Morpheus

Extending the Last Level Cache Capacity in GPU Systems with Idle GPU Core Resources

Sina Darabi, Mohammad Sadrosadati, Negar Akbarzadeh, Joël Lindegger, Mohammad Hosseini, Jisung Park, Juan Gómez-Luna, Onur Mutlu, Hamid Sarbazi-Azad

ETH zürich

October 3rd 2022 MICRO-55

Motivation & Goal

Memory-bound GPU applications leave some cores under-utilized

Our Goal:

Leverage the under-utilized cores to boost the performance and energy efficiency of memory-bound applications

Our Work

Morpheus

First technique that leverages some GPU cores' private memories to extend the total GPU last-level cache (LLC) capacity

Morpheus significantly improves performance and energy efficiency of memory-bound GPU applications and enables a 4x larger LLC with the same LLC hardware

Outline

1	Introduction	
2	Morpheus: Overview	
3	Morpheus Controller	
4	Extended LLC Kernel	
5	Evaluation	
6	Conclusion	

Memory-Bound GPU Applications

Memory-Bound GPU Applications

Memory-Bound GPU Applications

Conventional GPUs do not benefit (significantly) from all cores for memory-bound applications

to **boost** the **performance** and **energy efficiency** of **memory-bound applications**

Outline

1	Introduction	
2	Morpheus: Overview	
3	Morpheus Controller	
4	Extended LLC Kernel	
5	Evaluation	
6	Conclusion	

Morpheus' Key Idea: **Repurpose under-utilized** GPU cores' private memory to extend the GPU's LLC capacity SAFAR

GPU Core Execution Modes in Morpheus

Serving an LLC Request in Morpheus

Outline

1	Introduction	
2	Morpheus: Overview	
3	Morpheus Controller	
4	Extended LLC Kernel	
5	Evaluation	
6	Conclusion	

Morpheus Controller Warp Status Table

Outline

1	Introduction	
2	Morpheus: Overview	
3	Morpheus Controller	
4	Extended LLC Kernel	
4 5	Extended LLC Kernel Evaluation	
4 5 6		

Extended LLC Kernel GPU Core

Query L1 Cache

Load/Store Instructions

2

SAFAR

Query Shared Memory Software Engineering

Query Register File

Data Layout across Threads for Parallelism

21

Extended LLC via Register File

Extended LLC via Register File

Extended LLC via Register File

SAFARI

24

More in the Paper: Mechanisms

Detailed mechanisms

- Morpheus Controller
- Extended LLC kernel

- Optimization techniques
 - Hit/miss prediction
 - Indirect-MOV
 - Cache compression applied to Morpheus

Outline

1	Introduction	
2	Morpheus: Overview	
3	Morpheus Controller	
4	Extended LLC Kernel	
5	Evaluation	
6	Conclusion	

Methodology

• 17 representative applications

- 14 memory-bound
- 3 compute-bound

Experimentally characterize the extended LLC

- On a real NVIDIA RTX 3080, as the *extended LLC kernel* requires no special hardware
- Capacity, latency, bandwidth, energy/byte of the *extended LLC*

Simulate a Morpheus-enabled GPU using AccelSim [Khairy+ ISCA'20]

• Performance, energy efficiency, bandwidth utilization

Morpheus Performance

Morpheus performs better than or equal to the baseline for all applications

Morpheus Performance

Morpheus performs better than or equal to the baseline for all applications

Morpheus accelerates memory-bound applications by 39% on average

Morpheus performs within 3% of a 4x larger conventional LLC

Morpheus uses less or the same energy as the baseline for all applications

Morpheus uses less or the same energy as the baseline for all applications

Morpheus improves energy efficiency by 58% on average for memorybound applications

Morpheus' energy efficiency is within 6% of a 4x larger conventional LLC

More in the Paper: Evaluation

Morpheus: Extending the Last Level Cache Capacity in GPU Systems Using Idle GPU Core Resources

Sina Darabi[†] Mohammad Sadrosadati[§] Negar Akbarzadeh[†] Joël Lindegger[§] Mohammad Hosseini[‡] Jisung Park^{§∇} Juan Gómez-Luna[§] Onur Mutlu[§] Hamid Sarbazi-Azad^{†‡}

[†]Sharif University of Technology [§]ETH Zürich [‡]Institute for Research in Fundamental Sciences (IPM) [♥]POSTECH

More in the Paper: Evaluation

- Characterization of extended LLC on a real GPU
- Performance and energy comparisons with more baselines
- Total LLC throughput with Morpheus
- On-chip and off-chip memory bandwidth utilization
- Storage and power overhead analysis

Outline

6	Conclusion
5	Evaluation
4	Extended LLC Kernel
3	Morpheus Controller
2	Morpheus: Overview
1	Introduction

Summary

Motivation Memory-bound GPU applications leave some cores under-utilized

Goal	Leverage the under-utilized cores to boost the performance and energy efficiency of memory-bound applications	d
Morpheus	First technique that leverages some GPU cores' private memories to extend the total GPU last-level cache capacity	
Key Results	 Morpheus outperforms state-of-the-art GPU architectures for memory-bound applications 39% performance improvement (relative to RTX 3080) 58% energy efficiency improvement (relative to RTX 3080) Morpheus performs within 3% of a 4x larger conventional LLC Morpheus provides a 4x larger LLC with the same LLC hardwa 	
Conclusion	Morpheus effectively repurposes the private memory of under-utilized cores to extend the GPU LLC capacity	
SAFAR	3	5

Morpheus

Extending the Last Level Cache Capacity in GPU Systems with Idle GPU Core Resources

Sina Darabi, Mohammad Sadrosadati, Negar Akbarzadeh, Joël Lindegger, Mohammad Hosseini, Jisung Park, Juan Gómez-Luna, Onur Mutlu, Hamid Sarbazi-Azad

ETH zürich

October 3rd 2022 MICRO-55

Backup Slides

- Performance Benefits of a Larger LLC
- Memory-bound vs. Compute-bound Applications
- Morpheus' Logical Data Flow
- LLC Timelines
- Hit/Miss Predictor
- Extended LLC Query Logic Unit
- Registerfile Layout
- Cache Compression
- Indirect-MOV Algorithm
- Indirect-MOV Instruction
- Extended LLC Characterization
- Simulation Parameters
- Number of Compute Mode Cores
- Morpheus LLC Capacity
- Morpheus Energy and Power
- Hit/Miss Prediction Benefits
- Evaluated Applications
- Extended LLC Tag Lookup Algorithm

Performance Benefits of a Larger LLC

Memory-bound vs. Compute-bound Applications

SAFARI

39

Morpheus' Logical Data Flow

LLC Timelines

Hit/Miss Predictor

Extended LLC Query Logic Unit

Registerfile Layout

Cache Compression

Extended LLC's Layout across Registers with Compression

45

Indirect-MOV Algorithm

Algorithm 2 Indirect-MOV Algorithm

Input: BLOCK_INDEX:int (R_{aux3}) Output: Requested Extended LLC Block (R_{aux0})

- 1: **procedure** INDIRECT-MOV //The goal is to implement register indirect access, reading from a register whose index is determined by accessing the value in another register. This procedure is critical for accessing data-array registers in the extended LLC kernel.
- 2: T_{list} : .Branch Targets $L_0, L_1, L_2, \ldots, L_{31}$; //Define 32 branch targets, each is allocated to access a specific register index.
- 3: @p brx.idx R_{aux_3} , T_{list} ; //Branch to label L_i specified by the target LLC block index $i=R_{aux_3}$
- 4: L_0 :
- 5: $MOV R_0, R_{aux0}$ //Access data-array register R_0 if target LLC block index is 0
- 6: return
- 7: L_1 :
- 8: MOV R_1 , R_{aux0} //Access data-array register R_1 if target LLC block index is 1
- 9: return

•••

- 10:
- 11: L_{31} :
- 12: MOV R₃₁, R_{aux0}//Access data-array register R₃₁ if target LLC block index is 31
- 13: return
- 14: end procedure

Indirect-MOV Instruction

Extended LLC Characterization

Simulation Parameters

NVIDIA RTX 3080

Parameter	Value
Number of SMs	68
Scheduler	Two-Level [18, 38]
GPU Memory Interface	320-bit GDDR6X [39]
GPU Memory Capacity	10 GiB
Conventional LLC Capacity	5 MiB
L1/Shared-Memory Capacity	128 KiB per SM
Register File Capacity	256 KB per SM

49

Number of Compute Mode Cores

Application	p-bfs	cfd	dwt2d	stencil	r-bfs	bprob	sgem	nw	page-r	kmeans	histo	mri-gri	spmv	lbm	lib	hotsp	mri-q
IBL	68	68	68	68	68	68	68	68	68	24	53	34	42	34	68	68	68
Morpheus-Basic	32	42	42	50	34	39	48	18	42	37	47	36	44	32	68	68	68
Morpheus-ALL	40	55	54	56	37	41	54	26	46	47	52	43	47	36	68	68	68

Table 3: Number of GPU cores executing application threads for different evaluated systems (#available GPU cores is 68).

Morpheus LLC Capacity (NVIDIA RTX 3080)

Conventional LLC: 5 MiB

- Extended LLC Per Core in Cache Mode: 328 KiB
 - 128 KiB from L1
 - 256 KiB from Register File
 - » 200 KiB useable to extended LLC data

- Number of Cache Mode Cores: Application Dependent
 - E.g. 50 for Needleman-Wunsch (nw) => 16 MiB
 - Theoretically up to 67 => 21.4 MiB

Morpheus Energy and Power

Hit/Miss Prediction Benefits

Evaluated Applications

Application	Name	Туре
Breadth-First Search [6]	p-bfs	Memory-bound
Computational fluid dynamics [5]	cfd	Memory-bound
Discrete Wavelet Transform (2D) [5]	dwt2d	Memory-bound
Stencil [6]	stencil	Memory-bound
Breadth-First Search [5]	r-bfs	Memory-bound
Back Propagation [5]	bprob	Memory-bound
sgemm [6]	sgem	Memory-bound
Needleman-Wunsch [5]	nw	Memory-bound
Page Rank [40]	page-r	Memory-bound
K-means [5]	kmeans	Memory-bound
Histogram [6]	histo	Memory-bound
Magnteic Resonance Imaging-Gridding [6]	mri-gri	Memory-bound
Sparse-Matrix Dense-Vector Multiplication [6]	spmv	Memory-bound
Lattice-Boltzmann [6]	lbm	Memory-bound
LIBOR Monte Carlo [41]	lib	Compute-bound
HotSpot [5]	hotsp	Compute-bound
Magnetic Resonance Imaging - Q [6]	mri-q	Compute-bound

Extended LLC Tag Lookup

Algorithm 1 Extended LLC Tag Lookup – Register File

Input: Extended LLC Request's Tag (R_{aux_0}) Output: HIT:bool, and if HIT=True, BLOCK_INDEX:int (R_{aux_3})

1: procedure TAG LOOKUP//executed by an extended LLC kernel warp of 32 threads

2:
$$R_{aux_1} \leftarrow Valid(R_M)$$
 //ensure the block is valid

3:
$$R_{aux_1} \leftarrow R_{aux_1} \&\& (R_{aux_0} = Tag(R_M)) // match request tag to metadata$$

- 4: R_{aux2} ← __ballot_sync(0xffffffff, R_{aux1}) //share R_{aux1} between all threads as a 32-bit vector
- 5: if (R_{aux_2}) then //one of the bits is non-zero because there was a hit

6:
$$R_{aux_3} \leftarrow _ffs(R_{aux_2}) - 1 //get \text{ the 0-based index of the non-zero bit}$$

7: HIT \leftarrow True

8: BLOCK_INDEX
$$\leftarrow R_{aux_3}$$

9: if
$$(thread_idx == R_{aux_3})$$
 then //reset the LRU counter of the hit block

10:
$$LRU_Counter(R_M) \leftarrow 0xfff$$

11: **else**//decrement the LRU counters of all other blocks

12:
$$LRU_Counter(R_M) \leftarrow LRU_Counter(R_M) - 1$$

```
13: end if
```

```
14: else
```

```
15: HIT \leftarrow False
```

16: **end if**

```
17: end procedure
```