Techniques for Reducing the Connected-Standby Energy Consumption of Mobile Devices

Jawad Haj-Yahya¹

Yanos Sazeides² Mohammed Alser¹ Efraim Rotem³ Onur Mutlu¹

Executive Summary

- <u>Motivation</u>: Mobile devices operate in connected-standby mode most of the time. We would like to make this mode more energy efficient.
- <u>Problem</u>: In connected-standby mode, mobile devices enter the **Deepest-Runtime-Idle-Power State (DRIPS)**. There are three sources of energy inefficiency in modern DRIPS:
 - Wake-up timer event is toggled in a high-leakage process using a high frequency clock.
 - Several IO signals are always powered on.
 - Processor context is preserved in high-leakage-power SRAMs.
- Goal: Reduce power consumption of DRIPS.

• <u>Mechanism</u>: Optimized DRIPS (ODRIPS) based on they key ideas:

- Offload wake-up timer to a low leakage chip (e.g., chipset) with significantly slower clock.
- Offload always-on IO functionality to power-gate all processor IOs.
- Transfer processor context to a secure memory region inside DRAM.

• Evaluation:

- We implement ODRIPS in Intel's Skylake mobile processor.
- ODRIPS reduces the platform average power consumption in connected-standby mode by **22%**.

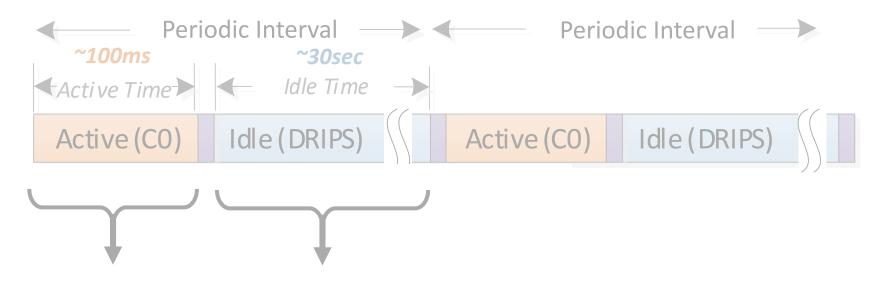
1. Connected-Standby and DRIPS Overview

2. The ODRIPS Substrate

- I. Wake-up timer event handling
- II. Offload processor's always-on IO functionality
- III. Transfers the processor context to DRAM

3. Evaluation

4. Summary


Connected-Standby Mode (1)

- Mobile devices (phones, tablets, and laptops) are idle the majority (~90%) of the time.
- During idle periods, modern mobile devices
 - Operate at low-power state to increase battery life
 - Remain **connected** to a communication network for usability (e.g., for email notifications and phone calls).
- This operation mode is called connected-standby
 - Microsoft's Modern Standby
 - Apple's Power Nap
- In the connected-standby mode
 - The system spends most of its time in the Deepest-Runtime-Idle-Power-State (DRIPS)
 - Display panel is off during connected-standby

4

Connected-Standby Mode (2)

~0.5% of the time (3W)
 ~99.5% of the time (~60mW)
 ~20% of the
 ~80% of the average power

~80% of the connected-standby platform average power is consumed in DRIPS

DRIPS: Deepest Runtime Idle Power State

Three major power consumption sources in DRIPS :

Intel Skylake Mobile Architecture Chipset includes relatively slow IO (e.g., Chipset USB/SATA/PCI) and system power management functions. The chipset process is optimized for low-Processor VCC leakage and low-frequencies. 0 System Agent (SA) The **processor** operates in high frequencies (e.g., 3GHz). Restore Wake-up SRAM The processor process is optimized for Compute Domains (Cores + Graphics) high frequency rather than low-leakage VDDQ 3) Processor context is preserved in GFX high-leakage power SRAMs (9% of

15% of the platform

We target these three inefficiencies

the platform average power).

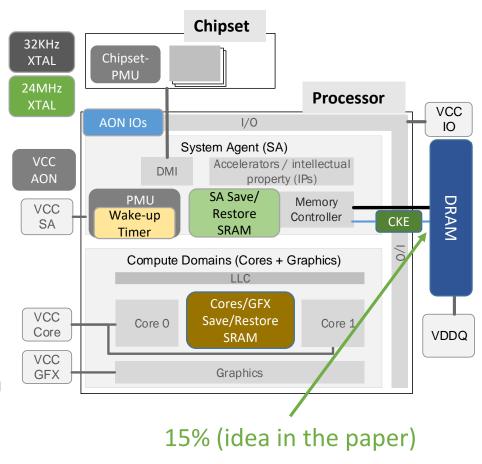
1. Connected-Standby and DRIPS Overview

2. The ODRIPS Substrate

- I. Wake-up timer event handling
- II. Offload processor's always-on IO functionality
- III. Transfers the processor context to DRAM

3. Evaluation

4. Summary


ODRIPS: Optimized DRIPS

ODRIPS consists of three key ideas

Idea 1. Offload wake-up timer to a low leakage chip (e.g., chipset) and significantly slower clock (**5%** of the platform average power).

Idea 2. Offload always-on IO functionality to chipset and power-gate all processor IOs (**7%** of the platform average power).

Idea 3. Transfer processor context to a secure memory region inside DRAM (9% of the platform average power).

1. Connected-Standby and DRIPS Overview

2. The ODRIPS Substrate

I. Wake-up timer event handling

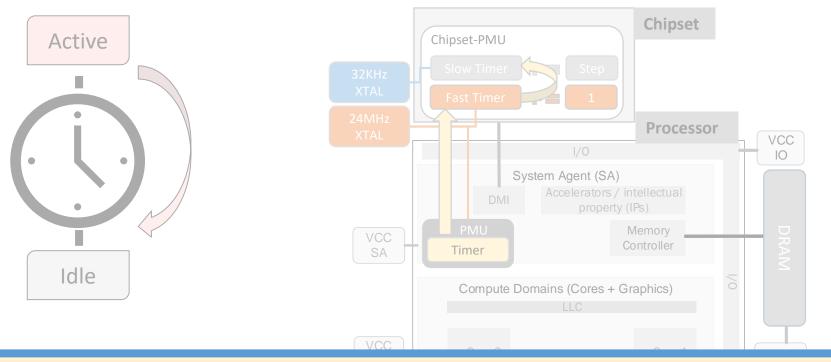
- II. Offload processor's always-on IO functionality
- III. Transfers the processor context to DRAM

3. Evaluation

4. Summary

Idea 1: Wake-up Timer Handling

Problem 1: Wake-up timer event handling consumes 5% of platform power in DRIPS.


Key idea 1: Offload wake-up timer to a low-leakage chip (e.g., chipset) and significantly slower clock.

Idea 1: Wake-up Timer Handling

Step = 24MHz/32KHz(in fixed-point) **Baseline Architecture** Calibration is required **ODRIPS** Architecture Chipset Chipset-PMU **Slow Timer** Step 32KHz **XTAL** Fast Timer 24MHz Processor **XTAL** VCC 1/0 IO System Agent (SA) Accelerators / intellectual DMI property (IPs) PMU DRAM Memory VCC Controller Timer SA 0/1 Compute Domains (Cores + Graphics) LLC VCC Core 0 Core 1 Core VDDQ VCC Graphics GFX

Idea 1: Wake-up Timer Handling

Runtime

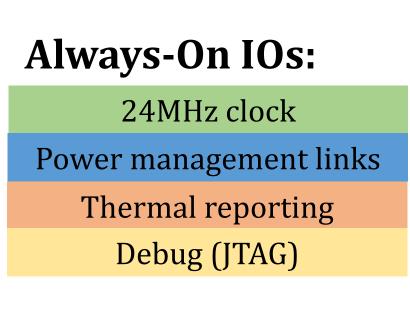
This idea saves 5% of the DRIPS power

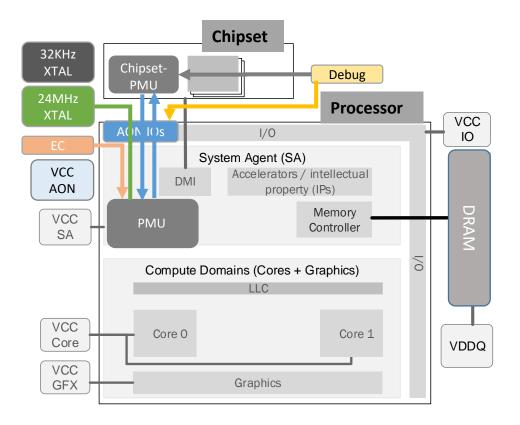
1. Connected-Standby and DRIPS Overview

2. The ODRIPS Substrate

- . Wake-up timer event handling
- II. Offload processor's always-on IO functionality
- III. Transfers the processor context to DRAM

3. Evaluation


4. Summary


Idea 2: Offload Always-On IOs

Problem 2: Several IO signals are always-on in DRIPS consuming **7%** of platform average power.

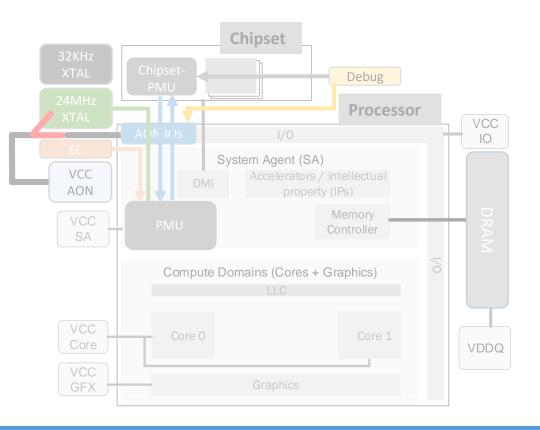
Key idea 2: Offload the always-on IO signals functionality to chipset and dynamically power-gate these IOs.

Baseline Always-On IOs

Idea 2: Offload Always-On IOs

24MHz clock

• 24MHz clock is no longer needed after offloading the timer to chipset


Power management links

 No need for power management in ODRIPS

Thermal reporting

• Offload the Embedded Controller (EC) thermal reporting to chipset using General Purpose IO (GPIO)

Debug (JTAG)

This idea saves 7% of the DRIPS power

1. Connected-Standby and DRIPS Overview

2. The ODRIPS Substrate

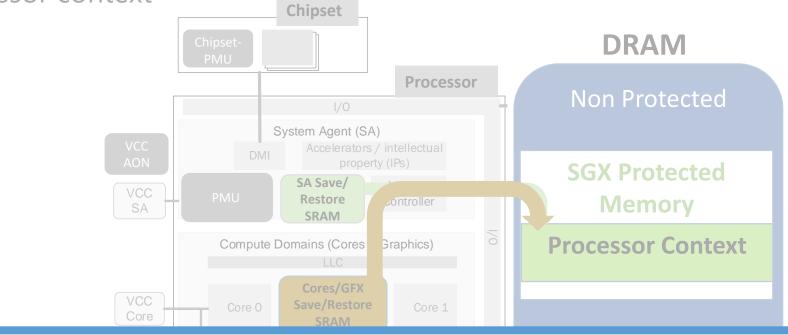
- I. Wake-up timer event handling
- I. Offload processor's always-on IO functionality off-chip

III. Transfers the processor context to DRAM

3. Evaluation

4. Summary

Idea 3: Transfers Processor Context to DRAM


Problem 3: Leakage power consumption of the **Save/Restore SRAMs** that saves the processor context is high and consuming **9%** of the platform average power in DRIPS.

Key idea 3: Dynamically transfer the processor context from the SRAMs to **DRAM**.

Idea 3: Transfers Processor Context to DRAM

- We move the processor context from save/restore SRAMs to SGX protected Memory
- A 200KB out of the 128MB of SGX memory is "stolen" to save the processor context

This idea saves 9% of the DRIPS power

SAFAKI

1. Connected-Standby and DRIPS Overview

2. The ODRIPS Substrate

- I. Wake-up timer event handling
- II. Offload processor's always-on IO functionality off-chip
- III. Transfers the processor context to DRAM

3. Evaluation

4. Summary

Methodology

- Intel Skylake for mobile devices includes **ODRIPS**.
- We evaluate ODRIPS using a real Intel Skylake system.
- We used Keysight measurement instruments

• We use an in-house power model for sensitivity studies.

Results

 Active&Transitions AON IOs Power Delivery 			 DRAM CKE Save/Restore SRAMs DRAM Self-Refresh 		 Wake-up&Timer 24MHz crystal Others 	
		DRAM S				
100%	100%	94%		91%		
Power [%]	18.3%	18.3%	87%		22%	
	5% 7%	5%	18.3%	18.3% 5%	19.40/	
Hattorm Average 40% 20%		7%	7%	570	18.4%	
	21%	20%	18%	19%	16%	
40%	11%	11%	11%	11%	11%	
Platfo %05	31%	31%	31%	31%	31%	

ODRIPS reduces the connected-standby platform average power by 22%

Other Results in the Paper

- Using Non-Volatile Memories (NVMs) with ODRIPS
 - An idea to use Phase Change Memory (PCM) instead of DRAM
 - This idea reduces connected-standby platform average power by additional **15%**.
 - Use embedded MRAM (eMRAM) instead of on-chip SRAMs
- Connected-standby platform average power sensitivity to:
 - Core frequency in Active state
 - DRAM frequency in Active state

1. Connected-Standby and DRIPS Overview

2. The ODRIPS Substrate

- I. Wake-up timer event handling
- II. Offload processor's always-on IO functionality off-chip
- III. Transfers the processor context to DRAM

3. Evaluation

4. Summary

Summary

- <u>Motivation</u>: Mobile devices operate in connected-standby mode most of the time. We would like to make this mode more energy efficient.
- <u>Problem</u>: In connected-standby mode, mobile devices enter the **Deepest-Runtime-Idle-Power State (DRIPS)**. There are three sources of energy inefficiency in modern DRIPS:
 - Wake-up timer event is toggled in a high-leakage process using a high frequency clock.
 - Several IO signals are always powered on.
 - Processor context is preserved in high-leakage-power SRAMs.
- Goal: Reduce power consumption of DRIPS.

• <u>Mechanism</u>: Optimized DRIPS (ODRIPS) based on they key ideas:

- Offload wake-up timer to a low leakage chip (e.g., chipset) with significantly slower clock.
- Offload always-on IO functionality to power-gate all processor IOs.
- Transfer processor context to a secure memory region inside DRAM.

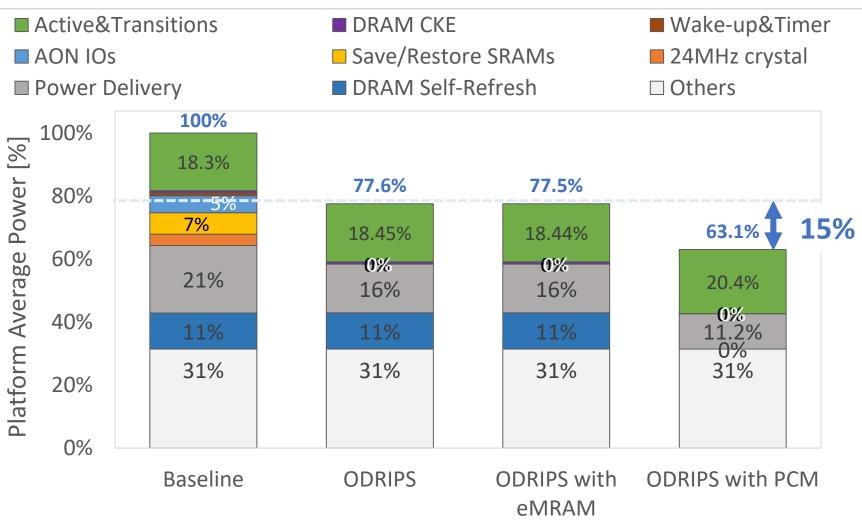
• Evaluation:

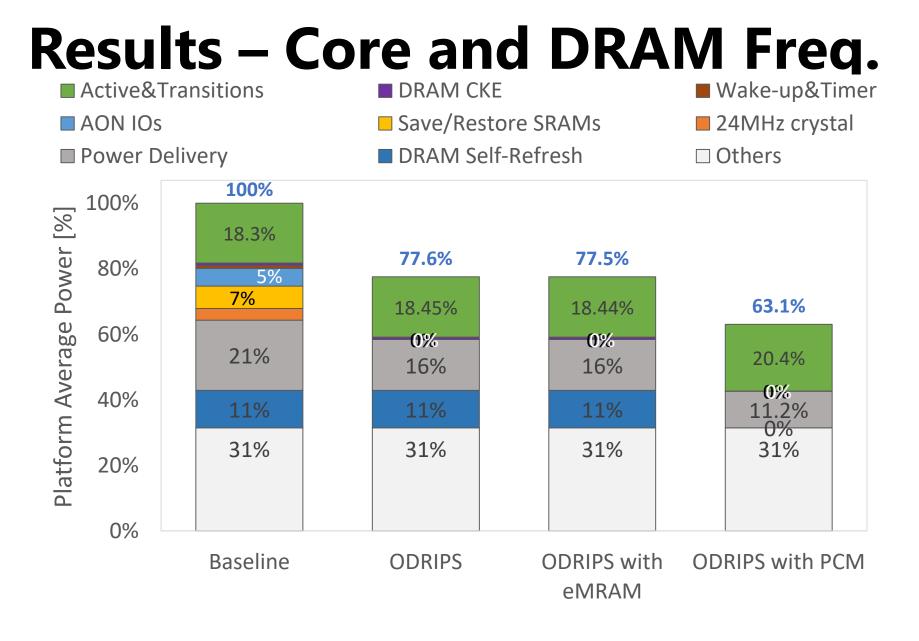
- We implement ODRIPS in Intel's Skylake mobile processor.
- ODRIPS reduces the platform average power consumption in connected-standby mode by **22%**.

Techniques for Reducing the Connected-Standby Energy Consumption of Mobile Devices

Jawad Haj-Yahya¹

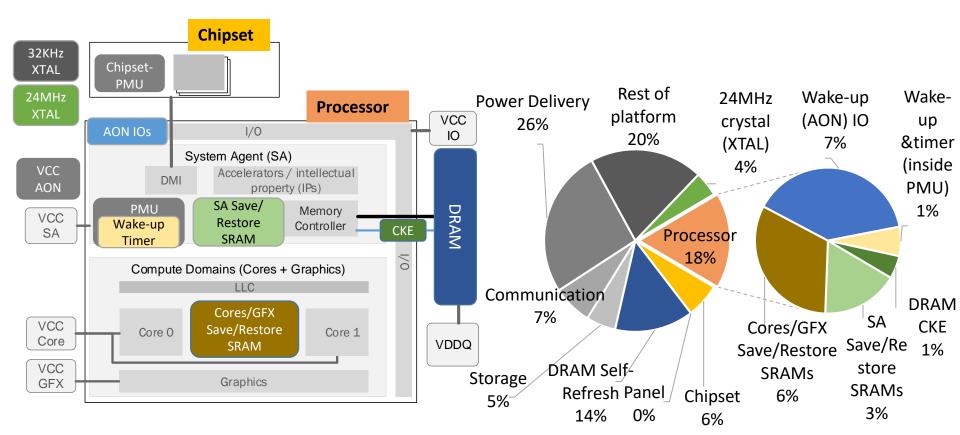
Yanos Sazeides² Mohammed Alser¹ Efraim Rotem³ Onur Mutlu¹





Backup

Results – Use NVMe

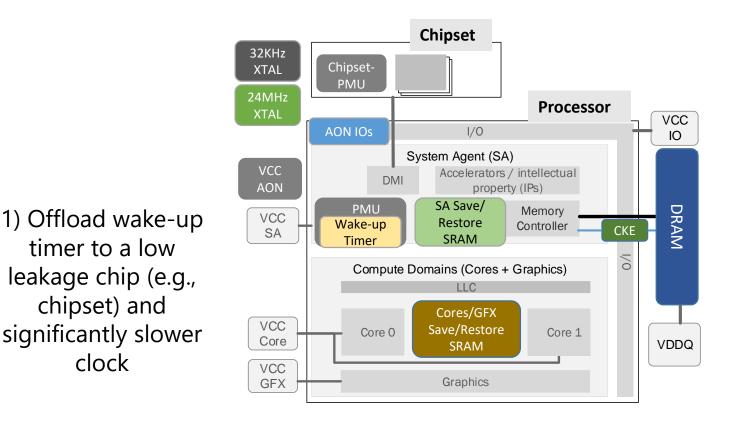


SAFAKI

Core Frequencies

DRAM Frequencies

DRIPS: deepest runtime idle power state



List all components

ODRIPS: Optimized DRIPS

clock

SAFARI

2) Offload always-on IOs functionality to other chip and power-gate all processor IOs

3) Transfer processor context to a secure memory region inside DRAM