IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

1491

Address-Value Delta (AVD) Prediction:
A Hardware Technique for Efficiently
Parallelizing Dependent Cache Misses

Onur Mutlu, Member, IEEE, Hyesoon Kim, Student Member, IEEE, and
Yale N. Patt, Fellow, IEEE

Abstract—While runahead execution is effective at parallelizing independent long-latency cache misses, it is unable to parallelize
dependent long-latency cache misses. To overcome this limitation, this paper proposes a novel hardware technique, address-value
delta (AVD) prediction. An AVD predictor keeps track of the address (pointer) load instructions for which the arithmetic difference (i.e.,
delta) between the effective address and the data value is stable. If such a load instruction incurs a long-latency cache miss during
runahead execution, its data value is predicted by subtracting the stable delta from its effective address. This prediction enables the
preexecution of dependent instructions, including load instructions that incur long-latency cache misses. We analyze why and for what
kind of loads AVD prediction works and describe the design of an implementable AVD predictor. We also describe simple hardware
and software optimizations that can significantly improve the benefits of AVD prediction and analyze the interaction of AVD prediction
with runahead efficiency techniques and stream-based data prefetching. Our analysis shows that AVD prediction is complementary to
these techniques. Our results show that augmenting a runahead processor with a simple, 16-entry AVD predictor improves the
average execution time of a set of pointer-intensive applications by 14.3 percent (7.5 percent excluding benchmark health).

Index Terms—Single data stream architectures, runahead execution, value prediction, memory-level parallelism.

1 INTRODUCTION

MAIN memory latency is a major performance limiter in
current high-performance microprocessors. As the
improvement in DRAM memory speed has not kept up
with the improvement in processor speed, aggressive high-
performance processors are currently facing DRAM laten-
cies of hundreds of processor cycles [37], [34]. The gap
between the processor and DRAM memory speed and the
resulting negative impact of memory latency on processor
performance are expected to continue to increase [39], [37].
Therefore, innovative techniques to tolerate long-latency
main memory accesses are needed to improve the perfor-
mance of memory-intensive application programs. As
energy/power consumption has already become a limiting
constraint in the design of high-performance processors
[12], simple power- and area-efficient memory latency
tolerance techniques are especially desirable.

Runahead execution [9], [25] is a promising technique
that was recently proposed to tolerate long main memory
latencies. This technique speculatively preexecutes the
application program while a long-latency data cache miss
is being serviced, instead of stalling the processor for the
duration of the long-latency miss. In runahead execution
[25], if a long-latency (L2 cache miss) load instruction
becomes the oldest instruction in the instruction window, it

o O. Mutlu is with Microsoft Research, One Microsoft Way, Redmond, WA
98052. E-mail: onur@microsoft.com.

e H. Kim and Y.N. Patt are with the Department of Electrical and Computer
Engineering, University of Texas at Austin, Austin, TX 78712.
E-mail: {hyesoon, patt)@ece.utexas.edu.

Manuscript received 3 Feb. 2006; revised 23 June 2006; accepted 7 July 2006,
published online 20 Oct. 2006.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0037-0206.

0018-9340/06/$20.00 © 2006 IEEE

triggers the processor to checkpoint its architectural state
and switch to a purely speculative processing mode called
runahead mode. The processor stays in runahead mode until
the cache miss that initiated runahead mode is serviced.
During runahead mode, instructions independent of the
pending long-latency cache misses are speculatively preexe-
cuted. Some of these preexecuted instructions cause long-
latency cache misses, which are serviced in parallel with
each other and the runahead-causing cache miss. Hence,
runahead execution improves latency tolerance and perfor-
mance by allowing the parallelization of independent long-
latency cache misses that would otherwise not have been
generated because the processor would have stalled. The
parallelization of independent long-latency cache misses
has been shown to be the major performance benefit of
runahead execution [26], [6].

Unfortunately, a runahead execution processor cannot
parallelize dependent long-latency cache misses. A runahead
processor cannot preexecute instructions that are dependent
on the pending long-latency cache misses during runahead
mode since the data values they are dependent on are not
available. These instructions are designated as bogus (INV)
and they mark their destination registers as INV so that the
registers they produce are not used by instructions
dependent on them. Hence, runahead execution is not able
to parallelize two long-latency cache misses if the load
instruction generating the second miss is dependent on the
load instruction that generated the first miss." These two
misses need to be serviced serially. Therefore, the full-
latency of each miss is exposed and the latency tolerance of
the processor cannot be improved by runahead execution.

1. Two dependent load misses cannot be serviced in parallel in a
conventional out-of-order processor either.

Published by the IEEE Computer Society

1492

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

while (list != NULL) {
...
p = list—>patient; // Load 1 — causes 67% of all runahead entries
...
t = p—>time; // Load 2 — dependent on load 1, frequently causes L2 misses
...
list = list->forward; // Load 3

(a)

Iteration Effective Addr L2 miss Value AVD
Iteration 1 0x8e2bd44 No 0x8e2bd04 0x40
Iteration 2 0x8e31274 No 0x8e31234 0x40
Iteration 3 0x8e18c74 No 0x8e18c34 0x40
(Tteration 4 0x8ela584 Yes)| () Q
Causes entry into Predicted to be Predicted to be

runahead mode 0x8ela584 — 0x40 = 0x8ela544 0x40

(b)

Fig. 1. Source code example showing a load instruction with a stable AVD (Load 1). (a) Code example. (b) Execution history of Load 1.

Applications and program segments that heavily utilize
linked data structures (where many load instructions are
dependent on previous loads) therefore cannot significantly
benefit from runahead execution. In fact, for some pointer-
chasing applications, runahead execution reduces perfor-
mance due to its overheads and significantly increases
energy consumption due to the increased activity caused by
the preprocessing of useless instructions. In a recent paper
[23], we showed that the performance benefit of runahead
execution would be almost doubled if runahead execution
were able to parallelize all dependent L2 cache misses.

In order to overcome the serialization of dependent
long-latency cache misses, techniques to parallelize depen-
dent load instructions are needed. These techniques need
to focus on predicting the values loaded by address (pointer)
loads, i.e., load instructions that load an address that is
later dereferenced. Several microarchitectural techniques
have been proposed to predict the values of address loads
[20], [31], [2], [7] or to prefetch the addresses generated by
them [29], [30], [7]. Unfortunately, to be effective, these
techniques require a large amount of storage and complex
hardware control. As energy/power consumption be-
comes more pressing with each processor generation,
simple techniques that require small storage cost become
more desirable and necessary. Our goal in this paper is to
devise a technique that reduces the serialization of
dependent long-latency misses without significantly increas-
ing the hardware cost and complexity.

We propose a simple, implementable, novel mechanism,
address-value delta (AVD) prediction, that allows the paralle-
lization of dependent long-latency cache misses. The
proposed technique learns the arithmetic difference (delta)
between the effective address and the data value of an
address load instruction based on the previous executions of
that load instruction. Stable address-value deltas are stored in
a prediction buffer. When a load instruction incurs a long-
latency cache miss, if it has a stable address-value delta in the
prediction buffer, its data value is predicted by subtracting
the stored delta from its effective address. This predicted
value enables the preexecution of dependent instructions,
including load instructions that incur long-latency cache
misses. We provide source-code examples showing the
common code structures that cause stable address-value
deltas, describe the implementation of a simple address-value
delta predictor, and evaluate its performance benefits on a
runahead execution processor. We show that augmenting a
runahead processor with a simple, 16-entry (102-byte) AVD

predictor improves the execution time of a set of pointer-
intensive applications by 12.1 percent.

We also propose hardware and software optimizations
that increase the benefits of AVD prediction. One hardware
optimization, called NULL-value optimization, increases
the performance improvement of a 16-entry AVD predictor
to 14.3 percent. Furthermore, we examine the interaction of
AVD prediction with runahead efficiency techniques and
stream-based data prefetching and show that AVD predic-
tion is complementary to these previously proposed
techniques.

2 AVD PREDICTION: THE BAsIC IDEA

We have observed that some load instructions exhibit stable
relationships between their effective addresses and the data
values they load. We call this stable relationship the address-
value deltas (AVDs). We define the address-value delta of a
dynamic instance of a load instruction L as:

AV D(L) = Effective Address of L — Data Value of L.

Fig. 1 shows an example load instruction that has a stable
AVD and how we can utilize AVD prediction to predict the
value of that load in order to enable the execution of a
dependent load instruction. The code example in this figure
is taken from the health benchmark. Load 1 frequently
misses in the L2 cache and causes the processor to enter
runahead mode. When Load 1 initiates entry into runahead
mode in a conventional runahead processor, it marks its
destination register as INV (bogus). Load 2, which is
dependent on Load 1, therefore cannot be executed during
runahead mode. Unfortunately, Load 2 is also an important
load that frequently misses in the L2 cache. If it were
possible to correctly predict the value of Load 1, Load 2
could be executed and the L2 miss it causes would be
serviced in parallel with the L2 miss caused by Load 1,
which initiated entry into runahead mode.

Fig. 1b shows how the value of Load 1 can be accurately
predicted using an AVD predictor. In the first three
executions of Load 1, the processor calculates the AVD of
the instruction. The AVD of Load 1 turns out to be stable
and it is recorded in the AVD predictor. In the fourth
execution, Load 1 misses in the L2 cache and causes entry
into runahead mode. Instead of marking the destination
register of Load 1 as INV, the processor accesses the AVD
predictor with the program counter of Load 1. The predictor
returns the stable AVD corresponding to Load 1. The value

MUTLU ET AL.: ADDRESS-VALUE DELTA (AVD) PREDICTION: A HARDWARE TECHNIQUE FOR EFFICIENTLY PARALLELIZING DEPENDENT...

A

A+k '/
9,
/

treeNode* TreeAlloc(level) {

...

if (level == 0)
return NULL;

else {
new = (treeNode *) malloc (...);
left = TreeAlloc(...);
right = TreeAlloc(...);
new—>left = left;
new—>right = right;
return new;

A+8k

A+2k

\\:51«

A+3k A+6k[™\ A+7k

NS

k = size of each node

(@) (b)

&

1493
int TreeAdd(treeNode *t) {
if (t==0)
return 0;
else { Eff. Addr | Value | AVD
... (deft=t->lef; /Load1) A | Ak | x
leftval = TreeAdd(tleft); A+k A+2k X
tright = t—>right; // Load 2
rightval = TreeAdd(tright); A+2k | A3k | -k
...
}
}

() (d)

Fig. 2. An example from treeadd showing how stable AVDs can occur for traversal address loads. (a) Source code of the recursive function that
allocates the binary tree. (b) Layout of the binary tree in memory (A is the address of the root node). (¢) Source code of the recursive function that

traverses the tree. (d) Execution history of Load 1.

of Load 1 is predicted by subtracting the AVD returned by
the predictor from the effective address of Load 1 such that:

Predicted Value = E ffective Address — Predicted AV D.

The predicted value is written into the destination register
of Load 1. The dependent instruction, Load 2, reads this
value and is able to calculate its address. Load 2 accesses the
cache hierarchy with its calculated address and it may
generate an L2 cache miss, which would be serviced in
parallel with the L2 cache miss generated by Load 1.

Note that Load 1 in Fig. 1 is an address (pointer) load. We
distinguish between address loads and data loads. An address
load is a load instruction that loads an address into its
destination register that is later used to calculate the
effective address of itself or another load instruction (Load 3
is also an address load). A data load is a load whose
destination register is not used to calculate the effective
address of another load instruction (Load 2 is a data load).
We are interested in predicting the values of only address
loads, not data loads, since address loads—by definition—are
the only load instructions that can lead to the generation of
dependent long-latency cache misses. In order to distin-
guish address loads from data loads in hardware, we bound
the values AVD can take. We only consider predicting the
values of load instructions that have—in the past—satisfied
the equation:

— MazAVD < AVD(L) < MazxAV D,

where Max AV D is a constant set at the design time of the
AVD predictor. In other words, in order to be identified as
an address load, the data value of a load instruction needs
to be close enough to its effective address. If the AVD is too
large, it is likely that the value that is being loaded by the
load instruction is not an address.” Note that this mechan-
ism is similar to the mechanism proposed by Cooksey et al.
[8] to identify address loads in hardware. Their mechanism
identifies a load as an address load if the upper N bits of the

2. An alternative mechanism is to have the compiler designate the
address loads with a single bit augmented in the load instruction format of
the ISA. We do not explore this option since our goal is to design a simple
purely hardware mechanism that requires no software or ISA support.

effective address of the load match the upper N bits of the
value being loaded.

3 WHyY Do StaBLE AVDs OCCuR?

Stable AVDs occur due to the regularity in the way data
structures are allocated in memory by the program, which
is sometimes accompanied by regularity in the input data to
the program. We examine the common code constructs in
application programs that give rise to regular memory
allocation patterns that result in stable AVDs for some
address loads. For our analysis, we distinguish between
what we call traversal address loads and leaf address loads. A
traversal address load is a static load instruction that
produces an address that is later consumed by itself or
another address load, such as in a linked list or tree
traversal (e.g., Load 3 in Fig. 1 is a traversal address load). A
leaf address load produces an address that is later
consumed by a data load (e.g., Load 1 in Fig. 1 is a leaf
address load).

3.1 Stable AVDs in Traversal Address Loads

A traversal address load may have a stable AVD if there is a
pattern to the allocation and linking of the nodes of a linked
data structure. If the allocation of the nodes is performed in
a regular fashion, the nodes will have a constant distance in
memory from one another. If a traversal load instruction
later traverses the linked data structure nodes that have the
same distance from one another, the traversal load can have
a stable AVD.

Fig. 2 shows an example from treeadd, a benchmark
whose main data structure is a binary tree. In this
benchmark, a binary tree is allocated in a regular fashion
using a recursive function where a node is allocated first
and its left child is allocated next (Fig. 2a). Each node of the
tree is of the same size. The layout of an example resulting
binary tree is shown in Fig. 2b. Due to the regularity in the
allocation of the nodes, the distance in memory of each
node and its left child is constant. The binary tree is later
traversed using another recursive function (Fig. 2c). Load 1
in the traversal function traverses the nodes by loading the
pointer to the left child of each node. This load instruction

1494 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006
: Aj —

struct Dict_node { o= int dict_match (char *s, char *t) {
char *string; k5 E '§) while((*s !="\0") && (*s == *t))
Dict_node *left, *right; i {s++; t++;}

... B A-k C if ((*s =="*") |l (*t == "*")) return 0;
} i..
char *get_a_word(...) { l——_l }
// read a word from file = |25 = |25 rabridged_lookup(Dict_node *dn, char *s) {
s = (char *) xalloc(strlen(word) + 1); 2|8 |F 2|8 |= /...
strepy(s, word); Bk i if (dn == NULL) return;
return s; D E F G (t = dn—>string; // Load 1)
m = dict_match(s, t);

Dict_node *read_word_file(...) { if (m>=0) rabridged_lookup(dn—>right, s);
.. = = = o= if (m<=0) rabridged_lookup(dn—>left, s);
char *s; Dict_node *dn; 5|8 'gn 5| & 'En §|E E" 5|8 -En }
while ((s = get_a_word(...)) != NULL) { i hd i -

dn = (Dict_node *) xalloc(sizeof(Dict_node)); D—k E-k F—k G-k Eff. Addr. | Value | AVD
dn—>string = s; A A-k k
... C C—k k
} F Fk | k
return dn;
}

(@)

(b)

(©)

Fig. 3. An example from parser showing how stable AVDs can occur for leaf address loads. (a) Source code that allocates the nodes of the
dictionary (binary tree) and the strings. (b) Layout of the dictionary in memory (the value on an arc denotes the memory address of the structure that
is pointed to). (c) Source code of the recursive function that performs the dictionary lookup and the execution history of Load 1.

has a stable AVD, as can be seen from its example execution
history (Fig. 2d). Load 1 has a stable AVD because the
distance in memory of a node and its left child is constant.
We found that this load causes 64 percent of all entries into
runahead mode and predicting its value correctly enables
the generation of dependent L2 misses (generated by the
same instruction) during runahead mode.

As evident from this example, the stability of AVDs in
traversal address loads is also dependent on the behavior of
the memory allocator. If the memory allocator allocates
memory chunks in a regular fashion (e.g., allocating fixed-
size chunks from a contiguous section of memory), the
likelihood of the occurrence of stable AVDs increases. On
the other hand, if the behavior of the memory allocator is
irregular, the distance in memory of a node and the node(s)
it is linked to may be totally unpredictable; hence, the
resulting AVDs would not be stable.

We also note that stable AVDs occurring due to
regularity in the allocation and linking of the nodes can
disappear if the linked data structure is significantly
reorganized during runtime unless the reorganization of
the data structure is performed in a regular fashion.
Therefore, AVD prediction may not work for traversal
address loads in applications that require extensive mod-
ifications to the linkages in linked data structures.

3.2 Stable AVDs in Leaf Address Loads

A leaf address load may have a stable AVD if the allocation
of a data structure node and the allocation of a field that is
linked to the node via a pointer are performed in a regular
fashion.

Fig. 3 shows an example from parser, a benchmark that
parses an input file and looks up the parsed words in a
dictionary. The dictionary is constructed at the startup of
the program. It is stored as a sorted binary tree. Each node
of the tree is a Dict_node structure that contains a pointer

to the string corresponding to it as one of its fields. Both
Dict_node and string are allocated dynamically as
shown in Fig. 3a. First, memory space for string is
allocated. Then, memory space for Dict_node is allocated
and it is linked to the memory space of string via a
pointer. The layout of an example dictionary is shown in
Fig. 3b. In contrast to the binary tree example from
treeadd, the distance between the nodes of the dictionary
in parser is not constant because the allocation of the
dictionary nodes is performed in a somewhat irregular
fashion (not shown in Fig. 3) and because the dictionary is
kept sorted. However, the distance in memory between
each node and its associated string is constant. This is due
to the behavior of the xalloc function that is used to
allocate the strings in combination with regularity in
input data. We found that xalloc allocates a fixed-size
block of memory for the string if the length of the string is
within a certain range. As the length of most strings falls
into that range (i.e., the input data has regular behavior), the
memory spaces allocated for them are of the same size.’
Words are later looked up in the dictionary using the
rabridged_lookup function (Fig. 3c). This function recur-
sively searches the binary tree and checks whether the
string of each node is the same as the input word s. The
string in each node is loaded by Load 1 (dn->string),
which is a leaf address load that loads an address that is
later dereferenced by data loads in the dict_match
function. This load has a stable AVD, as shown in its
example execution history, since the distance between a

3. The code shown in Fig. 3a can be rewritten such that memory space for
a Dict_node is allocated first and the memory space for its associated
string is allocated next. In this case, even though the input data may not
be regular, the distance in memory of each node and its associated string
would be constant. We did not perform this optimization in our baseline
evaluations. However, the effect of this optimization is evaluated separately
in Section 7.2.

MUTLU ET AL.: ADDRESS-VALUE DELTA (AVD) PREDICTION: A HARDWARE TECHNIQUE FOR EFFICIENTLY PARALLELIZING DEPENDENT... 1495
Effective Address of Data Value of Predicted? Predictef:l Value
Retired Load Retired Load (not INV?) = Effective Addr — AVD
—
computed AVD = Effective Addr — Data Value
>= <= Confid ==7
onfidence :
-MaxAVD? MaxAVD? Update/Reset
Logic W
Tag Conf | AVD Tag Conf | AVD
valid AVD?
Program Counter of Program Counter of Effective Address of
Retired Load L2-miss Load in L2-miss Load in
Runahead Mode Runahead Mode

(a)

(b)

Fig. 4. Organization of the AVD predictor. (a) Update logic for the AVD predictor. (b) Prediction logic for the AVD predictor.

node and its associated string is constant. The values
generated by Load 1 are hard to predict using a traditional
stride- or context-based value predictor because they do not
follow a pattern. In contrast, the AVDs of Load 1 are quite
easy to predict. We found that this load causes 36 percent of
the entries into runahead mode and correctly predicting its
value enables the execution of the dependent load instruc-
tions (and the dependent conditional branch instructions) in
the dict_match function.

Stable AVDs occurring in leaf address loads continue to be
stable even if the linked data structure is significantly
reorganized at runtime. This is because such AVDs are
caused by the regularity in the links between nodes and their
fields rather than the regularity in the links between nodes
and other nodes. The reorganization of the linked data
structure changes the links between nodes and other nodes,
but leaves intact the links between nodes and their fields.

4 DESIGN AND OPERATION OF A RECOVERY-FREE
AVD PREDICTOR

An AVD predictor records the AVDs and information about
the stability of the AVDs for address load instructions. The
predictor is updated when an address load is retired. The
predictor is accessed when a load misses in the L2 cache
during runahead mode. If a stable AVD associated with the
load is found in the predictor, the predicted value for the
load is calculated using its effective address and the stable
AVD. The predicted value is then returned to the processor
to be written into the register file.

Fig. 4 shows the organization of the AVD predictor along
with the hardware support needed to update/train it
(Fig. 4a) and the hardware support needed to make a
prediction (Fig. 4b). Each entry of the predictor consists of
three fields: Tag, the upper bits of the program counter of
the load that allocated the entry, AVD, the address-value
delta that was recorded for the last retired load associated

with the entry, and Confidence (Conf), a saturating counter
that records the confidence of the recorded AVD (i.e., how
many times the recorded AVD was seen consecutively). The
confidence field is used to eliminate incorrect predictions
for loads with unstable AVDs.

4.1 Operation

At initialization, the confidence counters in all the predictor
entries are reset to zero. There are two major operations
performed on the AVD predictor: update and prediction.

The predictor is updated when aload instruction is retired
during normal mode. The predictor is accessed with the
program counter of the retired load. If an entry does not
already exist for the load in the predictor and if the load has a
valid AVD, a new entry is allocated. To determine if the load
has a valid AVD, the AVD of the instruction is computed and
compared to the minimum and maximum allowed AVD. If
the computed AVD is within bounds [-MaxAVD, MaxAVD],
the AVD is considered valid. On the allocation of a new
entry, the computed AVD is written into the predictor and
the confidence counter is set to one. If an entry already
exists for the retired load, the computed AVD is compared
with the AVD that is stored in the existing entry. If the two
match, the confidence counter is incremented. If the AVDs
do not match and the computed AVD is valid, the
computed AVD is stored in the predictor entry and the
confidence counter is set to one. If the computed AVD is not
valid and the load instruction has an associated entry in the
predictor, the confidence counter is reset to zero, but the
stored AVD is not updated.*

4. As an optimization, it is possible to not update the AVD predictor state,
including the confidence counters, if the data value of the retired load is
zero. A data value of zero has a special meaning for address loads, i.e.,
NULL pointer. This optimization reduces the training time or eliminates the
need to retrain the predictor and thus helps benchmarks where loads that
perform short traversals are common. The effect of this optimization on
AVD predictor performance is evaluated in Section 7.1.

1496

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

TABLE 1
Baseline Processor Configuration

Pipeline 24-stage pipeline, 20-cycle minimum branch misprediction penalty

Front End 64KB, 4-way instruction cache with 2-cycle latency; 8-wide decoder with 1-cycle latency; 8-wide renamer with 4-cycle latency
64K-entry gshare/per-address hybrid with 64K-entry selector; 4K-entry, 4-way branch target buffer;

Branch Predictors | 64-entry return address stack; 4K-entry target cache for indirect branches;

wrong-path execution faithfully modeled (including misprediction recoveries on the wrong path)

Instruction Window

128-entry reorder buffer; 128-entry INT, 128-entry FP physical register files with 4-cycle latency;
128-entry load/store buffer, store misses do not block the instruction window unless store buffer is full

Execution Core

8 general-purpose functional units, fully-pipelined except for FP divide; full bypass network

On-chip Caches

64KB, 4-way L1 data cache with 8 banks and 2-cycle latency, allows 4 load accesses per cycle; 1-cycle AGEN latency;
1MB, 32-way, unified L2 cache with 8 banks and 10-cycle latency, maximum 128 outstanding L2 misses,
1 L2 read port, 1 L2 write port; all caches use LRU replacement and have 64B line size

Buses and Memory

500-cycle minimum main memory latency; 32 DRAM banks; 32B-wide, split-transaction core-to-memory bus
at 4:1 frequency ratio; maximum 128 outstanding misses to main memory;
bank conflicts, bandwidth, and queueing delays are faithfully modeled at all levels in the memory hierarchy

Runahead Support

128-byte runahead cache [25] for store-load data forwarding during runahead mode

The predictor is accessed when a load instruction misses in
the L2 cache during runahead mode. The predictor is
accessed with the program counter of an L2-miss load. If an
entry exists for the load and if the confidence counter is
saturated (i.e., above a certain confidence threshold), the
value of the load is predicted. The predicted value is
computed by subtracting the AVD stored in the predictor
entry from the effective virtual address of the L2-miss load. If
an entry does not exist for the load in the predictor, the value
of the load is not predicted. Two outputs are generated by the
AVD predictor: a predicted bit which informs the processor
whether or not a prediction is generated for the load and the
predicted value. If the predicted bit is set, the predicted value is
written into the destination register of the load so that its
dependent instructions read it and are executed. If the
predicted bit is not set, the processor discards the predicted
value and marks the destination register of the load as INV in
the register file (as in conventional runahead execution [25])
so that dependent instructions are marked as INV and their
results are not used.

The AVD predictor does not require any hardware for
state recovery on AVD or branch mispredictions. Branch
mispredictions do not affect the state of the AVD predictor
since the predictor is updated only by retired load
instructions (i.e., there are no wrong-path updates). The
correctness of the AVD prediction cannot be determined
until the L2 miss that triggered the prediction returns back
from main memory. We found that it is not worth updating
the state of the predictor on an AVD misprediction detected
when the L2 cache miss returns back from main memory
since the predictor will be updated anyway when the load
is reexecuted and retired in normal execution mode after
the processor exits from runahead mode.

An AVD misprediction can occur only in runahead
mode. When it occurs, instructions that are dependent on
the predicted L2-miss load can produce incorrect results.
This may result in the generation of incorrect prefetches or
the overturning of correct branch predictions. However,
since runahead mode is purely speculative,’ there is no
need to recover the processor state on an AVD mispredic-
tion. We found that an incorrect AVD prediction is not
necessarily harmful for performance. If the predicted AVD

5. That is, runahead mode makes no changes to the architectural state of
the processor.

is close enough to the actual AVD of the load, dependent
instructions sometimes still generate useful L2 cache misses
that are later needed by the processor in normal mode.
Hence, we do not initiate state recovery on AVD mispredic-
tions that are resolved during runahead mode.

4.2 Hardware Cost and Complexity

Our goal in the design of the AVD predictor is to avoid high
hardware complexity and large storage requirements, but to
still improve performance by focusing on predicting the
addresses of an important subset of address loads. Since the
AVD predictor filters out the loads for which the absolute
value of the AVD is too large (using the MaxAVD thresh-
old), the number of entries required in the predictor does
not need to be large. In fact, Section 6 shows that a 4-entry
AVD predictor is sufficient to get most of the performance
benefit of the described mechanism. The storage cost
required for a 4-entry predictor is very small (212 bits®).
The logic required to implement the AVD predictor is also
relatively simple, as shown in Fig. 4. Furthermore, neither
the update nor the access of the AVD predictor is on the
critical path of the processor. The update is performed after
retirement, which is not on the critical path. The access
(prediction) is performed only for load instructions that
miss in the L2 cache and it does not affect the critical L1 or
L2 cache access times. Therefore, the complexity of the
processor or the memory system is not significantly
increased with the addition of an AVD predictor.

5 PERFORMANCE EVALUATION METHODOLOGY

We evaluate the performance impact of AVD prediction on
an execution-driven Alpha ISA simulator that models an
aggressive superscalar, out-of-order execution processor.
The baseline processor employs runahead execution as
described by Mutlu et al. [25] in order to tolerate long
L2 cache miss latencies. The parameters of the processor we
model are shown in Table 1.

We evaluate AVD prediction on 11 pointer-intensive and
memory-intensive benchmarks from the Olden [28] and
SPEC INT 2000 benchmark suites. We examine seven

6. Assuming a 4-entry, 4-way AVD predictor with 53 bits per entry:
32 bits for the tag, 17 bits for the AVD (i.e., MaxAVD = 65, 535), 2 bits for
confidence, and 2 bits to support a True LRU (Least Recently Used)
replacement policy.

MUTLU ET AL.: ADDRESS-VALUE DELTA (AVD) PREDICTION: A HARDWARE TECHNIQUE FOR EFFICIENTLY PARALLELIZING DEPENDENT...

1497

TABLE 2
Relevant Information about the Studied Benchmarks

[[[bisort | health | mst [perimeter [trecadd| tsp [voromoi| mcf [parser [twolf [vpr |
Input Data Set .250’000 5 leYels s12 4.K x4K [1024K 109’.000 20’.0 00 smred.in | test.in | ref ref
integers | 500 iters | nodes | image nodes | cities | points

Simulated instruction count 468M | 197M | 88M 46M 191IM | 1050M | 139M | 110M [412M [250M | 250M
Baseline IPC 1.07 0.05 1.67 0.92 0.90 1.45 1.31 0.97 1.33 | 0.73 | 0.88

Exec. time reduction due to runahead || 19.3% | -3.7% [624% | 30.5% |22.5% [09% | 22.1% | 37.8% | 2.4% |22.3% | 18.9%
L2 data misses per 1K instructions 1.03 41.59 5.60 4.27 4.33 0.67 2.41 29.60 1.05 | 2.37 | 1.69
% L2 misses due to address loads 721% | 73.5% |[338% | 62.9% | 57.6% | 46.2% | 78.6% | 50.3% |[30.1% [26.3% | 2.1%

IPC and L2 miss rates are shown for the baseline runahead processor.

memory-intensive benchmarks from the Olden suite, which
gain at least 10 percent performance improvement with a
perfect L2 cache, and the four relatively pointer-intensive
benchmarks (mcf, parser, twolf, vpr) from the SPEC
INT 2000 suite. All benchmarks were compiled for the
Alpha EV6 ISA with the —03 optimization level. Twolf and
vpr benchmarks are simulated for 250 million instructions
after skipping the program initialization code using a
SimPoint-like tool [32]. To reduce simulation time, mcf is
simulated using the MinneSPEC reduced input set [17].
Parser is simulated using the test input set. Olden
benchmarks are executed to completion. We used the
simple, general-purpose memory allocator (malloc) pro-
vided by the standard C library on an Alpha OSF1 V5.1
system. We did not consider a specialized memory allocator
that would further benefit AVD prediction and we leave the
design of such memory allocators for future work.

Table 2 shows information relevant to our studies about
the simulated benchmarks. Unless otherwise noted, perfor-
mance improvements are reported in terms of execution
time normalized to the baseline processor throughout this
paper. IPCs of the evaluated processors, if needed, can be
computed using the baseline IPC (retired Instructions Per
Cycle) performance numbers provided in Table 2 and the
normalized execution times. Table 2 also shows the
execution time reduction due to runahead execution and
we can see that the baseline runahead mechanism provides
significant performance improvements except for three
benchmarks, health, tsp, and parser. In addition, the fraction
of L2 misses that are due to address loads is shown for each
benchmark since our mechanism aims to predict the
addresses loaded by address loads. We note that, in all
benchmarks except vpr, at least 25 percent of the L2 cache
data misses are caused by address loads. Benchmarks from

=
©

o
%

e
3

o
o

= infinite-entry AVD predictor

= 4K-entry,4-way AVD pred (27 KB)

= 32-entry,4-way AVD pred (204 bytes)
16-entry,4-way AVD pred (102 bytes)

= 8-entry,4-way AVD pred (51 bytes)
4-entry,4-way AVD pred (27 bytes)

Normalized Execution Time
o o o o
5 & = O

[

> &

& > 5 & 5 &
FF oGS e FS

e
=3

Fig. 5. AVD prediction performance on a runahead processor.

the Olden suite are more address-load intensive than the set
of pointer-intensive benchmarks in the SPEC INT 2000
suite. Hence, we expect our mechanism to perform better on
Olden applications.

6 PERFORMANCE OF THE BASELINE AVD
PREDICTION MECHANISM

Fig. 5 shows the performance improvement obtained when
thebaseline runahead execution processor is augmented with
the AVD prediction mechanism. We model an AVD predictor
with a MaxAVD of 64K. A prediction is made if the confidence
counter has a value of 2 (i.e., if the same AVD was seen
consecutively in the last two executions of the load). On
average, the execution time is improved by 12.6 percent
(5.5 percent when health is excluded’) with the use of an
infinite-entry AVD predictor. No performance degradation is
observed on any benchmark. Benchmarks that have a very
high L2 cache miss rate, most of which is caused by address
loads (health, perimeter, and treeadd, as seen in
Table 2), see the largest improvements in performance.
Benchmarks with few L2 misses caused by address loads
(e.g., vpr) do not benefit from AVD prediction.

A 32-entry, 4-way AVD predictor improves the execution
time as much as an infinite-entry predictor for all bench-
marks except twolf. In general, as the predictor size
decreases, the performance improvement provided by the
predictor also decreases. However, even a 4-entry AVD
predictor improves the average execution time by 11.0 per-
cent (4.0 percent without health). Because AVD prediction
aims to predict the values produced by a regular subset of
address loads, it does not need to keep track of data loads or
address loads with very large AVDs. Thus, the number of
load instructions competing for entries in the AVD
predictor is fairly small and a small predictor is good at
capturing them.

Table 3 provides insight into the performance improve-
ment of AVD prediction by showing the increase in
memory-level parallelism [11], [6] achieved with and
without a 16-entry AVD predictor. We define the mem-
ory-level parallelism in a runahead period as the number of
useful L2 cache misses generated in a runahead period.®

7. The performance of health can be improved by orders of magnitude
by rewriting the program, as shown by Zilles [42]. Therefore, we show
average performance results both including and excluding this program
throughout the rest of the paper.

8. A useful L2 cache miss is an L2 cache miss generated during runahead
mode that is later needed by a correct-path instruction in normal mode.
Only L2 line (block) misses that cannot already be generated by the
processor’s fixed-size instruction window are counted.

1498

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

TABLE 3
Average Number of Useful L2 Cache Misses Generated during a Runahead Period with a 16-Entry AVD Predictor

[[[bisort | health | mst [perimeter [treeadd [tsp [voronoi | mcf [parser [twolf [vpr | avg |

(L2 misses - baseline runahead || 2.01 | 0.03 | 793 | 145 | 1.02 [0.19 | 081 [I151] 0.12 | 0.84 [0.04 | 2.44 |
[T2 misses - 16-cniry AVD pred || 2.40 | 636 | 851 | 1.67 | 153 |0.25| 090 |12.05] 050 | 087 | 0.94 | 3.27 |
(% reduction in execution time || 2.0% | 82.1% | 84% | 8.4% | 17.6% |4.5% | 0.8% | 2.1% | 6.3% | 0.0% [0.0% | 12.1% |

With AVD prediction, the average number of L2 cache
misses parallelized in a runahead period increases from
2.44 to 3.27. Benchmarks that show large increases in the
average number of useful L2 misses with an AVD predictor
also show large increases in performance.

We have analyzed the performance improvement of
AVD prediction and evaluated the design options, such as
the confidence threshold and the value of MaxAVD, in an
implementable AVD predictor in a previous paper [23]. In
this paper, after briefly analyzing the performance of AVD
prediction with respect to stride value prediction (in
Section 6.1), we focus our attention on new hardware and
software optimizations that can improve the performance
benefits of AVD prediction (Section 7) and examine the
interaction of AVD prediction with previously proposed
runahead efficiency techniques and stream-based data
prefetching (Section 8).

6.1 AVD Prediction versus Stride Value Prediction

We compare the proposed AVD predictor to stride value
prediction [31]. When an L2-miss is encountered during
runahead mode, the stride value predictor (SVP) is accessed
for a prediction. If the SVP generates a confident prediction,
the value of the L2-miss load is predicted. Otherwise, the
L2-miss load marks its destination register as INV. Fig. 6
shows the normalized execution times obtained with an
AVD predictor, a stride value predictor, and a hybrid AVD-
stride value predictor.” Stride value prediction is more
effective when the predictor is larger, but it provides only
4.5 percent (4.7 percent without health) improvement in
average execution time even with a 4K-entry predictor
versus the 12.6 percent (5.5 percent without health)
improvement provided by the 4K-entry AVD predictor.
With a small, 16-entry predictor, stride value prediction
improves the average execution time by 2.6 percent
(2.7 percent without health), whereas AVD prediction
results in 12.1 percent (5.1 percent without health)
performance improvement. The filtering mechanism (i.e.,
the MaxAVD threshold) used in the AVD predictor to
identify and predict only address loads enables the
predictor to be small and still provide significant perfor-
mance improvements.

The benefits of stride and AVD predictors overlap for
traversal address loads. Both predictors can capture the
values of traversal address loads if the memory allocation
pattern is regular. Many L2 misses in treeadd are due to
traversal address loads, which is why both SVP and AVD

9. In our experiments, the hybrid AVD-SVP predictor does not require
extra storage for the selection mechanism. Instead, the prediction made by
the SVP is given higher priority than the prediction made by the AVD
predictor. If the SVP generates a confident prediction for an L2-miss load,
its prediction is used. Otherwise, the prediction made by the AVD predictor
is used, if confident.

predictors perform very well and similarly for this
benchmark.

Most leaf address loads cannot be captured by SVP,
whereas an AVD predictor can capture those with constant
AVD patterns. The benchmark health has many AVD-
predictable leaf address loads, an example of which is
described in detail in [23]. The traversal address loads in
health are irregular and, therefore, cannot be captured by
either SVP or AVD. Hence, AVD prediction provides
significant performance improvement in health, whereas
SVP does not. We found that benchmarks mst, perimeter,
and tsp also have many leaf address loads that can be
captured with an AVD predictor but not with SVP.

In contrast to an AVD predictor, an SVP is able to capture
data loads with constant strides. For this reason, SVP
significantly improves the performance of parser. In this
benchmark, correctly value-predicted L2-miss data loads
lead to the execution and correct resolution of dependent
branches which were mispredicted by the branch predictor.
SVP improves the performance of parser by keeping the
processor on the correct path during runahead mode rather
than by allowing the parallelization of dependent cache
misses.

Fig. 6 also shows that combining stride value prediction
and AVD prediction results in a larger performance
improvement than that provided by either of the prediction
mechanisms alone. For example, a 16-entry hybrid AVD-
SVP predictor results in 13.4 percent (6.5 percent without
health) improvement in average execution time. As shown
in code examples in Section 3, address-value delta predict-
ability is different in nature from stride value predictability.
A load instruction can have a predictable AVD but not a
predictable stride and vice versa. Therefore, an AVD
predictor and a stride value predictor sometimes generate
predictions for loads with different behavior, resulting in
increased performance improvement when they are com-
bined. This effect is especially salient in parser, where we

1.0+

09

0.8

0.7

0.6

0.5

04

03

0.2

o l
0.0 >

o
&N s &
\&%o z& & & 6‘0 K

= 4K-entry AVD predictor

= 4K-entry SVP

= 4K-entry AVD-SVP hybrid
16-entry AVD predictor

= 16-entry SVP

16-entry AVD-SVP hybrid

Normalized Execution Time

Fig. 6. AVD prediction versus stride value prediction.

MUTLU ET AL.: ADDRESS-VALUE DELTA (AVD) PREDICTION: A HARDWARE TECHNIQUE FOR EFFICIENTLY PARALLELIZING DEPENDENT...

found that the AVD predictor is good at capturing leaf
address loads and the SVP is good at capturing zero-stride
data loads.

In summary, AVD prediction advances the state-of-the-
art in the following ways as compared to stride value
prediction:

1. AVD prediction can capture stable patterns in leaf
address loads, whereas SVP cannot.

2. AVD prediction detects stable relationships between
the input (address) and output (data value) of a load
instruction, whereas SVP detects stable relationships
in the outputs (data values) across successive
dynamic instances of a load instruction. This enables
two benefits:

e First,an AVD predictor can capture stable AVDs
that occur for a traversal load instruction that
does not have a stable stride because of the way
the data structure is traversed. For example, in
the traversal of a binary tree, there may be a
stable AVD for node = node->left (because a
node and its left child may be allocated
consecutively), but the successive instances of
the same instruction may not have a stable stride
because the tree may be traversed in an irregular
fashion, visiting the left children of some nodes
and the right children of others.

e Second, the hardware for an AVD predictor can
be simple because the detection and mainte-
nance of the stable pattern does not require the
examination of (the outputs of) different in-
stances of a load instruction. Maintenance of a
stride across different instances of an instruction
in a pipelined processor is relatively complex, as
described in [2].

3. An AVD predictor does not require a large number
of entries to provide large performance improve-
ments because it filters out the data load instructions
from the predictor table. In contrast, SVP does
require a large number of predictor entries because
it tries to predict the data values of all load
instructions. Since the address load instruction
working set of a program is usually much larger
than its data load instruction working set, an AVD
predictor can be very small.

7 HARDWARE AND SOFTWARE OPTIMIZATIONS FOR
AVD PREDICTION

The results presented in the previous section were based on
the baseline AVD predictor implementation described in
Section 4. This section explores one hardware optimization
and one software optimization that increases the benefits of
AVD prediction by taking advantage of the data structure
traversal and memory allocation characteristics in applica-
tion programs.

7.1 Null-Value Optimization

In the AVD predictor we have evaluated, the confidence
counter of an entry is reset if the computed AVD of the
retired address load associated with the entry is not valid

1499

A

A+2k A+5k A+9k A+12k
A+3k [\ A+4k @A+7k A+10] A+1 lk@A+l4k

NULL NULL NULL NULL NULL NULL NULL NULL

k: size of each node (k < MaxAVD)
A: virtual address of the root of the tree (A > MaxAVD)

Fig. 7. An example binary tree traversed by the t reeadd program. Links
traversed by Load 1 in Fig. 2 are shown in bold.

(i.e., not within bounds [-MaxAVD, MaxAVD]). The AVD of a
load instruction with a data value of zero is almost always
invalid because the effective addresses computed by load
instructions tend to be very large in magnitude. As a result,
the confidence counter of an entry is reset if the associated
load is retired with a data value of 0 (zero). For address
loads, a zero data value has a special meaning: A NULL
pointer is being loaded. This indicates the end of a linked
data structure traversal. If a NULL pointer is encountered
for an address load, it may be better not to reset the
confidence counter for the corresponding AVD, because the
AVD of the load may otherwise be stable except for the
intermittent instabilities caused by NULL pointer loads.
This section examines the performance impact of not
updating the AVD predictor if the value loaded by a retired
address load is zero. We call this optimization the NULL-
value optimization.

If the AVD of a load is stable except when a NULL
pointer is loaded, resetting the confidence counter upon
encountering a NULL pointer may result in a reduction in
the prediction coverage of an AVD predictor. We show why
this can happen with an example. Fig. 7 shows an example
binary tree that is traversed by the treeadd program. The
tree is traversed with the source code shown in Fig. 2. The
execution history of the load that accesses the left child of
each node (Load 1 in Fig. 2) is shown in Table 4. This table
also shows the predictions for Load 1 that would be made
by two different AVD predictors: one that resets the
confidence counters on a NULL value and one that does
not change the confidence counters on a NULL value. Both
predictors have a confidence threshold of 2. To simplify the
explanation of the example, we assume that the predictor is
updated before the next dynamic instance of Load 1 is
executed."’

The execution history of Load 1 shows that not updating
the AVD predictor on a NULL value is a valuable
optimization. If the confidence counter for Load 1 in the
AVD predictor is reset on a NULL data value, the AVD
predictor generates a prediction for only three instances of
Load 1 out of a total of 15 dynamic instances (i.e.,
coverage = 20%). Only one of these predictions is correct

10. This may not be the case in an out-of-order processor. Our
simulations faithfully model the update of the predictor based on
information available to the hardware.

1500

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

TABLE 4
Execution History of Load 1 in the treeadd Program (See Fig. 2) for the Binary Tree Shown in Fig. 7

Dynamic | Effective

Predicted AVD and (value) | Predicted AVD and (value)

instance | Address Data Value | Correct AVD | AVD valid? reset on NULL no reset on NULL
1 A A+k -k valid no prediction no prediction
2 A+k A+2k -k valid no prediction no prediction
3 A+2k A+3k -k valid -k (A+3k) -k (A+3k)
4 A+3k | 0(NULL) A+3k not valid -k (A+4k) -k (A+4k)
5 A+4k | 0 (NULL) A+4k not valid no prediction -k (A+5k)
6 A+5k A+6k -k valid no prediction -k (A+6k)
7 A+6k | 0 (NULL) A+6k not valid no prediction -k (A+7k)
8 A+7k | 0 (NULL) A+7k not valid no prediction -k (A+8k)
9 A+8k A+9k -k valid no prediction -k (A+9k)
10 A+9k A+10k -k valid no prediction -k (A+10k)
11 A+10k | 0 (NULL) A+10k not valid -k (A+11k) -k (A+11k)
12 A+11k | 0 (NULL) A+l11k not valid no prediction -k (A+12k)
13 A+12k A+13k -k valid no prediction -k (A+13k)
14 A+13k [0 (NULL) A+13k not valid no prediction -k (A+14k)
15 A+14k [0 (NULL) A+14k not valid no prediction -k (A+15k)

(i.e., accuracy = 33%). In contrast, if the AVD predictor is
not updated on a NULL data value, it would generate a
prediction for 13 dynamic instances (coverage = 87%), five
of which are correct (accuracy = 38%).!' Hence, not updat-
ing the AVD predictor on NULL data values significantly
increases the coverage without degrading the accuracy of
the predictor since the AVD for Load 1 is stable except
when it loads a NULL pointer.

For benchmarks similar to t reeadd where short regular
traversals frequently terminated by NULL pointer loads are
common, not updating the AVD predictor on a NULL data
value would be useful. NULL-value optimization requires
that a NULL data value be detected by the predictor. Thus,
the update logic of the AVD predictor needs to be
augmented with a simple comparator to zero (zero checker).

Fig. 8 shows the impact of using NULL-value optimiza-
tion on the execution time of the evaluated benchmarks.
NULL-value optimization significantly improves the execu-
tion time of treeadd (by 41.8 percent versus the
17.6 percent improvement when confidence is reset on
NULL values) and does not significantly impact the
performance of other benchmarks. On average, it increases
the execution time improvement of a 16-entry AVD
predictor from 12.1 percent to 14.3 percent (from 5.1 percent
to 7.5 percent excluding health), mainly due to the
improvement in treeadd.

To provide insight into the performance improvement in
treeadd, Figs. 9 and 10 show the coverage and accuracy of
AVD predictions for L2-miss address loads. Not updating
the AVD predictor on NULL values increases the coverage
of the predictor from 50 percent to 95 percent in treeadd
while also slightly increasing its accuracy. For most other
benchmarks, the AVD prediction coverage also increases
with the NULL-value optimization; however, the AVD
prediction accuracy decreases. Therefore, the proposed
NULL-value optimization does not provide a significant
performance benefit in most benchmarks.'?

11. Even though many of the predicted AVDs are incorrect in the latter
case, the predicted values are later used as addresses by the same load
instruction. Thus, AVD prediction can provide prefetching benefits even if
the predicted AVDs may not be correct.

12. In some benchmarks, encountering a NULL pointer actually
coincides with the end of a stable AVD pattern. Not updating the AVD
predictor on NULL values in such cases increases coverage but reduces
accuracy.

7.2 Optimizing the Source Code to Take Advantage

of AVD Prediction

As evident from the code examples shown in Section 3, the
existence of stable AVDs highly depends on the existence of
regular memory allocation patterns arising from the way
programs are written. We demonstrate how increasing the
regularity in the allocation patterns of linked data structures
—by modifying the application source code—increases the
effectiveness of AVD prediction on a runahead processor.
To do so, we use the source code example from the parser
benchmark that was explained in Section 3.2 and Fig. 3.

In the parser benchmark, stable AVDs for Load 1 in
Fig. 3 occur because the distance in memory of a string
and its associated Dict_node is constant for many nodes
in the dictionary. As explained in Section 3.2, the distance in
memory between a string and its associated Dict_node
depends on the size of the string because the parser
benchmark allocates memory space for string first and
Dict_node next. If the allocation order for these two
structures is reversed (i.e., if space for Dict_node is
allocated first and string next), the distance in memory
between string and Dict_node would no longer be
dependent on the size of the string, but it would be
dependent on the size of Dict_node. Since the size of the
data structure Dict_node is constant, the distance between
string and Dict_node would always be constant. Such
an optimization in the allocation order would therefore
increase the stability of the AVDs of Load 1. Fig. 11b shows

o

| -d
o
v

e o
Q »
! |

o
o
i

=
&
1

o
=
|

Normalized Execution Time
o
@
1

Fig. 8. AVD performance with and without NULL-value optimization.

MUTLU ET AL.: ADDRESS-VALUE DELTA (AVD) PREDICTION: A HARDWARE TECHNIQUE FOR EFFICIENTLY PARALLELIZING DEPENDENT...

=)
=1

o
=3

== coverage - reset on NULL

I
=== coverage - NULL-value opt.

3
>

]
>

Prediction Coverage for L2-miss Address Loads (%)

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr

T
«
©

. Effect of NULL-value optimization on AVD prediction coverage.

100

90 { accuracy - reset on NULL
=== accuracy - NULL-value opt.

% Predictions That Are Correct (Accuracy)

bisort

health mst perimeter treeadd tsp voronoi mcf parser twolf vpr

Fi

g. 10. Effect of NULL-value optimization on AVD prediction accuracy.

the modified source code that allocates memory space for
Dict_node first and string next. Note that this optimiza-
tion requires only three lines to be modified in the original
source code of the parser benchmark.

Fig. 12 shows the execution time of the baseline parser
binary and the modified parser binary on a runahead
processor with and without AVD prediction support. The
performances of the baseline and modified binaries are the
same on the runahead processor that does not implement
AVD prediction, indicating that the code modifications
shown in Fig. 11 do not significantly change the perfor-
mance of parser on the baseline runahead processor.
However, when run on a runahead processor with AVD
prediction, the modified binary outperforms the base binary
by 4.4 percent. Hence, this very simple source code
optimization significantly increases the effectiveness of
AVD prediction by taking advantage of the way AVD
prediction works.

Fig. 13 shows the AVD prediction coverage and accuracy
for L2-miss address loads on the baseline binary and the
modified binary. The described source code optimization
increases the accuracy of AVD prediction from 58 percent to
83 percent. Since the modified binary has more regularity in
its memory allocation patterns, the resulting AVDs for
Load 1 are more stable than in the baseline binary. Hence
the increase in AVD prediction accuracy and performance.

8 INTERACTION OF AVD PREDICTION WITH OTHER
TECHNIQUES

A runahead processor will likely incorporate other techni-
ques that interact with AVD prediction, such as techniques
for efficient runahead processing and stream-based
hardware data prefetching. Some of the benefits provided

1501

struct Dict_node {
char *string; char *string;
Dict_node *left, *right; Dict_node *left, *right;

I/ ...
} string allocated FIRST) [Dict_node allocated FIRST |
char *get_a_word(...) { char *get_a_word(..., Dict_node **dn) { \

// read a word from file // read a word from file

(s = (char *) xalloc(strlen(word) + 1);) »{(*dn = (Dict_node *) xalloc(sizeof(Dict_node));)
strepy (s, word); (s = (char *) xalloc(strlen(word) + 1);)

return s; strcpy(s, word);
X string allocated NEXT
Dict_node *read_word_file(...) {

return s;
"o Dict_node *read_word_file(...) {

char *s; Dict_node *dn;
while ((s = get_a_word(...)) != NULL) char *s; Dict_node *dn;

struct Dict_node {

dn = (Dict_node *) "Dict_nnde))_;) while ((s ='get_a_word(..., &dn)) !=NULL) {
dn—>siring = 5, dn—>string = s;
. [/

,)

return dn; Dict_node allocated NEXT return dn;

} }

(@) (b)

Fig. 11. Source code optimization performed in parser. (a) Base
source code that allocates the nodes of the dictionary (binary tree) and
the strings. (b) Modified source code (modified lines are in bold).

=== Base binary - baseline runahead

== Base binary - 16-entry AVD pred
1.05 —| ==== Modified binary - baseline runahead | —
=== Modified binary - 16-entry AVD pred

Normalized Execution Time

Fig. 12. Effect of source code optimization on AVD prediction
performance in parser.

S 100 =mmm Base binary
% %0 === Modified binary
£
£ s
=
E 70
E 60
«
ot
S 50
s
%)
£ 40
>
< 30
Bt
=]
g 20
o0
]
2 10
=]
o

0

Coverage Accuracy

Fig. 13. Effect of source code optimization on AVD prediction coverage
and accuracy in parser.

by these mechanisms can be orthogonal to the benefits
provided by AVD prediction, some not. We examine two
such mechanisms that were previously proposed in the
literature and analyze their interactions with AVD predic-
tion in a runahead processor.

1502

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

TABLE 5
Evaluated Runahead Efficiency Techniques

Short runahead period elimination

Processor does not initiate runahead on an L2 miss that has been in flight for more than T=400 cycles.

Overlapping runahead period elimination

Not implemented. We found overlapping periods to be useful for performance in the benchmark set examined.

1. 64-entry, 4-way RCST to eliminate useless periods based on the usefulness history of a load instruction

Useless runahead period elimination

2. Exit runahead mode if 75% of the load instructions executed is INV after 50 cycles in runahead mode

3. Sampling: If the last N=100 runahead periods caused less than T=5 L2 cache misses, do not initiate

runahead for the next M=1000 L2 cache misses

8.1 Interaction of AVD Prediction with Efficiency

Techniques for Runahead Execution
Several techniques have been proposed to increase the
efficiency of a runahead processor [24]. The efficiency of a
runahead processor is defined as:

Percent Increase In Performance Due To Runahead
cent Increase In Executed Instructions Due To Runahead®

Efficiency=pq

Previously proposed efficiency techniques improve
runahead efficiency by eliminating short, overlapping, and
otherwise useless runahead periods without significantly
reducing the performance improvement provided by runa-
head execution. In essence, these techniques predict
whether or not a runahead period is going to be useful
(i.e., will generate a useful L2 cache miss). If the runahead
period is predicted to be useless, entry into runahead mode
is disabled.

In contrast, AVD prediction improves the efficiency of a
runahead processor by increasing the usefulness of runahead
periods (either by turning a useless runahead period into
a useful one or by increasing the usefulness of an already
useful runahead period). Since AVD prediction and
runahead efficiency techniques improve runahead effi-
ciency in different ways, we would like to combine these
two approaches and achieve even further improvements
in runahead efficiency.

We have evaluated the runahead efficiency techniques
proposed in [24] alone and in conjunction with AVD
prediction. Table 5 lists the implemented techniques and
the threshold values used in the implementation. For a
thorough description of each technique, we refer the
reader to [24].

Figs. 14 and 15 show, respectively, the normalized
execution time and the normalized number of executed
instructions when AVD prediction and efficiency techni-
ques are utilized individually and together. We assume that

]
o
L | |
€ 09
§ 0.8 I “
E 0.7 I H
:§ 06 I = no runahead u
g 05 I = baseline runahead n
g 04 = 16-entry AVD pred
Z 03 I efficiency techniques H
02 1 = AVD + efficiency techniques |
o1 1 i
0.0 I
1
I

59 > &
&@-‘&'&@b@ & & & &

Fig. 14. Performance with AVD prediction and runahead efficiency
techniques.

NULL-value optimization is employed in the AVD pre-
dictor. In general, efficiency techniques are very effective at
reducing the number of executed instructions. However,
they also result in a slight performance loss. On average,
using the efficiency techniques results in a 30 percent
reduction in executed instructions accompanied by a
2.5 percent increase in execution time on the baseline
runahead processor.

Compared to the efficiency techniques, AVD prediction
is less effective in reducing the number of executed
instructions. However, AVD prediction increases the base-
line runahead performance while also reducing the exe-
cuted instructions. On average, using a 16-entry AVD
predictor results in a 15.5 percent reduction in executed
instructions accompanied by a 14.3 percent reduction in
execution time.

Using AVD prediction in conjunction with the previously
proposed efficiency techniques further improves efficiency
by both reducing the number of instructions and, at the same
time, increasing performance. When AVD prediction and
efficiency techniques are used together in the baseline
runahead processor, a 35.3 percent reduction in executed
instructions is achieved accompanied by a 10.1 percent
decrease in execution time. Hence, AVD prediction and the
previously proposed efficiency techniques are complemen-
tary to each other and they interact positively.

Fig. 16 shows the normalized number of runahead
periods using AVD prediction and efficiency techniques.
Efficiency techniques are more effective in eliminating
useless runahead periods than AVD prediction. Efficiency
techniques alone reduce the number of runahead periods
by 53 percent on average. Combining AVD prediction and
efficiency techniques eliminates 57 percent of all runahead
periods and the usefulness of already useful runahead
periods also increases.

09

0.8

0.7

0.6

0.5

04

= no runahead

03 = baseline runahead

=]16-entry AVD pred
0.2 efficiency techniques

= AVD + efficiency technique:
0.1 = = = =

Normalized Number of Executed Instructions

0.0

Fig. 15. Executed instructions with AVD prediction and runahead
efficiency techniques.

MUTLU ET AL.: ADDRESS-VALUE DELTA (AVD) PREDICTION: A HARDWARE TECHNIQUE FOR EFFICIENTLY PARALLELIZING DEPENDENT...

100 1] = Base (useful)

= Base (useless)

= AVD (useful)

= AVD (useless)

= Eff. (useful)

= Eff. (useless)

= AVD+ESf (useful)
= AVD+ET (useless)|

Normalized Number of Runahead Periods

bisort health mst perimetertrecadd tsp voronoi mef parser twolf vpr avg

Fig. 16. Useful/useless runahead periods with AVD prediction and
runahead efficiency techniques.

We conclude that using both AVD prediction and
efficiency techniques together provides a better efficiency-
performance trade-off than using either of the mechanisms
alone. Therefore, an efficient runahead processor should
probably incorporate both AVD prediction and runahead
efficiency techniques.

8.2 Interaction of AVD Prediction with Stream-
Based Prefetching

Stream-based prefetching [14] is a technique that identifies
regular streaming patterns in the memory requests generated
by a program. Once a streaming pattern is identified, the
stream prefetcher generates speculative memory requests for
later addresses in the identified stream. We compare the
performance benefits and bandwidth requirements of an
AVD predictor and an aggressive state-of-the-art stream-
based prefetcher along with a combination of both
techniques. The experiments in this section assume that
the AVD predictor implements the NULL-value optimiza-
tion described in Section 7.1.

The stream prefetcher we model is similar to the IBM
Power 4 prefetcher described by Tendler et al. [35]. We
evaluate two configurations of the same prefetcher: an
aggressive one with a prefetch distance of 32 (ie., a
prefetcher that can stay 32 cache lines ahead of the
processor’s access stream) and a relatively conservative
one with a prefetch distance of 8. Both configurations have
32 stream buffers. We found that increasing the number of
stream buffers beyond 32 provides negligible benefits. A
stream buffer is allocated on an L2 cache miss. The stream
buffers are trained with L2 cache accesses. A generated
prefetch request first queries the L2 cache. If it misses, it

| = 16-entry AVD pred

= stream pref (distance 32)

= stream pref (distance 8)
AVD + stream (distance 32

= AVD + stream (distance 8)

Normalized Execution Time

Fig. 17. AVD prediction versus stream prefetching.

Q

1503
20 -
T
19 - M

I = 16-entry AVD pred '

% 18 = stream pref (di 32) ;

g I = stream pref (distance 8) |

T AVD + stream (di 3

L—; 16 = AVD + stream (di 8) !

P !

5 |

|

3 :

K ‘a0 all

1

H :
=)
z

H |

> >
LS & & s & s | &
A I A Y 3 & S

Fig. 18. Increase in L2 accesses due to AVD prediction and stream
prefetching.

generates a memory request. Prefetched cache lines are
inserted into the L2 cache.

Fig. 17 shows the execution time improvement when
AVD prediction and stream prefetching are employed
individually and together on the baseline runahead
processor. Figs. 18 and 19, respectively, show the increase
in the number of L2 accesses and main memory accesses
when AVD prediction and stream prefetching are em-
ployed individually and together. On average, the stream
prefetcher with a prefetch distance of 32 improves the
average execution time of the evaluated benchmarks by
16.5 percent (18.1 percent when health is excluded) while
increasing the number of L2 accesses by 33.1 percent and
main memory accesses by 14.9 percent. A prefetch distance
of 8 provides an average performance improvement of
13.4 percent (14.8 percent excluding health) and results in
a 25 percent increase in L2 accesses and a 12.2 percent
increase in memory accesses. In contrast, a 16-entry AVD
predictor improves the average execution time of the
evaluated benchmarks by 14.3 percent (7.5 percent exclud-
ing health) while increasing the number of L2 accesses by
only 5.1 percent and main memory accesses by only
3.2 percent. Hence, AVD prediction is much less band-
width-intensive than stream prefetching, but it does not
provide as much performance improvement.

Using AVD prediction and stream prefetching together
on a runahead processor improves the execution time by
more than either of the two techniques does alone. This
shows that the two techniques are in part complementary.

20

|
B 3
] =]16-entry AVD pred |
P 1.8 = stream pref (distance 32) ;
S = stream pref (distance 8) |
uE» 17 AVD + stream (distance 32)| 3
é e = AVD + stream (distance 8) !
g 1 I
z] -
H :
g4 :
£ s ‘ :
z 1 i
Tl | | 3 _
E :
E 11
=}
B! oIi . T r— u
S N & & Q S & S $ 1 & 5
& & ¢ Q{f & ¢ F & F & s 3

Fig. 19. Increase in memory accesses due to AVD prediction and stream
prefetching.

1504
i

15 2%

14

13 ——
E 12 — =
A ll+—=""" — ——1
=
g 1.0
'g 0.9
2 08
%
R 07
3
% 06 = baseline runahead (with wrong path)
g 05 = 16-entry AVD pred (with wrong path)
g 04 = NULL-value opt. (with wrong path)
z 03 baseline runahead (no wrong path)

02 = 16-entry AVD pred (no wrong path)

0.1 I NULL-value opt. (no wrong path)

0.0

bisort health mst perimeter treeadd tsp voronoi mcf parser twolf vpr avg

Fig. 20. Impact of wrong-path modeling on AVD prediction and NULL-
value optimization performance.

Using a 16-entry AVD predictor and a stream prefetcher
with distance 32 improves the average execution time by
249 percent (19.5 percent excluding health) while
increasing the L2 accesses by 35.3 percent and main
memory accesses by 19.5 percent.

In general, AVD prediction is limited to prefetching the
addresses of dependent load instructions, whereas a stream
prefetcher can prefetch addresses generated by both
dependent and independent load instructions. Therefore,
a stream prefetcher can capture a broader range of address
patterns that are of a streaming nature. A traversal address
load with a stable AVD (in this case, also a regular stride)
results in a streaming memory access pattern. Hence,
similarly to an AVD predictor, a stream prefetcher can
prefetch the addresses generated by a traversal address
load with a constant AVD.

In contrast to an AVD predictor, a stream prefetcher can
capture the addresses generated by a leaf address load with
a stable AVD and its dependent instructions only if those
addresses form a streaming access pattern or are part of a
streaming access pattern. An AVD predictor is therefore
more effective in predicting the addresses dependent on
leaf address loads with stable AVDs. For this very reason,
AVD prediction significantly improves the performance of
two benchmarks, health and mst, for which the stream
prefetcher is ineffective.

8.3 Importance of Correctly Modeling Wrong Path

on Performance Estimates for AVD Prediction

In a recent paper [22], we have shown that modeling
wrong-path memory references is crucial to getting an
accurate estimate of the performance improvement pro-
vided by runahead execution. We hereby examine the
impact of modeling wrong-path references on the estimates
of the performance improvements provided by AVD
prediction. We show that the modeling of wrong-path
(i.e., execution-driven simulation as opposed to trace-driven
simulation) is necessary to get accurate performance
estimates of AVD prediction and—perhaps more impor-
tantly—to accurately determine the effect of some AVD
predictor optimizations.

Fig. 20 shows the normalized execution time of three
processors when wrong-path execution is modeled versus
not modeled: the baseline runahead processor, baseline
processor with a 16-entry AVD predictor, and the baseline

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

TABLE 6
Less Aggressive Baseline Processor Configuration

Pipe depth
Pipe width
Branch
Predictors
Instruction
‘Window
Memory

17 stages, 14-cycle min. branch mispred. penalty

4 instructions per cycle fetch/issue/exec/retire
16K-entry gshare/per-address hybrid, 4K-entry selector;
2K-entry, 4-way BTB; 1K-entry indirect target cache;
64-entry reorder buffer; 64-entry INT physical reg. file
64-entry FP physical register file; 48-entry 1d/st buffer
maximum 16 outstanding misses to main memory

processor with a 16-entry AVD predictor with the NULL-
value optimization. If wrong-path execution is not modeled
in the simulator, the performance improvement of AVD
prediction (without NULL-value optimization) is signifi-
cantly underestimated as 8.1 percent (versus 12.1 percent
when wrong-path execution is modeled). This is because
runahead execution on the wrong path provides prefetch-
ing benefits for the normal mode execution on the correct
path, as described in [22]. Furthermore, when wrong-path
execution is not modeled, NULL-value optimization seems
to degrade performance, whereas it increases performance
with accurate modeling of wrong-path execution. Hence,
not modeling wrong-path execution can cause the processor
designer to make a wrong choice in the design of an AVD
predictor.

8.4 Effect of AVD Prediction on a Less Aggressive
Processor

We also evaluate AVD prediction on a less aggressive
baseline processor. Those parameters of the less aggressive
baseline processor that are different from our aggressive
baseline processor are shown in Table 6.

Fig. 21 shows the performance improvement provided
by a 16-entry AVD predictor (with NULL-value optimiza-
tion) in comparison to and in conjunction with a 16-entry
SVP or a stream prefetcher with 16 stream buffers and a
prefetch distance of 16. The AVD predictor improves the
average execution time by 12.9 percent (6.3 percent
excluding health), whereas SVP improves the average
execution time by 2.0 percent (2.2 percent excluding health).
Furthermore, combining SVP or stream-based prefetching
with AVD prediction improves the performance more than
either of the two mechanisms alone. Thus, AVD prediction
remains effective on a less aggressive processor (because
dependent cache misses limit the performance of a less
aggressive processor as well as a more aggressive one) and

I =]6-entry AVD pred
=]16-entry SVP
= 16-entry AVD+SVP hybrid

Normalized Execution Time

stream pref (distance 16)
= AVD + stream (distance 16

Fig. 21. AVD prediction performance on the less aggressive processor.

MUTLU ET AL.: ADDRESS-VALUE DELTA (AVD) PREDICTION: A HARDWARE TECHNIQUE FOR EFFICIENTLY PARALLELIZING DEPENDENT...

its performance benefits complement the benefits of SVP
and stream-based prefetching.

9 RELATED WORK

Several previous papers focused on predicting the values/
addresses generated by pointer loads for value prediction
or prefetching purposes. Most of the proposed mechanisms
we are aware of require significant storage cost and
hardware complexity. The major contribution of our study
is a simple and efficient novel mechanism that allows the
prediction of the values loaded by a subset of pointer loads
by exploiting stable address-value relationships.

Section 9.1 briefly discusses the related research in value
and address prediction for load instructions. Section 9.2
describes the related work in prefetching for pointer loads.
And, Section 9.3 gives a brief overview of the related work
in runahead execution.

9.1 Related Research in Load Value/Address

Prediction

The work most relevant to our research is in the area of
predicting the destination register values of load instruc-
tions. Load value prediction [20], [31] was proposed to
predict the destination register values of loads. Many types
of load value predictors were examined, including last
value [20], stride [10], [31], FCM (finite context method)
[31], and hybrid [36] predictors. While a value predictor
recognizes stable/predictable values, an AVD predictor
recognizes stable address-value deltas. As shown in code
examples in Section 3, the address-value delta for an
address load instruction can be stable and predictable even
though the value of the load instruction is not predictable.
Furthermore, small value predictors do not significantly
improve performance, as shown in Section 6.1.

Load address predictors [10], [2] predict the effective
address of a load instruction early in the pipeline. The value
at the predicted address can be loaded to the destination
register of the load before the load is ready to be executed.
Memory latency can be partially hidden for the load and its
dependent instructions.

Complex (e.g., stride or context-based) value/address
predictors need significant hardware storage to generate
predictions and significant hardware complexity for state
recovery. Moreover, the update latency (i.e., the latency
between making the prediction and determining whether or
not the prediction was correct) associated with stride and
context-based value/address predictors significantly de-
tracts from the performance benefits of these predictors
over simple last value prediction [27], [18]. Good discus-
sions of the hardware complexity required for complex
address/value prediction can be found in [2] and [27].

The pointer cache [7] was proposed to predict the values
of pointer loads. A pointer cache caches the values stored in
memory locations accessed by pointer load instructions. It is
accessed with a load’s effective address in parallel with the
data cache. A pointer cache hit provides the predicted value
for the load instruction. To improve performance, a pointer
cache requires significant hardware storage (at least
32K entries where each entry is 36 bits [7]) because the
pointer data sets of the programs are usually large. In

1505

contrast to the pointer cache, an AVD predictor stores
AVDs based on pointer load instructions. Since the pointer
load instruction working set of a program is usually much
smaller than the pointer data working set, the AVD
predictor requires much less hardware cost. Also, an AVD
predictor does not affect the complexity in critical portions
of the processor because it is small and does not need to be
accessed in parallel with the data cache.

Zhou and Conte [41] proposed the use of value
prediction only for prefetching purposes in an out-of-order
processor such that no recovery is performed in the
processor on a value misprediction. They evaluated their
proposal using a 4K-entry stride value predictor which
predicts the values produced by all load instructions.
Similarly to their work, we employ the AVD prediction
mechanism only for prefetching purposes, which eliminates
the need for processor state recovery.

9.2 Related Research in Pointer Load Prefetching

In recent years, substantial research has been performed in
prefetching the addresses generated by pointer load
instructions. AVD prediction differs from pointer load
prefetching in that it is more than just a prefetching mechanism.
As shown in [23], AVD prediction can be used for simple
prefetching. However, AVD prediction is more beneficial
when it is used as a targeted value prediction technique for
pointer loads that enables the preexecution of dependent
load instructions, which may generate prefetches.

Hardware-based pointer prefetchers [4], [13], [29], [30],
[7] try to dynamically capture the prefetch addresses
generated by traversal loads. These approaches usually
require significant hardware cost to store a history of
pointers. For example, hardware-based jump pointer pre-
fetching requires jump pointer storage that has more than
16K entries (64KB) [30]. A low-overhead content-based
hardware pointer prefetcher was recently proposed by
Cooksey et al. [8]. It can be combined with AVD prediction
to further reduce the negative performance impact of
dependent L2 cache misses.

Software and combined software/hardware methods
have also been proposed for prefetching loads that access
linked data structures [19], [21], [30], [40], [15], [33], [5], [38],
[1]. Most relevant to AVD prediction, one software-based
prefetching technique, MS Delta [1], uses the garbage
collector in a runtime managed Java system to detect
regular distances between objects in linked data structures
whose traversals result in significant number of cache
misses. A just-in-time compiler inserts prefetch instructions
into the program using the identified regular distances in
order to prefetch linked objects in such traversals. Such
software-based prefetching techniques require nontrivial
support from the compiler, the programmer, or a dynamic
optimization and compilation framework. Existing binaries
cannot utilize software-based techniques unless they are
recompiled or reoptimized using a dynamic optimization
framework. AVD prediction, on the contrary, is a purely
hardware-based mechanism that does not require any
software support and, thus, it can improve the performance
of existing binaries. However, as we have shown in
Section 7.2, AVD prediction can provide larger performance
improvements if software is written or optimized to
increase the occurrence of stable AVDs.

1506

9.3 Related Research in Runahead Execution

Chou et al. [6] proposed combining runahead execution
with value prediction. The Clear [16] and CAVA [3]
microarchitectures predict the values of L2-miss load
instructions, speculatively execute instructions without
stalling due to L2 cache misses (similarly to runahead
execution), and commit the results of speculatively exe-
cuted instructions to the architectural state in case all
previous value predictions are correct. These techniques use
conventional value predictors to predict the values of all
L2-miss load instructions during preexecution, which
requires significant hardware support (at least 2K-entry
value tables). In contrast, we propose a new predictor to
predict the values of only L2-miss address loads, which
allows the parallelization of dependent cache misses with-
out significant hardware overhead. As mentioned in [16],
predicting the values of all L2-miss instructions during
runahead mode sometimes reduces the performance of a
runahead processor since instructions dependent on the
value-predicted loads need to be executed and they slow
down the processing speed during runahead mode. Our
goal in this paper is to selectively predict the values of only
those load instructions that can lead to the generation of
costly dependent cache misses. We note that the AVD
prediction mechanism is not specific to runahead execution
and can also be employed by conventional processors.

We [24] proposed techniques for increasing the efficiency
of runahead execution. These techniques usually increase
efficiency by eliminating useless runahead periods. In
contrast, AVD prediction increases both efficiency and
performance by increasing the usefulness of runahead
periods. As we have shown in Section 8.1, runahead
efficiency techniques are orthogonal to AVD prediction
and combining them with AVD prediction yields larger
improvements in runahead efficiency.

10 SUMMARY, CONTRIBUTIONS, AND FUTURE WORK

This paper introduces the concept of stable address-value
deltas (AVDs) and proposes AVD prediction, a new method
of predicting the values generated by address load
instructions by exploiting the stable and regular memory
allocation patterns in programs that heavily utilize linked
data structures. We provide insights into why stable AVDs
exist through code examples from pointer-intensive appli-
cations. We also describe the design and implementation of
a simple AVD predictor and utilize it to overcome an
important limitation of runahead execution: its inability to
parallelize dependent L2 cache misses. The proposed AVD
prediction mechanism requires neither significant hardware
cost or complexity nor hardware support for state recovery.
We propose hardware and software optimizations that
increase the detection and occurrence of stable AVDs, which
cansignificantly improve the benefits of AVD prediction. Our
experimental results show that a simple AVD predictor can
significantly improve both the performance and efficiency of
a runahead execution processor. Augmenting a runahead
execution processor with a small, 16-entry (102-byte) AVD
predictor improves the average execution time of a set of
pointer-intensive applications by 14.3 percent while it also
reduces the executed instructions by 15.5 percent. Our
experiments also show that AVD prediction interacts
positively with two previously proposed mechanisms,

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

efficiency techniques for runahead execution and stream-
based data prefetching.

10.1 Contributions

The major contribution of our paper is a simple and efficient
mechanism that allows the prediction of the values loaded
by a subset of pointer loads by exploiting stable address-
value relationships. Other contributions we make in this
paper are:

1. We introduce the concept of stable address-value
deltas and provide an analysis of the code structures
that cause them through code examples from
application programs.

2. We propose the design and implementation of a
simple, low-hardware-cost predictor that exploits
the stable AVDs. We evaluate the design options for
an AVD predictor. We also propose and evaluate
simple hardware and software optimizations for an
implementable AVD predictor.

3. We describe an important limitation of runahead
execution: its inability to parallelize dependent long-
latency cache misses. We show that this limitation
can be reduced by utilizing a simple AVD predictor
in a runahead execution processor.

4. We evaluate the interactions of AVD prediction with
two previously proposed mechanisms: efficiency
techniques for runahead execution and stream-
based data prefetching. We show that AVD predic-
tion interacts positively with these two related
mechanisms.

10.2 Future Research Directions

Future work in exploiting stable AVDs can proceed in
multiple directions. First, the AVD predictor we presented
is a simple, last-AVD predictor. More complex AVD
predictors that can detect more complex patterns in
address-value deltas may be interesting to study and they
may further improve performance at the expense of higher
hardware cost and complexity. Second, the effectiveness of
AVD prediction is highly dependent on the memory
allocation patterns in programs. Optimizing the memory
allocator, the program structures, and the algorithms used
in programs for AVD prediction can increase the occurrence
of stable AVDs. Furthermore, in garbage-collected lan-
guages, optimizing the behavior of the garbage collector in
conjunction with the memory allocator can increase the
occurrence of stable AVDs. Hence, software (programmer/
compiler/allocator/garbage collector) support can improve
the effectiveness of a mechanism that exploits address-
value deltas. We intend to examine software algorithms,
compiler optimizations, and memory allocator (and garbage
collector) optimizations that can benefit AVD prediction in
our future work.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their
feedback. They gratefully acknowledge the Cockrell Foun-
dation and Intel Corporation for their support. This paper is
an extended and revised version of [23].

MUTLU ET AL.: ADDRESS-VALUE DELTA (AVD) PREDICTION: A HARDWARE TECHNIQUE FOR EFFICIENTLY PARALLELIZING DEPENDENT...

REFERENCES

(1]

(2]

(3]

(4

(5]

o]

(]

(8]

]

(10]

(1]

[12]

(13]

(14]

[15]

[10]

(17]

(18]

[19]

[20]

(21]

[22]

A.-R. Adl-Tabatabai, R.L. Hudson, M.]. Serrano, and S. Subramo-
ney, “Prefetch Injection Based on Hardware Monitoring and
Object Metadata,” Proc. ACM SIGPLAN ‘04 Conf. Programming
Language Design and Implementation, pp. 267-276, 2004.

M. Bekerman, S. Jourdan, R. Ronen, G. Kirshenboim, L. Rappo-
port, A. Yoaz, and U. Weiser, “Correlated Load-Address
Predictors,” Proc. 26th Int'l Symp. Computer Architecture, pp. 54-
63, 1999.

L. Ceze, K. Strauss, J. Tuck, J. Renau, and J. Torrellas, “CAVA:
Hiding L2 Misses with Checkpoint-Assisted Value Prediction,”
IEEE Computer Architecture Letters, vol. 3, Dec. 2004.

M. Charney, “Correlation-Based Hardware Prefetching,”
PhD thesis, Cornell Univ., Aug. 1995.

TM. Chilimbi and M. Hirzel, “Dynamic Hot Data Stream
Prefetching for General-Purpose Programs,” Proc. ACM SIGPLAN
'02 Conf. Programming Language Design and Implementation, pp. 199-
209, 2002.

Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture Optimiza-
tions for Exploiting Memory-Level Parallelism,” Proc. 31st Int’l
Symp. Computer Architecture, pp. 76-87, 2004.

].D. Collins, S. Sair, B. Calder, and D.M. Tullsen, “Pointer Cache
Assisted Prefetching,” Proc. 35th Int’l Symp. Microarchitecture,
pp. 62-73, 2002.

R. Cooksey, S. Jourdan, and D. Grunwald, “A Stateless, Content-
Directed Data Prefetching Mechanism,” Proc. 10th Int'l Conf.
Architectural Support for Programming Languages and Operating
Systems, pp. 279-290, 2002.

J. Dundas and T. Mudge, “Improving Data Cache Performance by
Pre-Executing Instructions Under a Cache Miss,” Proc. 1997 Int’l
Conf. Supercomputing, pp. 68-75, 1997.

R]J. Eickemeyer and S. Vassiliadis, “A Load-Instruction Unit for
Pipelined Processors,” IBM]. Research and Development, vol. 37,
pp. 547-564, 1993.

A. Glew, “MLP yes! ILP no!,” Wild and Crazy Idea Session, Proc.
Eighth Int’l Conf. Architectural Support for Programming Languages
and Operating Systems, Oct. 1998.

M.K. Gowan, L.L. Biro, and D.B. Jackson, “Power Considerations
in the Design of the Alpha 21264 Microprocessor,” Proc. 35th Ann.
Design Automation Conf., pp. 726-731, 1998.

D. Joseph and D. Grunwald, “Prefetching Using Markov
Predictors,” Proc. 24th Int’l Symp. Computer Architecture, pp. 252-
263, 1997.

N.P. Jouppi, “Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully-Associative Cache and Prefetch
Buffers,” Proc. 17th Int’l Symp. Computer Architecture, pp. 364-373,
1990.

M. Karlsson, F. Dahlgren, and P. Strenstrom, “A Prefetching
Technique for Irregular Accesses to Linked Data Structures,” Proc.
Sixth Int’l Symp. High Performance Computer Architecture, pp. 206-
217, 2000.

N. Kirman, M. Kirman, M. Chaudhuri, and J.F. Martinez,
“Checkpointed Early Load Retirement,” Proc. 11th Int'l Symp.
High Performance Computer Architecture, pp. 16-27, 2005.

A. KleinOsowski and D.J. Lilja, “MinneSPEC: A New SPEC
Benchmark Workload for Simulation-Based Computer Architec-
ture Research,” IEEE Computer Architecture Letters, vol. 1, June
2002.

S.-J. Lee and P.-C. Yew, “On Some Implementation Issues for
Value Prediction on Wide-Issue ILP Processors,” Proc. 2000 Int’l
Conf. Parallel Architectures and Compilation Techniques, p. 145, 2000.
M.H. Lipasti, W.J. Schmidt, S.R. Kunkel, and R.R. Roediger,
“SPAID: Software Prefetching in Pointer- and Call-Intensive
Environments,” Proc. 28th Int’l Symp. Microarchitecture, pp. 232-
236, 1995.

M.H. Lipasti, C. Wilkerson, and J.P. Shen, “Value Locality and
Load Value Prediction,” Proc. Seventh Int'l Conf. Architectural
Support for Programming Languages and Operating Systems, pp. 226-
237, 1996.

C.-K. Luk and T.C. Mowry, “Compiler-Based Prefetching for
Recursive Data Structures,” Proc. Seventh Int’l Conf. Architectural
Support for Programming Languages and Operating Systems, pp. 222-
233, 1996.

O. Mutlu, H. Kim, D.N. Armstrong, and Y.N. Patt, “An Analysis
of the Performance Impact of Wrong-Path Memory References on
Out-of-Order and Runahead Execution Processors,” IEEE Trans.
Computers, vol. 54, no. 12, pp. 1556-1571, Dec. 2005.

(23]

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

[33]

(34]

(35]

(36]

[37]

(38]

(391

(40]

[41]

(42]

1507

O. Mutlu, H. Kim, and Y.N. Patt, “Address-Value Delta (AVD)
Prediction: Increasing the Effectiveness of Runahead Execution by
Exploiting Regular Memory Allocation Patterns,” Proc. 38th Int’l
Symp. Microarchitecture, pp. 233-244, 2005.

O. Mutlu, H. Kim, and Y.N. Patt, “Techniques for Efficient
Processing in Runahead Execution Engines,” Proc. 32nd Int’l Symp.
Computer Architecture, pp. 370-381, 2005.

O. Mutluy, J. Stark, C. Wilkerson, and Y.N. Patt, “Runahead
Execution: An Alternative to Very Large Instruction Windows for
Out-of-Order Processors,” Proc. Ninth Int’l Symp. High Performance
Computer Architecture, pp. 129-140, 2003.

O. Mutly, J. Stark, C. Wilkerson, and Y.N. Patt, “Runahead
Execution: An Effective Alternative to Large Instruction Win-
dows,” IEEE Micro, vol. 23, no. 6, pp. 20-25, Nov./Dec. 2003.

P. Racunas, “Reducing Load Latency through Memory Instruction
Characterization,” PhD thesis, Univ. of Michigan, 2003.

A. Rogers, M.C. Carlisle, J. Reppy, and L. Hendren, “Supporting
Dynamic Data Structures on Distributed Memory Machines,”
ACM Trans. Programming Languages and Systems, vol. 17, no. 2,
pp- 233-263, Mar. 1995.

A. Roth, A. Moshovos, and G.S. Sohi, “Dependence Based
Prefetching for Linked Data Structures,” Proc. Eighth Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems, pp. 115-126, 1998.

A. Roth and G.S. Sohi, “Effective Jump-Pointer Prefetching for
Linked Data Structures,” Proc. 26th Int’l Symp. Computer Archi-
tecture, pp. 111-121, 1999.

Y. Sazeides and J.E. Smith, “The Predictability of Data Values,”
Proc. 30th Int’l Symp. Microarchitecture, pp. 248-257, 1997.

T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Auto-
matically Characterizing Large Scale Program Behavior,” Proc.
10th Int’l Conf. Architectural Support for Programming Languages and
Operating Systems, pp. 45-57, 2002.

Y. Solihin, J. Lee, and]. Torrellas, “Using a User-Level Memory
Thread for Correlation Prefetching,” Proc. 29th Int’l Symp.
Computer Architecture, pp. 171-182, 2002.

E. Sprangle and D. Carmean, “Increasing Processor Performance
by Implementing Deeper Pipelines,” Proc. 29th Int’l Symp.
Computer Architecture, pp. 25-34, 2002.

J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy, “POWER4
System Microarchitecture,” IBM technical white paper, Oct. 2001.
K. Wang and M. Franklin, “Highly Accurate Data Value
Prediction Using Hybrid Predictors,” Proc. 30th Int’l Symp.
Microarchitecture, pp- 281-290, 1997.

M.V. Wilkes, “The Memory Gap and the Future of High
Performance Memories,” ACM Computer Architecture News,
vol. 29, no. 1, pp. 2-7, Mar. 2001.

Y. Wu, “Efficient Discovery of Regular Stride Patterns in Irregular
Programs and Its Use in Compiler Prefetching,” Proc. ACM
SIGPLAN ’02 Conf. Programming Language Design and Implementa-
tion, pp. 210-221, 2002.

W. Wulf and S. McKee, “Hitting the Memory Wall: Implications of
the Obvious,” ACM Computer Architecture News, vol. 23, no. 1,
pp- 20-24, Mar. 1995.

C.-L. Yang and A.R. Lebeck, “Push vs. Pull: Data Movement for
Linked Data Structures,” Proc. 2000 Int’'l Conf. Supercomputing,
pp- 176-186, 2000.

H. Zhou and T.M. Conte, “Enhancing Memory Level Parallelism
via Recovery-Free Value Prediction,” Proc. 17th Int’l Conf. Super-
computing, pp. 326-335, 2003.

C.B. Zilles, “Benchmark Health Considered Harmful,” Computer
Architecture News, vol. 29, no. 3, pp. 4-5, June 2001.

1508

Onur Mutlu received the BS degrees in
computer engineering and psychology from the
University of Michigan, Ann Arbor, in 2000 and
the MS degree in electrical and computer
engineering from the University of Texas-Austin
(UT-Austin) in 2002. He received the PhD
degree in electrical and computer engineering
from UT-Austin in August 2006. He is currently a
researcher at Microsoft Research. He is inter-
ested in broad computer architecture research,
especially in the interactions between programmers, languages,
operating systems, compilers, and microarchitecture. He worked at
Intel Corporation during summers 2001-2003 and at Advanced Micro
Devices during the summers of 2004-2005. He was a recipient of the
Intel PhD fellowship in 2004 and the University of Texas George H.
Mitchell Award for Excellence in Graduate Research in 2005. He is a
member of the IEEE and the IEEE Computer Society.

Hyesoon Kim received the BA degree in
mechanical engineering from the Korea Ad-
vanced Institute of Science and Technology
(KAIST), the MS degree in mechanical engineer-
ing from Seoul National University, and the MS
degree in electrical and computer engineering
from the University of Texas-Austin (UT-Austin).
She is a PhD candidate in electrical and
computer engineering at UT-Austin. Her re-
search interests include high-performance en-
ergy-efficient computer architectures and programmer-compiler-
architecture interaction. She researched next-generation engine designs
at Hyundai Motor Company Research Labs between 1998-2000. She is
a student member of the IEEE and the IEEE Computer Society.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 12, DECEMBER 2006

Yale N. Patt received the BS degree from
Northeastern University and the MS and PhD
degrees from Stanford University, all in electrical
engineering. He is the Ernest Cockrell, Jr.
Centennial Chair in Engineering and Professor
of electrical and computer engineering at the
University of Texas-Austin. He continues to
thrive on teaching the large (400 students)
freshman introductory course in computing and
advanced graduate courses in microarchitec-
ture, directing the research of 11 PhD students, and consulting in the
microprocessor industry. He is coauthor of Introduction to Computing
Systems: From Bits and Gates to C and Beyond (McGraw-Hill, second
edition, 2004), his preferred approach to introducing freshmen to
computing. He has received a number of awards for his research and
teaching, including the IEEE/ACM Eckert-Mauchly Award for his
research in microarchitecture and the ACM Karl V. Karlstrom Award
for his contributions to education. He is a fellow of the IEEE and a
member of the IEEE Computer Society. More detail can be found on his
Web site, http://www.ece.utexas.edu/~patt.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

