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ABSTRACT

Modern mobile devices, such as smartphones, tablets,
and laptops, are idle most of the time but they remain
connected to communication channels even when idle.
This operation mode is called connected-standby. To
increase battery life in the connected-standby mode,
a mobile device enters the deepest-runtime-idle-power
state (DRIPS), which minimizes power consumption
and retains fast wake-up capability. In this work, we
identify three sources of energy inefficiency in modern
DRIPS designs and introduce three techniques to reduce
the power consumption of mobile devices in connected-
standby. To our knowledge, this is the first work to
explicitly focus on and improve the connected-standby
power management of high-performance mobile devices,
with evaluations on a real system.

We propose the optimized-deepest-runtime-idle-power
state (ODRIPS), a mechanism that dynamically: 1) of-
floads the monitoring of wake-up events to low-power
off-chip circuitry, which enables turning off all of the
processor’s clock sources, 2) offloads all of the pro-
cessor’s input/output functionality off-chip and power-
gates the corresponding on-chip input/output func-
tions, and 3) transfers the processor’s context to a se-
cure memory region inside DRAM, which eliminates the
need to store the context using high-leakage on-chip
SRAMs, thereby reducing leakage power.

We implement ODRIPS in Intel’s Skylake client pro-
cessor and its associated Sunrise-Point chipset. Our
analysis of ODRIPS on a real system reveals that
it reduces the platform average power consumption
in connected-standby mode by 22%. We also iden-
tify an opportunity to further reduce platform power
in ODRIPS by using emerging low-power non-volatile
memory (instead of DRAM) to store the processor con-
text.
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1. INTRODUCTION

Mobile devices such as phones, tablets, and laptops,
are idle the majority of the time [15] 9} (94} 2} 58] |20].
During idle periods, modern mobile devices operate at
low power to increase battery life while remaining con-
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nected to a communication network for usability (e.g.,
for email notifications and phone calls). This operation
mode is called connected-standby [32, |78, [31] and it is
supported by modern operating systems (OS), such as
in Microsoft’s Modern Standby [59] and Apple’s Power
Nap 4] modes. In addition to the OS-supported modes
for power savings, many modern processors support
multiple idle power states known as C-states [31} |81}
92, 21, [37) |34, 82, |26]. C-states are numbered from 0
to n. CO0 is referred to as the Active state, whereas the
others are reduced-power states that are designated as
C'i, where the larger the 7, the deeper the power state.
The processor consumes lower power in deeper power
states, at the cost of increasingly higher entry/exit la-
tencies to/from a deeper power state. Cn state (known
as the deepest-runtime-idle-power state (DRIPS) [59])
provides the lowest runtime power, but it also requires
the highest entry and exit latencies compared to all
other states.

In the connected-standby mode, where the dis-
play panel is off, a modern mobile system (proces-
sor+chipset) spends most (e.g., > 99%) of time in
DRIPS, while the system performs kernel mainte-
nance [57] for the rest of the time (e.g., < 1%). The sys-
tem exits DRIPS and enters the Active state, or simply
“wakes up”, upon receiving a wake-up event from either
an internal timer or an external trigger through one
of the inputs/outputs (IOs). Before entering DRIPS,
the context (such as the configuration/status registers,
firmware persistent data, and firmware patches) of vari-
ous components is stored into always powered on (AON)
SRAMs on the processor chip. These SRAMs are pow-
ered using an AON voltage supply that is distributed
inside the processor and chipset dies.

Based on our evaluation of DRIPS implemented in
a real Intel Haswell-ULT [86] mobile system, we iden-
tify three major sources of energy inefficiency. 1) The
wake-up hardware (timer and crystal oscillator) con-
sumes about 5% of the total system power consump-
tion in DRIPS. The processor is normally optimized for
high performance and hence clock sources for the wake-
up hardware also operate at relatively high frequency
(24MHz or even 100M Hz in some architectures 71}
33,163l |21}, |27]) to provide low exit latency from DRIPS.
2) Several 10s are AON IOs that, along with their clock
circuitry, consume about 7% of the total system power
consumption in DRIPS. 3) For a modern processor, the



context that needs to be saved in DRIPS can be on the
order of tens to a few hundreds of kilobytes. Maintain-
ing the context in on-chip SRAMs in DRIPS consumes
significant leakage power that constitutes about 9% of
the total system power consumption in DRIPS.

Our goal in this work is to significantly reduce the
energy consumption of high-performance mobile devices
in connected-standby mode by re-designing DRIPS.
To this end, we introduce a new mechanism called
optimized-deepest-runtime-idle-power state (ODRIPS)
that includes three new techniques, each of which tack-
les one of the three sources of energy inefficiency we
identify. Our new mechanism is based on three key
ideas: 1) To save the power consumption due to the
monitoring of wake-up hardware (timer and crystal os-
cillator), ODRIPS dynamically migrates the handling of
the wake-up events to low-leakage always-on circuitry
inside the chipset. This also enables turning off all
clock sources on the processor side. 2) To turn-off all
always-on I0s, ODRIPS dynamically hands over the
responsibility of these I0s to low-power always-on cir-
cuitry inside the chipset. 3) To save the high leakage
power of the on-chip SRAMs that store processor con-
text, ODRIPS dynamically transfers the context into
off-chip low-leakage memory (DRAM). Our techniques
are micro-architectural. They do not require architec-
tural or OS support and thus can be directly imple-
mented in hardware and firmware.

We implement ODRIPS in Intel’s Skylake [21] client
processor family and its associated Sunrise-Point chipset
[88]. Skylake-based products scale from a thermal de-
sign point (TDP) of 3.5 [40], for handheld devices,
up to a TDP of 95W (39, for high-performance desk-
tops. We find that our proposal is more critical for lower
TDPs (e.g., 3.5W to 25W), which target mobile devices,
tablets, notebooks, and laptops, such as Microsoft Sur-
face [87] and Apple MacBook Air [85]. Our evaluation
on a real system reveals that ODRIPS reduces the plat-
form average power consumption in connected-standby
mode by 22%.

Our proposed techniques are general and hence ap-
plicable to most modern mobile system architectures.
Mobile systems that do not have conventional chipsets
can still exploit the power management integrated cir-
cuit (PMIC [75]) chip that exists in modern mobile SoCs
[81} /50| to implement our proposed ideas.

The main contributions of this work are as follows:

e We introduce ODRIPS, the optimized-deepest-
runtime-idle-power state, to improve the energy
consumption of modern mobile devices in the
connected-standby mode. We provide a detailed
description of our three major ideas, hardware
micro-architecture, power measurements, power-
modeling, and complete system flow. To our
knowledge, this is the first work to explicitly fo-
cus on and improve the connected-standby power
management of high-performance mobile devices.

e Using real hardware measurements, we experi-
mentally break down the total power consump-
tion of the Intel Skylake client processor [21]
and its chipset [88], to quantify the energy ben-

efits of ODRIPS. Overall, our proposed three-
pronged strategy reduces platform average power
in connected-standby mode by 22%.

e We explore the effect of using Phase Change
Memory (PCM) [90] (instead of DRAM) to store
the processor context in ODRIPS. We find that
doing so reduces the platform average power by
an additional 14.5% (Sec. [8.3)).

2. BACKGROUND

In this section, we 1) show how DRIPS is imple-
mented in a modern mobile platform, 2) describe how
the processor enters and exits DRIPS, and 3) explain
the sources of power consumption in connected-standby.

2.1 Intel Skylake Mobile System Architecture

We present the high-level architecture of an Intel Sky-
lake [21] mobile system that includes the processor and
chipset in Fig. a). The system also includes exter-
nal voltage regulators, crystal oscillators (XTAL), and
DRAM memory. When the system is in DRIPS, the
power management unit (PMU (5)) maintains a subset
of the components (highlighted in green in Fig. [[fa))
powered using an AON supply. These components are
required to remain fully functional even if the plat-
form resides in DRIPS. This is essential for a reliable
connected-standby mode that enables communication
(e.g., email notifications and phone calls). The rest of
the system components are completely turned off.

Our evaluation of a real mobile system in DRIPS
reveals that the platform still consumes several tens
of (e.g., ~60) milliwatts with the processor consuming
18% of the total power (Fig. [I{b)). We describe our
evaluation methodology in detail in Sec.

Next, we discuss the steps required to enter and exit
DRIPS.

2.2 DRIPS Entry and Exit Flows

DRIPS entry flow. Typically, after a few mil-
liseconds of idleness, the compute-domains (i.e., cores
and graphics) enter their deepest idle power-state,
during which compute-domain context is saved into
Cores/GFX Save/Restore SRAMs (8). After that, the
PMU determines the next platform idle power-state
based on status information reported by latency toler-
ance reporting (LTR) |1l |49, 31} [26] and time to next
timer event (TNTE) [38]. LTR indicates how much la-
tency the device can tolerate when accessing memory.
TNTE reports whether a device is planning a wake-up
event in the near future based on the internal timer.
When DRIPS is selected as the target state, the
PMU orchestrates six key actions, in the following or-
der: (1) flushing the last level cache (LLC) into DRAM,
(2) turning off the compute-domain voltage-regulators,
(3) storing the system agent'| (SA) context into SA

Save/Restore (S/R) SRAMs (7), (4) placing DRAM into
self-refresh mode with the help of the CKE signal (6) to

'The system agent houses the traditional Northbridge. It
contains several functionalities, such as the memory con-
troller and the IO controllers [88].
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Figure 1: (a) High level architecture of an Intel Skylake mobile system (processor + chipset).
Powered-on system components in DRIPS are highlighted green (numbered) (b) Breakdown of plat-
form power consumption in DRIPS. The total platform power consumption in DRIPS is ~60 milli-
Watts measured at 30°C with 8GB DDR3L-1.6GHz.

avoid data loss due to excessive charge leakage from the
capacitors (storage cells) of DRAM 54], (5) turning
off clock sources (except the clock sources for the in-
ternal timer and the AON IOs) and (6) turning off the
voltage-regulator and then partially power-gating the
PMU.

At this point, the platform is fully in DRIPS. As il-
lustrated in Fig a), in DRIPS the AON supply powers

the AON I0s (4), the un-gated part of the PMU (5), the

save/restore SRAMs ((7) and (8)), the CKE signals (6)
(that drive DRAM self-refresh), and the always-on do-
mains of the chipset (2). The wake-up timer and AON
10s are toggled and monitored periodically using the
24M Hz clock (D).

DRIPS exit flow. The exit flow is simply the reverse
process of the entry flow. The flow starts when the PMU
detects a wake-up event. Next, the power is restored
to the system by turning-on the voltage regulators, the
context of the SA is restored from the S/R SRAMs, and
the DRAM is allowed to exit the self-refresh mode. If
the wake-up interrupt requires core handling, then the
cores exit the low-power mode, during which their con-
text is also restored from on-chip SRAMs. The graphics
engine context is restored if the relevant driver requests
S0.

2.3 Average Power Consumption in the
Connected-Standby Mode

Fig. [2| illustrates the connected-standby operation
mode where the system periodically transitions between
the Active state (C0) (for performing OS kernel main-
tenance tasks [58]) and the Idle state (DRIPS). On-
demand transitions to the Active state occur in response
to external triggers, such as user inputs, interrupts from
networking devices, and other hardware events. The
energy savings at a platform level are higher when the
platform is idle most of the time (i.e., when it has higher
DRIPS residency and lower CO residency).

The average power consumption of the connected-
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Figure 2: Average power of an Intel Skylake
mobile system in the connected-standby mode,
based on our evaluation. 99.5% of the time, the
platform is idle (in DRIPS) and consumes tens
of milliwatts (~60mW). In the remaining 0.5%
of the time, the platform is active (in CO with
display off) and consumes a few watts (~3W).

standby mode is the sum of the power consumption
times the weighted residency time of each state, includ-
ing the Entry and Fxit transition states, as shown in
Equation [I}

Average_Power = C0_power x C0_residency +
DRIPS _power x DRIPS_residency +
Entry_power x Entry_residency +
FExit_power x Exit_residency

3. MOTIVATION: DRIPS ENERGY
INEFFICIENCIES

This section makes three key observations about the
energy inefficiencies of DRIPS in an Intel Skylake mo-
bile system through detailed timing and energy
analyses. We explain our experimental methodology in
detail in Sec. [Tl We expect similar energy inefficiency
issues to be present in other modern high-performance
systems that employ DRIPS.



Observation 1. We show in Fig. b) that the pro-
cessor’s internal timer and its wake-up event handling
consume about 5% of the total power consumption in
DRIPS. This power includes two key components: 1)
wake-up monitoring and timer toggling (5) on the pro-
cessor side and 2) the 24M H z crystal oscillator (1) on
the board. This non-negligible power contribution in
DRIPS is due to two reasons. 1) The process tech-
nology of the processor is optimized for high perfor-
mance rather than low power operation [14, 24]. 2)
The internal timer is monitored/toggled at relatively
high speed clocks (24M Hz or even 100M Hz in other
architectures |71} |33, |63, 21}, |27]). The relatively high
speed clock is mainly used to optimize the system for
fast response within tens of nanoseconds when exiting
shallow idle power states (not DRIPS).

However, very fast DRIPS exit/entry is an overkill
since we observe that DRIPS can potentially afford mil-
liseconds of exit latency. This is enabled mainly due to
the relatively large buffering capabilities (e.g., buffer-
ing in the peripheral devices and buffering in the inter-
connects) that modern SoCs have to reduce platform
average power consumption. For example, a modern
SoC aggregates multiple interrupts and handles them
together at the same time to reduce the number of wake-
ups from the Idle state [34) 49]. This capability requires
large buffers to store the data generated by peripheral
devices, such as camera, network, or microphone.

This observation is consistent with those reported in
prior work |18, |30} 65, |19} 31}, [26]. In fact, Intel Haswell-
ULT [86], a predecessor of Skylake that supports the
connected-standby mode, has an exit latency of 3 mil-
liseconds from DRIPS (called C'10) [49]. The long exit
latency of Intel Haswell-ULT guarantees enough time to
re-initialize the voltage regulator. The voltage regulator
re-initialization latency was optimized in the Skylake
platform and reduced to few hundreds of microseconds.

Our observation provides the ability to bring energy
savings by increasing the entry and exit latencies, by few
tens of microseconds, without degrading user experience
in the connected-standby mode. This can be realized
by dynamically migrating the wake-up events (i.e., the
internal timer, and wake-up 10) to a different chip that
is optimized for low-power operation (i.e., with much
lower leakage and clock frequency). Doing so can help to
reduce the average power consumption of the platform
in connected-standby mode.

Observation 2. We show in Fig. b) that the pro-

cessor’'s AON 10s (4) consume 7% of the total plat-
form power in DRIPS. These IOs include 1) differen-
tial clock (24M H z) buffers, 2) two power management
links (PML) between the processor and the chipset (one
in each direction), 3) thermal reporting interface from
the board, and 4) interfaces to the voltage regulator,
reset, and debug circuitry. We observe that most of the
functionality of these IOs is not required in DRIPS, es-
pecially if we migrate the internal and external wake-up
events (i.e., timer (5) and I0s (4)) to a different chip (as
discussed in Observation 1).

The power-management interface between the chipset
and the processor is required even in DRIPS to ensure

that when the chipset detects a wake-up event, it can
wake up the processor. However, the functionality of
the other IOs can be potentially offloaded to the chipset
and removed from the processor.

This observation provides us with the motivation to
explore the opportunity to make the chipset the “hub”
for hosting the wake-up events in DRIPS. Doing so en-
ables turning-off (power-gating) the processor’s AON
I0s in DRIPS by using a control signal from chipset.
When the chipset detects a a wake-up event, it turns
on the AON IOs and starts the normal exit flow out of
DRIPS. Doing so can help to reduce the platform aver-
age power consumption in connected-standby mode.
Observation 3. We show in Fig. [[] that the memories
to save and restore (i.e., S/R SRAMs) processor con-
text in the system-agent (7) and compute domains
consume a significant portion (9%) of the total power
consumption of the platform in DRIPS. A high-end
processor is normally fabricated with a process tech-
nology that is optimized for performance 14} [24], not
power consumption. For example, we experimentally
find that the leakage power of the SRAM in the proces-
sor is nearly five times that of equal-capacity SRAME|
in the chipset. Our analysis shows that the processor
S/R SRAMs draw high leakage power in DRIPS, even
when their operating voltage is reduced to the minimum
required for data retention.

We also observe that the DRAM power efficiency in
storing data (i.e., power consumed per stored bit, in
Watts/bit) is more than three orders of magnitude bet-
ter than that of SRAM [12, (13} |23]. This provides
us with the motivation to explore the use of off-chip
DRAM (as opposed to on-chip SRAM) to save proces-
sor context in DRIPS.

One of the major concerns with storing processor con-
text off-chip is security. In particular, processor context
can be compromised, when it is transferred to DRAM,
using one of the known attacks on the DRAM sys-
tem (91, |84} 41}, |61} |7} [73} |74} 135, {72} 47, [62]. Memory
protection mechanisms, such as Intel SGX [55] |21}, [92],
can address this security concern by providing a pro-
tected memory region. Intel SGX implements memory
encryption and authentication at the hardware level,
which makes it more difficult to perform attacks on
external memory. One of the main protection mecha-
nism in SGX is a memory encryption engine (MEE) [55|
28], which encrypts and authenticates the contents of
DRAM. SGX technology operates under the assump-
tion that the security perimeter includes only the inter-
nals of the processor package, and in particular, leaves
the DRAM untrusted |28, 55 [16]. Therefore, SGX’s
MEE provides confidentiality, integrity, and freshness
guarantees to the processor context while it is stored in
DRAM.

The above motivates us to explore the feasibility of
dynamically transferring the processor context to a ded-
icated memory region within the SGX-protected DRAM
memory during the DRIPS entry flow and restoring
the processor context back from this region during the

2Both SRAMs operate at the minimum possible voltage
(Vmin) of the associated process technology.



DRIPS exit flow. Although our work focuses on using
Intel SGX, we note that other architectures use simi-
lar memory protection mechanisms (e.g., IBM’s Secure-
Blue++ [6] and AMD SEV [44]). Our general approach
can be adopted by these architectures.

Based on these three observations, we propose opti-
mized DRIPS, ODRIPS, a state that includes our three
new techniques that improve the energy consumption
of a modern system in the connected-standby mode. In
the next three sections, we discuss in detail a possible
way to implement each of our three techniques. Our
description reflects, to a great extent, the actual imple-
mentation of ODRIPS in the Intel Skylake mobile pro-
cessor [21] and the corresponding Sunrise-Point chipset
[88].

4. TIMER WAKE-UP EVENT HANDLING

This section explains how we address the energy inef-
ficiency in handling the timer wake-up events in DRIPS.
The key idea is to 1) dynamically migrate the timer
event handling to the chipset and 2) toggle the timer
with a drastically slower (i.e., by 730x) clock. Com-
pared to baseline DRIPS, our technique results in lower
power but longer entry and exit latencies. Our tech-
nique 1) saves the wake-up timer power (5) (inside the
processor’s PMU) and 2) enables turning off the 24 M H =
crystal oscillator (1) in DRIPS. This reduces the base-
line DRIPS power by 5%.

4.1 Timer-Event Migration to the Chipset

A timer event is an interrupt that occurs when the
time-stamp-counter (T'SC') of the system reaches a pre-
scheduled target time. The timer event is normally
scheduled by the OS, applications, or the PMU to per-
form a future task. During entry into DRIPS, the PMU
firmware determines the closest timer-event, among all
scheduled timer-events, and wakes up the system when
the T'SC reaches the event’s target time.

4.1.1 Design Alternatives

In our baseline architecture, DRIPS operates with
two clocks: 1) a real time clock (RTC) with a fre-
quency of 32.768K Hz (for simplicity we refer to it as
the 32K H z clock) and 2) another clock with a frequency
of 24M Hz (which toggles the timer). Both clocks are
generated using two off-chip crystal (XTAL) oscillators,
as shown in Fig. a). To reduce DRIPS power con-
sumption, we propose to shut down the 24 M Hz XTAL
oscillator and use the drastically slower 32K Hz clock
to toggle the system.

To achieve this goal, we have two main design alter-
natives. 1) Bringing the 32K Hz XTAL oscillator into
the processor (in addition to the chipset) and toggling
the timer with it. This solution enables turning off the
24M H z XTAL oscillator, but it requires more IO pins
to the processor such that the 32K Hz clock signal is
also delivered to the processor. Increasing the IO pins
of the processor chip increases both chip Costﬂ [36] and

3Interfaces (pins) that connect the chip to other chips
or board components are relatively expensive as also
observed by the International Technology Roadmap for
Semiconductors (ITRS) [36]. Please also see [53].

processor power consumption. 2) The second design
alternative is to enable the chipset to perform timer
event handling at lower clock frequency. The second de-
sign alternative does not require additional IO pins and
does not increase the power consumption of the pro-
cessor. We also find that the second design alternative
facilitates the power-gating of the remaining always-on
(AON) IOs in ODRIPS (as we discuss in Sec. [5). Due
to these advantages, we select the second design alter-
native. Next, we explain its design in detail.

4.1.2  Microarchitectural Changes

We present the microarchitectural changes needed to
realize our second design alternative in Fig. a). We
add two timers to the chipset: a fast-timer that works
with a 24M Hz clock and a slow-timer that toggles at
32KHz.

When entering ODRIPS, the system copies the main
timer value from the processor to the chipset’s fast-
timer. Subsequently, the fast-timer starts toggling
using the 24M Hz clock, incremented by one every
cycle (i.e., Fast-Timer+=1). A few cycles later,
the PMU switches to the 32K Hz clock (asserts the
Switch_to_32KHz signal). The flow waits until the ris-
ing edge of the 32K Hz clock before carrying out the
actual switching, as we show in Fig. (b) At the edge
of the slow clock, the fast-timer value is copied into
the slow-timer, and slow-timer starts toggling with the
32K Hz clock (i.e., incremented by a predefined Step
value every slow cycle; Slow-Timer+=>Step). At this
point, the 24 M Hz clock can be gated and the crystal
oscillator can be turned-off. The Step value is deter-
mined via a calibration process discussed in Sec. [£.1.3]

When exiting from DRIPS, the platform switches
back to the fast-timer. The chipset’s PMU turns on the
24 M H z oscillator and de-asserts the Switch_to_32KHz
signal as we show in Fig. b). The process waits for the
rising edge of the 32K Hz clock, and copies the timer
value (upper 64 bits) into the fast-timer. The fast-timer
then continues toggling at 24M Hz. Subsequently, the
value of the fast-timer is copied to the main timer inside
the processor via the power management link (PML)
channel as shown in Fig. a) and the processor contin-
ues with the flow of exiting ODRIPS.

The PML is used for power management communica-
tion between the processor and the chipset. The PML
has two physical master-slave interfaces (clocked with
the 2dM Hz clock). The processor is the master for
the interface from the processor to the chipset and the
chipset is the master for the interface from the chipset
to the processor. Consequently, the PML is a determin-
istic channel. For correct timing, whenever we transfer
the timer value from/to the processor over the PML, we
add a fixed constant to the transferred timer value to
compensate for the time it takes to transfer the timer
value on the communication channel.

4.1.3 Timer Precision and Step Calibration

The key challenge in switching the timer counting
from the fast timer to the slow timer is to maintain the
counting correctness of the fast timer before the system
enters ODRIPS, during ODRIPS, and after the system
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Figure 3: (a) Wake-up event handling and AON IO power-gating. New components are highlighted
with dashed lines: Slow-Timer, Fast-Timer, on-board power-gate (i.e., FET) for AON I10s, processor’s
PMU power-gate. (b) Timer counting switches from Fast-Timer to Slow-Timer during ODRIPS entry
to enable turning off the fast clock crystal oscillator (i.e., 24MHz-XTAL). During ODRIPS exit, timer
counting switches back from Slow-Timer to Fast-Timer.

exits ODRIPS. While the system is not in ODRIPS, the
fast timer is incremented by one every fast clock cycle
(i.e., Fast_Timer+=1). Since the fast clock signal is
turned off in ODRIPS, the slow timer needs to keep
the counting value of the fast timer updated, using the
slow clock. To do so, at every slow clock cycle, the
slow timer needs to be incremented by a Step value
that represents the ratio between the fast and slow clock
frequencies (i.e., Slow_Timer+=Step). For example, if
the slow clock frequency is three times slower than the
fast frequency (i.e., Fast_Freq = 3 x Slow_Freq) and
the two clocks are aligned (e.g., their positive edges are
aligned to each other), then at every slow clock cycle
the slow timer should be incremented by three.
However, this counting mechanism has two main chal-
lenges. 1) As the slow and fast timers are clocked by two
different clock sources (i.e., 32kHz-XTAL and 24MHz-
XTAL, as shown in Fig. [Bfa)), the edges of the clock
signals are not necessarily aligned to each other. 2)
The ratio between the frequencies of the fast clock and
slow clock signals is not necessarily an integer value.
Rounding the Step value to the nearest integer value can
cause a counting drift (i.e., the discrepancy between the
timers) over time. To overcome these two challenges, we
need to 1) represent both the Step and the slow timer as
a fixed-point numbers (i.e., integer and fractional parts)
and 2) calibrate the fixed-point Step value at run time
using the fast clock and slow clock signals.
Step Calibration. The purpose of the calibration pro-
cess is to calculate the value of the integer part and the
fractional part of the fixed-point Step value. We assume
that the Step value is represented as a fixed-point num-
ber with m-bit integer and f-bit fractional parts. We
first describe the calibration step and then show how to
calculate the number of bits (m and f) for each part.
The calibration process includes two key steps. First,
we count the number of clock cycles of the fast clock
signal (N_fast) encountered within some clock cycles
(N_slow) of the slow clock signal. Second, we divide

N_fast by N_slow to calculate the average ratio be-
tween the fast and slow clock frequencies. These two
steps give the value of the fixed-point Step value. The
larger the N_slow value, the more accurate the aver-
age ratio between the two clock signals. To simplify the
division implementation, we choose N_slow = 2/. In
this way, we can divide N_fast by N_slow by simply
placing the fixed point after the first f least significant
bits of the Step number.

This calibration process lasts for several seconds. Its
duration depends on the value of f and the slow clock
frequency. However, this process needs to be carried
out only once after each reset of the system.

We now calculate the values of m and f. The number
of bits for the integer part of Step, m, should be enough
to accommodate the ratio between the frequencies of
the fast clock and slow clock signals. We calculate m as
follows:

Fast_Freq

Slow,Frqu 1 2)

m = [log,

The number of bits for the fractional part of Step, f,
is determined by the desired precision level of the fast
timer. A computing system typically requires a certain
level of precision from clocks and timers. For exam-
ple, a one part per billion (1 ppb) implies a maximum
counting drift of three seconds over a century. For our
system we maintain a 1 ppb precision.

To determine f, we calculate the counting drift, e,
i.e., the discrepancy between the actual value of the fast

timer (IN_fast) and the estimated value of the fast timer
when using the slow clock (i.e., gﬁ;t%m - N_slow), as
follows:

Fast_F
e = N_fast — 2O N slow (3)

Slow_Freq



To achieve a 1 ppb precision, we should keep the value
of  less than 1 within one billion (10%) cycles of the fast
clock signal (N_fast). Therefore, the number of cycles
over which we should calibrate the Step is given by:

(N_fast —¢) 10 -1
N_slow = 2f = Fast_Freq 24MHz (4)
Slow_Freq 32.7T68 KHz

Thus, for this particular implementation with a 1 ppb
precision, the slow timer needs to be incremented by a
Step value that has m = 10 integer bits and f = 21
fractional bits.

4.2 Hardware and Power Cost of Wake-up
Event Handling

Area overhead. Our microarchitectural changes re-
quire two new timers and a register added to the chipset:
1) 64-bit fast timer, 2) (64 + 21)-bit slow timer, and 3)
(10 + 21)-bit register for storing the Step value. The
area overhead of this additional hardware is negligible
compared to the total chipset area (less than 0.01%).
Power overhead. The power consumption of the
timers and the register is insignificant, less than 0.001%
of the chipset power in DRIPS.

S. ALWAYS POWERED ON (AON) 10
POWER GATING

We address the energy inefficiency due to the pro-
cessor’s AON I0s by power-gating (disabling) them in
DRIPS. This helps us to save 7% of the platform power
in DRIPS (portion (4) in Fig. (b)) As the process
technology used for processor design is optimized for
high performance rather than low power, most of the
peripheral 10s (e.g., SPI, USB, SATA, communication,
part of the PCI) are placed in the chipset rather than
in the processor. In the previous section, we have ex-
plained how to migrate the timer wake-up event han-
dling from the processor to the chipset in DRIPS. Such
migration also facilitates the turning-off of the proces-
sor’s AON IOs after offloading all the AON IO func-
tionality to the chipset, as shown in Fig. a).

5.1 Design Alternatives for IO Power-gating

Dynamically power-gating the processor’s AON 10s
requires 1) a power gate for the I0s and 2) controlling
the power gate while the system enters or exits DRIPS.
The controller should be in the chipset, as we want the
chipset to be the “hub” for handling all wake-up events.
There are two main design options to realize AON 10
power-gating: 1) using an embedded power-gate (EPG)
in the silicon die [93] to power gate the AON IOs or
2) using an external field-effect transistor (FET) [76]
on the board to gate the power-rail of the AON IOs.
The first alternative, EPG, is area-efficient and it does
not require additional components on the board. The
second alternative, FET, however, offers three key ben-
efits: it 1) has less leakage compared to EPG, 2) does
not require additional IO pins in the processor (which
are an expensive resource), and 3) requires less design

effort for the processor team. To obtain these benefits,
we choose the second design alternative to implement
the power-gating of the AON IOs.

5.2 DRIPS Flow Changes to Support AON
10 Power-gating

After migrating the timer to the chipset (as we ex-
plain in Section , the processor hands over the re-
sponsibility of the AON I0s to the chipset. Conse-
quently, the chipset disconnects the AON 1Os by con-
trolling the FET, as shown in Fig. a). Doing so
places the platform in ODRIPS while processor’s 10s
are power-gated.

The main processor’s AON IOs include thermal re-
porting, power-management link (PML), reset, voltage
regulator control serial interface, debug interface, and
24M H z clock buffers. The thermal reporting wake-up
event arriving from an embedded controller (EC) is used
to report thermal events. We offload this wake-up 10
using the general purpose I0s (GPIOs) in the chipset to
monitor the EC interface with the 32K Hz clock signal
inside the chipset’s PMU. In DRIPS, PML IO is not in
use. Once the chipset detects an event, the chipset can
turn-on the AON IOs and send the event through the
PML to the processor. The rest of the IOs are not used
in DRIPS. The voltage-regulator control-serial-interface
is used to control the voltage regulators of the com-
pute units. Since compute domains are powered off in
DRIPS, this interface is not required and it is used only
when the system enters or exits DRIPS. The debug in-
terface is also not used in DRIPS. After offloading all
AON IO functionality to the chipset, the 24 M H z clock
source can be safely turned off.

5.3 Hardware and Power Cost of AON 10
Power-gating

Power gating of the AON I0s requires a FET and
two GPIOs, one for offloading the thermal event and
another for controlling the FET. The FET imposes a
minor area overhead to the board (less than 0.1% of the
chipset area). The FET provides high isolation when it
is turned off as its leakage power is less than 0.3% of the
gated load’s power. The chipset has a number of spare
(unused) GPIOs. We use two of these spare GPIOs to
facilitate IO power-gating. Hence, tackling the second
source of energy inefficiency using our second proposed
technique incurs insignificant area and power overheads.

6. PROCESSOR CONTEXT HANDLING

We tackle the third source of energy inefficiency due
to the use of high-leakage SRAMSs to store the proces-
sor context. In DRIPS, the processor context is re-
tained inside on-chip SRAMs ((7) and (8) in Fig. a)),
which account for 9% of the baseline platform’s power
consumption in DRIPS. The context SRAMs are pow-
ered with retention voltage, which is the lowest possible
power supply voltage at which the data can be retained
inside SRAM [31]. Thus, it is not feasible to further
reduce SRAM voltage to save power in DRIPS.



6.1 Design Alternatives for Context Power
Reduction

To save SRAM power in DRIPS, we consider three
design alternatives. 1) Replacing SRAMs with embed-
ded non-volatile memory (eNVM), such as eMRAM |77,
25|. This enables retaining the context inside eNVM
while the voltage source is turned off. However, many
emerging eNVMs still suffer from low endurance and
high latency when compared to SRAM or DRAM (77,
25]. In addition, eNVMs currently introduce engineer-
ing complexities at design and fabrication times.

2) Storing the processor context in the SRAMs of the
chipset instead of SRAMs of the processor. An SRAM
in the chipset consumes approximately five times less
leakage power compared to SRAM in the processor,
due to different process technology optimizations in the
chipset vs. the processor (i.e., power vs. performance |14,
24]). However, this alternative has three drawbacks: (i)
we need to dedicate storage area (about 200K B) for the
processor context inside the chipset’s SRAM, (ii) design
complexity is non-negligible as we need to implement
special flows in both the chipset and the processor to
support the context save/restore operations, and (iii)
SRAMs in the chipset still consume some power.

3) Storing the processor context in DRAM. This has two
major advantages compared to the other two design al-
ternatives: i) storing the context in DRAM theoretically
consumes “zero” additional power, because in DRIPS
the whole DRAM is anyway self-refreshed to retain all
data, and 2) DRAM capacity is huge compared to the
size of the processor context (GBs vs KBs). Therefore,
reserving a small area of the DRAM for the context is
feasible and inexpensive. However, processor context
includes sensitive information and configuration state.
This raises a security concern as several attacks [91], [34]
41, |61} 17, (73] |74L (35, [72] |62}, [47], can be carried out on
DRAM to reveal or change its contents. For this reason,
memory protection architectures, such as Intel SGX [55]
21,192], can be used to secure regions in DRAM systems.

Considering the benefits provided by the third alter-
native, we choose to store the processor context in off-
chip DRAM. To our knowledge, this is the first work to
propose to save the processor’s sensitive context (includ-
ing CSR, patches, fuses, etc.) outside the processor’s
chip, in DRAM. This is possible with the help of Intel
SGX that helps to securely store the processor context
in DRAM.

6.2 Context Transfer to Protected DRAM Area

We develop a new flow to dynamically transfer the
processor context into a protected DRAM area, as
shown in Fig. At DRIPS entry, the PMU triggers
two finite state machines (FSMs) that read data from
the on-chip SRAMs and flush the read data into DRAM.
The first FSM is located at the system-agent (SA FSM)
and it handles the system agent context. The second
FSM is located near the Last-Level-Cache (LLC FSM)
and it is responsible for flushing the context of the cores
and graphics into DRAM. Both context-flushing FSMs
use a mechanism similar to the one that is already im-
plemented in the baseline architecture for flushing the
LLC into DRAM before turning off the LLC in a low-

power state. The PMU firmware configures each FSM
with the protected-memory base-address (BaseAddr)
where the processor context is saved when the sys-
tem enters DRIPS. In addition, a protected memory
range register (Context/SGX RR) inside the memory-
controller that determines if the memory access is to a
protected memory region or to the rest of the memory.
An access to a protected memory region is redirected
to the memory encryption-engine (MEE) [28] before ac-
cessing the DRAM. MEE encrypts the data for writes
(or decrypts for reads) and carries out the desired au-
thentication [28]. The authentication process involves
multiple accesses to the authentication tree metadata
inside the DRAM. To alleviate performance overheads,
the MEE is equipped with an internal “MEE cache” [28§]
that stores the metadata of the authentication tree.

At DRIPS exit, the context is restored from DRAM
by following in reverse the steps of the entry flow. How-
ever, the PMU, memory-controller, and MEE need to
be restored and activated first before the exit flow can
access the DRAM and read the context from the pro-
tected memory region. Therefore, approximately 1K B
of the processor context (only 0.5% of the entire pro-
cessor context) is still required to be stored on-chip, in
a dedicated small SRAM (Boot_SRAM) using a special
FSM (Boot_FSM). When the Boot_FSM is triggered by
the chipset, it restores the state of the PMU, memory-
controller, and MEE from the Boot_SRAM. Hence, at
DRIPS exit, five main steps are carried out: 1) the
PMU is restored by the Boot_FSM (triggered by the
chipset), 2) memory-controller and MEE are restored
by the Boot_FSM, 3) DRAM is instructed to exit self-
refresh mode, 4) the PMU triggers the SA FSM to re-
store the system agent components, and 5) the PMU
triggers the LLC FSM to restore the context of the cores
and graphics from the DRAM into the relevant on-chip
SRAMs.

Processor DRAM
Unprotected
SASave/ | Memory Memory
SA SA Restore <> Controller SGX i
<> FSM Registers > SRAMs BaseAddr | SGX Protected
PMU MEE Memory
o LLC < Cores/GFX Cores/GFX Context |
FSM Registers < Savel (5 /ContextRR | BaseAddr
Restore SGX RR Context
SRAMs T ( )

Range Registers (RR) determine the memory ranges for
context and SGX. Memory out of these ranges is unprotected.

Figure 4: Flow for transferring the processor
context into an SGX-protected DRAM area.

6.3 Latency and Hardware Cost

Save/restore latency analysis. We estimate the la-
tency of transferring the processor context from the
SRAMs into the protected DRAM region by building
an emulation environment for the Skylake processor
equipped with DDR3 that operates at 1.6GHz. The
emulation environment implements the processor’s RTL
code on an FPGA. The environment is used for pre-
silicon RTL verification and runs at a slower frequency
relative to the target processor chip. We measure the



number of cycles on the emulation environment and ex-
trapolate them to the actual processor cycles. The la-
tency for writing the context to the protected DRAM
region is about 18us, while that of reading the processor
context from DRAM is about 13us. This is a tolerable
latency since much longer latency (in the millisecond
scale) can be afforded while entering and exiting DRIPS
(Sec.[3)). These results have been post-silicon validated
on a real system using a Skylake client processor. Our
experimental validation shows an accuracy of 95% in
our latency estimation.

Hardware cost analysis. The SGX-protected mem-
ory region in DRAM has a limited capacity of typically
64M B or 128 M B [55]. This is more than enough space
as our proposal requires at most 200K B of this storage
space to save the processor context. This corresponds
to less than 0.3% of the SGX protected memory capac-
ity (i.e., less than 0.002% of the capacity of an 8GB
DRAM).

7. EVALUATION METHODOLOGY

Power Model. We evaluate ODRIPS using our in-
house power model to 1) estimate the average platform
power when we apply each one of the three techniques
and 2) calculate the energy break-even point of these
techniques.

Our power model estimates platform average power
consumption of the connected-standby periodic interval
using Equation [I] as explained in Section [2.3] The peri-
odic interval includes four main power states: 1) Entry
state that includes the steps needed for preparing for
entering DRIPS, 2) DRIPS, 3) Exit state that includes
the steps needed for preparing for exiting DRIPS, and
4) Active state, C0, as we show in Fig.

The power-level at each state is estimated using four
main steps: 1) measuring the state’s power consumption
on a previous generation of our target processor, 2) scal-
ing the power numbers to the new processor’s process
technology, 3) estimating power breakdown using design
characteristics, and 4) projecting the expected power re-
duction when applying the power reduction techniques.
This method is widely used in industry for power mod-
eling (3| 169, [80]. Next, we provide more detail on this
method.

First, we carry out power-measurements on a real
system that includes Haswell-ULT [86], a predecessor
of Skylake. Haswell-ULT is fabricated at 22nm pro-
cess tecnology, while Skylake is fabricated at 14nm.
We provide the specifications of Haswell-ULT in Ta-
ble [[I Haswell-ULT supports the connected standby
mode. Our measurement tools (explained in this sec-
tion) can accurately measure the power consumption at
each of the four states of the connected standby mode.
Second, to estimate the power consumption of our pro-
cessor, Skylake, we scale the measured power consump-
tion of Haswell-ULT (22nm) to that of Skylake (14nm).
We use a similar method to estimate the chipset power.
We perform the scaling using the characteristics of the
new process that determines the scaling factor. More
detail on this scaling method can be found in [8] |79].
Third, to further break down the measured (and the

scaled) power of DRIPS into the power consumption
of each sub-component, as shown in Fig. ), we use
power consumption estimation techniques |29]. These
techniques exploit design characteristics (such as capac-
itance, leakage, and operational frequency and voltage)
of architectural sub-components to estimate the rela-
tive power consumption of each sub-component. We
estimate the absolute power consumption of each sub-
component using the measured (and scaled) power con-
sumption of the processor in DRIPS. Fourth, we esti-
mate the power-level at each state when applying each
one of the power reduction techniques using the power
breakdown data and the expected effect of each tech-
nique on the platform power. For instance, turning off
the crystal oscillators (XTAL) in ODRIPS saves XTAL
power consumption when the processor is in ODRIPS.

Table 1: Baseline and target system parameters
Baseline: Intel i5-4300U Haswell, 22nm
Target: Intel i5-6300U Skylake, 14nm

Processor Frequencies: 800 — 2400M H z.

L3 cache (LLC): 3M B.

Thermal Design Point (TDP): 15W

Lynx Point-LP (Haswell) 86/,

Sunrise Point-LP (Skylake) 88|

DDR3L-1.6GHz [64], non-ECC, dual-channel

Capacity: 8GB

Chipset

Memory

We measure the residency of each state (i.e., the per-
centage of time the processor spends in a given power
state) for the baseline Haswell system that supports the
connected-standby mode using the performance counter
monitor [89)].

Power-model Validation. Before carrying out an
actual implementation of ODRIPS, we use our power-
model to estimate the potential power savings of our
three proposed techniques. We validate our power
model and power estimations by performing power mea-
surements on a real system that includes the Skylake
processor chip and chipset after ODRIPS fabrication
(post-silicon). Intel Skylake and associated chipset
(Sunrise Point-LP) implement both DRIPS (baseline
from previous generation) and ODRIPS (our proposal)
with a debug switch to disable the newly-implemented
ODRIPS optimization. This debug switch allows us
to accurately assess and compare the power consump-
tion and latency of the two approaches, DRIPS and
ODRIPS. We found that the accuracy of our power-
model is approximately 95%.

Power Measurements. For the platform power mea-
surements, we use a Keysight N6705B DC power ana-
lyzer [|45] equipped with an NG6781A source measure-
ment unit (SMU) [46], as we show in Fig. The
N6705B (equipped with N6781A) is normally used to
measure lower power devices, such as smartphones and
tablets, with high accuracy (around 99.975% [46]). The
power analyzer measures and logs the instantaneous
power consumption of different device components. The
power analyzer can measure in a single experiment
the power consumption of the four power states: En-
try into DRIPS, DRIPS, Exit from DRIPS and Ac-
tive state. The power measurement values range from
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Figure 5: Platform power measurement infras-
tructure using a Keysight N6705B power ana-
lyzer equipped with a N6781A source measure-
ment unit (SMU).

tens of micro-watts (DRIPS) up to approximately three
watts in Active (C0) state. We carry out multiple mea-
surements for different platform components, including
DRAM, storage (e.g., SSD), chipset, crystal oscillators,
and the processor. Each measurement uses four analog
channels with a 50-microsecond sampling interval.
Workloads. Our main workload is an idle platform
workload that places the platform into the connected-
standby mode. Our platform enters into connected-
standby mode when it is idle (with display-off) for
few tens of milliseconds. As shown in Section [2.3] in
the connected-standby mode, the platform periodically
transitions from the Active state (C0) to the Idle state
(DRIPS). We measure the residency of each state in
connected-standby mode on our baseline platform. We
observe that (1) the residency at C0O and during state
transitions is 0.5% of the total time and (2) the resi-
dency in DRIPS is 99.5% of the total time. More specif-
ically, the system 1) spends about 30 seconds at idle, 2)
wakes up with an exit latency of about 300 microseconds
to the Active state to perform OS kernel maintenance
tasks within 100 — 300 milliseconds, 3) transitions back
with an entry latency of about 200 microseconds to the
Idle state.

To determine the energy break-even point of the three
power reduction techniques used in ODRIPS, we per-
form two key steps for each one of our proposed tech-
niques and the baseline DRIPS: 1) measuring the plat-
form power consumption of connected-standby as we
sweep over the residency in DRIPS, starting from 0.6ms
up to 1 second with a granularity of 0.1ms and 2) de-
termining the break-even point of each one of the three
techniques by comparing the connected-standby aver-
age power measurement at each residency of DRIPS.
For each technique, we select the DRIPS residency at
which the platform average power of the proposed tech-
nique is lower than the one with the baseline DRIPS.

8. RESULTS

We evaluate the effect of our three proposed tech-
niques on the energy consumption of a modern mobile
device in the connected-standby mode (as depicted in
Fig. [2). To demonstrate the benefits of our three new
techniques, we perform three main evaluations. We
evaluate 1) the average power consumption of the base-
line platform in the connected-standby mode, 2) the
average-power savings provided by each of our three
techniques (wake-up event handling, denoted by WAKE-
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UP-0FF, AON IO power-gating, denoted by AON-IO-
GATE, and moving processor context to SGX protected
DRAM, denoted by CTX-SGX-DRAM) when added to the
baseline platform, and 3) the average-power savings pro-
vided by implementing all three proposed techniques to-
gether as a new power state, ODRIPS. We present the
results of these three evaluations in Fig. @(a).

Based on these results, we make five key observa-
tions: 1) Our first technique, WAKE-UP-OFF, reduces the
average-power consumption of the baseline platform by
6%. 2) Our second technique (together with our first
techniqu&EI), AON-IO-GATE, reduces the platform aver-
age power consumption by 13%. 3) Our third technique,
CTX-SGX-DRAM, by itself reduces the total average power
consumption of the baseline platform by 8%. 4) Imple-
menting all our three techniques together, ODRIPS, pro-
vides a significant platform average power reduction of
22%. The reduction comes from the following compo-
nents: 1% (Wake-up & timer) + 5% (AON I0) + 4%
(24MHz_crystal) + 7% (S/R SRAMs) + 5% (power-
deliveryEI). 5) The average power consumption during
both the Active state (i.e., C0) and the transitions be-
tween the Active state and the Idle state (i.e., enter-
ing/exiting DRIPS), denoted by Active&Transitions,
is more than 18% of the total platform average power
in connected-standby mode.

In addition, Fig. @(a), on its right y-axis using
the blue line graph, plots the DRIPS residency break-
even point as compared to the baseline, which repre-
sents the minimum amount of time that the workload
needs to spend in the new ODRIPS to have lower en-
ergy consumption than the baseline DRIPS. We ob-
serve that each of our three techniques for ODRIPS
has nearly a similar break-even point to that of the
three techniques combined together (ODRIPS). The ex-
act break-even point values for WAKE-UP-0OFF, AON-I0-
GATE, CTX-SGX-DRAM, and ODRIPS are 6.6ms, 6.3ms,
7.4ms, and 6.5ms, respectively. Since the connected-
standby mode in our system is expected to spend 30 sec-
onds in DRIPS (i.e., much longer than the empirically
determined break-even points), we conclude that our
new techniques and the new proposed state ODRIPS pro-
vide superior power efficiency over the baseline DRIPS.

8.1 Effect of Increasing Core Frequency

Motivated by the results presented in Fig. @(a) that
reveal significant platform average power consumption
in the connected-standby mode for the Active state and
entering/exiting DRIPS (Active&Transitions), we ex-
amine the effect of increasing the core frequency on av-
erage platform power in Fig. @(b) The increase in core
frequency can potentially reduce the Active state (i.e.,
C0) residency and enable going back to the ODRIPS

4The power gating of AON IOs should be applied along with
wake-up event handling as the latter facilitates the power-
gating of AON IOs by migrating the timer to the chipset.
5The measured power delivery efficiency in our system is
74% in DRIPS. Power delivery losses are added to the nom-
inal power of each component. For example if the nominal
power of SRAM is 10mW, then, with power delivery “tax”,
overall SRAM power is 10/0.74 = 13.51mW.
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(a) Our Three Techniques

(b) Scaling Core Frequency

(c) Scaling DRAM Frequency (d) Non-Volatile Memories

Figure 6: Platform average power consumption and energy break-even point for the baseline and
(a) our three power reduction techniques and ODRIPS. (b) ODRIPS while scaling core frequency
from 0.8GHz (baseline) to 1GHz and to 1.5GHz, and (c) ODRIPS while scaling DRAM frequency

from 1.6GHz (baseline) to 1.06GHz and to 0.8GHz.

(d) ODRIPS which uses embedded MRAM

(ODRIPS-MRAM) and PCM (ODRIPS-PCM) memory technologies to store the processor context.

faster, which is also known as race-to-sleep 22].

We make a key observation. The baseline frequency
(0.8GHz) does not provide the minimum power con-
sumption. Increasing the core frequency from the base-
line frequency of 0.8GHz to 1.0GHz provides a small
average power savings (1.4%). However, increasing the
core frequency to 1.5GH z increases the average power
consumption of the baseline platform by about 1%. This
is due to an increase in the average power consumption
of the platform during both the Active state and the
transition from the Active state, even though the time
spent in the Active state is reduced at 1.5GH z.

We conclude that the best core clock frequency for
low power consumption is at some point between 0.8G H z
and 1.5GH z for our evaluation platform.

8.2 Effect of Reducing DRAM Frequency

We evaluate the effect of reducing the DRAM fre-
quency on the average power consumption of the plat-
form in Fig. El(c) Theoretically, reducing the DRAM
operating frequency reduces both the platform power
consumption and memory bandwidth, but it also in-
creases both memory latency and the utilization of
DRAM interface. That is, workloads that are sensitive
to bandwidth or latency may spend more time in the
Active state. Based on Fig. @(c), we make two key
observations. 1) Reducing the DRAM frequency be-
low 1.6GH 2z shows a small effect (a reduction of about
0.3% and 0.7% for DRAM frequencies of 1.067GH z and
0.8GH z, respectively) on the platform average-power
consumption for our connected-standby workload.

The reduction in platform average power comes
mainly from reducing the power in the Active state and
transitioning states (Active&Transitions). 2) Mem-
ory bandwidth reduction increases the entry and exit
latencies to ODRIPS, since a longer time is needed to
save/restore the context to/from DRAM.
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Such a latency increase is negligible for connected-
standby mode due to the high residency (e.g., 30 sec-
onds in our case [56]) at low power mode, ODRIPS.

We conclude that ODRIPS can be slightly more effi-
cient with the lowest DRAM frequency (i.e., 0.8GH?z)
for the connected-standby mode. While reducing the
frequency of the DRAM is beneficial for the connected-
standby workload, doing so might degrade performance
of other workloads and therefore even result in an in-
crease in the overall platform energy consumption .
Therefore, statically reducing the DRAM frequency is
likely not a good strategy. Alternatively, it might be
more efficient to apply dynamic voltage and frequency

scaling to main memory, similar to .

8.3 Effect of Using Emerging Memory
Technologies

We evaluate the potential energy savings from stor-
ing the processor context in two emerging memory
technologies instead of DRAM. First, we evaluate eM-
RAM , an embedded non-volatile memory. We
assume an optimistic eMRAM design that has compa-
rable 1) endurance, 2) power consumption, and 3) per-
formance to SRAM. Second, we evaluate phase change
memory (PCM) [90] as main memory
(instead of DRAM), which eliminates the need for self-
refresh and driving CKE signals. We include the results
of these two experiments in Fig. [6[d). We refer to the
combination of our first two techniques and the third
technique that uses eMRAM instead of DRAM for stor-
ing the processor context as 0ODRIPS-MRAM. We similarly
refer to ODRIPS that uses PCM instead of DRAM as
ODRIPS-PCM.

We make two key observations. 1) ODRIPS-MRAM pro-
vides a slightly lower average-power consumption com-
pared to ODRIPS. This is mainly due to the ability
to simply turn-off the voltage source of eMRAM in



ODRIPS while the context remains saved inside the eM-
RAM, which reduces the energy spent in sending the
context outside the chip. This technique provides the
lowest energy break-even point compared to the other
techniques. 2) ODRIPS-PCM provides a significant re-
duction in the average power of the baseline platform
(by 37%), which is an average power reduction of 15%
compared to ODRIPS that uses DRAM. These large av-
erage power savings are mainly due to the non-volatility
of the PCM, which obviates the need for DRAM self-
refresh and the need to drive the CKE interface from
the processor.

We conclude that using PCM as a storage medium for
the processor context in ODRIPS provides significant
additional platform average power savings.

9. RELATED WORK

To our knowledge, this is the first work to explic-
itly focus on and improve the connected-standby power
management of high-performance mobile devices. We
group prior works into three major areas.

Power state optimizations. There exist many prior
works, from both academia and industry, on idle sys-
tem power management. System hardware vendors in-
troduced the deep idle state feature |81} 92, |21}, 37 [34]
82, 126] to reduce energy consumption of devices. In
addition, industry standards, such as ACPI [83], define
power management policies to apply when the platform
is idle. From academia, Hypnos [43] proposes a new
sleep mode for micro-controllers that combines the state
retention of shallow sleep modes with the low power
of deep sleep modes. It achieves this by scaling the
micro-controller’s supply voltage to slightly above the
SRAM’s data retention voltage [66} |48] while the micro-
controller is in sleep mode. This technique is efficient for
low-leakage processors, but for high performance pro-
cessors, as in our case, leakage is high even when using
SRAM data retention voltage.

Utilizing NVM in low power states. Several ef-
forts address the issue of efficiently saving the proces-
sor context before power down. Mementos [68] is one
such solution that saves system state to on-chip flash
memory. Advances in memory technologies have led to
the emergence of non-volatile memories (NVMs) such as
ferroelectric RAM (FeRAM), magnetic RAM (MRAM),
resistive RAM (ReRAM) [11], which attempt to com-
bine the speed and endurance of SRAM or DRAM with
the non-volatility of flash memory. Quickrecall [42] and
Hibernus [5), [70] use microcontrollers integrated with
FeRAM, similar to [95], to enable efficient state saving.

Many emerging NVMs still have various limitations
(e.g., fabrication cost) when compared to SRAM or
DRAM [60, |11]. Therefore, these techniques are likely
to have a longer-term impact on the high volume man-
ufacturing of modern processors [21, (86}, [63].

Using DRAM to save state. DRAM (or even hard
disk) is used in prior works to save data from the OS.
For example, at ACPI [83] suspend states S3 (suspend
to RAM) and S4 (suspend to disk) [31, 26| [82], the OS
context is saved to DRAM or to disk (HDD/SSD). This
mechanism is initiated by the user and it involves the
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OS kernel in the save and restore process. The context
that is saved is not the processor’s (as in our case), it is
the OS context whose security and authenticity is under
the responsibility of the OS. In our approach, around
200K B of only processor context, which includes con-
figuration registers, patching data, and fuse values, is
saved and restored transparently to the OS. Thus, the
target system has to fulfill a strict security requirement:
the processor context must be protected when moving
back and forth between the processor and the DRAM.

10. CONCLUSION

We present a coordinated three-pronged approach
for architecting a new optimized deepest-runtime-idle-
power state (ODRIPS) for improving the power con-
sumption of high performance mobile platforms for the
connected-standby mode. Our proposed ODRIPS de-
sign is based on three key techniques that together ad-
dress the energy inefficiencies in current DRIPS designs.
1) ODRIPS offloads the monitoring of wake-up events
to off-chip circuitry (in the chipset) that is optimized
for low power operation to enable turning off all of the
processor’s clock sources. 2) ODRIPS offloads proces-
sor’s always powered on (AON) IO functions off-chip
and then power-gates the AON I0s. 3) ODRIPS uti-
lizes the secure (e.g., SGX protected) memory region
inside DRAM to save the processor context instead of
storing the context in high-leakage SRAMs. Overall,
our three techniques combined together save 22% of a
real modern platform’s average power consumption in
the connected-standby mode. We demonstrate that the
potential benefits gained from our proposed ODRIPS
design can be even higher using emerging embedded
and off-chip non-volatile memory (NVM) technologies.
Such NVMs can further reduce the platform energy con-
sumption of the mobile devices during their Idle state
and provide a promising direction for further research.
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