
10

Today’s high-performance processors
face main-memory latencies on the order of
hundreds of processor clock cycles. As a result,
even the most aggressive processors spend a sig-
nificant portion of their execution time stalling
and waiting for main-memory accesses to
return data to the execution core. Previous
research has shown that runahead execution
significantly increases a high-performance
processor’s ability to tolerate long main-mem-
ory latencies.1, 2 Runahead execution improves
a processor’s performance by speculatively pre-
executing the application program while the
processor services a long-latency (L2) data
cache miss, instead of stalling the processor for
the duration of the L2 miss. Thus, runahead
execution lets a processor execute instructions
that it otherwise couldn’t execute under an L2
cache miss. These preexecuted instructions gen-
erate prefetches that the application program
will use later, improving performance.

Runahead execution is a promising way to
tolerate long main-memory latencies because
it has modest hardware cost and doesn’t sig-
nificantly increase processor complexity.3

However, runahead execution significantly
increases a processor’s dynamic energy con-
sumption by increasing the number of spec-

ulatively processed (executed) instructions,
sometimes without enhancing performance.

For runahead execution to be efficiently
implemented in current or future high-per-
formance processors which will be energy-
constrained, processor designers must develop
techniques to reduce these extra instructions.
Our solution to this problem includes both
hardware and software mechanisms that are
simple, implementable, and effective.

Background on runahead execution
Conventional out-of-order execution

processors use instruction windows to buffer
instructions so they can tolerate long latencies.
Because a cache miss to main memory takes
hundreds of processor cycles to service, a
processor needs to buffer an unreasonably large
number of instructions to tolerate such a long
latency. Runahead execution1 provides the
memory-level parallelism (MLP) benefits of a
large instruction window without requiring
the large, complex, slow, and power-hungry
structures—such as large schedulers, register
files, load/store buffers, and reorder buffers—
associated with a large instruction window.

The execution timelines in Figure 1 illustrate
the differences between the operation of a con-

Onur Mutlu
Hyesoon Kim

Yale N. Patt
University of Texas at

Austin

SEVERAL SIMPLE TECHNIQUES CAN MAKE RUNAHEAD EXECUTION MORE

EFFICIENT BY REDUCING THE NUMBER OF INSTRUCTIONS EXECUTED AND

THEREBY REDUCING THE ADDITIONAL ENERGY CONSUMPTION TYPICALLY

ASSOCIATED WITH RUNAHEAD EXECUTION.

EFFICIENT RUNAHEAD EXECUTION:
POWER-EFFICIENT

MEMORY LATENCY TOLERANCE

Published by the IEEE Computer Society 0272-1732/06/$20.00 © 2006 IEEE

ventional out-of-order execution processor
(Figure 1a) and a runahead execution proces-
sor (Figure 1b). A conventional processor’s
instruction window becomes full soon after a
load instruction incurs an L2 cache miss. Once
the instruction window is full, the processor
can’t decode and process any new instructions
and stalls until it has serviced the L2 cache miss.

While the processor is stalled, it makes no
forward progress on the running application.
Therefore, a memory-intensive application’s
execution timeline on a conventional proces-
sor consists of useful compute periods inter-
leaved with long useless stall periods due to
L2 cache misses, as Figure 1a shows. With
increasing memory latencies, stall periods start
dominating the compute periods, leaving the
processor idle for most of its execution time
and thus reducing performance.

Runahead execution avoids stalling the
processor when an L2 cache miss occurs, as Fig-
ure 1b shows. When the processor detects that
the oldest instruction is waiting for an L2 cache
miss that is still being serviced, it checkpoints
the architectural register state, the branch his-
tory register, and the return address stack, and
enters a speculative processing mode—the
runahead mode. The processor then removes
this L2-miss instruction from the instruction
window. While in runahead mode, the proces-
sor continues to execute instructions without

updating the architectural state. It identifies the
results of L2 cache misses and their dependents
as bogus or invalid (INV) and removes instruc-
tions that source INV results (INV instruc-
tions) from the instruction window so they
don’t prevent the processor from placing inde-
pendent instructions into the window.
Pseudoretirement is the program-order removal
of instructions from the processor during runa-
head mode. Some of the instructions executed
in runahead mode that are independent of L2
cache misses might miss in the instruction,
data, or unified caches (for example, Load B in
Figure 1b). The memory system overlaps their
miss latencies with the latency of the runahead-
causing cache miss. When the runahead-caus-
ing cache miss completes, the processor exits
runahead mode by flushing the instructions in
its pipeline. It restores the checkpointed state
and resumes normal instruction fetch and exe-
cution starting with the runahead-causing
instruction (Load A in Figure 1b).

When the processor returns to normal
mode, it can make faster progress without
stalling because it has already prefetched into
the caches during runahead mode some of
the data and instructions needed during nor-
mal mode. For example, in Figure 1b, the
processor doesn’t need to stall for Load B
because it discovered the L2 miss caused by
Load B in runahead mode and serviced it in

11JANUARY–FEBRUARY 2006

Compute Stall Compute Stall Compute

No forward progress in program

Useful
computation

Compute

L2 miss A (being serviced from memory)

L2 miss B (being serviced from memory)

L2 miss A (being serviced from memory) L2 miss B (being serviced from memory)

Pipeline flush

Compute Compute

Cycles saved by runahead execution

Runahead mode

(a)

(b)

Load A misses
in L2 cache

Load A misses
in L2 cache

Load B misses
in L2 cache

Instruction window
becomes full

Instruction window
becomes full

Load B misses
in L2 cache

Load A is the oldest
instruction in window

Load A reexecuted
(cache hit)

Load B reexecuted
(cache hit)

Program execution timeline

Figure 1. Execution timelines showing a high-level overview of the concept of runahead execution: conventional out-of-order
execution processor (a) and runahead execution processor (b).

parallel with the L2 miss caused by Load A.
Hence, runahead execution uses otherwise-
idle clock cycles caused by L2 misses to pre-
execute instructions in the program to
generate accurate prefetch requests. Previous
research has shown that runahead execution
increases processor performance mainly
because it parallelizes independent L2 cache
misses3 (see also the “Related Work” sidebar).
Furthermore, the memory latency tolerance
provided by runahead execution comes at a

small hardware cost, as we’ve shown in pre-
vious work.1,3

Efficiency of runahead execution
A runahead processor executes some instruc-

tions in the instruction stream more than once
because it speculatively executes instructions
in runahead mode. Because each executed
instruction consumes dynamic energy, a runa-
head processor consumes more dynamic ener-
gy than a conventional processor. Reducing
the number of instructions executed in runa-
head mode reduces the energy consumed by a
runahead processor. Unfortunately, reducing
the number of instructions can significantly
reduce runahead execution’s performance
improvement because runahead execution
relies on the execution of instructions in runa-
head mode to discover L2 cache misses further
down in the instruction stream. Our goal is to
increase a runahead processor’s efficiency with-
out significantly decreasing its instructions per
cycle (IPC) performance improvement.

We define efficiency as

Efficiency = Percent increase in IPC perfor-
mance/Percent increase in executed instructions

where percent increase in IPC performance is
the IPC increase after adding runahead exe-
cution to a conventional baseline processor,
and percent increase in executed instructions
is the increase in the number of executed
instructions after adding runahead execution.

We can increase a runahead processor’s effi-
ciency in two ways:

• We can reduce the number of executed
instructions (the denominator) without
affecting the increase in IPC (the
numerator) by eliminating the causes of
inefficiency.

• We can increase the IPC improvement
without increasing the number of exe-
cuted instructions. To do this, we increase
the usefulness of each runahead execution
period by extracting more useful prefetch-
es from the executed instructions.

Our techniques increase efficiency in
both ways.

Figure 2 shows by how much runahead exe-
cution increases IPC and the number of exe-

12

MICRO TOP PICKS

IEEE MICRO

Related work on runahead execution
As a promising technique for increasing tolerance to main-memory latency, runahead exe-

cution has recently inspired and attracted research from many other computer architects in
both industry1-3 and academia.4-6 For example, architects at Sun Microsystems are imple-
menting a version of runahead execution in their next-generation microprocessor.3 To our
knowledge, none of the previous work addressed the runahead execution efficiency problem.
We hereby provide a brief overview of related work on runahead execution.

Dundas and Mudge first proposed runahead execution as a means to improve the perfor-
mance of an in-order scalar processor.7 In other work (see the main article), we proposed
runahead execution to increase the main-memory latency tolerance of more aggressive out-
of-order superscalar processors. Chou and colleagues demonstrated that runahead execu-
tion effectively improves memory-level parallelism in large-scale database benchmarks
because it prevents the instruction and scheduling windows, along with serializing instruc-
tions, from being performance bottlenecks.1 Three recent articles1,4,6 combined runahead exe-
cution with value prediction, and Zhou5 proposed using an idle processor core to perform
runahead execution in a chip multiprocessor. Applying the efficiency mechanisms we propose
to these variants of runahead execution can improve their power efficiency.

References
1. Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture Optimizations for Exploit-

ing Memory-Level Parallelism,” Proc. 31st Int’l Symp. Computer Architecture
(ISCA 04), IEEE CS Press, 2004, pp. 76-87.

2. S. Iacobovici et al., “Effective Stream-Based and Execution-Based Data Prefetch-
ing,” Proc. 18th Int’l Conf. Supercomputing, ACM Press, 2004, pp. 1-11.

3. S. Chaudhry et al., “High-Performance Throughput Computing,” IEEE Micro,
vol. 25, no. 3, May/June 2005, pp. 32-45.

4. L. Ceze et al., “CAVA: Hiding L2 Misses with Checkpoint-Assisted Value Pre-
diction,” Computer Architecture Letters, vol. 3, Dec. 2004, http://www.cs.
virginia.edu/~tcca/2004/ceze_dec04.pdf.

5. H. Zhou, “Dual-Core Execution: Building a Highly Scalable Single-Thread Instruc-
tion Window,” Proc. 14th Int’l Conf. Parallel Architectures and Compilation Tech-
niques (PACT 05), IEEE CS Press, 2005, pp. 231-242.

6. N. Kirman et al., “Checkpointed Early Load Retirement,” Proc. 11th Int’l Symp.
High-Performance Computer Architecture (HPCA-11), IEEE CS Press, 2005, pp.
16-27.

7. J. Dundas and T. Mudge, “Improving Data Cache Performance by Pre-execut-
ing Instructions Under a Cache Miss,” Proc. 1997 Int’l Conf. Supercomputing,
IEEE Press, 1997, pp. 68-75.

cuted instructions compared to an aggressive
conventional out-of-order processor. Our
baseline processor model includes an effective
stream-based prefetcher, a 1-Mbyte L2 cache,
and a detailed model of a main-memory sys-
tem with a 500-cycle latency. Detailed infor-
mation on our experimental methodology is
available elsewhere.4

On average, for the SPEC CPU2000
benchmarks, runahead execution increases
IPC by 22.6 percent at a cost of increasing the
number of executed instructions by 26.5 per-
cent. Unfortunately, runahead execution in
some benchmarks results in a large increase in
the number of executed instructions without
yielding a correspondingly large IPC improve-
ment. For example, in parser, runahead exe-
cution increases the number of executed
instructions by 47.8 percent while decreasing
the IPC by 0.8 percent. In art, the IPC
increase is impressive at 108.4 percent, but is
overshadowed by a 235.4 percent increase in
the number of executed instructions.

Eliminating the causes of inefficiency
The three major causes of inefficiency in

runahead execution processors are short, over-
lapping, and useless runahead periods. Runa-
head execution episodes with these properties
rarely provide performance benefit but result in

unnecessary speculative instruction execution.
Because exiting from runahead mode has a

performance cost (it requires a full pipeline
flush), such runahead periods can actually
decrease performance. We propose some sim-
ple techniques to eliminate such periods.

Short runahead periods
In a short runahead period, the processor

stays in runahead mode for tens of cycles
instead of hundreds. A short runahead peri-
od occurs because the processor can enter
runahead mode in response to an already out-
standing L2 cache miss that was initiated—
but not yet completed—by the hardware or
software prefetcher, a wrong-path instruction,
or a previous runahead period.

Figure 3a shows a short runahead period
caused by an incomplete prefetch generated
by a previous runahead period. Load B gen-
erates an L2 miss when it is speculatively exe-
cuted in runahead period A. When the
processor executes Load B again in normal
mode, the associated L2 miss (L2 miss B) is
still in progress. Therefore, Load B causes the
processor to enter runahead mode again.
Shortly afterward, the memory system com-
pletely services L2 miss B, and the processor
exits runahead mode. Hence, the runahead
period caused by Load B is short. Short

13JANUARY–FEBRUARY 2006

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110

Increase in IPC
Increase in executed instructions

235
In

cr
ea

se
 o

ve
r

ba
se

lin
e

(p
er

ce
nt

)

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf
pa

rs
er

pe
rlb

m
k

tw
olf

vo
rte

x
vp

r
am

m
p

ap
plu ap
si ar
t

eq
ua

ke
fa

ce
re

c
fm

a3
d

ga
lge

l
luc

as
m

es
a

m
gr

id
six

tra
ck

sw
im

wup
wise

m
ea

n

Figure 2. Increase in instructions per cycle (IPC) performance and executed instructions due to runahead execution.

runahead periods are undesirable because the
processor is unlikely to preexecute enough
instructions far ahead into the instruction
stream and hence unlikely to uncover any use-
ful L2 cache misses during runahead mode.

We eliminate short runahead periods by
associating a timer with each outstanding L2
miss. If the L2 miss has been outstanding for
more than N cycles, where N is determined
statically or dynamically, the processor pre-
dicts that the miss will return from memory
soon and doesn’t enter runahead mode on that
miss. We found that a static threshold of 400
cycles for a processor with a 500-cycle mini-
mum main-memory latency eliminates almost
all short runahead periods and reduces the
extra instructions from 26.5 to 15.3 percent
with negligible impact on performance (Per-
formance improvement decreases slightly
from 22.6 to 21.5 percent).

Overlapping runahead periods
Two runahead periods are overlapping if

some of the instructions executed in the two

periods are the same dynamic instructions.
These periods can be caused by independent
L2 misses that have significantly different
latencies or by dependent L2 misses (for
example, L2 misses due to pointer-chasing
loads). In Figure 3b, runahead periods A and
B are overlapping because of dependent L2
misses. During period A, the processor exe-
cutes Load B and finds that it is dependent on
the miss caused by Load A. Because the
processor hasn’t serviced L2 miss A yet, Load
B can’t calculate its address and the processor
marks Load B as INV. The processor executes
and pseudoretires N instructions after Load B
and exits period A. In normal mode, the
processor reexecutes Load B and finds it to be
an L2 miss, which causes runahead period B.
The first N instructions executed during peri-
od B are the same dynamic instructions that
were executed at the end of period A. Hence,
period B repeats the work done by period A.

Overlapping runahead periods can benefit
performance because the completion of Load
A can provide data values for more instructions

14

MICRO TOP PICKS

IEEE MICRO

Overlap Overlap

Runahead period A

Runahead period A

Runahead period A

Runahead period B

Pipeline flush

Short runahead period
(runahead period B)

Compute Compute

Compute Compute Compute

Compute Compute Compute

L2 miss A (being serviced from memory)

L2 miss A (being serviced from memory)

L2 miss A (being serviced from memory)

L2 miss B (being serviced from memory)

L2 miss B (being serviced from memory)

No L2 misses discovered

Load A misses
in L2 cache

Load A reexecuted
(cache hit)

Load A reexecuted
(cache hit)

Load B reexecuted
(cache hit)

Load A misses
in L2 cache

Load B misses
in L2 cache

Load B INV
(dependent on load A)

Load A reexecuted
(cache hit)

Load B reexecuted
(cache hit)

Load B reexecuted
(still L2 miss!)

Load A misses
in L2 cache

Load B misses
in L2 cache

(a)

(b)

(c)

Figure 3. Example execution timelines illustrating the causes of inefficiency in runahead execution and how they can occur:
short runahead period (a), overlapping runahead period (b), and useless runahead period (c).

in runahead period B, which can result in the
generation of useful L2 misses that the proces-
sor couldn’t have generated in runahead peri-
od A. However, in the benchmark set we
examined, overlapping runahead periods rarely
benefited performance. In any case, overlap-
ping runahead periods can be a major cause of
inefficiency because they result in the execu-
tion of the same instructions multiple times in
runahead mode, especially if many L2 misses
are clustered together in the program.

Our solution to reducing the inefficiency
due to overlapping periods involves not enter-
ing a runahead period if the processor predicts
it to be overlapping with a previous runahead
period. During a runahead period, the proces-
sor counts the number of pseudoretired
instructions. During normal mode, the
processor counts the number of instructions
fetched since the exit from the last runahead
period. If the number of instructions fetched
after runahead mode is less than the number
of instructions pseudoretired in the previous
runahead period, the processor doesn’t enter
runahead mode. This technique, implement-
ed with two simple counters and a compara-
tor, reduces the extra instructions resulting
from runahead execution from 26.5 to 11.8
percent while reducing the performance ben-
efit only slightly, from 22.6 to 21.2 percent.

Useless runahead periods
Useless runahead periods are those in which

the processor generates no useful L2 misses
that are needed by normal mode execution,
as Figure 3c shows. These periods exist
because of the lack of MLP5 in the applica-
tion program—that is, because the applica-
tion lacks independent cache misses under the
shadow of an L2 miss. Useless periods are inef-
ficient because they increase the number of
executed instructions without benefiting per-
formance. To eliminate a useless runahead
period, we propose four simple mechanisms
for predicting whether a runahead period will
be useful (that is, whether it will generate an
L2 cache miss).

In the first technique, the processor records
the usefulness of past runahead periods caused
by static load instructions in the Runahead
Cause Status Table (RCST), a small table of
two-bit counters.4 If recent runahead periods
initiated by the same load were useful, the

processor initiates runahead execution if that
load misses in the L2 cache. Otherwise, the
processor doesn’t enter runahead mode on an
L2 miss due to the static load instruction. The
insight behind this technique is that the
processor can usually predict the usefulness of
future runahead periods from the recent past
behavior of runahead periods caused by the
same static load.

The second technique predicts the available
MLP during the ongoing runahead period. If
the fraction of INV (that is, L2-miss depen-
dent) load instructions encountered during the
ongoing runahead mode is greater than a sta-
tically determined threshold, the processor pre-
dicts that there isn’t enough MLP for runahead
execution to exploit and exits runahead mode.

The third technique uses sampling to pre-
dict runahead execution’s usefulness in a more
coarse-grained fashion. This technique aims
to turn off runahead execution in program
phases with low MLP. To do so, the processor
periodically monitors the total number of L2
misses generated during N consecutive runa-
head periods. If this number is less than a sta-
tic threshold T, the processor doesn’t enter
runahead mode for the next M L2 misses. We
found that even with untuned values of N, M,
and T (100, 1,000, and 25, respectively, in
our experiments), sampling can significantly
reduce the extra instructions resulting from
runahead execution.

The fourth uselessness prediction technique
leverages compile-time profiling. The compil-
er profiles the application and identifies load
instructions that consistently cause useless
runahead periods. The compiler marks such
load instructions as nonrunahead loads. When
the hardware encounters a nonrunahead load
instruction that is an L2 cache miss, it doesn’t
initiate runahead execution on that load.

Combining the four uselessness prediction
techniques reduces the extra instructions from
26.5 to 14.9 percent while reducing the per-
formance benefit only slightly, from 22.6 to
20.8 percent. Experiments analyzing each tech-
nique’s effectiveness are available elsewhere.4

Increasing the usefulness of runahead periods
Because runahead execution’s performance

improvement is mainly a result of the useful
L2 misses prefetched during runahead mode,3

discovering more L2 misses during runahead

15JANUARY–FEBRUARY 2006

mode can increase the benefit. We propose
two optimizations that increase efficiency by
increasing runahead periods’ usefulness.

Eliminating useless instructions
Because runahead execution aims to gener-

ate L2 cache misses, instructions that don’t
contribute to the generation of L2 cache miss-
es are essentially useless for its purposes.
Therefore, eliminating these instructions dur-
ing runahead mode can increase a runahead
period’s usefulness.

Floating-point (FP) operate instructions,
which don’t contribute to the address compu-
tation of load instructions, are an example of
such useless instructions. We turn off the FP
unit during runahead mode and drop FP oper-
ate instructions after they are decoded. This
optimization spares the processor resources for
more useful instructions that lead to the gen-
eration of load/store addresses, which increas-
es the likelihood of generating an L2 miss
during a runahead period. Furthermore, by
not executing the energy-intensive FP instruc-
tions and powering down the FP unit during
runahead mode, the processor can save signif-
icant dynamic and static energy.

However, turning off the FP unit during
runahead mode can reduce performance. If a
processor mispredicts a control-flow instruc-
tion that depends on an FP instruction’s result
during runahead mode, it has no way of recov-
ering from that misprediction if the FP unit is
turned off because the branch’s source operand
wouldn’t be computed. Nevertheless, our sim-
ulations show that turning off the FP unit is a
valuable optimization that both increases runa-
head execution’s performance improvement
(from 22.6 to 24.0 percent) and reduces the
extra instructions (from 26.5 to 25.5 percent).

Optimizing runahead execution and hardware
prefetcher interaction

A potential benefit of runahead execution is
that the processor can update the hardware
data prefetcher during runahead mode. If the
updates are accurate, the prefetcher can gen-
erate prefetches earlier than it would in the
baseline processor. This can improve the time-
liness of the accurate prefetches. On the other
hand, if the prefetches generated by updates
during runahead mode are inaccurate, they’ll
waste memory bandwidth and can cause

cache pollution. Moreover, inaccurate hard-
ware prefetcher requests can cause resource
contention for the more accurate runahead
memory requests during runahead mode and
thus reduce runahead execution’s effectiveness.

Runahead execution and hardware data
prefetching have synergistic behavior1 (see also
Reference 2 in the “Related Work” sidebar). We
propose optimizing the prefetcher update pol-
icy in runahead mode to increase the synergy
between these two prefetching mechanisms.

Our analysis shows that creating new hard-
ware prefetch streams is sometimes harmful
in runahead mode because these streams con-
tend with more accurate runahead requests.
Thus, not creating prefetch streams in runa-
head mode increases the usefulness of runa-
head periods. This optimization increases
runahead execution’s IPC improvement (from
22.6 to 25.0 percent) and also reduces the
extra instructions (from 26.5 to 24.7 percent).

Putting it all together
Figure 4 shows the increase in executed

instructions and IPC resulting from runahead
execution when we incorporate our proposed
techniques into a runahead processor. We exam-
ine the effect of profiling-based useless period
elimination separately because it requires mod-
ifying the instruction set architecture (ISA).

Applying all of our proposed techniques sig-
nificantly reduces the average increase in exe-
cuted instructions in a runahead processor
from 26.5 to only 6.7 percent (6.2 percent
with profiling). Using the proposed tech-
niques reduces the average IPC increase of
runahead execution slightly, from 22.6 to 22.0
percent (22.1 percent with profiling). Hence,
a runahead processor using the proposed tech-
niques is much more efficient than a tradi-
tional runahead processor but it increases
performance almost as much.

Figure 5 shows that the proposed tech-
niques are effective for a wide range of mem-
ory latencies. As memory latency increases,
both the IPC improvement and extra instruc-
tions resulting from runahead execution
increase. Hence, runahead execution is more
effective with longer memory latencies. For
almost all memory latencies, using the pro-
posed efficiency techniques increases the aver-
age IPC improvement on the FP benchmarks
while only slightly reducing the IPC

16

MICRO TOP PICKS

IEEE MICRO

improvement on the integer (INT) bench-
marks. For all memory latencies, using the
proposed dynamic techniques significantly
reduces the extra instructions.

Efficient runahead execution has two major
advantages:

• It doesn’t require large, complex, and
power-hungry structures in the proces-
sor core. Instead, it utilizes the already-
existing processing structures to improve
memory latency tolerance.

• With the simple efficiency techniques
described in this article, it requires only

17JANUARY–FEBRUARY 2006

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120

Baseline runahead
Efficient runahead (no profiling)
Efficient runahead (with profiling)

235

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k
tw

olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

am
ea

n

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er

pe
rlb

m
k
tw

olf

vo
rte

x
vp

r

am
m

p
ap

plu ap
si ar

t

eq
ua

ke

fa
ce

re
c

fm
a3

d

ga
lge

l

luc
as

m
es

a
m

gr
id

six
tra

ck
sw

im

wup
wise

hm
ea

n
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115
120

In
cr

ea
se

 in
 e

xe
cu

te
d

in
st

ru
ct

io
ns

 (
pe

rc
en

t)

(a)

In
cr

ea
se

 in
 IP

C
 (

pe
rc

en
t)

(b)

Figure 4. Increase in executed instructions (a) and IPC (b) resulting from runahead execution after incorporating all of our effi-
ciency techniques.

a small number of extra instructions to
provide significant performance
improvements.

Hence, efficient runahead execution provides
a simple, energy-efficient, and complexity-

effective solution to the pressing memory laten-
cy problem in high-performance processors.

Orthogonal approaches can be developed to
solve the inefficiency problem in runahead
processors, which we believe is an important
research area in runahead execution and other
memory-latency tolerance techniques. In par-
ticular, solutions to two important problems
in computer architecture can significantly
increase runahead execution’s efficiency: branch
mispredictions and dependent cache misses.

Because processors rely on correct branch
predictions to stay on the correct program
path during runahead mode, the development
of more accurate branch predictors will
increase runahead execution’s efficiency and
performance benefits. Irresolvable branch mis-
predictions that depend on L2 cache misses
cause the processor to stay on the wrong path,
which might not always provide useful
prefetching benefits, until the runahead peri-
od ends. Reducing such branch mispredic-
tions with novel techniques is a promising area
of future work.

Dependent L2 cache misses reduce a runa-
head period’s usefulness because they can’t be
parallelized using runahead execution. There-
fore, runahead execution is inefficient, and
sometimes ineffective, for pointer-chasing
workloads in which dependent load instruc-
tions are common. In previous work, we’ve
shown that a simple value-prediction tech-
nique for pointer-load instructions—address-
value delta prediction—significantly increases
runahead execution’s efficiency and perfor-
mance by parallelizing dependent L2 cache
misses.6 Enabling the parallelization of depen-
dent cache misses is another promising area
of future research in runahead execution.

Our future research will also focus on refin-
ing the methods for increasing the usefulness
of runahead execution periods. Combined
compiler-microarchitecture mechanisms can
be instrumental in eliminating useless runa-
head instructions. Through simple modifica-
tions to the ISA, the compiler can convey to
the hardware which instructions are impor-
tant to execute or not execute during runa-
head mode. Furthermore, the compiler might
be able to increase runahead periods’ useful-
ness by trying to arrange code such that inde-
pendent L2 cache misses are clustered close
together during program execution.

18

MICRO TOP PICKS

IEEE MICRO

Figure 5. Increase in executed instructions (a) and IPC (b) with and without the
efficiency techniques for five different memory latencies. Data shown is aver-
aged separately over integer (INT) and floating-point (FP) benchmarks.

0

5

10

15

20

25

30

35

40

45

50

55

60
Baseline runahead (FP)
Efficient runahead (FP)
Baseline runahead (INT)
Efficient runahead (INT)

100 300 500

Memory latency in cycles (minimum)

700 900

100 300 500

Memory latency in cycles (minimum)

700 900

(a)

(b)

In
cr

ea
se

 in
 e

xe
cu

te
d

in
st

ru
ct

io
ns

 (
pe

rc
en

t)

0

5

10

15

20

25

30

35

40

45

50

55

60

In
cr

ea
se

 in
 IP

C
 (

pe
rc

en
t)

Eliminating the reexecution of instructions
executed in runahead mode via result reuse7

or value prediction8 can potentially increase
runahead execution’s efficiency. However,
even an ideal reuse mechanism doesn’t signif-
icantly improve performance7 and likely has
significant hardware cost and complexity,
which can offset the energy reduction result-
ing from improved efficiency. Value predic-
tion might not significantly improve efficiency
because of its low accuracy.8 Nevertheless, fur-
ther research on eliminating the unnecessary
reexecution of instructions might yield low-
cost mechanisms that can significantly
improve runahead efficiency.

Finally, the scope of our efficient processing
techniques isn’t limited to runahead execution.
In general, the proposed runahead uselessness
predictors are techniques for predicting the
available MLP at a given point in a program.
They are therefore applicable to other mecha-
nisms that are designed to exploit MLP. Other
methods of preexecution that are targeted for
prefetching, such as helper threads,9,10 can use
our techniques to eliminate inefficient threads
and useless speculative execution. MICRO

Acknowledgments
We thank Mike Butler, Nhon Quach, Jared

Stark, Santhosh Srinath, and other members of
the HPS research group for their helpful com-
ments on earlier drafts of this article. We grate-
fully acknowledge the commitment of the
Cockrell Foundation, Intel Corporation, and
the Advanced Technology Program of the Texas
Higher Education Coordinating Board.

References
1. O. Mutlu et al., “Runahead Execution: An

Alternative to Very Large Instruction Win-
dows for Out-of-Order Processors,” Proc.
9th Int’l Symp. High-Performance Computer
Architecture (HPCA-9), IEEE Press, 2003, pp.
129–140.

2. J. Dundas and T. Mudge, “Improving Data
Cache Performance by Pre-executing
Instructions Under a Cache Miss,” Proc.
1997 Int’l Conf. Supercomputing, IEEE
Press, 1997, pp. 68-75.

3. O. Mutlu et al., “Runahead Execution: An
Effective Alternative to Large Instruction
Windows,” IEEE Micro, vol. 23, no. 6,
Nov./Dec. 2003, pp. 20–25.

4. O. Mutlu, H. Kim, and Y.N. Patt, “Tech-
niques for Efficient Processing in Runahead
Execution Engines,” Proc. 32nd Int’l Symp.
Computer Architecture (ISCA 05), IEEE CS
Press, 2005, pp. 370–381.

5. A. Glew, “MLP Yes! ILP No!” Architectural
Support for Programming Languages and
Operating Systems (ASPLOS 98) Wild and
Crazy Idea Session, Oct. 1998; http://www.
cs.berkeley.edu/~kubitron/asplos98/slides/
andrew_glew.pdf.

6. O. Mutlu, H. Kim, and Y.N. Patt, “Address
Value Delta (AVD) Prediction: Increasing the
Effectiveness of Runahead Execution by
Exploiting Regular Memory Allocation Pat-
terns,” Proc. 38th Int’l Symp. Microarchi-
tecture (Micro-38), IEEE CS Press, 2005, pp.
233–244.

7. O. Mutlu et al., “On Reusing the Results of
Pre-executed Instructions in a Runahead
Execution Processor,” Computer Architec-
ture Letters, vol. 4, Jan. 2005, http://www.
cs.virginia.edu/~tcca/2005/mutlu_jan05.pdf.

8. N. Kirman et al., “Checkpointed Early Load
Retirement,” Proc. 11th Int’l Symp. High-
Performance Computer Architecture (HPCA-
11), IEEE CS Press, 2005, pp. 16–27.

9. R.S. Chappell et al., “Simultaneous Subor-
dinate Microthreading (SSMT),” Proc. 26th
Int’l Symp. Computer Architecture (ISCA 99),
IEEE CS Press, 1999, pp. 186–195.

10. J.D. Collins et al., “Dynamic Speculative Pre-
computation,” Proc. 34th Int’l Symp.
Microarchitecture (Micro-34), IEEE CS Press,
2001, pp. 306–317.

Onur Mutlu is a PhD candidate in computer
engineering at the University of Texas at Austin.
His research interests include computer archi-
tectures, with a focus on high-performance
energy-efficient microarchitectures, data
prefetching, runahead execution, and novel
latency-tolerance techniques. Mutlu has an MS
in computer engineering from UT Austin and
BS degrees in psychology and computer engi-
neering from the University of Michigan. He is
a student member of the IEEE and the ACM.

Hyesoon Kim is a PhD candidate in electri-
cal and computer engineering at the Univer-
sity of Texas at Austin. Her research interests
include high-performance energy-efficient
microarchitectures and compiler-microarchi-

19JANUARY–FEBRUARY 2006

tecture interaction. Kim has master’s degrees
in mechanical engineering from Seoul
National University and in computer engi-
neering from UT Austin. She is a student
member of the IEEE and the ACM.

Yale N. Patt is the Ernest Cockrell Jr. Cen-
tennial Chair in Engineering at the Universi-
ty of Texas at Austin. His research interests
include harnessing the expected fruits of future
process technology into more effective
microarchitectures for future microprocessors.
Patt has a PhD in electrical engineering from
Stanford University. He is co-author of Intro-
duction to Computing Systems: From Bits and

Gates to C and Beyond, (McGraw-Hill, 2nd
edition, 2004). His honors include the 1996
IEEE/ACM Eckert-Mauchly Award and the
2000 ACM Karl V. Karlstrom Award. He is a
Fellow of both the IEEE and the ACM.

Direct questions and comments about this
article to Onur Mutlu, 2501 Lake Austin
Blvd., Apt. N204, Austin, TX 78703;
onur@ece.utexas.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

20

MICRO TOP PICKS

IEEE MICRO

www.computer.org/join/grades.htm

GIVE YOUR CAREER A BOOST ■ UPGRADE YOUR MEMBERSHIP

Advancing in the IEEE Computer Society can elevate your standing in the profession.

Application to Senior-grade membership recognizes

✔ ten years or more of professional expertise

Nomination to Fellow-grade membership recognizes

✔ exemplary accomplishments in computer engineering

REACH
HIGHER

