
Runahead Execution

An Alternative to Very Large Instruction
Windows for Out-of-order Processors

Onur Mutlu
Yale N. Patt

Jared Stark
Chris Wilkerson

2

Outline

• Motivation

• Overview

• Mechanism

• Experimental Evaluation

• Conclusions

3

Motivation

• Out-of-order processors require very large instruction
windows to tolerate today’s main memory latencies.
– Even in the presence of caches and prefetchers

• As main memory latency (in terms of processor cycles)
increases, instruction window size should also increase to
fully tolerate the memory latency.

• Building a very large instruction window is not an easy task.

4

Small Windows: Full-window Stalls

• Instructions are retired in-order from the instruction
window to support precise exceptions.

• When a very long-latency instruction is not complete, it
blocks retirement and incoming instructions fill the
instruction window if the window is not large enough.

• Processor cannot place new instructions into the window if
the window is already full. This is called a full-window
stall.

• L2 misses are responsible for most full-window stalls.

5

Impact of Full-window Stalls

IPC: 0.77

IPC: 1.69 IPC: 1.15

0%

10%

20%

30%

40%

50%

60%

70%

80%

Machine Model (L2 size, instruction window size)

%
 c

yc
le

s
w

it
h

 f
u

ll
 w

in
d

ow
 s

ta
ll

s 512KB L2, 128-entry window

perfect L2, 128-entry window

512KB L2, 2048-entry window

6

Overview of Runahead Execution

• During a significant percentage of full-window stall cycles,
no work is performed in the processor.

• Runahead execution unblocks the full window stall
caused by a long-latency L2-miss instruction.

• Enter runahead mode when the oldest instruction is an L2-miss load
and remove that load from the processor.

• While in runahead mode, keep processing instructions
without updating architectural state and without blocking the
instruction window due to L2 misses.

• When the original load miss returns back, resume normal-mode
execution starting with the runahead-causing load.

7

Benefits of Runahead Execution

• Loads and stores independent of L2-miss instructions
generate useful prefetch requests:
– From main memory to L2

– From L2 to L1

• Instructions on the predicted program path are prefetched
into the trace cache and L2.

• Hardware prefetcher tables are trained using future
memory access information. The prefetcher also runs
ahead along with the processor.

8

Mechanism

9

Entry into Runahead Mode

When an L2-miss load instruction reaches the head of the
instruction window:

• Processor checkpoints architectural register state, branch
history register, return address stack.

• Processor records the address of the L2-miss load.

• Processor enters runahead mode.

• L2-miss load marks its destination register as invalid and is
removed from the instruction window.

10

Processing in Runahead Mode

• Two types of results are produced: INV (invalid), VALID

• First INV result is produced by the L2-miss load that
caused entry into runahead mode.

• An instruction produces an INV result
– If it sources an INV result
– If it misses in the L2 cache (A prefetch request is generated)

• INV results are marked using INV bits in the register file,
store buffer, and runahead cache.
– INV bits prevent introduction of bogus data into the pipeline.
– Bogus values are not used for prefetching/branch resolution.

11

Pseudo-retirement in Runahead Mode

• An instruction is examined for pseudo-retirement when it
reaches the head of the instruction window.

• An INV instruction is removed from window immediately.

• A VALID instruction is removed when it completes
execution and updates only the microarchitectural state.

• Pseudo-retired instructions free their allocated resources.

• Pseudo-retired runahead stores communicate their data and
INV status to dependent runahead loads.

12

Runahead Cache

• An auxiliary structure that holds the data values and INV bits
for memory locations modified by pseudo-retired runahead
stores.

• Its purpose is memory communication during runahead mode.

• Runahead loads access store buffer, runahead cache, and L1
data cache in parallel.

• Size of runahead cache is very small (512 bytes).

13

Runahead Branches

• Runahead branches use the same predictor as normal branches.

• VALID branches are resolved and trigger recovery if
mispredicted.

• INV branches cannot be resolved.

14

Exit from Runahead Mode

When the data for the instruction that caused entry into
runahead returns from main memory:

• All instructions in the machine are flushed.

• INV bits are reset. Runahead cache is flushed.

• Processor restores the state as it was before the runahead-
inducing instruction was fetched.

• Processor starts fetch beginning with the runahead-inducing
L2-miss instruction.

15

Experimental Evaluation

16

Baseline Processor

• 3-wide fetch, 29-stage pipeline

• 128-entry instruction window

• 32 KB, 8-way, 3-cycle L1 data cache, write-back

• 512 KB, 8-way, 16-cycle L2 unified cache, write-back

• Approximately 500-cycle penalty for L2 misses

• Streaming prefetcher (16 streams)

17

Benchmarks

• Selected traces out of a pool of 280 traces

• Evaluated performance on those that gain at least 10% IPC
improvement with perfect L2 cache

• 147 traces simulated for 30 million x86 instructions

• Trace Suites
– SPEC CPU95 (S95): 10 benchmarks, mostly FP

– SPEC FP2k (FP00): 11 benchmarks

– SPECint2k (INT00): 6 benchmarks

– Internet (WEB): 18 benchmarks: SpecJbb, Webmark2001

– Multimedia (MM): 9 benchmarks: mpeg, speech rec., quake

– Productivity (PROD): 17 benchmarks: Sysmark2k, winstone

– Server (SERV): 2 benchmarks: tpcc, timesten

– Workstation (WS): 7 benchmarks: CAD, nastran, verilog

18

Performance of Runahead Execution

22%

52%16%

12%22%

15%

13%

35%

12%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S95 FP00 INT00 WEB MM PROD SERV WS AVG

In
st

ru
ct

io
n

s
P

er
 C

yc
le

No prefetcher, no runahead
Prefetcher, no runahead
Runahead, no prefetcher
Runahead and prefetcher

19

Effect of Frontend on Runahead

• Average number of instructions during runahead: 711
– Before mispredicted INV branch: 431

• Average number of L2 misses during runahead: 2.6
– Before mispredicted INV branch: 2.38

• Runahead becomes more effective with a better frontend:
– Real trace cache: 22% IPC improvement
– Perfect trace cache: 27% IPC improvement
– Perfect branch predictor and trace cache: 31% IPC improvement

20

Runahead vs. Large Windows

-6%

4%

6%

0%

3%
-1%

2%
12%

3%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

S95 FP00 INT00 WEB MM PROD SERV WS AVG

In
st

ru
ct

io
ns

 P
er

 C
yc

le

128-entry window with Runahead
256-entry window
384-entry window
512-entry window

21

Importance of Store-Load Data Communication

10%

23%12%

7%13%

9%

5%

3%

8%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S95 FP00 INT00 WEB MM PROD SERV WS AVG

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Baseline

Runahead, no runahead cache

Runahead with runahead cache

22

Conclusions

• Runahead execution results in 22% IPC increase over the
baseline processor with a 128-entry window and a streaming
prefetcher.

• This is within 1% of the IPC of a 384-entry window machine.

• Runahead and the streaming prefetcher interact positively.

• Store-load data communication through memory in runahead
mode is vital for high performance.

23

Backup Slides

24

Added Bits & Structures

25

Runahead-Prefetcher Interaction

55%
48%

36%
24%

3%

82%

53%

17%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

tpcc verilog nastran gcc vortex mgrid apsi ammp

In
st

ru
ct

io
ns

 P
er

 C
yc

le

No prefetcher, no runahead
Prefetcher, no runahead
Runahead, no prefetcher
Runahead and prefetcher

26
Effect of a Better Frontend

27%

75%

27%

15%

26%
21%

13%

35%

13%

31%

89%

37%

20%

34%29%

8%

36%

13%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

S95 FP00 INT00 WEB MM PROD SERV WS AVG

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Baseline w/ perf TC

Runahead w/ perf TC

Baseline w/ perf TC and BP

Runahead w/ perf TC and BP

27

When do we see the L2 misses in Runahead?
L2 Data Miss Distances

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

850

miss 1 miss 2 miss 3 miss 4 miss 5 miss 6 miss 7 miss 8 miss 9 miss 10 miss 11 miss 12 miss 13 miss 14 miss 15 miss 16

nth out-of-window miss

C
yc

le
s

or
 in

st
ru

ct
io

ns
 a

fte
r t

he
 ru

na
he

ad
-c

au
si

ng
 L

2
m

is
s

cycles

instrs

28

Distance of the first L2 miss in runahead mode
Where does the first L2 miss occur?

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

128-256 256-384 384-512 512-640 640-768 768-896 896-1024 1024-1536 1536+

Distance in instructions from the runahead-causing L2 miss

P
er

ce
nt

ag
e

of
 fi

rs
t o

ut
-o

f-
w

in
do

w
 L

2
m

is
se

s

29

Instruction vs. Data Prefetching Benefit

88%

96%55%

87%
91%

74%

94%

97%

87%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S95 FP00 INT00 WEB MM PROD SERV WS AVG

In
st

ru
ct

io
ns

 P
er

 C
yc

le

Baseline

Runahead with no inst benefit

Runahead with all benefits

30

Runahead with a Larger L2 Cache

22%

52%16%

12%
22%

15%

13%

35%

12%

17%

40%
13%

10%
19%

12%

14%

30%

7%

16%

32%

8%

8%
13%

11%

30%

27%

6%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

S95 FP00 INT00 WEB MM PROD SERV WS AVG

In
st

ru
ct

io
n

s
P

er
 C

yc
le

No Runahead - 0.5 MB L2
Runahead - 0.5 MB L2
No Runahead - 1 MB L2
Runahead - 1 MB L2
No Runahead - 4 MB L2
Runahead - 4 MB L2

31

Runahead on in-order?

40%

55%

28%

14%

21%
17%

74%

73%

15%

22%

52%16%

12%
22%

15%

13%

35%

12%

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

S95 FP00 INT00 WEB MM PROD SERV WS AVG

In
st

ru
ct

io
n

s
P

er
 C

yc
le

in-order baseline
in-order baseline with runahead
out-of-order baseline
out-of-order baseline with runahead

32

Future Model Results

33

Future Model with Better Frontend

