline register file is slightly banked.

10

1 1

1 1

1 1 1

11

1

1 1

1

1 1

0 0

0 0

0

0 0 0

0

0

0

0

0

0

0 0

0

1 1 11

Active mask:

0 2 10

Row IDs:

1 1 11

Active mask:

1 3 22

Row IDs:

1 1 11

1

1 1

0 0

0

0

0 0

0

0

0

1

1 1

1

1 1

0

0

0

0

0

0

0 0

0

1

1

1 1

1

1

1 1

1

1 1

0 0

0

0 0 0

0

0

0

0

0

0

0 0

0

0

0

1

1 1

1 1

1 1

11

1

1 1

1

1 1

0 0

0 0

0

0 0 0

0

0

0

0

0

0

0 0

0

1

0 0 0 0 0

0

0

0 0

0

0

0 0 0

0 0

0 0

0 0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0 0

0

0

0

0

(a) Cycle X

(c) Cycle X + 2(b) Cycle X + 1 (d) Cycle X + 3 (e) Cycle X + 4

Active mask:

6 4 45

Row IDs:

Active mask:

7 7 5

Row IDs:

1 1 10

−
Resulting sub−warps

Row 0

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

After fetch

Figure 7. Dynamic creation of sub-warps

the inactive slots present in the baseline processor are filled with active threads during sub-warp creation.

Therefore, only four efficiently packed sub-warps are created and SIMD resources are better utilized.

How a Large Warp Handles Divergence and Re-convergence:Large warps handle divergence and re-

convergence much the same way that baseline warps do. However, when a large warp executes a branch

instruction, it is not known for sure whether or not the largewarp diverged until the last sub-warp completes

execution. Therefore, the new active mask and the active masks to be pushed on the divergence stack are

buffered in temporary active mask buffers. Once all sub-warps complete execution, the current active mask

and PC of the large warp are updated and divergence stack entries are pushed on the large warp’s divergence

stack (if the large warp in fact diverged). The divergence stack is popped just as described in the baseline

processor in Section 2.3 except that the divergence stack ischecked for a matching entry only after all sub-

warps have completed execution.

Barrel Processing in the Large Warp Microarchitecture: In the baseline GPU core, multiple warps are

executed in a barrel processing fashion such that once a warpis selected by the scheduler in the fetch stage, it is

not considered again for scheduling until the warp completes execution. For the large warp microarchitecture,

we impose a similar restriction that once a large warp is selected, it is not considered for scheduling again

until all sub-warps have completed execution. Using this restriction, there is no need for hardware interlocks

for dependency handling just as in the baseline processor.

3.1.2. Large Warp Microarchitecture Optimizations We describe two optimizations for the LWM. The

first optimization deals with the possible additional memory divergence caused by dynamic sub-warping. The

second optimization aims to exploit the concept of large warps to reduce the latency of unconditional control

instructions that cannot cause divergence and therefore only change the PC.

Memory Divergence Optimization: A well known software technique employed by many GPU program-

mers is to coalesce accesses to global memory [23, 22, 15]. Some consider this the single most important

performance consideration for programming GPUs [22]. Therefore, GPU programmers take special effort to

ensure that consecutive threads access consecutive memorylocations. If the addresses are not consecutive

11

(i.e., memory divergence), each warp will require multipletransactions to global memory which can signif-

icantly degrade memory throughput and therefore performance. The same problem exists for accessing data

that has been cached. If all addresses do not map to the same cache line, multiple serial cache accesses must

be made due to port contention.

The LWM can cause additional memory divergence not found in the baseline since non-consecutive threads

can be grouped together into a sub-warp during dynamic sub-warping. To avoid this, when a large warp is

executing an instruction that accesses global memory, sub-warps are formed corresponding to each row of

the active mask. Although this does not pack threads into sub-warps as efficiently, it avoids the additional

memory divergence created if we used the regular sub-warping mechanism.

Unconditional Control Flow Optimization: When a warp in the baseline processor executes an uncon-

ditional control flow instruction (i.e., a jump), only a single PC update is needed. The same is true for large

warps and therefore there is no need to create multiple sub-warps when a large warp executes a jump instruc-

tion. Creating multiple sub-warps is wasteful since successive sub-warps would just overwrite the same value

to the PC that the previous sub-warp wrote. Thus, sub-warping for a large warp executing a jump instruction

completes in just a single cycle, allowing sub-warping for the next large warp to begin sooner. Note that for

a large warp size of 256 threads and a SIMD width of 32, this optimization saves 7 cycles (assuming that the

large warp is fully populated) because it creates only one sub-warp instead of 8.

3.2. Two-level Warp Instruction Fetch Scheduling

As previously mentioned, GPU cores concurrently execute many warps on the same core which helps avoid

stalls due to long latency operations. However, the warp instruction fetch scheduling policy employed on the

GPU core can considerably affect the core’s ability to hide long latencies. In this section, we propose a novel

two-level round-robin scheduling policy which more effectively hides long latencies and therefore reduces

idle FU cycles. We first describe our new scheduling policy inthe context of the baseline processor (not the

LWM) and later describe how the two can be combined.

The baseline processor uses a round-robin warp instructionfetch policy giving equal priority to all concur-

rently executing warps throughout the entire execution of the parallel program [17, 9]. This policy results in

warps progressing through the program at approximately thesame rate which is beneficial since warps tend to

have a lot of data locality among them. Recall from Section 3.1.2 that programmers are encouraged to make

consecutive threads access consecutive locations in memory to reduce memory divergence. This implies that

the memory requests created by different warps have significant spatial locality (i.e., they all map to the same

row buffer). Therefore, when a warp executes a memory request that misses in the cache, other warps are

likely to produce cache misses that map to the same row buffer. This row buffer locality can be exploited

as long as the requests are generated close enough to each other in time. A fair round-robin policy allows

12

this to happen whereas a scheduling policy that results in very uneven warp progression could destroy such

locality since an opened row buffer may be closed before other warps access it. However, a pure round-robin

scheduling policy also tends to make all warps arrive at the same long latency operation at roughly the same

time. Since all (or most) of the warps are stalled, there are not enough active warps to execute instructions

from to hide the long latency resulting in several idle FU cycles.

To this end, we propose a two-level round-robin scheduling policy. With this policy, the concurrently

executing warps are grouped into fixed size fetch groups. Forexample, 32 warps could be grouped into 4

fetch groups each with 8 warps (i.e., fetch group size equals8). The scheduling policy selects a fetch group

to prioritize and schedules warps from only that fetch groupin a round-robin fashion until no warp from

that fetch group can be scheduled (i.e., all the warps in thatfetch group are stalled). When this happens,

the next fetch group is selected and the policy repeats. Notethat the scheduling policy within a fetch group

is round-robin, and switching from one fetch group to another is also done in a round-robin fashion (hence

two-level round-robin). Prioritizing a single fetch groupprevents all warps from arriving at the same long

latency operation at the same time. Instead, a smaller subset of warps (i.e., a fetch group) arrives at the

long latency operation together and therefore there are instructions from other warps (in another fetch group)

to execute while the warps in the original fetch group are stalled. In addition, since this policy switches

between fetch groups in a fair round-robin fashion, it is able to preserve the row buffer locality between warps

(which the conventional round-robin scheduling policy does very well). In summary, the two-level round-

robin scheduling policy allows just enough separation between warps to effectively hide long latencies, but

not too much as to destroy the row buffer locality among them.

Figure 8(a) shows how execution would proceed on a GPU core employing the conventional round-robin

scheduling policy among all warps, and Figure 8(b) shows thesame core using a two-level round-robin

scheduling policy. In this simplified example there are 16 total warp contexts. Using the conventional round-

robin scheduling policy, all warps progress evenly throughthe compute phase of the program but then all stall

waiting on data to return from memory resulting in idle FU cycles before more computation can be done. On

the other hand, using a two-level round-robin policy with 2 fetch groups of 8 warps each reduces the number

of idle cycles as shown in Figure 8(b). Using the two-level policy, the warps in fetch group 0 proceed through

the computation in half the time it took all 16 warps to do so and therefore reach the long latency operation

(a memory request in this case) sooner. Since all warps in fetch group 0 are now stalled, a fetch group switch

occurs and warps in fetch group one begin to execute the compute phase of the program while the requests

created by fetch group 0 are serviced. Likewise, when data returns from memory, fetch group 0 resumes

computation which again overlaps with memory requests being serviced. In summary, the two-level policy

has reduced the number of idle FU cycles thereby improving performance.

13

System
Memory

Core

Core

System
Memory

Req Warp 7

Time

Time

All Warps Compute

Fetch Group 1

All Warps Compute

Compute Compute Idle Cycles

Idle Cycles

Compute Compute
Fetch Group 1Fetch Group 0 Fetch Group 0

(b) Two−level round robin scheduling with 2 fetch groups of 8 warps each

(a) Baseline round robin scheduling with 16 warps

Req Warp 0
Req Warp 1

Req Warp 15

Req Warp 1

Req Warp 8
Req Warp 9

Req Warp 15

Req Warp 0

Saved Cycles

Figure 8. Baseline round-robin vs two-level round-robin sc heduling, total warp count = 16

3.2.1. Fetch Group SizeSetting the fetch group size correctly is very important forthe two-level round-

robin scheduling policy to work effectively. Recall from Section 2, our baseline processor uses a strict barrel

processing model where once a warp is selected in the fetch stage, it cannot be fetched again until the warp

flows through the entire pipeline and finishes execution. Therefore, having too small a fetch group size (less

than the number of pipeline stages) will result in immediatefetch group switches since after all the warps in

the current fetch group have been selected in the fetch stage, no warps in that fetch group will be ready to be

fetched since they would all still be in the pipeline. Therefore fetch group switches would occur prematurely

(i.e., before the warps are actually stalled on a long latency operation), which results in a scheduling policy

similar to the baseline round-robin policy. On the other hand, too large a fetch group size also results in

a scheduling policy similar to the baseline. For example, ifthe fetch group size is equivalent to the total

number of warps (i.e., only 1 fetch group containing all the warps), the two-level round-robin policy is by

definition equivalent to the baseline round-robin policy. The key is to have just enough warps in a fetch group

to effectively fill up the pipeline so that a fetch group switch only occurs once those warps are actually stalled

on a long latency operation.

3.2.2. Generalizing Two-Level SchedulingAlthough we have used memory requests as the long latency

operation in our previous examples and discussions, the two-level scheduling policy is effective in tolerating

any type of stall. For example, GPU ISAs [24] have complex instructions (e.g., sine, cosine, log, and exponent

instructions) and the compute bandwidth for those operations are much less than that of simple instructions

(since there are fewer complex FUs than simple FUs). If all warps arrive at a complex instruction at roughly

the same time, there will be significant stalling. However, the two-level scheduling policy results in a subset of

warps (i.e., a fetch group) reaching the complex operation together, and allows warps in another fetch group

to execute simple instructions while the original fetch group slowly gets through the complex operation.

3.2.3. Integrating the LWM and Two-level Fetch SchedulingThe Large Warp Microarchitecture and two-

level round-robin scheduling can be combined. Just as in applying two-level scheduling to the baseline pro-

cessor, the fetch group size must be carefully chosen when combining the LWM and two-level scheduling.

14

Having too small or too large a fetch group size will result inperformance similar to the baseline round-robin

fetch policy. However, with large warps, since there are fewer total warps on the core, there is less flexibility

in choosing the ideal fetch group size. For example, with large warps of 256 threads each, there are only

four large warps concurrently executing on the core and therefore only fetch group sizes of one, two, and four

are possible. Recall from Section 3.1.1 that when imposing barrel processing with large warps, once a large

warp is selected in the fetch stage, it cannot be fetched again until all of its sub-warps have finished execution.

Therefore, a fetch group size of one is too small (even thoughthere are 256 threads in the warp) and will result

in premature fetch group switches. Likewise, a fetch group size of four (i.e., all 4 large warps in a single fetch

group) is by definition equivalent to the baseline round-robin policy. Therefore, only a fetch group size of two

is able to achieve any benefit. This lack of flexibility implies that two-level scheduling will be more efficient

at smaller warp sizes (since there will be more flexibility inchoosing the ideal fetch group size). However,

larger warp sizes better tolerate branch divergence. We will evaluate this tradeoff in our results section.

3.3. Hardware Cost

The hardware cost for the LWM comes from restructuring the register file. As shown in Section 3.1.1,

instead of a single address decoder, our mechanism requiresa separate address decoder per SIMD lane.

Previous work [11, 9, 8] estimates that using such a design results in little die area increase. For example,

Jayasena et al. [11] propose stream register files with indexed access which require dedicated row decoders

for each bank instead of a single shared decoder. They show that duplicating the row address decoders results

in an 11% to 18% increase in register file area which corresponds to a 1.5% to 3% increase in chip area of the

Imagine processor [13]. Fung et al. [8] show similar resultsindicating that having separate address decoders

results in an estimated 18.7% increase in register file area,which corresponds to 2.5% of GPU area.

In addition to the register file overhead, there are a few extra storage structures required by the LWM not

present in the baseline GPU core. As explained in Section 3.1.1 and illustrated in Figure 5, sub-warp creation

is done in parallel with decode by searching the columns of the two dimensional active mask of a large warp

and clearing the bits corresponding to the selected threads. We cannot clear the bits in the warp’s actual active

mask (since this would affect correctness) and therefore a copy of the large warp’s active mask must be made

before the warp can be broken down into sub-warps. For large warps of size 256 threads, this corresponds

to 256 bits of storage (1 bit per thread in a large warp). In addition, as explained in Section 3.1.1, the large

warp microarchitecture uses the temporary active mask buffers while executing branch instructions. Since a

temporary buffer is required for each path of the divergent branch, this corresponds to 512 bits of storage. The

total additional storage is 768 bits (96 bytes).

Two-level warp instruction fetch scheduling does not require any additional storage cost. The only change

is a simple logic block in the fetch stage implementing the two-level round-robin scheduling policy.

15

4. Comparison to Previous Work

Fung et al. [9, 8] proposed lane-awaredynamic warp formation(DWF) to address the branch divergence

problem on GPU cores. Since their proposal also addresses the problem of underutilized SIMD resources, we

extensively compare our work to DWF in this section and quantitatively evaluate DWF in Section 6.

DWF has three main disadvantages compared to our work: 1) thethread merging in DWF is not as efficient

as dynamic sub-warping of a large warp, 2) DWF can cause significant additional memory divergence not

found in the LWM or the baseline processor, and 3) the scheduling policies described above have several

unintended effects with certain types of control flow which leads to not only lost opportunities for merging

but also destruction of the data locality among warps. We elaborate on these issues below.

Incremental Merging: DWF only permits a retiring warp to be merged with the youngest matching warp

in the list of warps waiting to be scheduled (i.e., the warp pool). This can result in inefficient merging

by leaving holes in the active mask of older matching warps inthe warp pool. We call thisincremental

merging. This is especially problematic when diverged threads reach a control flow merge (CFM) point.

Both the baseline GPU processor and the large warp microarchitecture use a divergence stack to restore each

warp back to its original thread count when the threads reacha CFM point. However, DWF does not use

a divergence stack but instead relies on incremental merging. As a result, warps may not be brought back

to their original thread count even after the CFM point has been reached. This can offset the benefit DWF

achieves on divergent code resulting in performance degradation compared to the baseline processor.

Additional Memory Divergence: Since DWF reassigns threads to warps during merging, after the first

divergent branch, warps in DWF may no longer contain consecutive threads. This results in additional memory

divergence not found in either the LWM or the baseline processor.

Inefficiency of Scheduling Policies:The scheduling policies behind DWF try to keep warps together (i.e.,

progressing at the same rate) in order to maximize opportunities for merging threads. However, the proposed

scheduling policies cannot always achieve this goal. As Fung et al. point out, the majority scheduling policy

suffers from the problem of starving threads that take rarely executed paths. However, these threads must

eventually execute and SIMD resource utilization will be very low when they do. Starving threads also

present a problem with memory locality. When they eventually execute, data that used to be present in the

cache may not be there anymore and open DRAM row buffers may have been closed. The post-dominator

priority scheduling policy, which prioritizes warps that have passed the least number of post-dominators (i.e.,

CFM points) can also have a similar effect. For applicationswith loop divergence (i.e., where each thread

iterates over a loop for a different number of iterations) and imbalanced nested branching, the number of post-

dominators passed is not a good indicator of which warps needto catch up and can therefore result in excessive

warp separation. In summary, it is difficult to find an ideal scheduling policy that always keeps warps together.

16

In contrast, by having large warps, a large number of threadsare guaranteed to remain together (by definition

of the large warp) even in the presence of biased branches, loop divergence, or imbalanced nested branching.

Furthermore, our two-level warp scheduling policy does notsuffer from the starvation issues associated with

the scheduling policies in DWF since at each level of scheduling, a fair round-robin policy is used.

5. Methodology
We use a cycle accurate simulator that simulates parallel x86 threads, each executing the same compute

kernel. In the results we present, we simulate a single GPU core concurrently executing 1024 threads. Table 1

presents the relevant system parameters used in our simulations for the baseline processor.
1-wide fetch and decode stages, round-robin warp scheduling policyScalar frontend
4KB single-ported instruction cache

SIMD backend In order, 5 stages, 32 parallel SIMD lanes
64KB register file (16 32-bit registers per thread, 1024 concurrently executing threads)

Register file and on-chip memories32KB, 4-way set associative single cycle data cache, 1 read port, 1 write port, and 128-byte line size
128KB, 32-banked private memory (128 bytes per thread)
Open-row, first-come first-serve scheduling policy, 8 banks, 4KB row buffer per bankMemory system
100 cycle row-hit latency, 300 cycle row-conflict latency, 128 GB/s memory bandwidth

Table 1. Baseline GPU core and memory configuration

Since the x86 ISA does not have instructions to aid with conditional branch divergence/re-convergence of

parallel threads like GPU ISAs do [24], we created instrumentation tools to identify conditional branch in-

structions and their control flow merge points. We used a similar procedure to identify barrier synchronization

points since x86 does not support single instruction barrier synchronization present in GPU ISAs [24].

We created parallel applications adapted from existing benchmark suites including Rodinia [7],

MineBench [19], PARSEC [5], and NVIDIA’s CUDA SDK code samples [21] in addition to creating one

benchmark of our own (blackjack). Each benchmark was parallelized using POSIX threads (Pthreads) and

compiled with Intel’s ICC compiler. We optimized each benchmark for GPU execution using principles found

in [26] and [15]. Each benchmark runs to completion and consists of 100 million to 200 million dynamic in-

structions across all 1024 threads. Table 2 lists the benchmarks we used and briefly describes each one and

also classifies each benchmark according to divergent branch intensity and idle functional unit intensity. For

idle FU intensity, we consider benchmarks where the FUs are completely idle less than 20% of the time to

be low, 20% to 40% to bemedium, and greater than 40% idle cycles is considered to behigh. For branch

intensity, we calculated the average number of active threads per retired warp. Since warps start out fully

populated (i.e., with 32 threads), only branch divergence can cause warps to retire with an active thread count

of less than 32. If the average active thread count per warp was greater than 30, we consider the branch in-

tensity to below. Average active thread counts between 20 and 30 are classified asmedium, and below 20 are

consideredhigh. Note that since the average active thread count is computedper retired warp (not per cycle),

the idle FU cycles are factored out of this metric.

The metric we use to compare performance is retiredinstructions per cycle(IPC). Note that when a warp

17

Benchmark Description Divergent Branch Intensity Idle FU Intensity

blackjack Simulation of blackjack card game to compute house edge high low
sort Parallel bucket sort of a list of integers high low

viterbi Viterbi algorithm for decoding convolutional codes medium low
kmeans Partitioning based clustering algorithm medium low
decrypt Advanced Encryption Standard decryption algorithm low low

blackscholes Computational finance, calculate the price of put/call options low medium
needleman Calculate optimal alignment for DNA sequences low medium

hotspot Processor temperature simulation low high
matrix mult Classic matrix multiplication kernel low medium
reduction Parallel sum of a large vector of integers low high
histogram Compute histogram for ASCII characters in a large text file low high

bfs Breadth first search graph traversal high high
Table 2. Benchmarks

(or a sub-warp) executes an instruction, we treat each active thread in the warp (or sub-warp) as executing a

single instruction. Therefore, if the warp (or sub-warp) size is 32 threads, the maximum possible IPC is 32.

6. Results

6.1. Overall IPC Results for the Large Warp Microarchitecture and Two-Level Scheduling

Figures 9 and 10 show the IPC and computational resource utilization for the baseline architecture (32

warps of 32 threads each, round-robin scheduling), dynamicwarp formation (DWF), the large warp microar-

chitecture only (LWM), two-level scheduling only (2Lev), and the large warp microarchiteture combined with

two-level scheduling (LWM+2Lev). Note that the SIMD width (32) and total thread count (1024) supported

by the core is the same for each configuration. For DWF, we implemented both the majority and post domina-

tor priority scheduling policies and chose the best performing of the two for each benchmark. For the LWM,

we created 4 large warps of 256 threads each. For two-level scheduling only (i.e., two-level scheduling ap-

plied on top of the baseline), we set the fetch group size to 8 (i.e., 4 fetch groups, each consisting of 8 regular

sized warps). For the combination of LWM and two-level scheduling, we again formed 4 large warps of 256

threads each and set the fetch group size to 2 (i.e., 2 fetch groups, each consisting of 2 large warps).

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

IP
C

Baseline
DWF
LWM
2Lev
LWM+2Lev

bla
ck

jac
k

so
rt

vit
er

bi

km
ea

ns

de
cr

yp
t

bla
ck

sc
ho

les

ne
ed

lem
an

ho
tsp

ot

m
at

rix
_m

ult

re
du

cti
on

his
to

gr
am

0.0

0.1

0.2

0.3

0.4

0.5

0.6

bf
s

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

gm
ea

n

Figure 9. IPC for baseline, DWF, LWM only, 2-level schedulin g only, and LWM with 2-level scheduling

As expected, the LWM only (third bar) significantly improvesperformance for branch-intensive applica-

tions (the leftmost 4 benchmarks), whereas two-level scheduling only (fourth bar) does not provide much

18

benefit compared to the baseline for these applications. Thereason for this is that these benchmarks make

very good use of the on chip data cache and private memory and therefore are compute bound. However,

they do contain frequent divergent branches which is the main reason for performance degradation for these

applications. This is justified by looking at the computational resource utilization for these applications in

Figure 10. There are relatively few idle cycles (0 active FUs) for these benchmarks even in the baseline ar-

chitecture, however they do have a significant number of cycles where only a small portion of the FUs are

active. The LWM improves this by efficiently packing active threads into sub-warps, thereby increasing SIMD

utilization and improving performance.

 0

 20

 40

 60

 80

 100

bla
ck

jac
k

so
rt

vit
er

bi

km
ea

ns

de
cr

yp
t

bla
ck

sc
ho

les

ne
ed

lem
an

ho
tsp

ot

m
at

rix
_m

ult

re
du

cti
on

his
to

gr
am bf

s

P
er

ce
nt

ag
e

of
 T

ot
al

 C
yc

le
s

Active FUs:

32

24-31

16-23

8-15

1-7

0

Baseline
DWF
LWM
2Lev

LWM+2Lev

Figure 10. Functional unit utilization for baseline, DWF, L WM, 2-level scheduling, and LWM with 2-level scheduling

On the other hand, the rightmost benchmarks have the opposite behavior. For these idle-FU-intensive

benchmarks, the LWM alone does not provide much benefit but two-level scheduling is very effective in

reducing idle FU cycles as shown in Figure 10 and therefore improves performance for these applications.

In summary, LWM alone improves performance by 7.6%, two-level scheduling alone improves perfor-

mance by 10.1%, and when our two mechanisms are combined, thebenefits of each are mostly preserved

resulting in 17.0% performance improvement on average across all benchmarks. DWF degrades performance

compared to the baseline for the reasons described in Section 4.

6.2. Analysis of the Large Warp Microarchitecture

In this section, we show the effect of varying the large warp size and also show the effect of the LWM

optimizations we presented in Section 3.1.2. In order to isolate the effect of the LWM, we used only the

baseline round-robin policy (i.e., not two-level scheduling) for these results.

We vary the large warp size from the baseline of 32 threads perwarp to a maximum of 512 threads per

warp.5 As seen in Figure 11, increasing the warp size improves performance up until a warp size of 256

threads. Increasing the warp size gives more potential for the sub-warping logic to create efficiently packed

sub-warps and therefore in general, larger warp sizes are beneficial. However, a warp size of 512 threads

5We do not evaluate a large warp size of 1024 since given the strict barrel processing model we employ for large warps, having
only a single large warp will result in very inefficient use ofthe pipeline.

19

actually performs slightly worse. The reason for this is that at a warp size of 512 threads, there are only 2

large warps on the core. In benchmarks with very biased branches (e.g.,blackjackandsort), there will be

times where each of the 2 large warps may only have a few activethreads. Having only 2 large warps with

just a few active threads each is not enough to fill the pipeline, resulting in several idle FU cycles and thereby

reducing performance. Although a warp size of 256 threads isalso affected by this, the problem is more

pronounced at larger warp sizes.

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

IP
C

Baseline
LWM64
LWM128
LWM256
LWM512

bla
ck

jac
k

so
rt

vit
er

bi

km
ea

ns

de
cr

yp
t

bla
ck

sc
ho

les

ne
ed

lem
an

ho
tsp

ot

m
at

rix
_m

ult

re
du

cti
on

his
to

gr
am

0.0

0.1

0.2

0.3

0.4

0.5

0.6

bf
s

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

gm
ea

n

Figure 11. Effect of large warp size

Figure 12 shows the effect of the memory divergence and unconditional control flow optimizations we

presented in Section 3.1.2. The memory divergence optimization does not provide much benefit. The reason

for this is that memory instructions for which consecutive threads access consecutive memory locations tend

to be on control-independent code. Therefore, when a large warp reaches such an instruction, its active mask is

fully populated with all active threads. As such, the dynamic sub-warping mechanism cannot combine threads

from different rows in the active mask and therefore no additional memory divergence occurs regardless of

whether this optimization is turned on or off. This mechanism would be effective when coalesced (i.e.,

consecutive) memory instructions appear on control-dependent code paths. However, we find this to be rare

in our benchmarks. The unconditional control flow optimization does slighty improve performance (by about

1%) by taking advantage of the fact that a large warp only needs a single PC update which is valid for all

threads in the large warp.

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

IP
C

Baseline
LWM no opt
LWM+memopt
LWM+jmpopt
LWM+allopt

bla
ck

jac
k

so
rt

vit
er

bi

km
ea

ns

de
cr

yp
t

bla
ck

sc
ho

les

ne
ed

lem
an

ho
tsp

ot

m
at

rix
_m

ult

re
du

cti
on

his
to

gr
am

0.0

0.1

0.2

0.3

0.4

0.5

0.6

bf
s

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

gm
ea

n

Figure 12. Effect of LWM optimizations

20

6.3. Analysis of Two-level Scheduling

In this section, we apply two-level scheduling on top of the baseline microarchitecture (not LWM) and vary

the fetch group size. Since there are 32 total warps in our baseline, we use fetch group sizes of 1, 2, 4, 8, 16

and 32 warps. In our notation, “2Lev8” stands for two-level scheduling, with a fetch group size of 8 (i.e., 4

fetch groups each consisting of 8 warps). Figure 13 shows theIPC as we vary the fetch group size.

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

IP
C

Baseline
2Lev1
2Lev2
2Lev4
2Lev8
2Lev16
2Lev32

bla
ck

jac
k

so
rt

vit
er

bi

km
ea

ns

de
cr

yp
t

bla
ck

sc
ho

les

ne
ed

lem
an

ho
tsp

ot

m
at

rix
_m

ult

re
du

cti
on

his
to

gr
am

0.0

0.1

0.2

0.3

0.4

0.5

0.6

bf
s

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

gm
ea

n

Figure 13. Effect of fetch group size on two-level schedulin g

For the benchmarks on the left, there is no variation since these benchmarks have very few idle cycles even

with the baseline round-robin policy. However, the rightmost benchmarks show that when the fetch group size

is too small or too large, there is no performance benefit but fetch group sizes of 8 and 16 do provide benefit.

As previously mentioned in Table 1, we model a simple 7-stagepipeline. Therefore, a fetch group size of 8

works best since 8 warps are enough to keep the pipeline busy (given the barrel processing model) and a fetch

group switch only happens when warps are actually stalled ona long latency operation. A fetch group size

of 16 still provides benefit but not as much. 16 warps is more than necessary to keep the pipeline busy and

results in a larger subset of warps arriving at the long latency operation together (since the fetch group size is

larger) and therefore is unable to hide latencies as well as 8warps.

6.4. Interaction between the LWM and Two-level scheduling

Figure 14 illustrates the interaction between the LWM and two-level scheduling. In our notation,

“LWM256+2Lev2” corresponds to the large warp microarchitecture with 256 threads per warp employed

with two-level scheduling with a fetch group size of 2 large warps. For each warp size configuration, we plot

only the best performing fetch group size for that configuration (e.g., for baseline warp sizes with two-level

scheduling, we only plot performance for a fetch group size of 8 warps since that was the best performing

option as shown in Section 6.3).

As expected, for the leftmost benchmarks, increasing the warp size up to 256 threads improves perfor-

mance. However, for the rightmost benchmarks, increasing the warp size slightly decreases the benefits of

two-level scheduling (yet still significantly improves performance compared to the baseline). As discussed

earlier in Section 3.2.3, this is because with the LWM there are fewer total warps on the core and therefore

21

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

IP
C

Baseline
Baseline+2Lev8
LWM64+2Lev4
LWM128+2Lev4
LWM256+2Lev2
LWM512+2Lev1

bla
ck

jac
k

so
rt

vit
er

bi

km
ea

ns

de
cr

yp
t

bla
ck

sc
ho

les

ne
ed

lem
an

ho
tsp

ot

m
at

rix
_m

ult

re
du

cti
on

his
to

gr
am

0.0

0.1

0.2

0.3

0.4

0.5

0.6

bf
s

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

gm
ea

n

Figure 14. Interaction between LWM and two-level schedulin g

less flexibility in choosing an ideal fetch group size.

Overall, a large warp size of 256 threads employed together with two-level scheduling with a fetch group

size of 2 (LWM256+2Lev2) performs best when averaged acrossall benchmarks. Due to the fact that some

applications benefit more from larger warps, and others do better at smaller warp sizes, a GPU core supporting

hybrid warp sizes (the warp size could be set by the programmer or a profiler at compile time) is an interesting

solution. We leave this for future work.

7. Related Work

7.1. Conditional Execution on Vector, Stream, and GraphicsProcessors

Using a bit mask to execute conditional code in processors that exploit SIMD parallelism is an old concept.

The Illiac IV [6] had amode bitper Processing Element (PE) which either turned on or off a PEduring

execution of a single instruction. Likewise, CRAY-1 [25] had a vector maskregister which was used to

vectorize loops with if/else statements. These bit masks are akin to the active mask currently found on existing

GPU cores, where each bit in the active mask can activate or deactivate the corresponding SIMD lane.

Allen et al. [3] introduced the idea of predicated execution. Predicated execution has been extensively used

on GPUs to implement conditional code. Predicated execution allows GPU cores to implement conditional

code without branch instructions but does not deal with the problem of underutilized SIMD resources when

SIMD lanes are masked off by predicate bits.

Smith et al. [29] introduced the concept ofdensity-time executionwhereby the time taken to execute a

masked vector instruction is a function of the number of truevalues in the mask. In their scheme, false values

in the vector mask register are skipped thereby reducing thenumber of cycles it takes to execute the vector

instruction. Rather than skipping over false values, our approach finds active operations from threads in a

large warp to fill the holes caused by branch divergence.

Kapasi et al. [12] introducedconditional streams, which allow stream processors to conditionally filter an

input stream before it is processed. For example, if computation needed to be done on only the positive values

of a stream of integers, a separate kernel would have to be created by the programmer which conditionally

22

filters out the negative values. This condensed output stream becomes the input stream to the kernel perform-

ing the actual computation. This leads to more efficient use of the SIMD pipeline on stream processors since

computations that are not needed are not performed. However, this mechanism requires 1) communication

between different SIMD lanes in order to filter an input stream which is costly in terms of hardware complex-

ity, and 2) effort from the programmer to declare conditional streams and implement new kernels to perform

the filtering. In contrast, our approach 1) does not require communication between SIMD lanes and 2) is a

pure hardware mechanism that improves SIMD utilization in the presence of branch divergence. It does not

require programmer or programming model support, and can improve the performance of existing code.

Krashinsky et al. [16] propose the Vector-Thread architecture (VT), which employs a control processor

and a vector of virtual processors (VPs). The control processor uses vector-fetch commands to broadcast the

same instruction to all the VPs. However, if divergence occurs, each VP also has the ability to direct its own

control flow with thread-fetch commands. In this sense, the architecture is not strictly SIMD. In contrast,

our mechanism uses a strictly SIMD backend and tolerates branch divergence by dynamically breaking down

large warps into efficiently packed sub-warps.

Meng et al. [18] propose Dynamic Warp Subdivision (DWS) whereby when a warp diverges, two warp-

splits are formed which can be scheduled independently. Although this does not increase SIMD resource

utilization, it may increase the amount of Memory-Level Parallelism (MLP) since both sides of a divergent

branch can be executed concurrently. As such, DWS is orthogonal to our mechanism and can be employed on

top of the large warp microarchitecture by splitting up a large warp upon branch divergence.

7.2. Fetch Scheduling

Many previous proposals analyzed and proposed scheduling policies for threads on MT or SMT cores [2,

32, 31]. However, none of these policies were designed for scheduling warps on GPUs. In fact, many of

these policies were evaluated on workloads consisting of multiple different applications and not threads of the

same application. GPU scheduling is unique in that the warpsto be scheduled have much data locality among

them. Also, GPUs support many more warp contexts simultaneously compared to these MT and SMT cores

allowing zero cycle context switching among all concurrently executing warps.

Lakshminarayana et al. [17] evaluate several possible fetch scheduling policies for GPUs. However, the

policies they evaluate do not include the two-level scheduling described in this paper. Furthermore, most of

the scheduling policies they evaluate result in warps progressing uniformly through the program (similar to

pure round-robin) so that data locality among warps can be exploited. In contrast, our two-level policy allows

warps to arrive at a long latency instruction slightly apartfrom each other in time thereby more effectively

hiding the latency. Our policy also exploits the data locality among warps since at each of the two levels of

scheduling, a fair round-robin policy is used. We also note that the policies evaluated in [17] can be used as

23

the scheduling policy within either of the two levels of our two-level policy.

8. Summary and Conclusion

In this paper, we propose two new mechanisms to improve GPU performance by better utilizing the com-

putational resources on GPU cores in the presence of branch divergence and long latency operations.

To alleviate the performance penalty caused by branch divergence, we propose the large warp microar-

chitecture. While existing GPU cores concurrently executemultiple SIMD-width sized warps, we propose

forming fewer but correspondingly larger warps and dynamically creating efficiently packed SIMD-width

sized sub-warps from the active threads in a large warp. Thisleads to improved SIMD resource utilization in

the presence of branch divergence. To improve long latency tolerance, we propose a novel two-level round-

robin warp instruction fetch scheduling policy. This policy prevents all warps from arriving at the same long

latency operation at the same time, thereby reducing idle execution cycles.

Our experimental evaluations show that each mechanism significantly improves performance. Combined

together, both techniques improve performance by 17.0% on average for a wide variety of general purpose

parallel applications. We believe that our mechanisms increase the scope of general purpose parallel applica-

tions that can achieve significant speedup when executed on aGPU.

References
[1] Advanced Micro Devices, Inc.ATI Stream Technology. http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-

TECHNOLOGY/Pages/stream-technology.aspx.
[2] A. Agarwal, B.-H. Lim, D. Kranz, and J. Kubiatowicz. April: a processor architecture for multiprocessing. InISCA-17, 1990.
[3] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of control dependence to data dependence. InPOPL, 1983.
[4] B. Amrutur and M. Horowitz. Speed and power scaling of SRAMs. IEEE JSCC, 35(2):175–185, Feb. 2000.
[5] C. Bienia et al. The PARSEC benchmark suite: Characterization and architectural implications. InPACT-17, 2008.
[6] W. J. Bouknight et al. The Illiac IV system.Proceedings of the IEEE, 60(4):369 – 388, Apr. 1972.
[7] S. Che et al. Rodinia: A benchmark suite for heterogeneous computing. InIISWC, 2009.
[8] W. W. L. Fung et al. Dynamic warp formation: Efficient MIMDcontrol flow on SIMD graphics hardware.ACM TACO.
[9] W. W. L. Fung et al. Dynamic warp formation and schedulingfor efficient GPU control flow. InMICRO-40, 2007.

[10] W.-M. Hwu et al. Compute unified device architecture application suitability.Computing in Science Engineering, may-jun 2009.
[11] N. Jayasena, M. Erez, J. Ahn, and W. Dally. Stream register files with indexed access. InHPCA-10, 2004.
[12] U. Kapasi et al. Efficient conditional operations for data-parallel architectures. InMICRO-33, 2000.
[13] B. Khailany et al. Vlsi design and verification of the imagine processor. InICCD, 2002.
[14] Khronos Group.OpenCL Parallel Computing for Hetergeneous Devices.

http://www.khronos.org/developers/library/overview/opencloverview.pdf.
[15] D. Kirk and W. W. Hwu.Programming Massively Parallel Processors: A Hands-on Approach. Elsevier Science, 2010.
[16] R. Krashinsky et al. The vector-thread architecture. In ISCA-31, 2004.
[17] N. B. Lakshminarayana and H. Kim. Effect of instructionfetch and memory scheduling on gpu performance. InWorkshop on

Language, Compiler, and Architecture Support for GPGPU, 2010.
[18] J. Meng et al. Dynamic warp subdivision for integrated branch and memory divergence tolerance. InISCA-37, 2010.
[19] R. Narayanan et al. MineBench: A benchmark suite for data mining workloads. InIISWC, 2006.
[20] J. Nickolls and W. Dally. The GPU computing era.Micro, IEEE, 30(2):56 –69, 2010.
[21] NVIDIA. CUDA C SDK Code Samples. http://developer.download.nvidia.com/compute/cuda/sdk/website/samples.html.
[22] NVIDIA. CUDA Best Practices Guide Version 3.0, 2010.
[23] NVIDIA. CUDA Programming Guide Version 3.0, 2010.
[24] NVIDIA. PTX ISA Version 2.0, 2010.
[25] R. M. Russell. The CRAY-1 computer system.Communications of the ACM, 21(1):63–72, Jan. 1978.
[26] S. Ryoo et al. Optimization principles and applicationperformance evaluation of a multithreaded GPU using CUDA. In PPoPP,

2008.
[27] L. Seiler et al. Larrabee: A many-core x86 architecturefor visual computing.IEEE Micro, 29(1):10–21, jan-feb 2009.
[28] B. J. Smith. A pipelined shared resource MIMD computer.In ICPP, 1978.
[29] J. E. Smith, G. Faanes, and R. Sugumar. Vector instruction set support for conditional operations. InISCA-27, 2000.
[30] J. E. Thornton. Parallel operation in the control data 6600. InAFIPS.
[31] D. M. Tullsen and J. A. Brown. Handling long-latency loads in a simultaneous multithreading processor. InMICRO-34, 2001.
[32] D. M. Tullsen et al. Exploiting choice: Instruction fetch and issue on an implementable simultaneous multithreading processor.

In ISCA-23, 1996.

24

