
Lightning Talk: Memory-Centric Computing
Onur Mutlu
ETH Zürich

Modern computing systems are processor-centric. Data process-
ing (i.e., computation) happens only in the processor (e.g., a CPU,
GPU, FPGA, ASIC). As such, data needs to be moved from where
it is generated/captured (e.g., sensors) and stored (e.g., storage and
memory devices) to the processor before it can be processed. The
processor-centric design paradigm greatly limits the performance &
energy-efficiency, as well as scalability & sustainability, of modern
computing systems. Many studies show that even the most powerful
processors and accelerators waste a large fraction (e.g., >60%) of
their time simply waiting for data and energy on moving data be-
tween storage/memory units to the processor. This is so even though
most of the hardware real estate of such systems is dedicated to data
storage and communication (e.g., many levels of caches, DRAM
chips, storage systems, and interconnects).

Memory-centric computing aims to enable computation capabil-
ity in and near all places where data is generated and stored. As such,
it can greatly reduce the large negative performance and energy im-
pact of data access and data movement, by fundamentally avoiding
data movement and reducing data access latency & energy. Many
recent studies show that memory-centric computing can greatly
improve system performance and energy efficiency. Major indus-
trial vendors and startup companies have also recently introduced
memory chips that have sophisticated computation capabilities.

This talk describes promising ongoing research and development
efforts in memory-centric computing. We classify such efforts into
two major fundamental categories: 1) processing using memory,
which exploits analog operational properties of memory structures
to perform massively-parallel operations in memory, and 2) process-
ing near memory, which integrates processing capability in memory
controllers, the logic layer of 3D-stacked memory technologies, or
memory chips to enable high-bandwidth and low-latency memory
access to near-memory logic. We show both types of architectures
(and their combination) can enable orders of magnitude improve-
ments in performance and energy consumption of many important
workloads, such as graph analytics, databases, machine learning,
video processing, climate modeling, genome analysis. We discuss
adoption challenges for the memory-centric computing paradigm
and conclude with some research & development opportunities.
1. Memory-Centric Computing
Memory-centric computing (also called processing in memory,
PIM) is a processing paradigmwhere data processing is performed
near and in devices where data is generated (e.g., sensors) or
stored (e.g., memory and storage devices) [1]. This paradigm
enables computing to be more efficient by offering an alternative
to modern systems, which overwhelmingly use the processor-
centric paradigm where data processing is performed only in the
processor (which can be a CPU, GPU, FPGA, ASIC in modern
systems). Memory-centric computing has several advantages over
processor-centric computing. First, it fundamentally reduces the
data movement bottleneck [2], which plagues processor-centric
systems that have to move data to the processor before processing
it. Second, it enables low-latency and low-energy access to data by
reducing the distance between processing units and data storage
& sensing units. Third, it can exploit large amounts of parallelism
present in modern memory, storage, and sensor arrays to perform
massively parallel (bit-level) computation [3]. As such, memory-
centric computing promises to improve both performance and
energy-efficiency at the same time.
Memory-centric computing systems can be categorized into

two types [1, 4], based on the fundamental way in which compu-
tation is performed: 1) processing using memory (PuM), and 2)
processing near memory (PnM). We briefly describe these next
and give examples from recent works. These two approaches can
be combined to obtain the best of both approaches.
1.1. Processing using Memory (PuM)
A memory device has analog operational properties that enable it
to perform (varying types and amounts of) computation. PuM ex-
ploits these properties to perform computation using the memory

device (including memory cells, bitlines, wordlines, sensing struc-
tures, and peripheral circuitry). As such, the PuM approach can
enable computation without adding logic to perform computation
into a memory device, which makes it fundamentally different
from modern processor-centric systems as well as PnM systems
that add such logic near or in memory devices. PuM approach
can be made more powerful by designing the memory device to
increase its capability to perform analog computation.

PuM approaches have been demonstrated in DRAM (e.g., [3, 5–
10]), NVM (e.g., [11–13]), NAND flash (e.g., [14, 15]) and SRAM
(e.g., [16, 17]) devices. For example, recent works [5, 18, 19] show
that data copy and initialization can be performed inside a DRAM
chip by exploiting internal connectivity in the DRAM chip, even
in existing real DRAM chips that do not explicitly support these
operations. Latency of a 4KB data copy can be improved by
more than 11X and energy by 77X compared to a state-of-the-art
processor-centric solution. Recent works [6, 8, 9, 18] also show
that bulk bitwise operations (Majority, AND, OR, NOT) and true
random number generation [20, 21] can be performed in com-
modity DRAM chips with small modifications or by violating
timing parameters. Frameworks and compilers have been in-
troduced to implement any type of operation using such bulk
bitwise computation capability, with little effort required from
the programmer [9]. Real NAND flash memory chips can also
perform bulk bitwise operations (AND, OR NOT, XOR) using in-
herent operational properties of NAND flash cells and strings
as well as peripheral circuitry [14, 15]. Some emerging memory
technologies are capable of performing matrix-vector multiplica-
tion operations in the analog domain due to their crossbar array
structure [12, 13], and various test chips have been designed to
demonstrate this as proof-of-concept prototypes.
1.2. Processing near Memory (PnM)
PnM adds processing logic (similar to modern processors and
accelerators) close to or inside a memory device such that the
distance between the processing logic and memory device is
much smaller than in processor-centric systems. Such logic can
be added to memory controllers, the logic layer of 3D-stacked
memories, around peripheral circuitry in a memory chip, near
memory subarrays in a memory chip, etc. The closer the logic is
to the data storage parts of memory, the lower the amount of data
movement. As such, PnM is not fundamentally different from
modern systems where processing logic and memory structures
are distinct, yet PnM greatly reduces the distance between them
and in more aggressive implementations places logic and memory
together in a tightly-integrated manner.
Many recent works (e.g., [22–25]) have shown the benefits

of the PnM approach, by especially focusing on how various
different types of applications can be accelerated using such an
approach with varying levels of modifications to applications.
For example, rewriting the entire application and changing the
programming model to execute graph analytics near memory can
greatly improve both performance and efficiency, by more than an
order ofmagnitude [22,23]. Less intrusive PnM approaches offload
specific functions or instructions to near-memory logic [2,26–30],
with lower but still large performance and energy benefits.
1.3. Real PIM Systems
Recently, several real DRAM-based PnM systems were intro-
duced as commercial systems or promising prototypes. The UP-
MEM company, for example, introduced a system where DRAM
chips contain a general-purpose multithreaded processor next to
each DRAM bank [31]. Several studies of the UPMEM system
(e.g., [32–36]) demonstrate the benefits and tradeoffs of this first
commercial memory-centric system on various workloads and
present benchmark suites and libraries for it. These studies show
large performance and energy benefits when the workload is
carefully designed to fit the constraints present in the PnM sys-
tem, which is limited in terms of the computation power within

1



the near-memory processors and the communication capability
present between such processors and the host CPU. These studies
also indicate how future general-purpose PnM systems can be
improved to be much more powerful and effective.

Several major vendors developed specialized PnM systems tar-
geted toward machine learning applications and recommenda-
tion systems. For example, Samsung introduced FIMDRAM [37],
which is intended to accelerate floating-point based matrix op-
erations (with native support for FP multiply and accumulates)
in a DRAM chip. FIMDRAM incorporates processing units next
to DRAM banks. To accelerate similar applications, SK-Hynix
introduced the AiM-DRAM system [38], which also incorporates
near-bank computation units. Two other PnM systems were in-
troduced by Alibaba [39] and Samsung/Meta [40] to accelerate
recommendation systems. The former modifies a DRAM chip to
perform specialized computation tailored towards recommenda-
tion inference. The latter includes a processing buffer chip in a
DRAM module that performs similarly specialized computation
on data coming from many DRAM chips surrounding it.
Systems where computation can be offloaded to FPGAs that

are equipped with high-bandwidth memory (HBM) also exist [41].
These systems can provide significant performance and energy
benefits on various applications (e.g., [41, 42]), including weather
modeling and genome analysis.
1.4. Adoption Challenges
Even though real PIM systems exist, memory-centric computing
is far from being adopted in a widespread manner. To reach that
level and thus realize the full potential and benefits of memory-
centric computing, a number of challenges likely need to be solved.
Many of these adoption challenges are common to PnM and
PuM systems. We briefly cover some of these challenges, as they
constitute important areas to investigate both in research and
development of memory-centric computing systems.

First, it is important to accurately and comprehensively demon-
strate which workloads and algorithms can benefit from memory-
centric computing and by how much. This can enable a larger
momentum for adopting PIM systems. It is especially critical to
maximize benefits on important workloads. Second, widespread
adoption of PIM requires such systems to be easy to program [43],
which in turn requires support for seamless programming and
compilation. Third, system and security support is needed to en-
able high efficiency and ease of use/programming. This wide topic
includes support for data coherence between PIM and other com-
putation units (e.g., CPUs) [44, 45], synchronization [46], virtual
memory [29], multiprogramming and sharing of PIM computa-
tion units, isolation between processes executing on PIM units,
and communication interfaces to access PIM units. Fourth, it is
important to design runtimes and compilation systems to decide
what code should be executed in PIM units [47], how data should
be mapped to facilitate PIM execution, and how access control
and data sharing should be managed. Fifth, there is continual
need for infrastructures and benchmarks (e.g., [19, 33–35, 47–49])
that help both hardware designers and software designers to accu-
rately assess benefits, tradeoffs, and feasibility of different types
of memory-centric computing systems. Finally, it is important to
lower cost and demonstrate TCO benefits.
PuM systems have specific additional challenges due to their

analog nature of computation. These include how to tolerate
circuit variation and noise, how to ensure reliable operation, and
how to enable computation on large memory arrays for scalable
performance. In addition, some PUM systems implemented using
memories that have endurance problems exacerbate lifetime and
endurance problems. Due to such challenges, we believe PuM
systems are harder to adopt in the short term even though their
benefits can be fundamentally higher than PnM systems.
1.5. Future Opportunities and Outlook
Memory-centric computing can enable balanced and efficient
system designs where computation and memory access are fun-
damentally balanced and the processor-memory dichotomy is
eliminated. These systems can provide greatly higher perfor-
mance and efficiency than existing processor-centric systems.
They can also enable potentially new applications and computing
platforms. However, as with any new paradigm, memory-centric
computing systems pose significant adoption challenges. We be-

lieve the processor-centric mindset that is ingrained in essentially
every decision made in modern computing systems is likely the
largest adoption challenge memory-centric systems face. We con-
clude that the future of memory-centric computing is very bright,
but there is a lot more exciting research and development to do.
References
[1] O. Mutlu et al., “A Modern Primer on Processing in Memory,” Emerging Computing: From

Devices to Systems, 2021, https://arxiv.org/pdf/2012.03112.pdf.
[2] A. Boroumand et al., “Google Workloads for Consumer Devices: Mitigating Data Move-

ment Bottlenecks,” in ASPLOS, 2018.
[3] V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution Engine,” arXiv, 2020.
[4] O. Mutlu et al., “Processing Data Where It Makes Sense: Enabling In-Memory Computa-

tion,” MicPro, 2019.
[5] V. Seshadri et al., “RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and

Initialization,” in MICRO, 2013.
[6] V. Seshadri et al., “Fast Bulk Bitwise AND and OR in DRAM,” CAL, 2015.
[7] V. Seshadri et al., “Buddy-RAM: Improving the Performance and Efficiency of Bulk Bitwise

Operations Using DRAM,” arXiv, 2016.
[8] V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using

Commodity DRAM Technology,” in MICRO, 2017.
[9]N. Hajinazar et al., “SIMDRAM: A Framework for Bit-Serial SIMD Processing Using

DRAM,” in ASPLOS, 2021.
[10] J. D. Ferreira et al., “pLUTo: Enabling Massively Parallel Computation in DRAM via

Lookup Tables,” in MICRO, 2022.
[11] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk bitwise operations

in emerging non-volatile memories,” in DAC, 2016.
[12]A. Shafiee et al., “ISAAC: A Convolutional Neural Network Accelerator with In-situ

Analog Arithmetic in Crossbars,” in ISCA, 2016.
[13] P. Chi et al., “PRIME: A Novel Processing-In-Memory Architecture for Neural Network

Computation In ReRAM-Based Main Memory,” in ISCA, 2016.
[14] J. Park et al., “Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent Computa-

tion Capability of NAND Flash Memory,” in MICRO, 2022.
[15] C. Gao et al., “ParaBit: Processing Parallel Bitwise Operations in NAND Flash Memory

based SSDs,” in MICRO, 2021.
[16]M. Kang et al., “An Energy-Efficient VLSI Architecture for Pattern Recognition via Deep

Embedding of Computation in SRAM,” in ICASSP, 2014.
[17] S. Aga et al., “Compute Caches,” in HPCA, 2017.
[18] F. Gao et al., “ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs,” in

MICRO, 2019.
[19] A. Olgun et al., “PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-

in-DRAM",” TACO, 2023.
[20] J. Kim et al., “D-RaNGe: Using Commodity DRAM Devices to Generate True Random

Numbers with Low Latency and High Throughput,” in HPCA, 2019.
[21]A. Olgun et al., “QUAC-TRNG: High-Throughput True Random Number Generation

Using Quadruple Row Activation in Commodity DRAMs,” in ISCA, 2021.
[22] J. Ahn et al., “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,”

in ISCA, 2015.
[23]M. Besta et al., “SISA: Set-Centric Instruction Set Architecture for Graph Mining on

Processing-in-Memory Systems,” in MICRO, 2021.
[24] I. Fernandez et al., “NATSA: ANear-Data Processing Accelerator for Time Series Analysis,”

in ICCD, 2020.
[25]N. M. Ghiasi et al., “GenStore: A High-Performance and Energy-Efficient In-Storage

Computing System for Genome Sequence Analysis,” in ASPLOS, 2022.
[26] K. Hsieh et al., “Transparent Offloading and Mapping (TOM): Enabling Programmer-

Transparent Near-Data Processing in GPU Systems,” in ISCA, 2016.
[27]A. Boroumand et al., “Google Neural Network Models for Edge Devices: Analyzing and

Mitigating Machine Learning Inference Bottlenecks,” in PACT, 2021.
[28] J. Ahn et al., “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture,” in ISCA, 2015.
[29] K. Hsieh et al., “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mech-

anisms, Evaluation,” in ICCD, 2016.
[30]A. Boroumand et al., “Polynesia: Enabling Effective Hybrid Transactional Analytical

Databases with Specialized Hardware Software Co-Design,” in ICDE, 2022.
[31] F. Devaux, “The True Processing In Memory Accelerator,” in Hot Chips, 2019.
[32] J. Gómez-Luna et al., “Benchmarking Memory-Centric Computing Systems: Analysis of

Real Processing-In-Memory Hardware,” in IGSC, 2021.
[33] J. Gómez-Luna et al., “Benchmarking a New Paradigm: Experimental Analysis and

Characterization of a Real Processing-in-Memory System,” IEEE Access, 2022.
[34] C. Giannoula et al., “Towards Efficient Sparse Matrix Vector Multiplication on Real

Processing-in-Memory Architectures,” in SIGMETRICS, 2022.
[35] J. Gomez-Luna et al., “Evaluating Machine Learning Workloads on Memory-Centric

Computing Systems,” in ISPASS, 2023.
[36] S. Diab et al., “A Framework for High-throughput Sequence Alignment using Real

Processing-in-Memory Systems",” Bioinformatics, 2023.
[37] Y.-C. Kwon et al., “25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with

a 1.2 TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine
Learning Applications,” in ISSCC, 2021.

[38] S. Lee et al., “A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory sup-
porting 1TFLOPS MAC Operation and Various Activation Functions for Deep-Learning
Applications,” in ISSCC, 2022.

[39]D. Niu et al., “184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bonding with Process-
Near-Memory Engine for Recommendation System,” in ISSCC, 2022.

[40] L. Ke et al., “Near-Memory Processing in Action: Accelerating Personalized Recommen-
dation with AxDIMM,” IEEE Micro, 2021.

[41]G. Singh et al., “FPGA-based Near-Memory Acceleration of Modern Data-Intensive
Applications,” IEEE Micro, 2021.

[42] G. Singh et al., “NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather
Prediction Modeling,” in FPL, 2020.

[43] S. Ghose et al., “Processing-in-Memory: A Workload-Driven Perspective,” IBM JRD, 2019.
[44] A. Boroumand et al., “CoNDA: Efficient Cache Coherence Support for near-Data Acceler-

ators,” in ISCA, 2019.
[45] A. Boroumand et al., “LazyPIM: An Efficient Cache Coherence Mechanism for Processing-

in-Memory,” CAL, 2016.
[46] C. Giannoula et al., “SynCron: Efficient Synchronization Support for Near-Data-

Processing Architectures,” in HPCA, 2021.
[47] G. F. Oliveira et al., “DAMOV: A New Methodology and Benchmark Suite for Evaluating

Data Movement Bottlenecks,” IEEE Access, 2021.
[48] Y. Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” CAL, 2015.
[49] G. Singh et al., “NAPEL: Near-memory Computing Application Performance Prediction

via Ensemble Learning,” in DAC, 2019.

2

https://arxiv.org/pdf/2012.03112.pdf

	Memory-Centric Computing
	Processing using Memory (PuM)
	Processing near Memory (PnM)
	Real PIM Systems
	Adoption Challenges
	Future Opportunities and Outlook


