
Mosaic: A GPU Memory Manager
with Application-Transparent Support for Multiple Page Sizes

Rachata Ausavarungnirun, Joshua Landgraf, Vance Miller , Saugata Ghose, Jayneel Gandhi, Christopher J. Rossbach, Onur Mutlu

GPU Core

Private TLB

GPU CoreGPU CoreGPU Core

Shared TLB

Private TLB

Page Table
Walkers

Page Table

Private TLB Private TLB

Limited TLB reach

High latency
page walks

Data CPU Memory

High latency
I/O

Private
Shared

CPU-side

GPU-side

0.0

0.2

0.4

0.6

0.8

1.0

1 App 2 Apps 3 Apps 4 Apps 5 Apps

N
o

rm
al

iz
e

d
P

e
rf

o
rm

an
ce

Number of Concurrently-Executing Applications

4KB (with demand paging overhead)

2MB (with demand paging overhead)

How to achieve the best of both page sizes?

Page Size Trade-Off

Design Goals
• Exploit benefits of both small and large pages
• High TLB Reach
• Low demand paging overhead

• No data movement

• Application transparency
• Programmers do not need to modify GPGPU applications

Large Page Frame Large Page Frame

Coalesced Large Page Frame

State-of-the-Art Memory Allocation

Cannot coalesce
(without moving multiple 4K pages)

Unallocated

App 1

App 2

In-Place Coalescing

Mosaic

Need to search which pages to coalesce

Challenges with Multiple Page Sizes

High overhead

Hardware

Contiguity-Conserving
Allocation

In-Place
Coalescer

Contiguity-Aware
Compaction

Application
Demands Data

GPU Runtime

Allocate Memory

Page
Table

Data

Transfer
Done

List of Large Pages
Coalesce

Pages

System I/O Bus Transfer Data

Contiguity-Conserving
Allocation

In-Place
Coalescer

Application
Deallocates Data

Page
Table

Data
Splinter
Pages

Contiguity-Aware
Compaction

List of free pages

Data Allocation

Data Deallocation

High-Level Overview of Mosaic

Mosaic Soft Guarantee
A large page frame contains

pages from only a single address space

Results

1

2

3

4
5

6

1

2

3

GPU Support for Virtual Memory
Improves programmability with a unified address space

Enables large data sets to be processed in the GPU

Allows multiple applications to run on a GPU

23.7%
43.1%

31.5%

21.4%

Homogeneous Heterogeneous

39.0%33.8%

55.4%

61.5%

95.0%

0

1

2

3

4

5

6

7

1 2 3 4 5 2 3 4 5

W
e
ig

h
te

d
 S

p
e
e
d

u
p

Number of Concurrently-Executing Applications

GPU-MMU Mosaic Ideal TLB

0%

20%

40%

60%

80%

100%

1 App 2 Apps 3 Apps 4 Apps 5 Apps

T
L

B
 H

it
 R

a
te

Number of Concurrently-Executing ApplicationsGPU-MMU

Mosaic

L1 L2 L1 L2 L1 L2 L1 L2 L1 L2

0.8

1.0

1.2

1.4

1.6

30% 50% 70% 90% 95% 97% 100%

N
o

rm
a
li
z
e
d

P
e
rf

o
rm

a
n

c
e

Fragmentation Index

no CAC CAC CAC-BC CAC-Ideal

Small Pages:
Low demand paging overhead

Limited TLB reach

Large Pages:
Better TLB reach

High demand paging overhead

Overhead of Address Translation Without Demand Paging

Overhead of Both Address Translation and Demand Paging

CPU
Memory

Apply soft guarantee

Coalescing

0

Coalesced Bit

1

Large Page Table Small Page Table Application transparency

Data can be accessed
using either page size

No TLB flush

Large Page Frames Large Page Frames

Free large page

Free large page

Compaction

Compaction

Only triggered when memory is heavily fragmented
Goals

• Reduce memory fragmentation
• Free up large page frames

Heavily-fragmented GPU memory

Compacted pages has no virtual contiguity
No longer coalesceable

Fully-allocated large page frames Coalesceable

Methodology
• GPGPU-Sim (MAFIA) configured to a GTX 750 Ti
• Multiple GPGPU applications can execute concurrently
• Model page walks and page tables
• Model virtual-to-physical address mapping
• Available at: https://github.com/CMU-SAFARI/Mosaic

0.0
0.2
0.4
0.6
0.8
1.0

N
o

rm
al

iz
e

d

P
e

rf
o

rm
an

ce

4KB 2MB

