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ABSTRACT

Contemporary discrete GPUs support rich memory management

features such as virtual memory and demand paging. These features

simplify GPU programming by providing a virtual address space

abstraction similar to CPUs and eliminating manual memory man-

agement, but they introduce high performance overheads during

(1) address translation and (2) page faults. A GPU relies on high

degrees of thread-level parallelism (TLP) to hide memory latency.

Address translation can undermine TLP, as a single miss in the

translation lookaside buffer (TLB) invokes an expensive serialized

page table walk that often stalls multiple threads. Demand paging

can also undermine TLP, as multiple threads often stall while they

wait for an expensive data transfer over the system I/O (e.g., PCIe)

bus when the GPU demands a page.

In modern GPUs, we face a trade-off on how the page size used

for memory management affects address translation and demand

paging. The address translation overhead is lower when we employ

a larger page size (e.g., 2MB large pages, compared with conven-

tional 4KB base pages), which increases TLB coverage and thus

reduces TLB misses. Conversely, the demand paging overhead is

lower when we employ a smaller page size, which decreases the

system I/O bus transfer latency. Support for multiple page sizes can

help relax the page size trade-off so that address translation and de-

mand paging optimizations work together synergistically. However,

existing page coalescing (i.e., merging base pages into a large page)

and splintering (i.e., splitting a large page into base pages) policies

require costly base page migrations that undermine the benefits

multiple page sizes provide. In this paper, we observe that GPGPU

applications present an opportunity to support multiple page sizes

without costly data migration, as the applications perform most of

their memory allocation en masse (i.e., they allocate a large number

of base pages at once). We show that this en masse allocation allows

us to create intelligent memory allocation policies which ensure

that base pages that are contiguous in virtual memory are allocated

to contiguous physical memory pages. As a result, coalescing and

splintering operations no longer need to migrate base pages.
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We introduce Mosaic, a GPU memory manager that provides

application-transparent support for multiple page sizes.Mosaic uses

base pages to transfer data over the system I/O bus, and allocates

physical memory in a way that (1) preserves base page contiguity

and (2) ensures that a large page frame contains pages from only

a single memory protection domain. We take advantage of this

allocation strategy to design a novel in-place page size selection

mechanism that avoids data migration. This mechanism allows

the TLB to use large pages, reducing address translation overhead.

During data transfer, this mechanism enables the GPU to transfer

only the base pages that are needed by the application over the

system I/O bus, keeping demand paging overhead low. Our evalua-

tions show thatMosaic reduces address translation overheads while

efficiently achieving the benefits of demand paging, compared to

a contemporary GPU that uses only a 4KB page size. Relative to a

state-of-the-art GPU memory manager, Mosaic improves the per-

formance of homogeneous and heterogeneous multi-application

workloads by 55.5% and 29.7% on average, respectively, coming

within 6.8% and 15.4% of the performance of an ideal TLB where

all TLB requests are hits.
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1 INTRODUCTION

Graphics Processing Units (GPUs) are used for an ever-growing

range of application domains due to steady increases in GPU com-

pute density and continued improvements in programming tools [66,

71, 92]. The growing adoption of GPUs has in part been due to better

high-level language support [25, 92, 115, 128], which has improved

GPU programmability. Recent support within GPUs formemory vir-

tualization features, such as a unified virtual address space [71, 89],

demand paging [94], and preemption [4, 94], can provide funda-

mental improvements that can ease programming. These features

allow developers to exploit key benefits that have long been taken

for granted in CPUs (e.g., application portability, multi-application

execution). Such familiar features can dramatically improve pro-

grammer productivity and further boost GPU adoption. However, a

number of challenges have kept GPU memory virtualization from

achieving performance similar to that in CPUs [77, 133]. In this

work, we focus on two fundamental challenges: (1) the address

translation challenge, and (2) the demand paging challenge.
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Address Translation Challenge. Memory virtualization relies

on page tables to store virtual-to-physical address translations. Con-

ventionally, systems store one translation for every base page (e.g., a

4KB page). To translate a virtual address on demand, a series of seri-

alized memory accesses are required to traverse (i.e., walk) the page

table [108, 109, 142]. These serialized accesses clash with the single-

instruction multiple-thread (SIMT) execution model [41, 74, 85]

used by GPU-based systems, which relies on high degrees of con-

currency through thread-level parallelism (TLP) to hide long mem-

ory latencies during GPU execution. Translation lookaside buffers

(TLBs) can reduce the latency of address translation by caching

recently-used address translation information. Unfortunately, as

application working sets and DRAM capacity have increased in

recent years, state-of-the-art GPU TLB designs [108, 109, 142] suf-

fer due to inter-application interference and stagnant TLB sizes.

Consequently, GPUs have poor TLB reach, i.e., the TLB covers only

a small fraction of the physical memory working set of an appli-

cation. Poor TLB reach is particularly detrimental with the SIMT

execution model, as a single TLB miss can stall hundreds of threads

at once, undermining TLP within a GPU and significantly reducing

performance [77, 133].

Large pages (e.g., the 2MB or 1GB pages in modern CPUs [50,

52]) can significantly reduce the overhead of address translation.

A major constraint for TLB reach is the small, fixed number of

translations that a TLB can hold. If we store one translation for

every large page instead of one translation for every base page, the

TLB can cover a much larger fraction of the virtual address space

using the same number of page translation entries. Large pages

have been supported by CPUs for decades [121, 122], and large page

support is emerging for GPUs [108, 109, 144]. However, large pages

increase the risk of internal fragmentation, where a portion of the

large page is unallocated (or unused). Internal fragmentation occurs

because it is often difficult for an application to completely utilize

large contiguous regions of memory. This fragmentation leads to

(1)memory bloat, where a much greater amount of physical memory

is allocated than the amount of memory that the application needs;

and (2) longer memory access latencies, due to a lower effective

TLB reach and more page faults [70].

Demand Paging Challenge. For discrete GPUs (i.e., GPUs that

are not in the same package/die as the CPU), demand paging can

incur significant overhead. With demand paging, an application

can request data that is not currently resident in GPU memory. This

triggers a page fault, which requires a long-latency data transfer for

an entire page over the system I/O bus, which, in today’s systems, is

also called the PCIe bus [102]. A single page fault can cause multiple

threads to stall at once, as threads often access data in the same

page due to data locality. As a result, the page fault can significantly

reduce the amount of TLP that the GPU can exploit, and the long

latency of a page fault harms performance [144].

Unlike address translation, which benefits from larger pages,

demand paging benefits from smaller pages. Demand paging for

large pages requires a greater amount of data to be transferred

over the system I/O bus during a page fault than for conventional

base pages. The larger data transfer size increases the transfer time

significantly, due to the long latency and limited bandwidth of the

system I/O bus. This, in turn, significantly increases the amount of

time that GPU threads stall, and can further decrease the amount of

TLP. To make matters worse, as the size of a page increases, there

is a greater probability that an application does not need all of the

data in the page. As a result, threads may stall for a longer time

without gaining any further benefit in return.

Page Size Trade-Off. We find that memory virtualization in state-

of-the-art GPU systems has a fundamental trade-off due to the page

size choice. A larger page size reduces address translation stalls by

increasing TLB reach and reducing the number of high-latency TLB

misses. In contrast, a smaller page size reduces demand paging stalls

by decreasing the amount of unnecessary data transferred over the

system I/O bus [109, 144]. We can relax the page size trade-off by

usingmultiple page sizes transparently to the application, and, thus,

to the programmer. In a system that supports multiple page sizes,

several base pages that are contiguous in both virtual and physical

memory can be coalesced (i.e., combined) into a single large page,

and a large page can be splintered (i.e., split) into multiple base

pages. With multiple page sizes, and the ability to change virtual-

to-physical mappings dynamically, the GPU system can support

good TLB reach by using large pages for address translation, while

providing better demand paging performance by using base pages

for data transfer.

Application-transparent support for multiple page sizes has

proven challenging for CPUs [70, 86]. A key property of mem-

ory virtualization is to enforce memory protection, where a distinct

virtual address space (i.e., a memory protection domain) is allocated

to an individual application or a virtual machine, and memory is

shared safely (i.e., only with explicit permissions for accesses across

different address spaces). In order to ensure that memory protec-

tion guarantees are not violated, coalescing operations can combine

contiguous physical base pages into a single physical large page

only if all base pages belong to the same virtual address space.

Unfortunately, in both CPU and state-of-the-art GPU memory

managers, existing memory access patterns and allocation mecha-

nisms make it difficult to find regions of physical memory where

base pages can be coalesced. We show an example of this in Fig-

ure 1a, which illustrates how a state-of-the-art GPU memory man-

ager [109] allocates memory for two applications. Within a single

large page frame (i.e., a contiguous piece of physical memory that is

the size of a large page and whose starting address is page aligned),

the GPU memory manager allocates base pages from both Applica-

tions 1 and 2 ( 1 in the figure). As a result, the memory manager

cannot coalesce the base pages into a large page ( 2 ) without first

migrating some of the base pages, which would incur a high latency.

We make a key observation about the memory behavior of con-

temporary general-purpose GPU (GPGPU) applications. The vast

majority of memory allocations in GPGPU applications are per-

formed en masse (i.e., a large number of pages are allocated at the

same time). The en masse memory allocation presents us with an

opportunity: with so many pages being allocated at once, we can

rearrange how we allocate the base pages to ensure that (1) all

of the base pages allocated within a large page frame belong to

the same virtual address space, and (2) base pages that are con-

tiguous in virtual memory are allocated to a contiguous portion

of physical memory and aligned within the large page frame. Our

goal in this work is to develop an application-transparent memory
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(a) State-of-the-art GPU memory management [109].
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(b) Memory management with Mosaic.

Figure 1: Page allocation and coalescing behavior of GPU
memory managers: (a) state-of-the-art [109], (b) Mosaic.

manager that performs such memory allocation, and uses this allo-

cation property to efficiently support multiple page sizes in order

to improve TLB reach and efficiently support demand paging.

To this end, we presentMosaic [13], a newGPUmemorymanager

that uses our key observation to provide application-transparent

support for multiple page sizes in GPUs while avoiding high over-

head for coalescing and splintering pages. The key idea ofMosaic is

to (1) transfer data to GPUmemory at the small base page (e.g., 4KB)

granularity, (2) allocate physical base pages in a way that avoids

the need to migrate data during coalescing, and (3) use a simple

coalescing mechanism to combine base pages into large pages (e.g.,

2MB) and thus increase TLB reach. Figure 1b shows a high-level

overview of how Mosaic allocates and coalesces pages. Mosaic con-

sists of three key design components: (1) Contiguity-Conserving

Allocation (CoCoA), a memory allocator which provides a soft guar-

antee that all of the base pages within the same large page range

belong to only a single application ( 3 in the figure); (2) In-Place

Coalescer , a page size selection mechanism that merges base pages

into a large page immediately after allocation ( 4 ), and thus does

not need to monitor base pages to make coalescing decisions or

migrate base pages; and (3) Contiguity-Aware Compaction (CAC), a

memory compaction mechanism that transparently migrates data

to avoid internal fragmentation within a large page frame, which

frees up large page frames for CoCoA.

Key Results. We evaluateMosaic using 235 workloads. Each work-

load consists of multiple GPGPU applications from a wide range of

benchmark suites. Our evaluations show that compared to a con-

temporary GPU that uses only 4KB base pages, a GPU with Mosaic

reduces address translation overheads while efficiently achieving

the benefits of demand paging, thanks to its use of multiple page

sizes. When we compare to a GPU with a state-of-the-art memory

manager (see Section 3.1), we find that a GPU with Mosaic pro-

vides an average speedup of 55.5% and 29.7% for homogeneous

and heterogeneous multi-application workloads, respectively, and

comes within 6.8% and 15.4% of the performance of a GPU with

an ideal TLB, where all TLB requests are hits. Thus, by alleviating

the page size trade-off between address translation and demand

paging overhead, Mosaic improves the efficiency and practicality

of multi-application execution on the GPU.

This paper makes the following contributions:

• We analyze fundamental trade-offs on choosing the correct

page size to optimize both address translation (which benefits

from larger pages) and demand paging (which benefits from

smaller pages). Based on our analyses, we motivate the need

for application-transparent support of multiple page sizes in

a GPU.

• We present Mosaic, a new GPU memory manager that ef-

ficiently supports multiple page sizes. Mosaic uses a novel

mechanism to allocate contiguous virtual pages to contigu-

ous physical pages in the GPU memory, and exploits this

property to coalesce contiguously-allocated base pages into a

large page for address translation with low overhead and no

data migration, while still using base pages during demand

paging.

• We show that Mosaic’s application-transparent support for

multiple page sizes effectively improves TLB reach while

efficiently achieving the benefits of demand paging. Overall,

Mosaic improves the average performance of homogeneous

and heterogeneous multi-application workloads by 55.5%

and 29.7%, respectively, over a state-of-the-art GPU memory

manager.

2 BACKGROUND

We first provide necessary background on contemporary GPU ar-

chitectures. In Section 2.1, we discuss the GPU execution model. In

Section 2.2, we discuss state-of-the-art support for GPU memory

virtualization.

2.1 GPU Execution Model

GPU applications use fine-grained multithreading [123, 124, 130,

131]. A GPU application is made up of thousands of threads. These

threads are clustered into thread blocks (also known as work groups),

where each thread block consists of multiple smaller bundles of

threads that execute concurrently. Each such thread bundle is

known as a warp, or a wavefront. Each thread within the warp

executes the same instruction at the same program counter value.

The GPU avoids stalls due to dependencies and long memory laten-

cies by taking advantage of thread-level parallelism (TLP), where

the GPU swaps out warps that have dependencies or are waiting

on memory with other warps that are ready to execute.

A GPU consists of multiple streaming multiprocessors (SMs), also

known as shader cores. Each SM executes one warp at a time using

the single-instruction, multiple-thread (SIMT) execution model [41,

74, 85]. Under SIMT, all of the threads within a warp are executed

in lockstep. Due to lockstep execution, a warp stalls when any one

thread within the warp has to stall. This means that a warp is unable

to proceed to the next instruction until the slowest thread in the

warp completes the current instruction.

The GPU memory hierarchy typically consists of multiple levels

of memory. In contemporary GPU architectures, each SM has a

private data cache, and has access to one or more shared memory

partitions through an interconnect (typically a crossbar). Amemory
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partition combines a single slice of the banked L2 cache with a

memory controller that connects the GPU to off-chip main mem-

ory (DRAM). More detailed information about the GPU memory

hierarchy can be found in [10, 12, 55, 57–59, 65, 103, 113, 134, 135].

2.2 Virtualization Support in GPUs

Hardware-supported memory virtualization relies on address trans-

lation to map each virtual memory address to a physical address

within the GPU memory. Address translation uses page-granularity

virtual-to-physical mappings that are stored within a multi-level

page table. To look up a mapping within the page table, the GPU

performs a page table walk, where a page table walker traverses

through each level of the page table in main memory until the

walker locates the page table entry for the requested mapping in

the last level of the table. GPUs with virtual memory support have

translation lookaside buffers (TLBs), which cache page table entries

and avoid the need to perform a page table walk for the cached

entries, thus reducing the address translation latency.

The introduction of address translation hardware into the GPU

memory hierarchy puts TLB misses on the critical path of appli-

cation execution, as a TLB miss invokes a page table walk that

can stall multiple threads and degrade performance significantly.

(We study the impact of TLB misses and page table walks in Sec-

tion 3.1.) A GPU uses multiple TLB levels to reduce the number

of TLB misses, typically including private per-SM L1 TLBs and a

shared L2 TLB [108, 109, 142, 144]. Traditional address translation

mechanisms perform memory mapping using a base page size of

4KB. Prior work for integrated GPUs (i.e., GPUs that are in the same

package or die as the CPU) has found that using a larger page size

can improve address translation performance by improving TLB

reach (i.e., the maximum fraction of memory that can be accessed

using the cached TLB entries) [108, 109, 144]. For a TLB that holds

a fixed number of page table entries, using the large page (e.g., a

page with a size of 2MB or greater) as the granularity for mapping

greatly increases the TLB reach, and thus reduces the TLB miss

rate, compared to using the base page granularity. While memory

hierarchy designs for widely-used GPU architectures from NVIDIA,

AMD, and Intel are not publicly available, it is widely accepted that

contemporary GPUs support TLB-based address translation and, in

some models, large page sizes [4, 77, 89–91]. To simplify translation

hardware in a GPU that uses multiple page sizes (i.e., both base

pages and large pages), we assume that each TLB level contains

two separate sets of entries [43, 61, 62, 100, 106, 107], where one

set of entries stores only base page translations, while the other set

of entries stores only large page translations.

State-of-the-art GPUmemory virtualization provides support for

demand paging [5, 71, 94, 109, 142, 144]. In demand paging, all of the

memory used by a GPU application does not need to be transferred

to the GPU memory at the beginning of application execution.

Instead, during application execution, when a GPU thread issues

a memory request to a page that has not yet been allocated in the

GPU memory, the GPU issues a page fault, at which point the data

for that page is transferred over the off-chip system I/O bus (e.g., the

PCIe bus [102] in contemporary systems) from the CPU memory

to the GPU memory. The transfer requires a long latency due to

its use of an off-chip bus. Once the transfer completes, the GPU

Shared L2 Cache

Main Memory

Highly Threaded Page Table Walker

4

L1 TLB

SM

PTBR L1 TLB PTBR

Shared L2 TLB

SM-Private

Shared

3

1

2

1

2

3

4
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Figure 2: GPU-MMU baseline design with a two-level TLB.

runtime allocates a physical GPU memory address to the page, and

the thread can complete its memory request.

3 A CASE FOR MULTIPLE PAGE SIZES

Despite increases in DRAM capacity, TLB capacity (i.e., the number

of cached page table entries) has not kept pace, and thus TLB reach

has been declining. As a result, address translation overheads have

started to significantly increase the execution time of many large-

memory workloads [18, 42, 77, 108, 109, 133]. In this section, we

(1) analyze how the address translation overhead changes if we use

large pages instead of base pages, and (2) examine the advantages

and disadvantages of both page sizes.

3.1 Effect of Page Size on TLB Performance

To quantify the performance trade-offs between base and large

pages, we simulate a number of recently-proposed TLB designs that

support demand paging [109, 144] (see Section 5 for our methodol-

ogy). We slightly modify Power et al.’s TLB design [109] to create

our baseline, which we call GPU-MMU. Power et al. [109] propose

a GPU memory manager that has a private 128-entry L1 TLB for

each SM , a highly-threaded page table walker, and a page walk

cache [109]. From our experiments, we find that using a shared L2

TLB instead of a page walk cache increases the average performance

across our workloads (described in Section 5) by 14% (not shown).

As a result, our GPU-MMU baseline design (shown in Figure 2)

omits the page walk cache in favor of a 512-entry shared L2 TLB.

In our GPU-MMU baseline design, a shared L2 TLB entry is

extended with address space identifiers. TLB accesses frommultiple

threads to the same page are coalesced (i.e., combined). On an L1

TLB miss ( 1 in Figure 2), the shared L2 TLB is accessed. If the

request misses in the shared L2 TLB, the page table walker begins a

walk ( 2 ). The walker reads the Page Table Base Register (PTBR)1

from the core that caused the TLB miss ( 3 ), which contains a

pointer to the root of the page table. The walker then accesses each

level of the page table, retrieving the page table data from either

the shared L2 cache or the GPU main memory ( 4 ).

Figure 3 shows the performance of two GPU-MMU designs:

(1) a design that uses the base 4KB page size, and (2) a design that

uses a 2MB large page size, where both designs have no demand

paging overhead (i.e., the system I/O bus transfer takes zero cycles to

transfer a page). We normalize the performance of the two designs

to a GPU with an ideal TLB, where all TLB requests hit in the L1

TLB. We make two observations from the figure.

1CR3 in the x86 ISA [51], TTB in the ARM ISA [9].
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Figure 3: Performance of aGPUwithno demand paging over-
head, using (1) 4KB base pages and (2) 2MB large pages, nor-
malized to the performance of a GPU with an ideal TLB.

First, compared to the ideal TLB, the GPU-MMU with 4KB base

pages experiences an average performance loss of 48.1%.We observe

that with 4KB base pages, a single TLB miss often stalls many of

the warps, which undermines the latency hiding behavior of the

SIMT execution model used by GPUs. Second, the figure shows that

using a 2MB page size with the same number of TLB entries as the

4KB design allows applications to come within 2% of the ideal TLB

performance. We find that with 2MB pages, the TLB has a much

larger reach, which reduces the TLB miss rate substantially. Thus,

there is strong incentive to use large pages for address translation.

3.2 Large Pages Alone Are Not the Answer

A natural solution to consider is to use only large pages for GPU

memorymanagement. Using only large pages would reduce address

translation overhead significantly, with minimal changes to the

hardware or runtime. Unfortunately, this solution is impractical

because large pages (1) greatly increase the data transfer size of

each demand paging request, causing contention on the system I/O

bus, and harming performance; and (2) waste memory by causing

memory bloat due to internal fragmentation.

Demand Paging at a Large Page Granularity. Following the

nomenclature from [144], we denote GPU-side page faults that

induce demand paging transfers across the system I/O bus as far-

faults. Prior work observes that while a 2MB large page size reduces

the number of far-faults in GPU applications that exhibit locality,

the load-to-use latency (i.e., the time between when a thread issues a

load request and when the data is returned to the thread) increases

significantly when a far-fault does occur [144]. The impact of far-

faults is particularly harmful for workloads with high locality, as

all warps touching the 2MB large page frame (i.e., a contiguous,

page-aligned 2MB region of physical memory) must stall, which

limits the GPU’s ability to overlap the system I/O bus transfer by

executing other warps. Based on PCIe latency measurements from

a real GTX 1080 system [95], we determine that the load-to-use

latency with 2MB large pages (318 µs) is six times the latency with

4KB base pages (55 µs).

Figure 4 shows how the GPU performance changes when we

use different page sizes and include the effect of the demand pag-

ing overhead (see Section 5 for our methodology). We make three

observations from the figure. First, for 4KB base pages, the demand

paging overhead reduces performance, by an average of 40.0% for

our single-application workloads, and 82.3% for workloads with

five concurrently-executing applications. Second, for our single-

application workloads, we find that with demand paging overhead,

2MB pages slow down the execution time by an average of 92.5%

compared to 4KB pages with demand paging, as the GPU cores

now spend most of their time stalling on the system I/O bus trans-

fers. Third, the overhead of demand paging for larger pages gets

significantly worse as more applications share the GPU. With two

applications concurrently executing on the GPU, the average per-

formance degradation of demand paging with 2MB pages instead

of 4KB pages is 98.0%, and with five applications, the average degra-

dation is 99.8%.
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Figure 4: Performance impact of system I/O bus transfer dur-
ing demand paging for base pages and large pages, normal-
ized to base page performance with no demand paging over-
head.

Memory Bloat. Large pages expose the system to internal frag-

mentation and memory bloat, where a much greater amount of

physical memory is allocated than the amount of memory actually

needed by an application. To understand the impact of memory

bloat, we evaluate the amount of memory allocated to each applica-

tion when run in isolation, using 4KB and 2MB page sizes. When we

use the 4KB base page size, our applications have working sets rang-

ing from 10MB to 362MB, with an average of 81.5MB (see Section 5

for details). We find that the amount of allocated memory inflates

by 40.2% on average, and up to 367% in the worst case, when we

use 2MB pages instead of 4KB pages (not shown). These numbers

are likely conservative, as we expect that the fragmentation would

worsen as an application continues to run for longer time scales

than we can realistically simulate. Such waste is unacceptable, par-

ticularly when there is an increasing demand for GPU memory due

to other concurrently-running applications.

We conclude that despite the potential performance gain of 2MB

large pages (when the overhead of demand paging is ignored), the

demand paging overhead actually causes 2MB large pages to per-

form much worse than 4KB base pages. As a result, it is impractical

to use only 2MB large pages in the GPU. Therefore, a design that

delivers the best of both page sizes is needed.

3.3 Challenges for Multiple Page Size Support

As Sections 3.1 and 3.2 demonstrate, we cannot efficiently optimize

GPU performance by employing only a single page size. Recent

works on TLB design for integrated GPUs [108, 109] and on GPU

demand paging support [5, 71, 94, 109, 144] corroborate our own

findings on the performance cost of address translation and the

performance opportunity of large pages. Our goal is to design a

new memory manager for GPUs that efficiently supports multiple

page sizes, to exploit the benefits of both small and large page sizes,

while avoiding the disadvantages of each. In order to (1) not burden

programmers and (2) provide performance improvements for legacy

applications, we would like to enable multiple page size support

transparently to the application. This constraint introduces several

design challenges that must be taken into account.
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Page Size Selection. While conceptually simple, multiple page

size support introduces complexity for memory management that

has traditionally been difficult to handle. Despite architectural sup-

port within CPUs [70, 86] for several decades, the adoption of

multiple page sizes has been quite slow and application-domain

specific [18, 42]. The availability of large pages can either be ex-

posed to application programmers, or managed transparently to an

application. Application-exposed management forces programmers

to reason about physical memory and use specialized APIs [8, 79]

for page management, which usually sacrifices code portability and

increases programmer burden. In contrast, application-transparent

support (e.g., management by the OS) requires no changes to exist-

ing programs to use large pages, but it does require the memory

manager to make predictive decisions about whether applications

would benefit from large pages. OS-level large page management

remains an active research area [70, 86], and the optimization guid-

ance for many modern applications continues to advise strongly

against using large pages [2, 31, 76, 81, 104, 111, 125, 136], due to

high-latency data transfers over the system I/O bus and memory

bloat (as described in Section 3.2). In order to provide effective

application-transparent support for multiple page sizes in GPUs,

we must develop a policy for selecting page sizes that avoids high-

latency data transfer over the system I/O bus, and does not introduce

significant memory bloat.

Hardware Implementation. Application-transparent support

for multiple page sizes requires (1) primitives that implement the

transition between different page sizes, and (2) mechanisms that

create and preserve contiguity in both the virtual and physical

address spaces. We must add support in the GPU to coalesce (i.e.,

combine) multiple base pages into a single large page, and splinter

(i.e., split) a large page back into multiple base pages. While the

GPU memory manager can migrate base pages in order to create

opportunities for coalescing, base page migration incurs a high

latency overhead [26, 119]. In order to avoid the migration overhead

without sacrificing coalescing opportunities, the GPU needs to

initially allocate data in a coalescing-friendly manner.

GPUs face additional implementation challenges over CPUs,

as they rely on hardware-based memory allocation mechanisms

and management. In CPU-based application-transparent large page

management, coalescing and splintering are performed by the op-

erating system [70, 86], which can (1) use locks and inter-processor

interrupts (IPIs) to implement atomic updates to page tables, (2) stall

any accesses to the virtual addresses whose mappings are changing,

and (3) use background threads to perform coalescing and splinter-

ing. GPUs currently have no mechanism to atomically move pages

or change page mappings for coalescing or splintering.

4 MOSAIC

In this section, we describe Mosaic, a GPU memory manager that

provides application-transparent support formultiple page sizes [13]

and solves the challenges that we discuss in Section 3.3. At run-

time, Mosaic (1) allocates memory in the GPU such that base pages

that are contiguous in virtual memory are contiguous within a

large page frame in physical memory (which we call contiguity-

conserving allocation; Section 4.2); (2) coalesces base pages into a

large page frame as soon as the data is allocated, only if all of the

pages are i) contiguous in both virtual and physical memory, and

ii) belong to the same application (Section 4.3); and (3) compacts

a large page (i.e., moves the allocated base pages within the large

page frame to make them contiguous) if internal fragmentation

within the page is high after one of its constituent base pages is

deallocated (Section 4.4).

4.1 High-Level Overview of Mosaic

Figure 5 shows the major components of Mosaic, and how they in-

teract with the GPU memory. Mosaic consists of three components:

Contiguity-Conserving Allocation (CoCoA), the In-Place Coalescer ,

and Contiguity-Aware Compaction (CAC). These three components

work together to coalesce (i.e., combine) and splinter (i.e., split

apart) base pages to/from large pages during memory management.

Memory management operations forMosaic take place at two times:

(1) when memory is allocated, and (2) when memory is deallocated.

Memory Allocation. When a GPGPU application wants to access

data that is not currently in the GPU memory, it sends a request to

the GPU runtime (e.g., OpenCL, CUDA runtimes) to transfer the

data from the CPU memory to the GPU memory ( 1 in Figure 5). A

GPGPU application typically allocates a large number of base pages

at the same time. CoCoA allocates space within the GPU memory

( 2 ) for the base pages, working to conserve the contiguity of base

pages, if possible during allocation. Regardless of contiguity, CoCoA

provides a soft guarantee that a single large page frame contains

base pages from only a single application. Once the base page is

allocated, CoCoA initiates the data transfer across the system I/O

bus ( 3 ). When the data transfer is complete ( 4 ), CoCoA notifies

the In-Place Coalescer that allocation is done by sending a list of

the large page frame addresses that were allocated ( 5 ). For each
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of these large page frames, the runtime portion of the In-Place

Coalescer then checks to see whether (1) all base pages within the

large page frame have been allocated, and (2) the base pages within

the large page frame are contiguous in both virtual and physical

memory. If both conditions are true, the hardware portion of the

In-Place Coalescer updates the page table to coalesce the base pages

into a large page ( 6 ).

Memory Deallocation. When a GPGPU application wants to

deallocate memory (e.g., when an application kernel finishes), it

sends a deallocation request to the GPU runtime ( 7 ). For all deal-

located base pages that are coalesced into a large page, the runtime

invokes CAC for the corresponding large page. The runtime portion

of CAC checks to see whether the large page has a high degree

of internal fragmentation (i.e., if the number of unallocated base

pages within the large page exceeds a predetermined threshold).

For each large page with high internal fragmentation, the hardware

portion of CAC updates the page table to splinter the large page

back into its constituent base pages ( 8 ). Next, CAC compacts the

splintered large page frames, by migrating data from multiple splin-

tered large page frames into a single large page frame ( 9 ). Finally,

CAC notifies CoCoA of the large page frames that are now free

after compaction (10 ), which CoCoA can use for future memory

allocations.

4.2 Contiguity-Conserving Allocation

Base pages can be coalesced into a large page frame only if (1) all

base pages within the frame are contiguous in both virtual and

physical memory, (2) the data within the large page frame is page

aligned with the corresponding large page within virtual memory

(i.e., the first base page within the large page frame is also the first

base page of a virtual large page), and (3) all base pages within the

frame come from the same virtual address space (e.g., the same ap-

plication, or the same virtual machine). As Figure 1a (see Section 1)

shows, traditional memory managers allocate base pages without

conserving contiguity or ensuring that the base pages within a

large page frame belong to the same application. For example, if

the memory manager wants to coalesce base pages of Application 1

into a large page frame (e.g., Large Page Frame 1), it must first

migrate Application 2’s base pages to another large page frame, and

may need to migrate some of Application 1’s base pages within the

large page frame to create contiguity. Only after this data migration,

the base pages would be ready to be coalesced into a large page

frame.

In Mosaic, we minimize the overhead of coalescing pages by

designing CoCoA to take advantage of the memory allocation be-

havior of GPGPU applications. Similar to many data-intensive ap-

plications [45, 87], GPGPU applications typically allocate memory

en masse (i.e., they allocate a large number of pages at a time). The

en masse allocation takes place when an application kernel is about

to be launched, and the allocation requests are often for a large

contiguous region of virtual memory. This region is much larger

than the large page size (e.g., 2MB), and Mosaic allocates multiple

page-aligned 2MB portions of contiguous virtual memory from

the region to large page frames in physical memory, as shown in

Figure 1b (see Section 1). With CoCoA, the large page frames for

Application 1 and Application 2 are ready to be coalesced as soon

as their base pages are allocated, without the need for any data

migration. For all other base pages (e.g., base pages not aligned in

the virtual address space, allocation requests that are smaller than

a large page), Mosaic simply allocates these pages to any free page,

and does not exploit any contiguity.

Mosaic provides a soft guarantee that all base pages within a

large page frame belong to the same application, which reduces the

cost of performing coalescing and compaction, and ensures that

these operations do not violate memory protection. To meet this

guarantee during allocation, CoCoA needs to track the application

that each large page frame with unallocated base pages is assigned

to. The allocator maintains two sets of lists to track this information:

(1) the free frame list, a list of free large page frames (i.e., frames

where no base pages have been allocated) that are not yet assigned

to any application; and (2) free base page lists, per-application lists

of free base pages within large page frames where some (but not

all) base pages are allocated. When CoCoA allocates a page-aligned

2MB region of virtual memory, it takes a large page frame from the

free frame list and maps the virtual memory region to the frame.

When CoCoA allocates base pages in a manner such that it cannot

exploit contiguity, it takes a page from the free base page list for

the application performing the memory request, to ensure that the

soft guarantee is met. If the free base page list for an application is

empty, CoCoA removes a large page frame from the free frame list,

and adds the frame’s base pages to the free base page list.

Note that there may be cases where the free frame list runs out

of large page frames for allocation. We discuss how Mosaic handles

such situations in Section 4.4.

4.3 In-Place Coalescer

In Mosaic, due to CoCoA (Section 4.2), we find that we can simplify

how the page size is selected for each large page frame (i.e., decide

which pages should be coalesced), compared to state-of-the-art

memory managers. In state-of-the-art memory managers, such as

our GPU-MMU baseline based on Power et al. [109], there is no

guarantee that base pages within a large page frame belong to the

same application, and memory allocators do not conserve virtual

memory contiguity in physical memory. As a result, state-of-the-art

memory managers must perform four steps to coalesce pages, as

shown under the Baseline timeline in Figure 6a. First, the manager

must identify opportunities for coalescing acrossmultiple pages (not

shown in the timeline, as this can be performed in the background).

This is done by a hardware memory management unit (MMU), such

as the Falcon coprocessor in recent GPU architectures [93], which

tallies page utilization information from the page table entries of

each base page. The most-utilized contiguous base pages are chosen

for coalescing (Pages A–G in Figure 6a). Second, the manager must

identify a large page frame where the coalesced base pages will

reside, and thenmigrate the base pages to this new large page frame,

which uses DRAM channel bandwidth ( 1 in the figure). Third,

the manager must update the page table entries (PTEs) to reflect

the coalescing, which again uses DRAM channel bandwidth ( 2 ).

Fourth, the manager invokes a TLB flush to invalidate stale virtual-

to-physical mappings (which point to the base page locations prior

to migration), during which the SMs stall ( 3 ). Thus, coalescing
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to ensure that an SM does not fetch the base page PTEs for coalesced

base pages (even though these are safe to use) into the TLBs, as

these PTEs contend with PTEs of uncoalesced base pages for the

limited TLB space. When a GPU with Mosaic needs to translate a

memory address, it first checks if the address belongs to a coalesced

page by looking up the TLB large page entries. If the SM locates a

valid large page entry for the request (i.e., the page is coalesced), it

avoids looking up TLB base page entries.

If a TLB miss occurs in both the TLB large page and base page

entries for a coalesced page, the pagewalker traverses the page table.

At the L3 PTE ( 1 in Figure 7a), the walker reads the large page bit

( 2 ). As the bit is set, thewalker needs to read the virtual-to-physical

mapping for the large page. The L3 PTE does not typically contain

space for a virtual-to-physical mapping, so the walker instead reads

the virtual-to-physical mapping from the first PTE of the L4 page

table that the L3 PTE points to. Figure 7b shows why we can use

the mapping in the L4 PTE for the large page. A virtual-to-physical

mapping for a large page consists of a page number and an offset.

As the base pages within the large page were not migrated, their

mappings point to physical memory locations within the large page

frame. As a result, if we look at only the bits of the mapping used

for the large page number, they are identical for both the large page

mapping and the base page mapping. When the large page bit is

set, the page walker reads the large page number from the L4 PTE

(along with other fields of the PTE, e.g., for access permissions),

and returns the PTE to the TLB. In doing so, we do not need to

allocate any extra storage for the virtual-to-physical mapping of

the large page. Note that for pages that are not coalesced, the page

walker behavior is not modified.

4.4 Contiguity-Aware Compaction

After an application kernel finishes, it can deallocate some of the

base pages that it previously allocated. This deallocation can lead to

internal fragmentationwithin a large page frame that was coalesced,

as some of the frame’s constituent base pages are no longer valid.

While the page could still benefit from coalescing (as this improves

TLB reach), the unallocated base pages within the large page frame

cannot be allocated to another virtual address as long as the page

remains coalesced. If significant memory fragmentation exists, this

can cause CoCoA to run out of free large page frames, even though

it has not allocated all of the available base pages in GPU memory.

To avoid an out-of-memory error in the application, Mosaic uses

CAC to splinter and compact highly-fragmented large page frames,

freeing up large page frames for CoCoA to use.

Deciding When to Splinter and Compact a Coalesced Page.

Whenever an application deallocates a base page within a coalesced

large page frame, CAC checks to see how many base pages remain

allocated within the frame. If the number of allocated base pages

falls below a predetermined threshold (which is configurable in the

GPU runtime), CAC decides to splinter the large page frame into

base pages (see below). Once the splintering operation completes,

CACperforms compaction by migrating the remaining base pages

to another uncoalesced large page frame that belongs to the same

application. In order to avoid occupying multiple memory channels

while performing this migration, which can hurt the performance

of other threads that are executing concurrently, we restrict CAC

to migrate base pages between only large page frames that reside

within the same memory channel. After the migration is complete,

the original large page frame no longer contains any allocated base

pages, and CAC sends the address of the large page frame to CoCoA,

which adds the address to its free frame list.

If the number of allocated base pages within a coalesced page is

greater than or equal to the threshold, CAC does not splinter the

page, but notifies CoCoA of the large page frame address. CoCoA

then stores the coalesced large page frame’s address in a emergency

frame list. As a failsafe, if CoCoA runs out of free large pages, and

CAC does not have any large pages that it can compact, CoCoA

pulls a coalesced page from the emergency frame list, asks CAC to

splinter the page, and then uses any unallocated base pages within

the splintered large page frame to allocate new virtual base pages.

Splintering the Page in Hardware. Similar to the In-Place Coa-

lescer , when CAC selects a coalesced page for splintering, it then

performs the splintering operation in hardware. The splintering

operation essentially reverses the coalescing operation. First, the

splintering hardware clears the disabled bit in the L4 PTEs of the

constituent base pages. Then, the splintering hardware clears the

large page bit atomically, which causes the subsequent page table

walks to look up the virtual-to-physical mapping for the base page.

Unlike coalescing, when the hardware splinters a coalesced page, it

must also issue a TLB flush request for the coalesced page. As we

discuss in Section 4.3, a large page mapping can be present in the

TLB only when a page is coalesced. The flush to the TLB removes

the large page entry for this mapping, to ensure synchronization

across all SMs with the current state of the page table.

Optimizing Compaction with Bulk Copy Mechanisms. The

migration of each base page during compaction requires several

long-latency memory operations, where the contents of the page

are copied to a destination location only 64 bits at a time, due to

the narrow width of the memory channel [72, 119, 120]. To opti-

mize the performance of CAC, we can take advantage of in-DRAM

bulk copy techniques such as RowClone [119, 120] or LISA [26],

which provide very low-latency (e.g., 80 ns) memory copy within

a single DRAM module. These mechanisms use existing internal

buses within DRAM to copy an entire base page of memory with a

single bulk memory operation. While such bulk data copy mecha-

nisms are not essential for our proposal, they have the potential to

improve performance when a large amount of compaction takes

place. Section 6.4 evaluates the benefits of using in-DRAM bulk

copy with CAC.

5 METHODOLOGY

We modify the MAFIA framework [56], which uses GPGPU-Sim

3.2.2 [15], to evaluate Mosaic on a GPU that concurrently executes

multiple applications. We have released our simulator modifica-

tions [116, 117]. Table 1 shows the system configurationwe simulate

for our evaluations, including the configurations of the GPU core

and memory partition (see Section 2.1).

Simulator Modifications. We modify GPGPU-Sim [15] to model

the behavior of Unified Virtual Address Space [89]. We add a mem-

ory allocator into cuda-sim, the CUDA simulator within GPGPU-

Sim, to handle all virtual-to-physical address translations and to

provide memory protection. We add an accurate model of address
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GPU Core Configuration

Shader Core Config 30 cores, 1020 MHz, GTO warp scheduler [114]

Private L1 Cache 16KB, 4-way associative, LRU, L1 misses are
coalesced before accessing L2, 1-cycle latency

Private L1 TLB 128 base page/16 large page entries per core,
fully associative, LRU, single port, 1-cycle latency

Memory Partition Configuration
(6 memory partitions in total, with each partition accessible by all 30 cores)

Shared L2 Cache 2MB total, 16-way associative, LRU, 2 cache banks and
2 ports per memory partition, 10-cycle latency

Shared L2 TLB 512 base page/256 large page entries, non-inclusive,
16-way/fully-associative (base page/large page), LRU,
2 ports, 10-cycle latency

DRAM 3GB GDDR5, 1674 MHz, 6 channels, 8 banks per rank,
FR-FCFS scheduler [112, 145], burst length 8

Table 1: Configuration of the simulated system.

translation to GPGPU-Sim, including TLBs, page tables, and a page

table walker. The page table walker is shared across all SMs, and

allows up to 64 concurrent walks. Both the L1 and L2 TLBs have sep-

arate entries for base pages and large pages [43, 61, 62, 100, 106, 107].

Each TLB contains miss status holding registers (MSHRs) [69] to

track in-flight page table walks. Our simulation infrastructure sup-

ports demand paging, by detecting page faults and faithfully mod-

eling the system I/O bus (i.e., PCIe) latency based on measurements

from NVIDIA GTX 1080 cards [95] (see Section 3.2).4 We use a

worst-case model for the performance of our compaction mecha-

nism (CAC, see Section 4.4) conservatively, by stalling the entire

GPU (all SMs) and flushing the pipeline.

Workloads. We evaluate the performance ofMosaic using both ho-

mogeneous and heterogeneous workloads. We categorize each work-

load based on the number of concurrently-executing applications,

which ranges from one to five for our homogeneous workloads,

and from two to five for our heterogeneous workloads. We form

our homogeneous workloads using multiple copies of the same

application. We build 27 homogeneous workloads for each cate-

gory using GPGPU applications from the Parboil [127], SHOC [33],

LULESH [63, 64], Rodinia [27], and CUDA SDK [88] suites. We

form our heterogeneous workloads by randomly selecting a num-

ber of applications out of these 27 GPGPU applications. We build

25 heterogeneous workloads per category. Each workload has a

combined working set size that ranges from 10MB to 2GB. The av-

erage working set size of a workload is 217MB. In total we evaluate

235 homogeneous and heterogeneous workloads.

Evaluation Metrics. We report workload performance using the

weighted speedupmetric [38, 39], which is a commonly-used metric

to evaluate the performance of a multi-application workload [11,

34, 35, 65, 67, 68, 82–84]. Weighted speedup is calculated as:

Weighted Speedup =
∑

IPCshared

IPCalone

(1)

4Our experience with the NVIDIA GTX 1080 suggests that production GPUs perform
significant prefetching to reduce latencies when reference patterns are predictable.
This feature is not modeled in our simulations.
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Figure 8: Homogeneous workload performance of the GPU
memory managers as we vary the number of concurrently-
executing applications in each workload.

where IPCalone is the IPC of an application in the workload that

runs on the same number of shader cores using the baseline state-of-

the-art configuration [109], but does not share GPU resources with

any other applications; and IPCshared is the IPC of the application

when it runs concurrently with other applications. We report the

performance of each application within a workload using IPC.

Scheduling and Partitioning of Cores. As scheduling is not the

focus of this work, we assume that SMs are equally partitioned

across the applications within a workload, and use the greedy-

then-oldest (GTO) warp scheduler [114]. We speculate that if we

use other scheduling or partitioning policies, Mosaic would still

increase the TLB reach and achieve the benefits of demand paging

effectively, though we leave such studies for future work.

6 EVALUATION

In this section, we evaluate how Mosaic improves the performance

of homogeneous and heterogeneous workloads (see Section 5 for

more detail). We compare Mosaic to two mechanisms: (1) GPU-

MMU, a baseline GPU with a state-of-the-art memory manager

based on the work by Power et al. [109], which we explain in detail

in Section 3.1; and (2) Ideal TLB, a GPU with an ideal TLB, where

every address translation request hits in the L1 TLB (i.e., there are

no TLB misses).

6.1 Homogeneous Workloads

Figure 8 shows the performance of Mosaicfor the homogeneous

workloads. We make two observations from the figure. First, we

observe that Mosaic is able to recover most of the performance lost

due to the overhead of address translation (i.e., an ideal TLB) in

homogeneous workloads. Compared to the GPU-MMU baseline,

Mosaic improves the performance by 55.5%, averaged across all

135 of our homogeneous workloads. The performance of Mosaic

comes within 6.8% of the Ideal TLB performance, indicating that

Mosaic is effective at extending the TLB reach. Second, we observe

that Mosaic provides good scalability. As we increase the num-

ber of concurrently-executing applications, we observe that the

performance of Mosaic remains close to the Ideal TLB performance.

We conclude that for homogeneous workloads, Mosaic effec-

tively approaches the performance of a GPU with the Ideal TLB,

by employing multiple page sizes to simultaneously increase the

reach of both the L1 private TLB and the shared L2 TLB.
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6.2 Heterogeneous Workloads

Figure 9 shows the performance ofMosaic for heterogeneous work-

loads that consist of multiple randomly-selected GPGPU applica-

tions. From the figure, we observe that on average across all of the

workloads, Mosaic provides a performance improvement of 29.7%

over GPU-MMU, and comes within 15.4% of the Ideal TLB perfor-

mance. We find that the improvement comes from the significant

reduction in the TLB miss rate with Mosaic, as we discuss below.
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The performance gap between Mosaic and Ideal TLB is greater

for heterogeneous workloads than it is for homogeneous work-

loads. To understand why, we examine the performance of the each

workload in greater detail. Figure 10 shows the performance im-

provement of 15 randomly-selected two-application workloads. We

categorize the workloads as either TLB-friendly or TLB-sensitive.

The majority of the workloads are TLB-friendly, which means that

they benefit from utilizing large pages. The TLB hit rate increases

significantly with Mosaic (see Section 6.3) for TLB-friendly work-

loads, allowing the workload performance to approach Ideal TLB.

However, for TLB-sensitive workloads, such as HS–CONS and NW–

HISTO, there is still a performance gap betweenMosaic and the Ideal

TLB, even though Mosaic improves the TLB hit rate. We discover

two main factors that lead to this performance gap. First, in these

workloads, one of the applications is highly sensitive to shared L2

TLB misses (e.g., HS in HS–CONS, HISTO in NW–HISTO), while

the other application (e.g., CONS, NW) is memory intensive. The

memory-intensive application introduces a high number of conflict

misses on the shared L2 TLB, which harms the performance of the

TLB-sensitive application significantly, and causes the workload’s

performance under Mosaic to drop significantly below the Ideal

TLB performance. Second, the high latency of page walks due to

compulsory TLB misses and higher access latency to the shared

L2 TLB (which increases because TLB requests have to probe both

the large page and base page TLBs) have a high impact on the TLB-

sensitive application. Hence, for these workloads, the Ideal TLB still

has significant advantages over Mosaic.

Summary of Impact on Individual Applications. To deter-

mine how Mosaic affects the individual applications within the

heterogeneous workloads we evaluate, we study the IPC of each

application in all of our heterogeneous workloads. In all, this rep-

resents a total of 350 individual applications. Figure 11 shows the

per-application IPC of Mosaic and Ideal TLB normalized to the ap-

plication’s performance under GPU-MMU, and sorted in ascending

order. We show four graphs in the figure, where each graph corre-

sponds to individual applications from workloads with the same

number of concurrently-executing applications. We make three ob-

servations from these results. First, Mosaic improves performance
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relative to GPU-MMU for 93.6% of the 350 individual applications.

We find that the application IPC relative to the baseline GPU-MMU

for each application ranges from 66.3% to 860%, with an average

of 133.0%. Second, for the 6.4% of the applications where Mosaic

performs worse than GPU-MMU, we find that for each applica-

tion, the other concurrently-executing applications in the same

workload experience a significant performance improvement. For

example, the worst-performing application, for which Mosaic hurts

performance by 33.6% compared to GPU-MMU, is from a workload

with three concurrently-executing applications. We find that the

other two applications perform 66.3% and 7.8% better underMosaic,

compared to GPU-MMU. Third, we find that, on average across all

heterogeneous workloads, 48%, 68.9% and 82.3% of the applications

perform within 90%, 80% and 70% of Ideal TLB, respectively.
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(a) 2 concurrent apps.
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(b) 3 concurrent apps.

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50

N
o

rm
a

li
z
e

d
P

e
rf

o
rm

a
n

c
e

Sorted Application Number

GPU-MMU

Mosaic

Ideal-TLB

0

1

2

3

4

5

6

7

8

9

0 25 50 75

N
o

rm
a

li
z
e

d
P

e
rf

o
rm

a
n

c
e

Sorted Application Number

GPU-MMU

Mosaic

Ideal-TLB

0

1

2

3

4

5

6

7

8

0 25 50 75 100

N
o

rm
a

li
z
e

d
P

e
rf

o
rm

a
n

c
e

Sorted Application Number

GPU-MMU

Mosaic

Ideal-TLB

0

1

2

3

4

5

6

7

8

0 25 50 75 100 125

N
o

rm
a

li
z
e

d
P

e
rf

o
rm

a
n

c
e

Sorted Application Number

GPU-MMU

Mosaic

Ideal-TLB

(c) 4 concurrent apps.
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(d) 5 concurrent apps.

Figure 11: Sorted normalized per-application IPC for ap-
plications in heterogeneous workloads, categorized by the
number of applications in a workload.

We conclude that Mosaic is effective at increasing the TLB reach

for heterogeneous workloads, and delivers significant performance

improvements over a state-of-the-art GPU memory manager.

Impact of Demand Paging on Performance. All of our results

so far show the performance of the GPU-MMU baseline andMosaic

when demand paging is enabled. Figure 12 shows the normalized

weighted speedup of the GPU-MMU baseline andMosaic, compared

to GPU-MMU without demand paging, where all data required by

an application is moved to the GPU memory before the application

starts executing. We make two observations from the figure. First,
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Figure 12: Performance of GPU-MMU andMosaic compared
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we find that Mosaic outperforms GPU-MMU without demand pag-

ing by 58.5% on average for homogeneous workloads and 47.5% on

average for heterogeneous workloads. Second, we find that demand

paging has little impact on the weighted speedup. This is because

demand paging latency occurs only when a kernel launches, at

which point the GPU retrieves data from the CPU memory. The

data transfer overhead is required regardless of whether demand

paging is enabled, and thus the GPU incurs similar overhead with

and without demand paging.

6.3 Analysis of TLB Impact

TLB Hit Rate. Figure 13 compares the overall TLB hit rate of

GPU-MMU to Mosaic for 214 of our 235 workloads, which suffer

from limited TLB reach (i.e., workloads that have an L2 TLB hit

rate lower than 98%). We make two observations from the figure.

First, we observe Mosaic is very effective at increasing the TLB

reach of these workloads. We find that for the GPU-MMU baseline,

every fully-mapped large page frame contains pages from multiple

applications, as the GPU-MMU allocator does not provide the soft

guarantee of CoCoA. As a result, GPU-MMU does not have any

opportunities to coalesce base pages into a large page without per-

forming significant amounts of data migration. In contrast, Mosaic

can coalesce a vast majority of base pages thanks to CoCoA. As

a result, Mosaic reduces the TLB miss rate dramatically for these

workloads, with the average miss rate falling below 1% in both

the L1 and L2 TLBs. Second, we observe an increasing amount of

interference in GPU-MMU when more than three applications are

running concurrently. This results in a lower TLB hit rate as the

number of applications increases from three to four applications,

and from four to five applications. The L2 TLB hit rate drops from

81% in workloads with two concurrently-executing applications to

62% in workloads with five concurrently-executing applications.

Mosaic experiences no such drop due to interference as we increase

the number of concurrently-executing applications, since it makes

much greater use of large page coalescing and enables a much larger

TLB reach.
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Figure 13: L1 and L2 TLB hit rate for GPU-MMU andMosaic.

TLB Size Sensitivity. A major benefit of Mosaic is its ability to

improve TLB reach by increasing opportunities to coalesce base

pages into a large page. After the base pages are coalesced, the GPU

uses the large page TLB to cache the virtual-to-physical mapping

of the large page, which frees up base page TLB entries so that they

can be used to cache mappings for the uncoalesced base pages. We

now evaluate how sensitive the performance of Mosaic is to the

number of base page and large page entries in each TLB level.

Figure 14 shows the performance of both GPU-MMU andMosaic

as we vary the number of base page entries in the per-SM L1 TLBs

(Figure 14a) and in the shared L2 TLB (Figure 14b). We normalize

all results to the GPU-MMU performance with the baseline 128-

base-page-entry L1 TLBs per SM and a 512-base-page-entry shared

L2 TLB. From the figure, we make two observations. First, we find

that for the L1 TLB, GPU-MMU is sensitive to the number of base

page entries, while Mosaic is not sensitive to the number of base

page entries. This is because Mosaic successfully coalesces most

of its base pages into large pages, which significantly reduces the

pressure on TLB base page capacity. In fact, the number of L1 TLB

base page entries has a minimal impact on the performance of

Mosaic until we scale it all the way down to 8 entries. Even then,

compared to an L1 TLB with 128 base page entries, Mosaic loses

only 7.6% performance on average with 8 entries. In contrast, we

find that GPU-MMU is unable to coalesce base pages, and as a

result, its performance scales poorly as we reduce the number of

TLB base page entries. Second, we find that the performance of both

GPU-MMU and Mosaic is sensitive to the number of L2 TLB base

page entries. This is because even though Mosaic does not need

many L1 TLB base page entries per SM, the base pages are often

shared across multiple SMs. The L2 TLB allows SMs to share page

table entries (PTEs) with each other, so that once an SM retrieves a

PTE from memory using a page walk, the other SMs do not need

to wait on a page walk. The larger the number of L2 TLB base page

entries, the more likely it is that a TLB request can avoid the need

for a page walk. Since Mosaic does not directly have an effect on

the number of page walks, it benefits from a mechanism (e.g., a

large L2 TLB) that can reduce the number of page walks and hence

is sensitive to the size of the L2 TLB.
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Figure 14: Sensitivity ofGPU-MMUandMosaic performance
to L1 and L2 TLB base page entries, normalized to GPU-
MMU with 128 L1 and 512 L2 TLB base page entries.

Figure 15 shows the performance of both GPU-MMU andMosaic

as we vary the number of large page entries in the per-SM L1 TLBs

(Figure 15a) and in the shared L2 TLB (Figure 15b). We normalize all

results to the GPU-MMU performance with the baseline 16-large-

page-entry L1 TLBs per SM and a 256-large-page-entry shared L2

TLB. We make two observations from the figure. First, for both

the L1 and L2 TLBs, Mosaic is sensitive to the number of large

page entries. This is because Mosaic successfully coalesces most

of its base pages into large pages. We note that the sensitivity is

not as high as Mosaic’s sensitivity to L2 TLB base page entries
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Figure 15: Sensitivity ofGPU-MMUandMosaic performance
to L1 and L2 TLB large page entries, normalized to GPU-
MMU with 16 L1 and 256 L2 TLB large page entries.

(Figure 14b), because each large page entry covers a much larger

portion of memory, which allows a smaller number of large page

entries to still cover a majority of the total application memory.

Second, GPU-MMU is insensitive to the large page entry count.

This is because GPU-MMU is unable to coalesce any base pages

into large pages, due to its coalescing-unfriendly allocation (see

Figure 1a). As a result, GPU-MMU makes no use of the large page

entries in the TLB.

6.4 Analysis of the Effect of Fragmentation

When multiple concurrently-executing GPGPU applications share

the GPU, a series of memory allocation and deallocation requests

could create significant data fragmentation, and could cause CoCoA

to violate its soft guarantee, as discussed in Section 4.2. While we do

not observe this behavior in any of the workloads that we evaluate,

Mosaic can potentially introduce data fragmentation and memory

bloat for very long running applications. In this section, we design

stress-test experiments that induce a large amount of fragmentation

in large page frames, to study the behavior of CoCoA and CAC.

To induce a large amount of fragmentation, we allow the mem-

ory allocator to pre-fragment a fraction of the main memory. We

randomly place pre-fragmented data throughout the physical mem-

ory. This data (1) does not conform to Mosaic’s soft guarantee, and

(2) cannot be coalesced with any other base pages within the same

large page frame. To vary the degree of large page fragmentation,

we define two metrics: (1) the fragmentation index, which is the

fraction of large page frames that contain pre-fragmented data;

and (2) large page frame occupancy, which is the fraction of the

pre-fragmented data that occupies each fragmented large page.

We evaluate the performance of all our workloads on (1) Mo-

saic with the baseline CAC; and (2) Mosaic with an optimized CAC

that takes advantage of in-DRAM bulk copy mechanisms (see Sec-

tion 4.4), which we call CAC-BC. We provide a comparison against

two configurations: (1) Ideal CAC, a compaction mechanism where

data migration incurs zero latency; and (2) No CAC, where CAC is

not applied.

Figure 16a shows the performance of CAC when we vary the

fragmentation index. For these experiments, we set the large page

frame occupancy to 50%. We make three observations from Fig-

ure 16a. First, we observe that there is minimal performance impact

when the fragmentation index is less than 90%, indicating that it

is unnecessary to apply CAC unless the main memory is heavily

fragmented. Second, as we increase the fragmentation index above

90%, CAC provides performance improvements for Mosaic, as CAC

effectively frees up large page frames and prevents CoCoA from

running out of frames. Third, we observe that as the fragmentation

index approaches 100%, CAC becomes less effective, due to the fact

that compaction needs to be performed very frequently, causing a

significant amount of data migration.
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Figure 16: Performance of CAC under varying degrees of
(a) fragmentation and (b) large page frame occupancy.

Figure 16b shows the performance of CAC as the large page

frame occupancy changes when we set the fragmentation index

to 100% (i.e., every large page frame is pre-fragmented). We make

two observations from the figure. First, we observe that CAC-BC

is effective when occupancy is no greater than 25%. When the

occupancy is low, in-DRAM bulk-copy operations can effectively

reduce the overhead of CAC, as there are many opportunities to

free up large page frames that require data migration. Second, we

observe that as the occupancy increases beyond 35% (i.e., many

base pages are already allocated), the benefits of CAC and CAC-

BC decrease, as (1) fewer large page frames can be freed up by

compaction, and (2) more base pages need to be moved in order to

free a large page frame.

Table 2 shows how CAC controls memory bloat for different

large page frame occupancies, when we set the fragmentation in-

dex to 100%. When large page frames are used, memory bloat can

increase as a result of high fragmentation. We observe that when

pages are aggressively pre-fragmented, CAC is effective at reducing

the memory bloat resulting from high levels of fragmentation. For

example, when the large page frame occupancy is very high (e.g.,

above 75%), CAC compacts the pages effectively, reducing memory

bloat to within 2.2% of the memory that would be allocated if we

were to use only 4KB pages (i.e., when no large page fragmenta-

tion exists). We observe negligible (<1%) memory bloat when the

fragmentation index is less than 100% (not shown), indicating that

CAC is effective at mitigating large page fragmentation.

Large Page Frame
1% 10% 25% 35% 50% 75%

Occupancy (%)

Memory Bloat 10.66% 7.56% 7.20% 5.22% 3.37% 2.22%

Table 2: Memory bloat ofMosaic, compared to a GPU-MMU
memory manager that uses only 4KB base pages.

We conclude that CoCoA and CAC work together effectively

to preserve virtual and physical address contiguity within a large

page frame, without incurring high data migration overhead and

memory bloat.
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7 RELATEDWORK

To our knowledge, this is the first work to (1) analyze the funda-

mental trade-offs between TLB reach, demand paging performance,

and internal page fragmentation; and (2) propose an application-

transparent GPU memory manager that preemptively coalesces

pages at allocation time to improve address translation perfor-

mance, while avoiding the demand paging inefficiencies and mem-

ory copy overheads typically associated with large page support.

Reducing performance degradation from address translation over-

head is an active area of work for CPUs, and the performance

loss that we observe as a result of address translation is well cor-

roborated [18, 20, 42, 44, 78]. In this section, we discuss previous

techniques that aim to reduce the overhead of address translation.

7.1 TLB Designs for CPU Systems

TLB miss overhead can be reduced by (1) accelerating page table

walks [16, 19] or reducing the walk frequency [43]; or (2) reducing

the number of TLB misses (e.g., through prefetching [21, 60, 118],

prediction [100], or structural changes to the TLB [105, 106, 129]

or TLB hierarchy [6, 7, 18, 20, 42, 61, 75, 126]).

Support for Multiple Page Sizes. Multi-page mapping tech-

niques [105, 106, 129] use a single TLB entry for multiple page

translations, improving TLB reach by a small factor; much greater

improvements to TLB reach are needed to deal with modern mem-

ory sizes. MIX TLB [32] accommodates entries that translate multi-

ple page sizes, eliminating the need for a dedicated set of TLB large

page entries. MIX TLB is orthogonal to our work, and can be used

with Mosaic to further improve TLB reach.

Navarro et al. [86] identify contiguity-awareness and fragmen-

tation reduction as primary concerns for large page management,

proposing reservation-based allocation and deferred promotion

(i.e., coalescing) of base pages to large pages. Similar ideas are

widely used in modern OSes [30]. Instead of the reservation-based

scheme, Ingens [70] employs a utilization-based scheme that uses

a bit vector to track spatial and temporal utilization of base pages.

Techniques to IncreaseMemoryContiguity. GLUE [107] groups

contiguous, aligned base page translations under a single specula-

tive large page translation in the TLB. GTSM [36] provides hard-

ware support to leverage the contiguity of physical memory region

even when pages have been retired due to bit errors. These mech-

anisms for preserving or recovering contiguity are orthogonal to

the contiguity-conserving allocation we propose for Mosaic, and

they can help Mosaic by avoiding the need for compaction.

Gorman et al. [47] propose a placement policy for an OS’s phys-

ical page allocator that mitigates fragmentation and promotes con-

tiguity by grouping pages according to the amount of migration

required to achieve contiguity. Subsequent work [48] proposes a

software-exposed interface for applications to explicitly request

large pages like libhugetlbfs [46]. These ideas are complemen-

tary to ourwork.Mosaic can potentially benefit from similar policies

if they can be simplified enough to be implementable in hardware.

Alternative TLB Designs. Research on shared last-level TLB de-

signs [20, 22, 75] and page walk cache designs [19] has yielded

mechanisms that accelerate multithreaded CPU applications by

sharing translations between cores. SpecTLB [17] provides a tech-

nique that predicts address translations. While speculation works

on CPU applications, speculation for highly-parallel GPUs is more

complicated, and can eventually waste off-chip DRAM bandwidth,

which is a highly-contended resource in GPUs. Direct segments [18]

and redundant memory mappings [61] provide virtual memory

support for server workloads that reduce the overhead of address

translation. These proposals map large contiguous chunks of vir-

tual memory to the physical address space in order to reduce the

address translation overhead. While these techniques improve the

TLB reach, they increase the transfer latency depending on the size

of the virtual chunks they map.

7.2 TLB Designs for GPU Systems

TLB Designs for Heterogeneous Systems. Previous works pro-

vide several TLB designs for heterogeneous systemswithGPUs [108,

109, 133, 142] and with accelerators [29]. Mosaic improves upon

a state-of-the-art TLB design [109, 142] by providing application-

transparent, high-performance support for multiple page sizes in

GPUs. No prior work provides such support.

TLB-AwareWarp Scheduler. Pichai et al. [108] extend the cache-

conscious warp scheduler [114] to be aware of the TLB in hetero-

geneous CPU-GPU systems. These techniques are orthogonal to

the problem we focus on, and can be applied in conjunction with

Mosaic to further improve performance.

TLB-AwareMemoryHierarchy. Ausavarungnirun et al. [14] im-

prove the performance of the GPU under the presence of memory

protection by redesigning the GPU main memory hierarchy to be

aware of TLB-related memory requests. Many prior works propose

memory scheduling designs for GPUs [12, 54, 59, 143] and hetero-

geneous systems [11, 132]. These memory scheduling design can

be modified to be aware of TLB-related memory requests and used

in conjunction with Mosaic to further improve the performance of

the GPUs.

Analysis of Address Translation in GPUs. Vesely et al. [133]

analyze support for virtual memory in heterogeneous systems, find-

ing that the cost of address translation in GPUs is an order of mag-

nitude higher than that in CPUs. They observe that high-latency

address translations limit the GPU’s latency hiding capability and

hurt performance, which is in line with the observations we make

in Section 3. Mei et al. [77] use a set of microbenchmarks to evaluate

the address translation process in commercial GPUs. Their work

concludes that previous NVIDIA architectures [90, 91] have off-chip

L1 and L2 TLBs, which lead to poor performance.

Other Ways to Manage Virtual Memory. VAST [73] is a

software-managed virtualmemory space for GPUs. In thatwork, the

authors observe that the limited size of physical memory typically

prevents data-parallel programs from utilizing GPUs. To address

this, VAST automatically partitions GPU programs into chunks

that fit within the physical memory space to create an illusion of

virtual memory. Unlike Mosaic, VAST is unable to provide mem-

ory protection from concurrently-executing GPGPU applications.

Zorua [134] is a holistic mechanism to virtualize multiple hardware

resources within the GPU. Zorua does not virtualize the main mem-

ory, and is thus orthogonal to our work. CABA [135] introduces
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assist warps, which act as background helper threads for GPU SMs.

These assist warps can be adapted to perform various memory vir-

tualization functions, such as page walks and base page utilization

analysis. vmCUDA [137] and rCUDA [37] provide close-to-ideal

performance, but they require significant modifications to GPGPU

applications and the operating system, which sacrifice transparency

to the application, performance isolation, and compatibility across

multiple GPU architectures.

7.3 Demand Paging for GPUs

Demand paging is a challenge for GPUs [133]. Recent works [5, 144],

and the AMD hUMA [71] and NVIDIA PASCAL architectures [94,

144] provide various levels of support for demand paging in GPUs.

These techniques do not tackle the existing trade-off in GPUs be-

tween using large pages to improve address translation and using

base pages to minimize demand paging overhead, which we relax

with Mosaic. As we discuss in Section 3, support for multiple page

sizes can be adapted to minimize the overhead of demand paging

by limiting demand paging to base pages only.

8 DISCUSSIONS

While several previous works propose mechanisms to lower the

overhead of virtual memory [18, 20, 36, 42, 44, 78, 107–109, 133],

only a handful of these works extensively evaluate virtual memory

on GPUs [73, 108, 109, 133], and no work has investigated virtual

memory as a shared resource when multiple GPGPU applications

need to share the GPUs. In this section, we explore the potential

future impact of Mosaic.

Support forConcurrentApplicationExecution inGPUs. The

large number of cores within a contemporary GPUmake it an attrac-

tive substrate for executing multiple applications in parallel. This

can be especially useful in virtualized cloud environments, where

hardware resources are safely partitioned across multiple virtual

machines to provide efficient resource sharing. Prior approaches

to execute multiple applications concurrently on a GPU have been

limited, as they either (1) lack sufficient memory protection support

across multiple applications [56, 98, 99, 101, 138, 139, 141]; (2) incur

a high performance overhead to provide memory protection [133];

or (3) perform a conservative static partitioning of the GPU [1, 49],

which can often underutilize many resources in the GPU.

Mosaic provides the first flexible support for memory protection

within a GPU, allowing applications to dynamically partition GPU

resources without violating memory protection guarantees. This

support can enable the practical virtualization and sharing of GPUs

in a cloud environment, which in turn can increase the appeal of

GPGPU programming and the use cases of GPGPUs. By enabling

practical support for concurrent application execution on GPUs,

Mosaic encourages and enables future research in several areas, such

as resource sharing mechanisms, kernel scheduling, and quality-of-

service enforcement within the GPU and heterogeneous systems.

Virtual Memory for SIMD Architectures. Mosaic is an impor-

tant first step to enable low overhead virtual memory support for

GPUs. We believe that the key ideas and observations provided

in Sections 3 and 4 are applicable to any highly-parallel SIMD ar-

chitecture [40], and to heterogeneous systems with SIMD-based

processing cores [3, 23, 24, 28, 50, 52, 53, 80, 96, 97, 110, 140]. Future

works can expand upon our findings and adapt our mechanisms to

reduce the overhead of page walks and demand paging on other

SIMD-based systems.

Improved Programmability. Aside from memory protection,

virtual memory can be used to (1) improve the programmability of

GPGPU applications, and (2) decouple a GPU kernel’s working set

size from the size of the GPU memory. In fact,Mosaic transparently

allows applications to benefit from virtual memory without incur-

ring a significant performance overhead. This is a key advantage

for programmers, many of whom are used to the conventional pro-

gramming model used in CPUs to provide application portability

and memory protection. By providing programmers with a familiar

and simple memory abstraction, we expect that a greater num-

ber of programmers will start writing high performance GPGPU

applications. Furthermore, by enabling low-overhead memory vir-

tualization, Mosaic can enable new classes of GPGPU applications.

For example, in the past, programmers were not able to easily write

GPGPU applications whose memory working set sizes exceeded

the physical memory within the GPU. With Mosaic, programmers

no longer need to restrict themselves to applications whose work-

ing sets fit within the physical memory; they can rely on the GPU

itself software-transparently managing page migration and address

translation.

9 CONCLUSION

We introduce Mosaic, a new GPU memory manager that provides

application-transparent support for multiple page sizes. The key

idea ofMosaic is to perform demand paging using smaller page sizes,

and then coalesce small (i.e., base) pages into a larger page immedi-

ately after allocation, which allows address translation to use large

pages and thus increase TLB reach. We have shown that Mosaic

significantly outperforms state-of-the-art GPU address translation

designs and achieves performance close to an ideal TLB, across

a wide variety of workloads. We conclude that Mosaic effectively

combines the benefits of large pages and demand paging in GPUs,

thereby breaking the conventional tension that exists between these

two concepts. We hope the ideas presented in this paper can lead to

future works that analyze Mosaic in detail and provide even lower-

overhead support for synergistic address translation and demand

paging in heterogeneous systems.
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