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Executive Summary 
n  NAND flash memory has low endurance: a flash cell dies after 3k P/E 

cycles vs. 50k desired à Major scaling challenge for flash memory 
n  Flash error rate increases exponentially over flash lifetime 
n  Problem: Stronger error correction codes (ECC) are ineffective and 

undesirable for improving flash lifetime due to 
q  diminishing returns on lifetime with increased correction strength 
q  prohibitively high power, area, latency overheads 

n  Our Goal: Develop techniques to tolerate high error rates w/o strong ECC 
n  Observation: Retention errors are the dominant errors in MLC NAND flash 

q  flash cell loses charge over time; retention errors increase as cell gets worn out 

n  Solution: Flash Correct-and-Refresh (FCR) 
q  Periodically read, correct, and reprogram (in place) or remap each flash page 

before it accumulates more errors than can be corrected by simple ECC 
q  Adapt “refresh” rate to the severity of retention errors (i.e., # of P/E cycles) 

n  Results: FCR improves flash memory lifetime by 46X with no hardware 
changes and low energy overhead; outperforms strong ECCs 
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Problem: Limited Endurance of Flash Memory 
n  NAND flash has limited endurance 

q  A cell can tolerate a small number of Program/Erase (P/E) cycles 
q  3x-nm flash with 2 bits/cell à 3K P/E cycles 

n  Enterprise data storage requirements demand very high 
endurance 
q  >50K P/E cycles (10 full disk writes per day for 3-5 years) 

n  Continued process scaling and more bits per cell will reduce 
flash endurance 

n  One potential solution: stronger error correction codes (ECC) 
q  Stronger ECC not effective enough and inefficient 
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UBER: Uncorrectable bit error rate. Fraction of erroneous bits after error correction. 

Decreasing Endurance with Flash Scaling 

n  Endurance of flash memory decreasing with scaling and multi-level cells 
n  Error correction capability required to guarantee storage-class reliability  

(UBER < 10-15) is increasing exponentially to reach less endurance 
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The Problem with Stronger Error Correction 

n  Stronger ECC detects and corrects more raw bit errors à 
increases P/E cycles endured 

n  Two shortcomings of stronger ECC: 
 
1. High implementation complexity 
    à Power and area overheads increase super-linearly, but     

   correction capability increases sub-linearly with ECC strength 
  

2. Diminishing returns on flash lifetime improvement 
    à Raw bit error rate increases exponentially with P/E cycles, but 

   correction capability increases sub-linearly with ECC strength 
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Methodology: Error and ECC Analysis 
n  Characterized errors and error rates of 3x-nm MLC NAND 

flash using an experimental FPGA-based flash platform 
q  Cai et al., “Error Patterns in MLC NAND Flash Memory: 

Measurement, Characterization, and Analysis,” DATE 2012. 

n  Quantified Raw Bit Error Rate (RBER) at a given P/E cycle 
q  Raw Bit Error Rate: Fraction of erroneous bits without any correction 

n  Quantified error correction capability (and area and power 
consumption) of various BCH-code implementations 
q  Identified how much RBER each code can tolerate  

    à how many P/E cycles (flash lifetime) each code can sustain  
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NAND Flash Error Types 

n  Four types of errors [Cai+, DATE 2012] 

n  Caused by common flash operations 
q  Read errors 
q  Erase errors 
q  Program (interference) errors 

n  Caused by flash cell losing charge over time 
q  Retention errors 

n  Whether an error happens depends on required retention time 
n  Especially problematic in MLC flash because voltage threshold 

window to determine stored value is smaller 
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retention errors 

n  Raw bit error rate increases exponentially with P/E cycles 
n  Retention errors are dominant (>99% for 1-year ret. time) 
n  Retention errors increase with retention time requirement 

Observations: Flash Error Analysis 
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Methodology: Error and ECC Analysis 
n  Characterized errors and error rates of 3x-nm MLC NAND 

flash using an experimental FPGA-based flash platform 
q  Cai et al., “Error Patterns in MLC NAND Flash Memory: 

Measurement, Characterization, and Analysis,” DATE 2012. 

n  Quantified Raw Bit Error Rate (RBER) at a given P/E cycle 
q  Raw Bit Error Rate: Fraction of erroneous bits without any correction 

n  Quantified error correction capability (and area and power 
consumption) of various BCH-code implementations 
q  Identified how much RBER each code can tolerate  

    à how many P/E cycles (flash lifetime) each code can sustain  
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ECC Strength Analysis 
n  Examined characteristics of various-strength BCH codes 

with the following criteria 
q  Storage efficiency: >89% coding rate (user data/total storage) 
q  Reliability: <10-15 uncorrectable bit error rate 
q  Code length: segment of one flash page (e.g., 4kB) 
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Code length 
(n)

Correctable 
Errors (t)

Acceptable 
Raw BER

Norm. 
Power

Norm. Area

512 7 1.0x10-4 (1x) 1 1
1024 12 4.0x10-4 (4x) 2 2.1
2048 22 1.0x10-3 (10x) 4.1 3.9
4096 40 1.7x10-3 (17x) 8.6 10.3
8192 74 2.2x10-3 (22x) 17.8 21.3
32768 259 2.6x10-3 (26x) 71 85

Error	  correc'on	  capability	  increases	  sub-‐linearly	  

Power	  and	  area	  overheads	  increase	  super-‐linearly	  



n  Lifetime improvement comparison of various BCH codes 

Resulting Flash Lifetime with Strong ECC 
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Our Goal 

     

 
    Develop new techniques  
    to improve flash lifetime   
    without relying on stronger ECC 
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Flash Correct-and-Refresh (FCR) 
n  Key Observations: 

q  Retention errors are the dominant source of errors in flash 
memory [Cai+ DATE 2012][Tanakamaru+ ISSCC 2011] 

    à limit flash lifetime as they increase over time 
q  Retention errors can be corrected by “refreshing” each flash 

page periodically  

n  Key Idea: 
q  Periodically read each flash page, 
q  Correct its errors using “weak” ECC, and  
q  Either remap it to a new physical page or reprogram it in-place, 
q  Before the page accumulates more errors than ECC-correctable 
q  Optimization: Adapt refresh rate to endured P/E cycles 
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FCR Intuition 
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FCR: Two Key Questions 

n  How to refresh?  
q  Remap a page to another one 
q  Reprogram a page (in-place) 
q  Hybrid of remap and reprogram 

n  When to refresh?  
q  Fixed period 
q  Adapt the period to retention error severity 
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Remapping Based FCR 

n  Idea: Periodically remap each page to a different physical 
page (after correcting errors) 

q  Also [Pan et al., HPCA 2012] 

q  FTL already has support for 
    changing logical à physical 
    flash block/page mappings 
q  Deallocated block is 
    erased by garbage collector 

 

n  Problem: Causes additional erase operations à more wearout 
q  Bad for read-intensive workloads (few erases really needed) 
q  Lifetime degrades for such workloads (see paper) 
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In-Place Reprogramming Based FCR 

n  Idea: Periodically reprogram (in-place) each physical page 
(after correcting errors) 

q  Flash programming techniques 
    (ISPP) can correct retention  
    errors in-place by recharging 
    flash cells 
 

n  Problem: Program errors accumulate on the same page à 
may not be correctable by ECC after some time 
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Reprogram	  corrected	  data	  



 

 
n  Pro: No remapping needed à no additional erase operations 
n  Con: Increases the occurrence of program errors 

In-Place Reprogramming of Flash Cells 
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Program Errors in Flash Memory 

n  When a cell is being programmed, voltage level of a 
neighboring cell changes (unintentionally) due to parasitic 
capacitance coupling  

   à can change the data value stored 

n  Also called program interference error 

n  Program interference causes neighboring cell voltage to 
shift to the right 
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Problem with In-Place Reprogramming 
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Hybrid Reprogramming/Remapping Based FCR 

n  Idea: 
q  Monitor the count of right-shift errors (after error correction) 
q  If count < threshold, in-place reprogram the page 
q  Else, remap the page to a new page 

n  Observation: 
q  Program errors much less frequent than retention errors à 

Remapping happens only infrequently  

n  Benefit:  
q  Hybrid FCR greatly reduces erase operations due to remapping 
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Adaptive-Rate FCR 

n  Observation: 
q  Retention error rate strongly depends on the P/E cycles a flash 

page endured so far 
q  No need to refresh frequently (at all) early in flash lifetime 

n  Idea: 
q  Adapt the refresh rate to the P/E cycles endured by each page 
q  Increase refresh rate gradually with increasing P/E cycles 

n  Benefits: 
q  Reduces overhead of refresh operations 
q  Can use existing FTL mechanisms that keep track of P/E cycles 
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Adaptive-Rate FCR (Example) 
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FCR: Other Considerations 

n  Implementation cost 
q  No hardware changes 
q  FTL software/firmware needs modification 
 

n  Response time impact 
q  FCR not as frequent as DRAM refresh; low impact 

n  Adaptation to variations in retention error rate 
q  Adapt refresh rate based on, e.g., temperature [Liu+ ISCA 2012] 

n  FCR requires power 
q  Enterprise storage systems typically powered on 
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Evaluation Methodology 
n  Experimental flash platform to obtain error rates at 

different P/E cycles [Cai+ DATE 2012] 

n  Simulation framework to obtain P/E cycles of real 
workloads: DiskSim with SSD extensions 

n  Simulated system: 256GB flash, 4 channels, 8 chips/
channel, 8K blocks/chip, 128 pages/block, 8KB pages 

n  Workloads  
q  File system applications, databases, web search 
q  Categories: Write-heavy, read-heavy, balanced 
 

n  Evaluation metrics 
q  Lifetime (extrapolated) 
q  Energy overhead, P/E cycle overhead 
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Extrapolated Lifetime 
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Normalized Flash Memory Lifetime  
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Lifetime Evaluation Takeaways 
n  Significant average lifetime improvement over no refresh 

q  Adaptive-rate FCR: 46X 
q  Hybrid reprogramming/remapping based FCR: 31X 
q  Remapping based FCR: 9X 

n  FCR lifetime improvement larger than that of stronger ECC 
q  46X vs. 4X with 32-kbit ECC (over 512-bit ECC) 
q  FCR is less complex and less costly than stronger ECC 

n  Lifetime on all workloads improves with Hybrid FCR 
q  Remapping based FCR can degrade lifetime on read-heavy WL 
q  Lifetime improvement highest in write-heavy workloads 
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Energy Overhead 

 
n  Adaptive-rate refresh: <1.8% energy increase until daily 

refresh is triggered 
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Overhead of Additional Erases 

n  Additional erases happen due to remapping of pages 

n  Low (2%-20%) for write intensive workloads 
n  High (up to 10X) for read-intensive workloads 

n  Improved P/E cycle lifetime of all workloads largely 
outweighs the additional P/E cycles due to remapping 
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More Results in the Paper 

n  Detailed workload analysis 

n  Effect of refresh rate 
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Conclusion 
n  NAND flash memory lifetime is limited due to uncorrectable 

errors, which increase over lifetime (P/E cycles) 

n  Observation: Dominant source of errors in flash memory is 
retention errors à retention error rate limits lifetime 

n  Flash Correct-and-Refresh (FCR) techniques reduce 
retention error rate to improve flash lifetime 
q  Periodically read, correct, and remap or reprogram each page 

before it accumulates more errors than can be corrected 
q  Adapt refresh period to the severity of errors 

n  FCR improves flash lifetime by 46X at no hardware cost 
q  More effective and efficient than stronger ECC  
q  Can enable better flash memory scaling 
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Lifetime: Remapping vs. Hybrid FCR 
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Average Lifetime Improvement 
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Individual Workloads: Remapping-Based FCR 
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Individual Workloads: Hybrid FCR 
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Individual Workloads: Adaptive-Rate FCR 
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P/E Cycle Overhead 

n  P/E cycle overhead of hybrid FCR is lower than that of remapping-based FCR 
n  P/E cycle overhead for write-intensive applications is low 

q  Remapping-based FCR (20%), Hybrid FCR (2%) 

n   Read-intensive applications have higher P/E cycle overhead 
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Motivation for Refresh: A Different Way 

n  NAND flash endurance can be increased via 
q  Stronger error correction codes (4x) 
q  Tradeoff  guaranteed storage time for one write for high 

endurance (> 50x) 
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Acceptable raw BER for 512b-BCH  

Acceptable raw BER for 32k-BCH 

50x Higher Endurance 
(Relax required storage time) 

4x Higher Endurance 
(Stronger ECC) 

Enterprise server need  
> 50k P/E cycles 



FTL Implementation 

q  FCR can be implemented just as a module in FTL software 
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Flash Cells Can Be Reprogrammed In-Place 

n  Observations:  
q  Retention errors occur due to loss of charge 
q  Simply recharging the cells can correct the retention errors 
q  Flash programming mechanisms can accomplish this 

recharging 

n  ISPP (Incremental Step Pulse Programming) 
q  Iterative programming mechanism that increases the voltage 

level of a flash cell step by step 
q  After each step, voltage level compared to desired voltage 

threshold 
q  Can inject more electrons but cannot remove electrons 
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