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Motivation

• Out-of-order processors require very large instruction 
windows to tolerate today’s main memory latencies.
– Even in the presence of caches and prefetchers

• As main memory latency (in terms of processor cycles) 
increases, instruction window size should also increase to 
fully tolerate the memory latency.

• Building a very large instruction window is not an easy task.
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Small Windows: Full-window Stalls

• Instructions are retired in-order from the instruction 
window to support precise exceptions.

• When a very long-latency instruction is not complete, it 
blocks retirement and incoming instructions fill the 
instruction window if the window is not large enough.

• Processor cannot place new instructions into the window if 
the window is already full. This is called a full-window 
stall.

• L2 misses are responsible for most full-window stalls.
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Impact of Full-window Stalls
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Overview of Runahead Execution

• During a significant percentage of full-window stall cycles,                
no work is performed in the processor.

• Runahead execution unblocks the full window stall                      
caused by a long-latency L2-miss instruction.

• Enter runahead mode when the oldest instruction is an L2-miss load 
and remove that load from the processor.

• While in runahead mode, keep processing instructions                
without updating architectural state and without blocking the 
instruction window due to L2 misses.

• When the original load miss returns back, resume normal-mode 
execution starting with the runahead-causing load.
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Benefits of Runahead Execution

• Loads and stores independent of L2-miss instructions 
generate useful prefetch requests:
– From main memory to L2

– From L2 to L1

• Instructions on the predicted program path are prefetched
into the trace cache and L2.

• Hardware prefetcher tables are trained using future 
memory access information. The prefetcher also runs 
ahead along with the processor.
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Mechanism
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Entry into Runahead Mode

When an L2-miss load instruction reaches the head of the 
instruction window:

• Processor checkpoints architectural register state, branch 
history register, return address stack.

• Processor records the address of the L2-miss load.

• Processor enters runahead mode.

• L2-miss load marks its destination register as invalid and is 
removed from the instruction window.
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Processing in Runahead Mode

• Two types of results are produced: INV (invalid), VALID

• First INV result is produced by the L2-miss load that 
caused entry into runahead mode.

• An instruction produces an INV result
– If it sources an INV result
– If it misses in the L2 cache (A prefetch request is generated)

• INV results are marked using INV bits in the register file, 
store buffer, and runahead cache.
– INV bits prevent introduction of bogus data into the pipeline.
– Bogus values are not used for prefetching/branch resolution.
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Pseudo-retirement in Runahead Mode

• An instruction is examined for pseudo-retirement when it 
reaches the head of the instruction window.

• An INV instruction is removed from window immediately.

• A VALID instruction is removed when it completes 
execution and updates only the microarchitectural state. 

• Pseudo-retired instructions free their allocated resources.

• Pseudo-retired runahead stores communicate their data and 
INV status to dependent runahead loads.
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Runahead Cache

• An auxiliary structure that holds the data values and INV bits 
for memory locations modified by pseudo-retired runahead
stores.

• Its purpose is memory communication during runahead mode.

• Runahead loads access store buffer, runahead cache, and L1 
data cache in parallel. 

• Size of runahead cache is very small (512 bytes).



13

Runahead Branches

• Runahead branches use the same predictor as normal branches.

• VALID branches are resolved and trigger recovery if 
mispredicted.

• INV branches cannot be resolved.
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Exit from Runahead Mode

When the data for the instruction that caused entry into 
runahead returns from main memory:

• All instructions in the machine are flushed.

• INV bits are reset. Runahead cache is flushed.

• Processor restores the state as it was before the runahead-
inducing instruction was fetched.

• Processor starts fetch beginning with the runahead-inducing 
L2-miss instruction.
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Experimental Evaluation
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Baseline Processor

• 3-wide fetch, 29-stage pipeline 

• 128-entry instruction window

• 32 KB, 8-way, 3-cycle L1 data cache, write-back

• 512 KB, 8-way, 16-cycle L2 unified cache, write-back

• Approximately 500-cycle penalty for L2 misses

• Streaming prefetcher (16 streams)
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Benchmarks

• Selected traces out of a pool of 280 traces

• Evaluated performance on those that gain at least 10% IPC 
improvement with perfect L2 cache 

• 147 traces simulated for 30 million x86 instructions

• Trace Suites
– SPEC CPU95 (S95): 10 benchmarks, mostly FP

– SPEC FP2k (FP00): 11 benchmarks

– SPECint2k (INT00): 6 benchmarks

– Internet (WEB): 18 benchmarks: SpecJbb, Webmark2001

– Multimedia (MM): 9 benchmarks: mpeg, speech rec., quake

– Productivity (PROD): 17 benchmarks: Sysmark2k, winstone

– Server (SERV): 2 benchmarks: tpcc, timesten

– Workstation (WS): 7 benchmarks: CAD, nastran, verilog
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Performance of Runahead Execution

22%

52%16%

12%22%

15%

13%

35%

12%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S95 FP00 INT00 WEB MM PROD SERV WS AVG

In
st

ru
ct

io
n

s 
P

er
 C

yc
le

No prefetcher, no runahead
Prefetcher, no runahead
Runahead, no prefetcher
Runahead and prefetcher



19

Effect of Frontend on Runahead

• Average number of instructions during runahead: 711
– Before mispredicted INV branch: 431

• Average number of L2 misses during runahead: 2.6
– Before mispredicted INV branch: 2.38

• Runahead becomes more effective with a better frontend:
– Real trace cache: 22% IPC improvement
– Perfect trace cache: 27% IPC improvement
– Perfect branch predictor and trace cache: 31% IPC improvement
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Runahead vs. Large Windows
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Importance of Store-Load Data Communication
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Conclusions

• Runahead execution results in 22% IPC increase over the 
baseline processor with a 128-entry window and a streaming 
prefetcher.

• This is within 1% of the IPC of a 384-entry window machine.

• Runahead and the streaming prefetcher interact positively.

• Store-load data communication through memory in runahead
mode is vital for high performance.
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Backup Slides
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Added Bits & Structures
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Runahead-Prefetcher Interaction
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Effect of a Better Frontend
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When do we see the L2 misses in Runahead?
L2 Data Miss Distances
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Distance of the first L2 miss in runahead mode
Where does the first L2 miss occur?
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Instruction vs. Data Prefetching Benefit
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Runahead with a Larger L2 Cache
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Runahead on in-order?
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Future Model Results
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Future Model with Better Frontend


