Revisiting Memory Errors in Large-Scale Production Data Centers Analysis and Modeling of New Trends from the Field

Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu

> **facebook** Carnegie Mellon University

Study of DRAM reliability:

- on *modern* devices and workloads
- at a large scale in the field

Error/failure occurrence

Page C Errors follow a *power-law distribution* and a large number of errors occur due to *sockets/channels*

Modeling errors

Architecture & workload

Error/failure occurrence

We find that *newer* cell fabrication technologies have *higher failure rates*

trends

Modeling errors

Architecture & workload

Error/failure occurrence

Page d Chips per DIMM, transfer width, and **workload type** (not necessarily CPU/ memory utilization) affect reliability

Modeling errors

Architecture & workload

pgy

Error/failure occurrence

Page We have made publicly available a statistical model for assessing server memory reliability

renas

Modeling errors

Architecture & workload

ogy

Error/failure occurrence

Page offlining at scale First large-scale study of page offlining; real-world limitations of technique

trends

Modeling errors

Architecture & workload

Outline

- background and motivation
- server memory organization
- error collection/analysis methodology
- memory reliability trends
- summary

Background and motivation

DRAM errors are common

- examined extensively in prior work
 - charged particles, wear-out
 - variable retention time (next talk)
- error correcting codes
 - used to detect and correct errors
 - require additional storage overheads

Our goal Strengthen understanding of DRAM reliability by studying:

- new trends in DRAM errors
 - modern devices and workloads
- at a large scale
 - billions of device-days, across 14 months

Our main contributions

- identified new DRAM failure trends
- developed a *model* for DRAM errors
- evaluated page offlining at scale

Server memory organization

Socket

DIMM slots

	_				Ĩ
15	25	23	15	25	25
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
34	54	34	34	34	54

DIMM

User data

ECC metadata additional 12.5% overhead

Reliability events

Fault

- the underlying cause of an error
 - DRAM cell unreliably stores charge

Error

- the manifestation of a fault
- permanent: every time
- transient: only some of the time

Error collection/ analysis methodology

DRAM error measurement

- measured every correctable error
 - across Facebook's fleet
 - for 14 months
 - metadata associated with each error
- parallelized Map-Reduce to process
 used R for further analysis

System characteristics

- 6 different system configurations
 - Web, Hadoop, Ingest, Database, Cache, Media
 - diverse CPU/memory/storage requirements
- modern DRAM devices
 - DDR3 communication protocol
 - (more aggressive clock frequencies)
 - diverse organizations (banks, ranks, ...)
 - previously unexamined characteristics
 - density, # of chips, transfer width, workload

Memory reliability trends

Error/failure occurrence

New reliability trends

Technology scaling

Modeling errors

Architecture & workload

Error/failure occurrence

Page offlining at scale

New reliability trends

Modeling errors

Architecture & workload

Technology

scaling

Server error rate

Month

Memory error distribution

Memory error distribution

Memory error distribution

Sockets/channels: many errors

Sockets/channels: many errors

Sockets/channels: many errors

Bank/cell/spurious failures are common

Analytical methodology

- measure server characteristics
 - not feasible to examine every server
 - examined all servers with errors (error group)
 - sampled servers without errors (control group)
- bucket devices based on characteristics
- measure relative failure rate
 - of error group vs. control group
 - within each bucket

Error/failure occurrence

Page offlining at scale

New reliability trends

Technology scaling

Modeling errors

Architecture & workload

Prior work found *inconclusive trends* with respect to memory *capacity*

DIMM capacity (GB)

Prior work found *inconclusive trends* with respect to memory *capacity*

Examine characteristic more closely related to cell fabrication technology

DIMM capacity (GB)

Use **DRAM chip density** to examine technology scaling

(closely related to fabrication technology)

Chip density (Gb)

Chip density (Gb)

Error/failure occurrence

workload

Error/failure occurrence

Page offlining at scale

New reliability trends

Technology scaling

Modeling errors

Architecture & workload

DIMM architecture

chips per DIMM, transfer width

manal and

- 8 to 48 chips
- x4, x8 = 4 or 8 bits per cycle
- electrical implications

DIMM architecture

Does DIMM organization affect memory reliability?

electrical implications

Workload dependence

- prior studies: homogeneous workloads
 web search and scientific
- warehouse-scale data centers:
 - web, hadoop, ingest, database, cache, media

Workload dependence

prior studies: homogeneous workloads

What affect to <u>heterogeneous</u> workloads have on reliability?

1 Gb — 2 Gb —

4 Gb

CPU utilization

Memory utilization

CPU utilization

Memory utilization

Error/failure occurrence

Error/failure occurrence

Page offlining at scale

New reliability trends

Technology scaling

Modeling errors

Architecture & workload

A model for server failure

- use statistical regression model
 - compare control group vs. error group
 - linear regression in R
 - trained using data from analysis
- enable exploratory analysis
 high perf. vs. low power systems

 $\ln \left[\mathcal{F}/(1-\mathcal{F}) \right] = \beta_{Intercept} + (Capacity \cdot \beta_{Capacity}) + (Density2Gb \cdot \beta_{Density2Gb}) + (Density4Gb \cdot \beta_{Density4Gb}) + (Chips \cdot \beta_{Chips}) + (CPU\% \cdot \beta_{CPU\%}) + (Age \cdot \beta_{Age}) + (CPUs \cdot \beta_{CPUs})$

Available online

Memory error model

From Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu: Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field. DSN, 2015.

<u>http://www.ece.cmu.edu/~safari/tools/memerr/</u>

Error/failure occurrence

Error/failure occurrence

Page offlining at scale

New reliability trends

Technology scaling

Modeling errors

Prior page offlining work

- [Tang+,DSN'06] proposed technique
 - "retire" faulty pages using OS
 - do not allow software to allocate them
- [Hwang+,ASPLOS'12] simulated eval.
 - error traces from Google and IBM
 - recommended retirement on first error
 - large number of cell/spurious errors

Prior page off lining work

[Tang+,DSN'06] proposed technique

"rotiro" faulty pages using OC

How effective is page offlining in the wild?

- error traces from Google and IBM
- recommended retirement on first error
 - large number of cell/spurious errors

Error/failure occurrence

Page offlining at scale

First large-scale study of page offlining; real-world *limitations* of technique

trends

Modeling errors

Error/failure occurrence

New reliability trends

Technology scaling

Modeling errors

More results in paper

- Vendors
- Age
- Processor cores
- Correlation analysis
- Memory model case study

Modern systems Large scale

Error/failure occurrence

Page C Errors follow a *power-law distribution* and a large number of errors occur due to *sockets/channels*

Modeling errors

Error/failure occurrence

We find that *newer* cell fabrication technologies have *higher failure rates*

Technology scaling

trends

Modeling errors

Error/failure occurrence

Page d Chips per DIMM, transfer width, and workload type (not necessarily CPU/ memory utilization) affect reliability

Modeling errors

Architecture & workload

pgy

Error/failure occurrence

Page We have made publicly available a statistical model for assessing server memory reliability

renas

Modeling errors

Architecture & workload

ogy

Error/failure occurrence

Page offlining at scale First large-scale study of page offlining; real-world limitations of technique

trends

Modeling errors

Revisiting Memory Errors in Large-Scale Production Data Centers Analysis and Modeling of New Trends from the Field

Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu

> **facebook** Carnegie Mellon University

Backup slides

Decreasing hazard rate

Errors 54,326 0 2 10 Density 4Gb 1Gb 2Gb 2Gb

Case study

Case study

Factor	Low-end	High-end (HE)	
Capacity	4 GB	16 GB	
Density2Gb	1	0	
Density4Gb	0	1	
Chips	16	32	l Inp
CPU%	50%	25%	
Age	1	1	
CPUs	8	16	
Predicted			
relative	0.12	0.78	Out
failure rate			

Inputs

Dutput

Case study

Factor

Low-end High-end (HE)

ts

Does CPUs or density have a higher impact?

Age CPUs	8	16	
Predicted relative failure rate	0.12	0.78	Output

Exploratory analysis

Factor	Low-end	High-end (HE)	HE/↓density	HE/↓CPUs
Capacity	4 GB	16 GB	4 GB	16 GB
Density2Gb	1	0	1	0
Density4Gb	0	1	0	1
Chips	16	32	16	32
CPU%	50%	25%	25%	50%
Age	1	1	1	1
CPUs	8	16	16	8
Predicted relative failure rate	0.12	0.78	0.33	0.51

Exploratory analysis

Factor	Low-end	High-end (HE)	HE/↓density	HE/↓CPUs
Capacity	4 GB	16 GB	4 GB	16 GB
Density2Gb	1	0	1	0
Density4Gb	0	1	0	1
Chips	16	32	16	32
CPU%	50%	25%	25%	50%
Age	1	1	1	1
CPUs	8	16	16	8
Predicted				
relative	0.12	0.78	0.33	0.51
failure rate				