
 

Abstract: In the era of high throughput DNA sequencing 

(HTS) technologies, calculating the edit distance (i.e., the 
minimum number of substitutions, insertions, and 
deletions between a pair of sequences) for billions of 
genomic sequences is the computational bottleneck in 
today’s read mappers. The shifted Hamming distance 
(SHD) algorithm proposes a fast filtering strategy that can 
rapidly filter out invalid mappings that have more edits 
than allowed. However, SHD shows high inaccuracy in its 
filtering by admitting invalid mappings to be marked as 
correct ones. This wastes the execution time and imposes 
a large computational burden. In this work, we 
comprehensively investigate four sources that lead to the 
filtering inaccuracy. We propose MAGNET, a new filtering 
strategy that maintains high accuracy across different edit 
distance thresholds and data sets. It significantly 
improves the accuracy of pre-alignment filtering by one to 
two orders of magnitude. The MATLAB implementations 
of MAGNET and SHD are open source and available at: 
https://github.com/BilkentCompGen/MAGNET.  

 
Index Terms: High throughput DNA sequencing, read 

mapping, read alignment, false positives. 

 

1. INTRODUCTION 

ntil today, it remains challenging to sequence the 

entire DNA molecule as a whole. As a workaround, 

High throughput DNA sequencing (HTS) technologies 

are used to sequence random fragments (called short 

reads, which are 75-300 base-pairs long) of copies of the 

original molecule. The biggest challenge with these 

technologies is the use of these short reads to construct 

the complete genome sequence (~3.2 billion base-pairs 

for human genome), as these reads do not have any 
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information about which part of genome they come from. 

During this process, called read mapping, each read is 

mapped to a reference genome based on the similarity 

between the read and “candidate” locations in that 

reference genome (like solving a jigsaw puzzle). The 

similarity measurement, called alignment or verification, 

is formulated as an approximate string matching problem 

and solved using quadratic-time dynamic programming 

algorithms such as Levenshtein’s edit distance [1]. The 

main goal of these algorithms is to find out the minimum 

number of edits needed to make the read exactly match 

the reference segment [1]. Common edits include 

substitutions, insertions, and deletions. If the number of 

edits (called edit distance) is greater than a user-defined 

edit distance threshold (usually less than 5% of the read 

length [2-4]), then the mapping is considered to be 

invalid (i.e., the read does not match the segment at 

seed location) and thus is rejected. Calculating the edit 

distance for billions of sequences incurs significant 

computational burden [4-6]. Given that understanding 

complex diseases such as autism and cancer requires 

sequencing hundreds of thousands to millions of 

genomes [7, 8], the long execution time of today’s read 

mappers can severely hinder such studies.  

A wide variety of algorithms have been proposed to 

efficiently calculate the edit distance of sequences and 

filter out invalid mappings. Most existing algorithms can 

be divided into two main approaches: (1) accelerating the 

dynamic programming algorithms, (2) developing filtering 

heuristics that eliminate some of the invalid mappings 

(especially the ones that contain far more edits than 

allowed) before the verification step. Of the first 

approach, the classical dynamic programming algorithms 

such as Smith-Waterman [9], Levenshtein’s edit distance 

[1], and Needleman-Wunsch [10] are the most accurate 

algorithms but they are computationally expensive as 

they require a quadratic running time. Subsequently, they 

were improved by computing only some necessary 

regions of the dynamic programming matrix rather than 

the entire matrix (e.g., Ukkonen [11]). They also can be 

accelerated by exploiting bit-parallelism in their 

implementations (e.g., Myers [12], SeqAn [13], SWPS3 
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[14], and hardware accelerated Smith-Waterman 

algorithm such as GPU-based [15] and FPGA-based 

[16]). The second approach to accelerate alignment 

verification is to incorporate a filtering technique within 

the read mapper and before the verification step. This 

filter is responsible for quickly excluding invalid mappings 

in an early stage (i.e., as a pre-alignment step) to reduce 

the number of locations that must be verified via dynamic 

programming. There are several existing filtering 

techniques such as Adjacency Filtering from FastHASH 

[6] and the Shifted Hamming Distance (SHD) [4].  

We select SHD as the main focus of our analytical 

study, since it outperforms the Adjacency Filter in terms 

of speed and accuracy [4, 17]. It also maintains multiple 

independent bit-vectors (called shifted Hamming masks 

and explained in Section 2) that makes it suitable for 

parallel implementation. These filtering heuristics do not 

replace the verification step. Hence, they should be able 

to eliminate enough of the invalid mappings to be 

worthwhile (to compensate the computation overhead 

introduced by the filtering technique). One limitation with 

SHD is that it introduces inaccuracy in the filtering 

mechanism, allowing invalid mappings to pass the filter 

as false positives. A high number of false positives is 

undesirable, as these invalid mappings incur additional 

computational burden (they are unnecessarily examined 

twice, by both the pre-alignment and the alignment 

steps).  

In this paper, our goal is to provide a detailed analysis 

of the false positive sources of the state-of-the-art 

alignment filter, SHD, aiming at eliminating them and 

boosting the performance of existing and future read 

mappers. To the best of our knowledge, this is the first 

paper to comprehensively assess the filtering inaccuracy 

of the SHD algorithm and provide recommendations for 

desirable improvements. The contributions of this paper 

are as follows:  

 We provide a detailed investigation of four potential 

false positive sources of the state-of-the-art 

alignment filter, SHD.  

 We show that processing the short matches (i.e., 

less than three matches) between two genomic 

sequences is not efficient, as they exhibit an 

unpredictable (random-like) and highly irregular 

behavior. Instead, future alignment filters should pay 

more attention to the long, exact matches shared by 

the sequences. Based on our observation, we build 

MAGNET, an intelligent filter that accurately detects 

all long, exact matches shared between two genome 

sequences. 

 We quantify the false positives and true negatives of 

MAGNET and SHD using real data sets. We also 

experimentally demonstrate that incorporating long-

match-awareness into the design of a pre-alignment 

filter can greatly improve the filtering accuracy. 

2. OVERVIEW OF SHIFTED HAMMING DISTANCE 

To provide a proper analysis of the false positive rate 

of SHD, in this section, we describe the SHD algorithm 

[4] and provide an example to illustrate how it works. 

SHD is a filter specifically developed to accelerate the 

alignment verification procedure in read mapping. SHD 

implements a filtering strategy that is inspired by the 

pigeonhole principle. That is, if E items are put into E+1 

boxes, then one or more boxes would be empty. This 

principle can be applied in the context of sequence 

alignment, as follows: if two reads differ by E edits, then 

they should share at least a single identical subsequence 

(i.e., free of edits) among E+1 non-overlapping 

subsequences, where E is the edit distance threshold. 

This is due to the fact that the E edits would result in 

dividing the read into E+1 identical subsequences in 

accordance with their correspondences in the reference, 

as explained in Fig. 1. The more edits involved between 

two sequences, the less contiguous stretches of exact 

matches they share.  

However, due to insertions and deletions, these 

identical subsequences might not be perfectly aligned 

and might be slightly shifted. Each insertion (or deletion) 

can shift multiple trailing bases to the right direction (or 

the left direction). SHD realigns the identical 

subsequences by incrementally shifting the read 

sequence against the reference sequence. SHD first 

calculates the base-pair-wise XOR between the two 

sequences.  Then, it performs E incremental shifts to the 

right direction to detect any read that has at most E 

deletions, where E is the edit distance threshold. 

Similarly, SHD also performs another E incremental 

shifts to the left direction to detect any read that has at 

most E insertions. After each shift, SHD calculates the 

base-pair-wise XOR between the read and the reference 

and stores the result in a shifted Hamming mask. In total, 

SHD generates 2E+1 shifted Hamming masks 

regardless the source of the edit.  

e1 e2 eEm1 m2 m3 mE+1

 

Fig. 1: Random edit distribution in a read sequence. 

The edits (e1, e2, …, eE) act as dividers resulting in 

several identical subsequences (m1, m2, …, mE+1) 

between the read and the reference. 

 

Identical subsequences are then identified in each 

mask as a streak of continuous ‘0’s. SHD ANDs all 

shifted Hamming masks together with the idea that all 

‘0’s in the individual Hamming masks propagate to the 

final bit-vector, thereby preserving the information of 

individual matching subsequences. SHD calculates the 

number of edits by counting the number of ‘1’s in the 



final bit-vector. As SHD uses a bitwise AND operation, a 

zero at any position in the 2E+1 Hamming masks leads 

to a ‘0’ in the resulting final bit-vector at the same 

position. Hence, even if some Hamming masks show a 

mismatch at that position, a zero in some other masks 

leads to a match (‘0’) at the same position. This tends to 

underestimate the actual number of edits and eventually 

causes some incorrect mappings to pass. To fix this 

issue, SHD proposes the so-called speculative removal 

of short-matches (SRS) before ANDing the masks, which 

flips short streaks of ‘0’s in each mask into ‘1’s such that 

they do not mask out ‘1’s in other Hamming masks. The 

number of zeros to be amended (SRS threshold) is set 

by default to two. That is, bit streams such as 101, 1001 

are replaced with 111 and 1111, respectively. Amending 

short streaks of ‘0’s to ‘1’s could cause correct mappings 

to be mistakenly filtered out, as it may produce multiple 

ones in the final bit-vector. To avoid this possibility, SHD 

always underestimates the number of edits from streaks 

of ‘1’s. If there are four or three consecutive ‘1’s in the 

final bit-vector, SHD counts them as a single edit. Thus, 

the total number of edits reported by SHD could be 

smaller than the real number of edits. In Fig. 2, we 

provide an example of a candidate alignment with all 

masks that are generated by the SHD algorithm. A 

segment of consecutive matches in one-step right-

shifted mask indicates that there is a single deletion that 

occurred in the read sequence. 

 

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA

AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111011110001110110101101111111110001000001111011010010101 

0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 

0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 

0000000000000010111111111110111011001101110111011000100100111111111111100101100110010110111011101111 

0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 

0000000000001000000000100111110011111111100100011010101001101011111111111110111001111111000111101100 

0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

Query : 

Reference :

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

0000000000000000000000000010000000000001111111111110001111111101111111111110001000001111111111111111 

0000000000000011111111111111111111111111000000000000000000000000000000000000000000011000000000000000 

0000000000000010000000001111111111111111111111111111000111111111111111111111000100011111111111111110 

0000000000000011111111111111111111111111111111111000111111111111111111111111111111111111111111111111 

0000000000000111111111111111111111111111111111100011111111111111111111111111111000111111111111111110 

0000000000001000000000111111111111111111111100011111111111111111111111111111111111111111000111111100 

0000000000011111111111111111111111100011111111111111111111111111111111111111111111111111111111111000

0000000000000000000000000010000000000001000000000000000000000000000000000000000000001000000000000000

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

Final bit-vector :

--- Masks after speculative removal of short-matches (SRS) ---

Substitution Deletion 2 Substitutions

 
 

Fig. 2: An example of an alignment with all its generated masks, where the edit distance threshold (E) is set to 

3. The green highlighted subsequences are part of the correct alignment. The red highlighted bit in the final 

bit-vector is a wrong alignment provided by SHD. The correct alignment (highlighted in yellow) shows that 

there are three substitutions and a single deletion, while SHD detects only two substitutions and a single 

deletion. 

 

3. ON THE FALSE POSITIVES OF SHD 

In this section, we investigate the potential sources of 

false positives that are introduced by the state-of-the-art 

filter, SHD [4]. We also provide examples that illustrate 

each of these sources of false positives. Adding an 

additional fast filtering heuristic before the verification 

step in a read mapper can be beneficial. But, such a filter 

can be easily worthless if it allows a high number of 

incorrect mappings to pass the filter. Even though the 

false positives that pass SHD are discarded later by the 

verification step (as the verification step has zero false 

positive rate), they can dramatically increase the running 

time of the read mapping by causing work to be done on 

a read by both the filtering step as well as the verification 

step. Below, we describe four major sources of false 

positives that are introduced by the filtering strategy of 

SHD. 

A. Leading and Trailing Zeros 

The first source of false positives in SHD is the streaks 

of zeros that are located at any of the two ends of each 

bit-vector. Hence we refer to them as leading and trailing 

zeros. These streaks of zeros can be in two forms: (1) 

the vacant bits that are caused by shifting the read 

against the reference segment and (2) the streaks of 

zeros that are not vacant bits. As we mentioned earlier, 

SHD generates 2E+1 masks using arithmetic left-shift 

and arithmetic right-shift operations. For both the left and 

right directions, the right-most and the left-most vacant 

bits, respectively, are filled with ‘0’s. The number of 

vacant zeros depends on the number of shifted steps for 



each mask, which is at most equal to the edit distance 

threshold. The second form of the leading and trailing 

zeros is the zeros that are located at the two ends of the 

Hamming masks and are not vacant zeros. These 

streaks of zeros result from the pairwise comparison 

(i.e., bitwise XOR). They differ from the vacant bits in 

that their length is independent of the edit distance 

threshold. The main issue with both forms of leading and 

trailing zeros is that they always dominate, even if some 

Hamming masks show a mismatch at that position (due 

to the use of the AND operation). This gives the false 

impression that the read and the reference have a 

smaller edit distance, even when they differ significantly, 

as explained in Fig. 3. SRS does not address the 

inaccuracy caused by the leading and trailing zeros by 

amending such zeros to ones (as explained in Section 

2), due to two reasons: (1) the number of these 

consecutive zeros is not fixed and thus they can be 

longer than the SRS threshold, (2) these consecutive 

zeros are not surrounded by ones and hence even if 

SRS threshold is greater than two bits, they are not 

eligible to be amended. 

 

 

AATCAAACAACCCCATCAACAAGTGGGCAAAGGATATGAACAGACACTTCTCAAAAGAAGACATTTATGCAGCCAACAGACACATGAAAAAATGCTCATC

AAAAAAACAACCCCATCAAAAAGTGGGCAAAGGATATGAACAGACACTTCTCAAAAGAAGACATTTATGCAGCCAACAGACACATGAAAAAATGCTCGTC

Query : 

Reference :

AAAAAAACAACCCCATCAAAAAGTGGGCAAAGGATATGAACAGACACTTCTCAAAAGAAGACATTTATGCAGCCAACAGACACATGAAAAAATGCTCGTC

||: ||||||||||||||| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||:||

AATCAAACAACCCCATCAACAAGTGGGCAAAGGATATGAACAGACACTTCTCAAAAGAAGACATTTATGCAGCCAACAGACACATGAAAAAATGCTCATC

0011000000000000000100000000000000000000000000000000000000000000000000000000000000000000000000000100 

0011000111100011111111111111111111111111111111111111100011111111111111111111111111111110000011111111

0011000111111111111111111111111111111111111111111111111111111111111111111111111110001111000011111111

0001000100011111111000111111111111111111111111111111111110000111111111111111111111111111100011111100

0011111111000111111111111111111111111111111111111111000111111111111111111111111111111100000111111110 

0011111111111111111111111111111111111111111111111111111111111111111111111111111000111100001111111100 

0011100011111111111111111111111111111111111111111111110000111111111111111111111111111100011111100000

0001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

Needleman-Wunsch 

Alignment:

Vacant bits

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

Final bit-vector :

Vacant bits
Trailing zerosLeading zeros

 
Fig. 3: Examples of an invalid mapping that passes the SHD filter due to the leading and trailing zeros (first 

source of false positives). We use an edit distance threshold of 3 and an SRS threshold of 2. While the regions 

that are highlighted in green are part of the correct alignment, the wrong alignment provided by SHD is 

highlighted in red. The yellow highlighted bits indicate a source of false positive. 

 

 

B. Random Zeros 

The second source of false positives is the random 

zeros that appear in the individual shifted Hamming 

masks. Although they result from a pairwise comparison 

between a shifted read and a reference segment, we 

refer to them as random zeros because they are 

sometimes meaningless and are not part of the correct 

alignment. Different from the first source, these zeros are 

surrounded by ones and can be anywhere in the masks 

except the two ends of each bit-vector. However, the 

length and the position of these zeros are unpredictable. 

They can have any length that makes the SRS method 

ineffective at handling these random zeros. There is no 

clear theory behind the exact SRS threshold to be used 

to eliminate such zeros. SRS successfully removes 

some of the false positives, but it also introduces its own 

source of false positives.  

Choosing a small SRS threshold helps, but does not 

provide any guarantee, to get rid of some of these 

random zeros. Choosing a larger SRS threshold can be 

risky, since, with such a large threshold, SHD might no 

longer be able to distinguish whether any streak of 

consecutive zeros is generated by random chance or it is 

part of the correct alignment. This results in SHD 

ignoring most of the exact matching subsequences and 

causes an all-‘1’ final bit-vector. In Fig. 4, we provide an 

example where random zeros dominate and lead to a 

zero in the final bit-vector at their corresponding 

locations. SRS can address the inaccuracy caused by 

the random 3-bit zeros, which are highlighted by the left 

arrow, using an SRS threshold of 3. However, SRS is still 

unable to solve the inaccuracy caused by the 15-bit 

zeros that are highlighted by the right arrow. This is due 

to the fact that the 15-bit zeros are part of the correct 

alignment and hence amending them to ones can 

introduce more false positives. 

 

 



AAAAAAAAAAACCCATCAAAAAGTGGGCAAAGGATATGAACAGACACTTTTCAAAAGAAGACATTTATGCAGCCAAAAGACACATGAAAAAAATGCTCAT

AAAAAAAAAACCCCATCAAAAAGTGGGCAAAGGATATGAACAGACACTTCTCAAAAGAAGACATTTATGCAGCCAACAGACACATGAAAAAATGCTCATC

Query : 

Reference :

AAAAAAAAAAACCCATCAAAAAGTGGGCAAAGGATATGAACAGACACTTTTCAAAAGAAGACATTTATGCAGCCAAAAGACACATGAAAAAAATGCTCAT

|||||||||| |||||||||||||||||||||||||||||||||||||| |||||||||||||||||||||||||| ||||||||| |||||||||||||

AAAAAAAAAACCCCATCAAAAAGTGGGCAAAGGATATGAACAGACACTTCTCAAAAGAAGACATTTATGCAGCCAACAGACACATG-AAAAAATGCTCAT

0000000000100000000000000000000000000000000000000100000000000000000000000000100000000000000011111111 

0000000000111111110000111111111111111111111111111111100011111111111111111111111111111110000011111111

0000000000111111111000111111111111111111111111111111111111111111111111111111111110001111000011111100 

0000000000111111111111111111111111111111111111111111111110000111111111111111111111111111100011111111

0000000000000111100001111111111111111111111111111111000111111111111111111111111111111100000000000000 

0000000001111111100011111111111111111111111111100011111111111111111111111111111000111100000111111100 

0000000011111111111111111111111111111111111111111111110000111111111111111111111111111100001111111000

0000000000000000000000000000000000000000000000000000000000000000000000000000100000000000000000000000

Needleman-Wunsch 

Alignment:

Random zeros

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

Final bit-vector :

 
Fig 4: Examples of an incorrect mapping that passes the SHD filter due to random zeros (second source false 

positives). While the edit distance threshold is 3, a mapping of 4 edits (as examined at the end of the figure by 

Needleman-Wunsch algorithm) passes as a false positive. 

 

 

C. Conservative Counting 

The third source of false positives is related to the way 

in which SHD counts the edits in the final bit-vector. As 

we discussed earlier, the amendment process can cause 

correct mappings to be mistakenly filtered out, as it may 

produce multiple ‘1’s in the final bit-vector. To avoid this 

possibility, SHD counts the number of edits from any 

streak of ‘1’s in the final bit-vector in a conservative 

manner. To ensure that it does not overcount the 

number of edits, SHD always assumes the streaks of ‘1’s 

in the final bit-vector as a side effect of the SRS 

amendment, and counts only the minimum number of 

edits that potentially generate such a streak of ‘1’s. The 

total number of edits reported by SHD can be much 

smaller than the actual number of edits. For instance, as 

illustrated in Fig. 5, three consecutive substitutions 

render a streak of three ‘1’s in the final bit-vector. But 

since SHD always assumes the middle ‘1’ is the result of 

an amended ‘0’ by SRS, SHD will only consider the 

streak of three ‘1’s as a single edit and let it pass, even if 

the edit distance threshold is less than three.  

 

 

AAAAAAACAAACAACCCCATCAAAAAGTGGGTGAAGGATATGAATTCACACTTCTCAAAAGAAGACATTTCTCAGCCAAAAAACACATGAAAAAATGCTC

AAAAAAACAAACAACCCCATCAAAAAGTGGGTGAAGGATATGAACAGACACTTCTCAAAAGAAGACATTTACTCAGCCAAAAAACACATGAAAAAATGCT

Query : 

Reference :

AAAAAAACAAACAACCCCATCAAAAAGTGGGTGAAGGATATGAATTCACACTTCTCAAAAGAAGACATTT-CTCAGCCAAAAAACACATGAAAAAATGCT

|||||||||||||||||||||||||||||||||||||||||||| : ||||||||||||||||||||||| |||||||||||||||||||||||||||||

AAAAAAACAAACAACCCCATCAAAAAGTGGGTGAAGGATATGAACAGACACTTCTCAAAAGAAGACATTTACTCAGCCAAAAAACACATGAAAAAATGCT

0000000000000000000000000000000000000000000011100000000000000000000000111111110000011111110000011111 

0000000111111110001111000011111111111111111111111111111110001111111111100000000000000000000000000000 

0000000111111111111111100011111111111111111111110001111111111111111111111111111000001111111000001111 

0000000111110001111111111111111111111111111111111111111111111000011111111111111100001000111100001111 

0000001111111100011110000111111111111111111111111111111100011111111111111111110000100011110000111100 

0000011111111111111110001111111111111111111111111111111111111111111111111111110001111111110001111100 

0000111110001111111111111111111111111111111111111111111111000011111111111111111111111111111111111000

0000000000000000000000000000000000000000000011100000000000000000000000100000000000000000000000000000Final bit-vector :

Needleman-Wunsch 

Alignment:

Misinterpreted as a single edit

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

The 3-bit ones are a result of substitutions and not the amendment

 
Fig 5: An example of an incorrect mapping that passes the SHD filter due to conservative counting of the 

short streak of ‘1’s in the final bit-vector. 

 

 

D. Lack of backtracking 

The last source of false positives in SHD is the inability 

of SHD to backtrack (after generating the final bit-vector) 

the location of each long identical subsequence (i.e., the 

mask that originates the identical subsequence), which is 

part of the correct alignment. The source of each 

subsequence provides a key insight into the actual 

number of edits between each two subsequences. That 

is, if a subsequence is located in a 2-step right shifted 

mask, it should indicate that there are two deletions 

before this subsequence. SHD does not relate this 

important fact to the number of edits in the final bit-

vector. The lack of backtracking causes two types of 

false positives: (1) the first type of false positive in this 



category appears clearly when two of the identical 

subsequences, in the individual Hamming masks, are 

overlapped or nearly overlapped, (2) the second type 

happens when the identical subsequences come from 

different Hamming masks. The issue with the first type 

(i.e., overlapping subsequences) is the fact that they 

appear as a single identical subsequence in the final bit-

vector, due to the use of AND operation. An example of 

this scenario is given in Fig. 6. This tends to hide some 

of the edits and eventually causes some invalid 

mappings to pass. The second type of false positives 

caused by the lack of backtracking happens, for 

example, when an identical subsequence comes from 

the first Hamming mask (i.e., with no shift) and the next 

identical subsequence comes from the 3-step left shifted 

mask. This scenario reveals that the number of edits 

between the two subsequences should not be less than 

three insertions. However, SHD inaccurately reports it as 

a single edit (due to ANDing all Hamming masks without 

backtracking the source of each streak of zeros), as 

illustrated in Fig. 7. Keeping track of the source mask of 

each identical subsequence prevents such false 

positives and helps to reveal the correct number of edits. 

 

AAAAAAACAAACAACCCCAGAAAAAGTGGGTGAAGGACTATGAACAGACACTTCTCAAAAGAAGACTTTACTCAGCCAAAAAACACATGAAAAAATGCTA

AAAAAAACAAACAACCCCATCAAAAAGTGGGTGAAGGATATGAACAGACACTTCTCAAAAGAAGACATTTACTCAGCCAAAAAACACATGAAAAAATGCT

Query : 

Reference :

AAAAAAACAAACAACCCCAG-AAAAAGTGGGTGAAGGACTATGAACAGACACTTCTCAAAAGAAGAC-TTTACTCAGCCAAAAAACACATGAAAAAATGCT

|||||||||||||||||||  ||||||||||||||||| |||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||| 

AAAAAAACAAACAACCCCATCAAAAAGTGGGTGAAGGA-TATGAACAGACACTTCTCAAAAGAAGACATTTACTCAGCCAAAAAACACATGAAAAAATGCT

0000000000000000000110000111111111111100000000000000000000000000001111111111110000011111110000011111

0000000111111110001110000000000000000011111111111111111110001111111000000000000000000000000000000000

0000000111111111111111000011111111111111111111111111111111111111111111111111111000001111111000001111 

0000000111110001111111100011111111111111111111111111111111111000011111111111111100001000111100001111

0000001111111100011110001111111111111111111111111111111100011111111111111111110000100011110000111110 

0000011111111111111111111111111111111111111111111111111111111111111111111111110001111111110001111100 

0000111110001111111111111100011111111111111111111111111111000011111111111111111111111111111111111000

0000000000000000000110000000000000000000000000000000000000000000001000000000000000000000000000000000

Needleman-Wunsch 

Alignment:

Overlapping subsequences can hide some edits

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

Final bit-vector :

 
Fig 6: An example of an incorrect mapping that passes the SHD filter due to the lack of backtracking 

(overlapping identical subsequences). 

 

 

AAAAAAAAAAATTAGCCAGGTGTGGTGGCACCCCCTGCCTATAATCCCAGCTACTCGGGAGGGAGGCAGGAGAATCGCTTGAACCTGGGAGGGGGAGGTT

AAAAAAAAAAATTAGCCAGGTGTGGTGGCACATGCCTATAATCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCTGGGAGGGGGAGGTTG

Query : 

Reference :

AAAAAAAAAAATTAGCCAGGTGTGGTGGCACCCCCTGCCTATAATCCCAGCTACTCGGGAGG--GAGGCAGGAGAATCGCTTGAACCTGGGAGGGGGAGGT

|||||||||||||||||||||||||||||||    |||||||||||||||||||||||||||  |||||||||||||||||||||||||||||||||||||

AAAAAAAAAAATTAGCCAGGTGTGGTGGCAC---ATGCCTATAATCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCTGGGAGGGGGAGGT
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0000000000011111111111111111111111000111111111111111111111111111111111111111111111111111111000111111

0000000000011111111110001111111111111111111111111111111111111111111111111111111111111111111111111110

0000000000011111111111110000111111111111111111111111111111111000010001111111111111111111100011111110 

0000000000111111111111111111111111111111111111111111111111111000000000000000000000000000000000000000

0000000001111111111000111111111111111111111111111111111111111111111111111111111111111111100001111000 

0000000011111111111110000111111100000000000000000000000000011111111111111111111111111111100011111000

0000000000000000000000000000000100000000000000000000000000011000000000000000000000000000000000000000

Needleman-Wunsch 

Alignment:

Backtracking this subsequence can tell 

that it is a result of three insertions

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

Final bit-vector :

 
Fig. 7: An example of an invalid mapping that passes the SHD filter due to the lack of backtracking. 

 

 

E. Summary 

We identify four sources that introduce the filtering 

inaccuracy of the SHD algorithm, namely, the leading 

and trailing zeros, random zeros, conservative counting, 

and lack of backtracking. Based on these four sources of 

false positives, we observe that there are still 

opportunities for further improvements on the accuracy 

of the state-of-the-art filter, SHD, which we discuss next. 

4. MAGNET: OUR PROPOSED FILTERING STRATEGY 

In this section, we first provide our own observations 

and recommendations based on our comprehensive 

accuracy analysis of the SHD filter. We then discuss our 

proposed filtering strategy, MAGNET, for genome 

analysis. Based on our analysis of the sources of false 

positives, we make two crucial observations. 

The first observation is that handling the short 

streaks of ‘0’s (i.e., using the SRS method that we 

discuss above) is indeed inefficient. These “noisy” 



streaks do not have determined properties, as their 

length and number are unpredictable (random-like). They 

introduce their own sources of false positives and do not 

contribute any useful information. Therefore, future 

filtering strategies should avoid processing such short 

streaks of ‘0’s. 

The second observation is that the correct (desired) 

alignment always contains all the longest non-

overlapping identical subsequences. This turns our 

attention to focusing on the long matches (that are 

highlighted in green in all previous figures, i.e., Fig. 1 to 

Fig. 7) in each Hamming mask. We find that the long 

non-overlapping subsequences of consecutive zeros 

have three interesting properties. First, there is an upper 

bound on their quantity. With the existence of E edits, 

there are at most E+1 non-overlapping identical 

subsequences (pigeonhole principle) shared between a 

pair of sequences. The total length of these non-

overlapping subsequences is equal to m-E, where m is 

the read length. Second, the length of the global longest 

subsequence is strictly not less than [(m-E)/(E+1)]. Third, 

the source mask of each long subsequence provides an 

insight into the number of edits between this 

subsequence and its preceding one. 

These two observations motivate us to incorporate 

long-match-awareness into the design of our filtering 

strategy and ignore the short matches. MAGNET is a 

filtering heuristic that aims at finding all non-overlapping 

long streaks of consecutive zeros. By counting the 

number of these identical subsequences, we can infer 

the total number of edits between any pair of sequences 

(according to the first property that we discuss above). 

MAGNET algorithm consists of four main steps that can 

be explained as follows: 

Step 1: MAGNET starts with searching for the first 

longest subsequence of consecutive zeros through all 

Hamming masks. It applies a sequential search 

algorithm along all 2E+1 masks. Each mask nominates 

its local longest subsequence. Among all nominated 

subsequences, a single subsequence is selected as a 

global longest subsequence of zeros. Once found, our 

filter copies the target subsequence to the final bit-vector 

at the same corresponding location. It always attracts the 

longest subsequence of consecutive zeros and stores it 

in the final bit-vector and hence we call it MAGNET. All 

bits of the final bit-vector are initialized to ‘1’. The reason 

behind initializing it with ‘1’s is that we want the final bit-

vector to represent the number of mismatches. 

Step 2: The next step is essential to preserving the 

original edit (or edits) that causes a single identical 

sequence to be divided into smaller subsequences. 

MAGNET penalizes the found subsequence by two edits 

(one for each side). This is achieved by excluding from 

the search space of all Hamming masks the indices of 

the found subsequence in addition to the index of the 

surrounding single bit from both left and right sides. So 

far we are able to track a single identical subsequence. 

 Step 3: In order to track the other non-overlapping 

subsequences, MAGNET applies a divide-and-conquer 

strategy where we decompose the problem of finding the 

longest identical subsequences into two subproblems. 

While, the first subproblem focuses on finding the next 

long subsequence that is located on the right-hand side 

of the previously found subsequence in the first step (i.e., 

Step 1), the second subproblem focuses on the other 

side of the found subsequence. Each subproblem is 

solved by recursively repeating all the three steps 

mentioned above. MAGNET applies an early termination 

method that aims at reducing the execution time of the 

alignment filtering by exploiting the first property of the 

long matches (i.e., the limited number of long matches). 

 

 

 

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA

AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

Query : 

Reference :

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||

AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000000111111011110001110110101101111111110001000001111011010010101 

0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 

0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 

0000000000000010111111111110111011001100110111011000100100111111111111100101100110010110111011101111 

0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 

0000000000001000000000100111110011111110100100011010101001101011111111111110111001111111000111101100 

0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

0000000000000000000000000010000000000001000000000000000000000000000000000000000000011000000000000000Final bit-vector :

Needleman-Wunsch 

Alignment:

12 34

 
Fig 8: An example of the operation of our proposed filter, MAGNET. It shows the effect that incorporating long- 

matches-awareness has on the alignment accuracy. The alignment is compared to a sophisticated alignment 

algorithm (i.e. Needleman-Wunsch). Our algorithm finds all the longest non-overlapping subsequences of 

consecutive zeros in the descending order of their length (as numbered in yellow).  

 



 

Rather than searching for all long non-overlapping 

subsequences, our algorithm recursively solves the 

subproblems until the number of the subsequences 

found in the first step exceeds E+1 or there are no more 

subproblems of size greater than or equal to a single bit. 

Each subproblem stores its solution (i.e., the longest 

identical subsequence) in the same final bit-vector that is 

shared by all subproblems. 

Step 4: Once after the termination, MAGNET counts 

the occurrence of ‘1’s in the final bit-vector. If their total 

number is equal or less than the edit distance threshold, 

E, then the mapping is considered to be valid. Likewise, 

if the total number of edits is sufficiently large (i.e. 

greater than a lower bound of edits), then the filter 

considers the mapping to be invalid and rejects it. In Fig. 

8, we provide an example of how our filter works. Each 

‘1’ in the final bit-vector precisely reveals that there is an 

edit at its corresponding location of the Hamming mask. 

With the help of our accuracy analysis of SHD (Section 

3), we propose and incorporate long-match-awareness 

into the design of our filter. We get rid of the first three 

sources of false positives: (1) the leading and trailing 

zeros, (2) random zeros, and (3) conservative counting. 

In the next section, we investigate the impact of 

addressing these three sources on the false positive 

rate. 

5. EVALUATION 

In this section, we evaluate the false positive rate, true 

negative rate, and execution time of our proposed filter, 

MAGNET, against the best-performing previous filter, 

SHD [4]. As defined in previous work [17], the false 

positive rate is the fraction of incorrect mappings that are 

accepted by the filter out of all mappings, and the true 

negative rate is the fraction of incorrect mappings that 

are rejected by the filter out of all mappings. We always 

want to minimize the false positive rate and maximize the 

true negative rate. We implement both filters in MATLAB 

R2015b. We use a MATLAB implementation (nwalign 

[18]) of the Needleman-Wunsch algorithm [10] to 

benchmark the two filters as this algorithm has a false 

positive rate of 0%. We use a popular seed-and-extend 

mapper, mrFAST [19], to retrieve all potential mappings 

(read-reference pairs) from five sets, each containing 

about 4 million reads of length 100 base-pairs, from the 

1000 Genomes Project Phase I [8].  

False Positive Rate. In Fig. 9, we show the false 

positive rates of SHD and our proposed filter, across 

different edit distance thresholds. We configure mrFAST 

to generate from each read set the first half million read-

reference pairs that have no more than 5 edits. On 

average, SHD produces a false positive rate of 20%, 

which is significantly higher (on average 20x) than that of 

our MAGNET filter. 
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Fig. 9: The false positive rates of our MAGNET filter 

and SHD across different edit distance thresholds 

and read sets. The pairs are configured to have at 

most 5 edits. 

 

In Fig. 10, we reconfigure mrFAST for an edit distance 

threshold of 7 (generated pairs have at most 7 edits). 

This enables us to measure the effectiveness of both 

filters when there are incorrect mappings that have a few 

more edits than the allowed threshold. We note that the 

number of false positives of SHD increases by at least 

10%, while our filter still maintains a very low rate of false 

positives (<4%). 
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Fig. 10: The false positive rates of our MAGNET filter 

and SHD across different edit distance thresholds 

and read sets (configured to have at most 7 edits). 

 

We now evaluate the false positive rate of MAGNET 

and SHD using the first 30 million pairs produced by 

mrFAST when the data set ERR240727_1 mapped to 

the human genome. We configure mrFAST to produce 

pairs that have at most 20 edits. Unlike the previous 

experiment, this configuration enables us to evaluate the 

false positive rate when the pairs have far more edits 

than the edit distance threshold. Fig. 11 demonstrates 

that SHD is more accurate in examining the edit-rich 

mappings than low-edit mappings. However, we find that 

MAGNET is very effective and superior to SHD in both 

situations (edit-rich and low-edit mappings). SHD falsely 

identifies potential mappings much more (15x - 100x, 



depending on the data and edit distance threshold used) 

than our filter. 

We conclude that building an intelligent filter that is 

aware of all long matches is worthwhile and doing so 

significantly improves the accuracy of alignment filtering 

by at least an order of magnitude compared to the best 

previous filtering mechanism.  
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Fig. 11: The false positive rates of MAGNET and SHD 

across different edit distance thresholds and using 

edit-rich mappings (having at most 20 edits). 

 

True Negative Rate. Next, we evaluate fraction of 

incorrect mappings that are rejected out of all rejected 

mappings, by both filters. We use in this experiment the 

first one million pairs that have at most 7 edits, produced 

by mrFAST when two data sets (ERR240726_1 and 

ERR240727_1) are mapped to the human genome. Fig. 

12 shows that our filter rejects a significant fraction of 

incorrect mappings (e.g., up to 96%) and thus avoids 

expensive computations required by the verification step 

(dynamic programming). MAGNET rejects up to 20x 

more incorrect mappings than SHD. We conclude that 

our filtering strategy is more robust than SHD in handling 

invalid mappings. It boosts the overall performance by 

rejecting most of the incorrect mappings while at the 

same time providing a minimal false positive rate. 
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Fig. 12: The true negative rates of MAGNET and SHD 

with different edit distance thresholds using one 

million mappings with at most 7 edits. 

Execution time. We now evaluate the execution time 

of our filter compared to the MATLAB implementation of 

the best existing filter, SHD, across different edit 

distance thresholds. We use the MATLAB Profiler [20] to 

track the execution time of both filters. We configure the 

Profiler to monitor the execution time based on the 

performance clocking option. Fig. 13 shows that as edit 

distance threshold increases, the execution time of both 

filters also increases. This is due to the fact that the 

number of Hamming masks is proportional to the edit 

distance threshold used and hence it requires more 

computations to be performed. We also find that 

MAGNET requires up to 1.4x more time than SHD to 

examine the first one million pairs that have at most 7 

edits, produced by mrFAST when the data set 

ERR240726_1 is mapped to the human genome.  

We conclude that our proposed filter, MAGNET, is 

extremely accurate, but this accuracy comes at the 

expense of a small increase in execution time. We 

believe this tradeoff is reasonable as examining the 

rejected mappings by a fast filter is much cheaper than 

having them verified by quadratic-time dynamic 

programming algorithms.  

Note that the original SHD algorithm is implemented 

using Intel SSE instructions that provides significant 

performance improvements, especially for bit-parallel 

algorithms. We will explore in our future research how 

we can further improve the speed of our filtering strategy, 

to compete with the SIMD-implementation of SHD, using 

hardware accelerators (e.g., GPUs and FPGAs), 

multithreading, or SIMD instructions. In this work, we 

comprehensively evaluate the accuracy of the state-of-

the-art alignment filter and mainly focus on addressing 

the sources of its filtering inaccuracy. 
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Fig. 13: Execution time performance of MAGNET and 

SHD under different edit distance thresholds. 

 

6. CONCLUSION 

In this paper, we comprehensively investigate four 

inaccuracy sources that make the state-of-the-art 



alignment filtering algorithm, Shifted Hamming Distance 

(SHD), highly ineffective in examining potential mappings 

in read mapping for genome analysis. We propose 

MAGNET, a new filtering strategy that eliminates these 

sources and significantly improves the accuracy of pre-

alignment with a minimal false positive rate. In our 

experiments, we show that MAGNET correctly detects 

invalid mappings much better than SHD (i.e., we see 

reductions in the false positive rates as high as 15x - 

100x, depending on the data and edit distance threshold 

used). We also show that MAGNET is able to reject up 

to 20x more incorrect mappings than SHD at the 

expense of a slight increase in the execution time. We 

believe that MAGNET is the most accurate pre-alignment 

filter in literature today, As such, we hope that our 

filtering strategy inspires researchers to adopt it and 

improve its implementation aiming at building an even 

faster yet extremely accurate pre-alignment filter.  
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