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Number of Concurrently-Executing Applications

4KB (with demand paging overhead)

2MB (with demand paging overhead)

How to achieve the best of both page sizes?

Page Size Trade-Off

Design Goals
• Exploit benefits of both small and large pages
• High TLB Reach
• Low demand paging overhead

• No data movement

• Application transparency
• Programmers do not need to modify GPGPU applications
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Challenges with Multiple Page Sizes

High overhead

Hardware

Contiguity-Conserving
Allocation

In-Place
Coalescer

Contiguity-Aware
Compaction

Application 
Demands Data

GPU Runtime

Allocate Memory

Page
Table

Data

Transfer
Done

List of Large Pages
Coalesce

Pages

System I/O Bus Transfer Data

Contiguity-Conserving
Allocation

In-Place
Coalescer

Application
Deallocates Data

Page
Table

Data
Splinter
Pages

Contiguity-Aware
Compaction

List of free pages

Data Allocation

Data Deallocation

High-Level Overview of Mosaic

Mosaic Soft Guarantee
A large page frame contains 

pages from only a single address space

Results
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GPU Support for Virtual Memory
Improves programmability with a unified address space

Enables large data sets to be processed in the GPU

Allows multiple applications to run on a GPU
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Small Pages: 
Low demand paging overhead

Limited TLB reach

Large Pages: 
Better TLB reach

High demand paging overhead

Overhead of Address Translation Without Demand Paging

Overhead of Both Address Translation and Demand Paging
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Large Page Table Small Page Table Application transparency

Data can be accessed      
using either page size

No TLB flush
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Free large page
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Compaction

Compaction

Only triggered when memory is heavily fragmented
Goals

• Reduce memory fragmentation
• Free up large page frames

Heavily-fragmented GPU memory

Compacted pages has no virtual contiguity
No longer coalesceable

Fully-allocated large page frames  Coalesceable

Methodology
• GPGPU-Sim (MAFIA) configured to a GTX 750 Ti
• Multiple GPGPU applications can execute concurrently
• Model page walks and page tables
• Model virtual-to-physical address mapping
• Available at: https://github.com/CMU-SAFARI/Mosaic
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