An Experimental Study of Data Retention Behavior in Modern DRAM Devices

Implications for Retention Time Profiling Mechanisms

Jamie Liu<sup>1</sup> Ben Jaiyen<sup>1</sup> Yoongu Kim<sup>1</sup> Chris Wilkerson<sup>2</sup> Onur Mutlu<sup>1</sup>

> <sup>1</sup> Carnegie Mellon University <sup>2</sup> Intel Corporation





# Talk Agenda

#### DRAM Refresh: Background and Motivation

- Challenges and Our Goal
- DRAM Characterization Methodology
- Foundational Results
  - Temperature Dependence
  - Retention Time Distribution
- Data Pattern Dependence: Analysis and Implications
- Variable Retention Time: Analysis and Implications
- Conclusions

# A DRAM Cell



- A DRAM cell consists of a capacitor and an access transistor
- It stores data in terms of charge in the capacitor
- A DRAM chip consists of (10s of 1000s of) rows of such cells

#### SAFARI

- DRAM capacitor charge leaks over time
- Each DRAM row is periodically refreshed to restore charge
  - Activate each row every N ms
  - Typical N = 64 ms
- Downsides of refresh
  - -- Energy consumption: Each refresh consumes energy
  - -- Performance degradation: DRAM rank/bank unavailable while refreshed
  - -- QoS/predictability impact: (Long) pause times during refresh
  - -- Refresh rate limits DRAM capacity scaling

#### Refresh Overhead: Performance



SAFARI

# Refresh Overhead: Energy

SAFARI



Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012.

# Previous Work on Reducing Refreshes

- Observed significant variation in data retention times of DRAM cells (due to manufacturing process variation)
  - Retention time: maximum time a cell can go without being refreshed while maintaining its stored data
- Proposed methods to take advantage of widely varying retention times among DRAM rows
  - Reduce refresh rate for rows that can retain data for longer than 64 ms, e.g., [Liu+ ISCA 2012]
  - Disable rows that have low retention times, e.g., [Venkatesan+ HPCA 2006]
- Showed large benefits in energy and performance

# An Example: RAIDR [Liu+, ISCA 2012] 64-128ms >256ms Problem: Requires accurate profiling of DRAM row retention times 128-256ms Can reduce refreshes by ~75%

 $\rightarrow$  reduces energy consumption and improves performance

**SAFARI** Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh," ISCA 2012.

#### Motivation

- Past works require accurate and reliable measurement of retention time of each DRAM row
  - To maintain data integrity while reducing refreshes
- Assumption: worst-case retention time of each row can be determined and stays the same at a given temperature
  - Some works propose writing all 1's and 0's to a row, and measuring the time before data corruption
- Question:
  - Can we reliably and accurately determine retention times of all DRAM rows?

# Talk Agenda

- DRAM Refresh: Background and Motivation
- Challenges and Our Goal
- DRAM Characterization Methodology
- Foundational Results
  - Temperature Dependence
  - Retention Time Distribution
- Data Pattern Dependence: Analysis and Implications
- Variable Retention Time: Analysis and Implications
- Conclusions

# Two Challenges to Retention Time Profiling

Data Pattern Dependence (DPD) of retention time

Variable Retention Time (VRT) phenomenon

# Two Challenges to Retention Time Profiling

- Challenge 1: Data Pattern Dependence (DPD)
  - Retention time of a DRAM cell depends on its value and the values of cells nearby it
  - □ When a row is activated, all bitlines are perturbed simultaneously



# Data Pattern Dependence

- Electrical noise on the bitline affects reliable sensing of a DRAM cell
- The magnitude of this noise is affected by values of nearby cells via
  - □ Bitline-bitline coupling  $\rightarrow$  electrical coupling between adjacent bitlines
  - □ Bitline-wordline coupling → electrical coupling between each bitline and the activated wordline



# Two Challenges to Retention Time Profiling

- Challenge 2: Variable Retention Time (VRT)
  - Retention time of a DRAM cell changes randomly over time
    - a cell alternates between multiple retention time states
  - Leakage current of a cell changes sporadically due to a charge trap in the gate oxide of the DRAM cell access transistor
  - When the trap becomes occupied, charge leaks more readily from the transistor's drain, leading to a short retention time
    - Called *Trap-Assisted Gate-Induced Drain Leakage*
  - This process appears to be a random process [Kim + IEEE TED'11]
  - Worst-case retention time depends on a random process
     → need to find the worst case despite this

### Our Goal

- Analyze the retention time behavior of DRAM cells in modern commodity DRAM devices
  - to aid the collection of accurate profile information
- Provide a comprehensive empirical investigation of two key challenges to retention time profiling
  - Data Pattern Dependence (DPD)
  - Variable Retention Time (VRT)

# Talk Agenda

- DRAM Refresh: Background and Motivation
- Challenges and Our Goal
- DRAM Characterization Methodology
- Foundational Results
  - Temperature Dependence
  - Retention Time Distribution
- Data Pattern Dependence: Analysis and Implications
- Variable Retention Time: Analysis and Implications
- Conclusions

# DRAM Testing Platform and Method

- Test platform: Developed a DDR3 DRAM testing platform using the Xilinx ML605 FPGA development board
  - Temperature controlled
- Tested DRAM chips: 248 commodity DRAM chips from five manufacturers (A,B,C,D,E)
- Seven families based on equal capacity per device:
  - A 1Gb, A 2Gb
  - B 2Gb
  - C 2Gb
  - D 1Gb, D 2Gb
  - E 2Gb

# Experiment Design

- Each module tested for multiple *rounds* of *tests*.
- Each test searches for the set of cells with a retention time less than a threshold value for a particular data pattern
- High-level structure of a test:
  - Write data pattern to rows in a DRAM bank
  - □ Prevent refresh for a period of time *tWAIT*, leave DRAM idle
  - Read stored data pattern, compare to written pattern and record corrupt cells as those with retention time < tWAIT</li>
- Test details and important issues to pay attention to are discussed in paper

# Experiment Structure



#### SAFARI

### **Experiment Parameters**

- Most tests conducted at 45 degrees Celsius
- No cells observed to have a retention time less than 1.5 second at 45°C
- Tested *tWAIT* in increments of 128ms from 1.5 to 6.1 seconds

# Tested Data Patterns

# All 0s/1s: Value 0/1 is written to all bits Fixed patterns

- Previous work suggested this is sufficient
- Checkerboard: Consecutive bits alternate between 0 and 1
  - Coupling noise increases with voltage difference between the neighboring bitlines → May induce worst case data pattern (if adjacent bits mapped to adjacent cells)
- Walk: Attempts to ensure a single cell storing 1 is surrounded by cells storing 0
  - This may lead to even worse coupling noise and retention time due to coupling between *nearby* bitlines [Li+ IEEE TCSI 2011]
  - Walk pattern is permuted in each round to exercise different cells
- Random: Randomly generated data is written to each row
  - A new set of random data is generated for each round

# Talk Agenda

- DRAM Refresh: Background and Motivation
- Challenges and Our Goal
- DRAM Characterization Methodology
- Foundational Results
  - Temperature Dependence
  - Retention Time Distribution
- Data Pattern Dependence: Analysis and Implications
- Variable Retention Time: Analysis and Implications
- Conclusions

### Temperature Stability

SA



#### Tested chips at five different stable temperatures

#### Dependence of Retention Time on Temperature



#### SAFARI

#### Dependence of Retention Time on Temperature



25

#### Retention Time Distribution



# Talk Agenda

- DRAM Refresh: Background and Motivation
- Challenges and Our Goal
- DRAM Characterization Methodology
- Foundational Results
  - Temperature Dependence
  - Retention Time Distribution
- Data Pattern Dependence: Analysis and Implications
- Variable Retention Time: Analysis and Implications
- Conclusions

# Some Terminology

- Failure population of cells with Retention Time X: The set of all cells that exhibit retention failure in any test with any data pattern at that retention time (*tWAIT*)
- Retention Failure Coverage of a Data Pattern DP: Fraction of cells with retention time X that exhibit retention failure with that *particular* data pattern DP
- If retention times are not dependent on data pattern stored in cells, we would expect
  - Coverage of any data pattern to be 100%
  - In other words, if one data pattern causes a retention failure, any other data pattern also would

### Recall the Tested Data Patterns

All 0s/1s: Value 0/1 is written to all bits
Fixed patterns

Checkerboard: Consecutive bits alternate between 0 and 1

 Walk: Attempts to ensure a single cell storing 1 is surrounded by cells storing 0

Random: Randomly generated data is written to each row

# Retention Failure Coverage of Data Patterns



# Retention Failure Coverage of Data Patterns



# Retention Failure Coverage of Data Patterns



# Data Pattern Dependence: Observations (I)

- A cell's retention time is heavily influenced by data pattern stored in other cells
  - Pattern affects the coupling noise, which affects cell leakage
- No tested data pattern exercises the worst case retention time for all cells (no pattern has 100% coverage)
  - No pattern is able to induce the worst-case coupling noise for every cell
  - □ Problem: Underlying DRAM circuit organization is *not* known to the memory controller → very hard to construct a pattern that exercises the worst-case cell leakage
    - $\rightarrow$  Opaque mapping of addresses to physical DRAM geometry
    - $\rightarrow$  Internal remapping of addresses within DRAM to tolerate faults
    - $\rightarrow$  Second order coupling effects are very hard to determine

# Data Pattern Dependence: Observations (II)

- Fixed, simple data patterns have low coverage
   They do not exercise the worst-case coupling noise
- The effectiveness of each data pattern varies significantly between DRAM devices (of the same or different vendors)
  - Underlying DRAM circuit organization likely differs between different devices → patterns leading to worst coupling are different in different devices
- Technology scaling appears to increase the impact of data pattern dependence
  - Scaling reduces the physical distance between circuit elements, increasing the magnitude of coupling effects

# Effect of Technology Scaling on DPD



The lowest-coverage data pattern achieves much lower coverage for the smaller technology node

FAR

#### 35

# DPD: Implications on Profiling Mechanisms

- Any retention time profiling mechanism must handle data pattern dependence of retention time
- Intuitive approach: Identify the data pattern that induces the worst-case retention time for a particular cell or device
- Problem 1: Very hard to know at the memory controller which bits actually interfere with each other due to
  - □ Opaque mapping of addresses to physical DRAM geometry → logically consecutive bits may not be physically consecutive
  - Remapping of faulty bitlines/wordlines to redundant ones internally within DRAM
- Problem 2: Worst-case coupling noise is affected by non-obvious second order bitline coupling effects

# DPD: Suggestions (for Future Work)

- A mechanism for identifying worst-case data pattern(s) likely requires support from DRAM device
  - DRAM manufacturers might be in a better position to do this
  - But, the ability of the manufacturer to identify and expose the entire retention time profile is limited due to VRT
- An alternative approach: Use random data patterns to increase coverage as much as possible; handle incorrect retention time estimates with ECC
  - Need to keep profiling time in check
  - Need to keep ECC overhead in check

# Talk Agenda

- DRAM Refresh: Background and Motivation
- Challenges and Our Goal
- DRAM Characterization Methodology
- Foundational Results
  - Temperature Dependence
  - Retention Time Distribution
- Data Pattern Dependence: Analysis and Implications
- Variable Retention Time: Analysis and Implications
- Conclusions

- Retention time of a cell can vary over time
- A cell can randomly switch between multiple leakage current states due to *Trap-Assisted Gate-Induced Drain Leakage*, which appears to be a random process

[Yaney+ IEDM 1987, Restle+ IEDM 1992]

### An Example VRT Cell



# VRT: Questions and Methodology

- Key Questions
  - How prevalent is VRT in modern DRAM devices?
  - What is the timescale of observation of the lowest retention time state?
  - What are the implications on retention time profiling?
- Test Methodology
  - Each device was tested for at least 1024 rounds over 24 hours
  - □ Temperature fixed at 45°C
  - Data pattern used is the most effective data pattern for each device
  - For each cell that fails at any retention time, we record the minimum and the maximum retention time observed







# VRT: Observations So Far

- VRT is common among weak cells (i.e., those cells that experience low retention times)
- VRT can result in significant retention time changes
  - Difference between minimum and maximum retention times of a cell can be more than 4x, and may not be bounded
  - Implication: Finding a retention time for a cell and using a guardband to ensure minimum retention time is "covered" requires a large guardband or may not work
- Retention time profiling mechanisms must identify lowest retention time in the presence of VRT
  - Question: How long to profile a cell to find its lowest retention time state?

#### **SAFARI**

#### Time Between Retention Time State Changes

How much time does a cell spend in a high retention state before switching to the minimum observed retention time state?

# Time Spent in High Retention Time State



# Time Spent in High Retention Time State



# Time Spent in High Retention Time State



# VRT: Implications on Profiling Mechanisms

- Problem 1: There does not seem to be a way of determining if a cell exhibits VRT without actually observing a cell exhibiting VRT
  - VRT is a memoryless random process [Kim+ JJAP 2010]
- Problem 2: VRT complicates retention time profiling by DRAM manufacturers
  - Exposure to very high temperatures can induce VRT in cells that were not previously susceptible
    - $\rightarrow$  can happen during soldering of DRAM chips
    - $\rightarrow$  manufacturer's retention time profile may not be accurate
- One option for future work: Use ECC to continuously profile DRAM online while aggressively reducing refresh rate
  - Need to keep ECC overhead in check

# Talk Agenda

- DRAM Refresh: Background and Motivation
- Challenges and Our Goal
- DRAM Characterization Methodology
- Foundational Results
  - Temperature Dependence
  - Retention Time Distribution
- Data Pattern Dependence: Analysis and Implications
- Variable Retention Time: Analysis and Implications
- Conclusions

# Summary and Conclusions

- DRAM refresh is a critical challenge in scaling DRAM technology efficiently to higher capacities and smaller feature sizes
- Understanding the retention time of modern DRAM devices can enable old or new methods to reduce the impact of refresh
  - Many mechanisms require accurate and reliable retention time profiles
- We presented the first work that comprehensively examines data retention behavior in modern commodity DRAM devices
  - Characterized 248 devices from five manufacturers
- Key findings: Retention time of a cell significantly depends on data pattern stored in other cells (data pattern dependence) and changes over time via a random process (variable retention time)
  - Discussed the underlying reasons and provided suggestions
- Future research on retention time profiling should solve the challenges posed by the DPD and VRT phenomena

#### **SAFARI**

An Experimental Study of Data Retention Behavior in Modern DRAM Devices

Implications for Retention Time Profiling Mechanisms

Jamie Liu<sup>1</sup> Ben Jaiyen<sup>1</sup> Yoongu Kim<sup>1</sup> Chris Wilkerson<sup>2</sup> Onur Mutlu<sup>1</sup>

> <sup>1</sup> Carnegie Mellon University <sup>2</sup> Intel Corporation





# Summary (I)

- DRAM requires periodic refresh to avoid data loss
  - Refresh wastes energy, reduces performance, limits DRAM density scaling
- Many past works observed that different DRAM cells can retain data for different times without being refreshed; proposed reducing refresh rate for strong DRAM cells
  - Problem: These techniques require an accurate profile of the retention time of all DRAM cells
- Our goal: To analyze the retention time behavior of DRAM cells in modern DRAM devices to aid the collection of accurate profile information
- Our experiments: We characterize 248 modern commodity DDR3 DRAM chips from 5 manufacturers using an FPGA based testing platform
- Two Key Issues:
  - 1. Data Pattern Dependence: A cell's retention time is heavily dependent on data values stored in itself and nearby cells, which cannot easily be controlled.
  - 2. Variable Retention Time: Retention time of some cells change unpredictably from high to low at large timescales.

#### **SAFARI**

# Summary (II)

- Key findings on Data Pattern Dependence
  - □ There is no observed single data pattern that elicits the lowest retention times for a DRAM device → very hard to find this pattern
  - DPD varies between devices due to variation in DRAM array circuit design between manufacturers
  - DPD of retention time gets worse as DRAM scales to smaller feature sizes
- Key findings on Variable Retention Time
  - □ VRT is common in modern DRAM cells that are weak
  - □ The timescale at which VRT occurs is very large (e.g., a cell can stay in high retention time state for a day or longer) → finding minimum retention time can take very long
- Future work on retention time profiling must address these issues

#### Walk Data Pattern

|               | Round 1 Data W |         |         |                  |                         |      | a Writt | en   |  |
|---------------|----------------|---------|---------|------------------|-------------------------|------|---------|------|--|
|               | Round          | d 1 Dat | a Patte | rn to            | o Each 16-bit Wide DRAM |      |         |      |  |
| (Hexadecimal) |                |         |         | K                | (Binary)                |      |         |      |  |
| Øx            | 0100           | 0100    | 0100    | 0100 → 0b        | 0000                    | 0001 | 0000    | 0000 |  |
| Øx            | 0001           | 0001    | 0001    | 0001 → 0b        | 0000                    | 0000 | 0000    | 0001 |  |
| Øx            | 1000           | 1000    | 1000    | 1000 → 0b        | 0001                    | 0000 | 0000    | 0000 |  |
| Øx            | 0010           | 0010    | 0010    | 0010 → 0b        | 0000                    | 0000 | 0001    | 0000 |  |
| Øx            | 0200           | 0200    | 0200    | 0200 <b>→</b> 0b | 0000                    | 0010 | 0000    | 0000 |  |
| Øx            | 0002           | 0002    | 0002    | 0002 → 0b        | 0000                    | 0000 | 0000    | 0010 |  |
| Øx            | 2000           | 2000    | 2000    | 2000 → 0b        | 0010                    | 0000 | 0000    | 0000 |  |
| Øx            | 0020           | 0020    | 0020    | 0020 → 0b        | 0000                    | 0000 | 0010    | 0000 |  |
| Øx            | 0400           | 0400    | 0400    | 0400 → 0b        | 0000                    | 0100 | 0000    | 0000 |  |
| Øx            | 0004           | 0004    | 0004    | 0004 <b>→</b> 0b | 0000                    | 0000 | 0000    | 0100 |  |
| Øx            | 4000           | 4000    | 4000    | 4000 → 0b        | 0100                    | 0000 | 0000    | 0000 |  |
| Øx            | 0040           | 0040    | 0040    | 0040 <b>→</b> 0b | 0000                    | 0000 | 0100    | 0000 |  |
| Øx            | 0800           | 0800    | 0800    | 0800 → 0b        | 0000                    | 1000 | 0000    | 0000 |  |
| Øx            | 0008           | 0008    | 0008    | 0008 → 0b        | 0000                    | 0000 | 0000    | 1000 |  |
| Øx            | 8000           | 8000    | 8000    | 8000 → 0b        | 1000                    | 0000 | 0000    | 0000 |  |
| Øx            | 0080           | 0080    | 0080    | 0080 → 0b        | 0000                    | 0000 | 1000    | 0000 |  |

#### Walk Data Pattern After Round 1

|               | Round 1 Data Pattern |      |      |        |               |      | Round 2 Data Pattern |      |      |  |
|---------------|----------------------|------|------|--------|---------------|------|----------------------|------|------|--|
| (Hexadecimal) |                      |      |      |        | (Hexadecimal) |      |                      |      |      |  |
| Øx            | 0100                 | 0100 | 0100 | 0100 / | <i>≢</i> 0x   | 0001 | 0001                 | 0001 | 0001 |  |
| Øx            | 0001                 | 0001 | 0001 | 0001 / | _0x           | 1000 | 1000                 | 1000 | 1000 |  |
| 0x            | 1000                 | 1000 | 1000 | 1000 ⁄ | <b>4</b> 0x   | 0010 | 0010                 | 0010 | 0010 |  |
| Øx            | 0010                 | 0010 | 0010 | 0010/  | <b>0</b> x    | 0200 | 0200                 | 0200 | 0200 |  |
| Øx            | 0200                 | 0200 | 0200 | 0200/  | <b>4</b> 0x   | 0002 | 0002                 | 0002 | 0002 |  |
| 0x            | 0002                 | 0002 | 0002 | 0002/  | <b>0</b> x    | 2000 | 2000                 | 2000 | 2000 |  |
| Øx            | 2000                 | 2000 | 2000 | 2000 / | <b>4</b> 0x   | 0020 | 0020                 | 0020 | 0020 |  |
| Øx            | 0020                 | 0020 | 0020 | 0020/  | <b>4</b> 0x   | 0400 | 0400                 | 0400 | 0400 |  |
| Øx            | 0400                 | 0400 | 0400 | 0400/  | <b>_</b> 0x   | 0004 | 0004                 | 0004 | 0004 |  |
| Øx            | 0004                 | 0004 | 0004 | 0004 / | <b>0</b> x    | 4000 | 4000                 | 4000 | 4000 |  |
| Øx            | 4000                 | 4000 | 4000 | 4000 ⁄ | <b>o</b> x    | 0040 | 0040                 | 0040 | 0040 |  |
| Øx            | 0040                 | 0040 | 0040 | 0040/  | <b>0</b> x    | 0800 | 0800                 | 0800 | 0800 |  |
| 0x            | 0800                 | 0800 | 0800 | 0800 / | <b>4</b> 0x   | 0008 | 0008                 | 0008 | 0008 |  |
| Øx            | 0008                 | 0008 | 0008 | 0008 / | <b>4</b> 0x   | 8000 | 8000                 | 8000 | 8000 |  |
| Øx            | 8000                 | 8000 | 8000 | 8000 / | <b>√</b> 0x   | 0800 | 0080                 | 0080 | 0080 |  |
| Øx            | 0080                 | 0080 | 0080 | 0080 / | <b>4</b> 0x   | 0100 | 0100                 | 0100 | 0100 |  |

# **DRAM** Activation



#### **SAFARI**

### True Cell vs. Anti Cell



#### **SAFARI**

# DRAM Organization



# VRT as a Random Process

- Previous work has shown that each VRT cell spends an exponentially distributed amount of time in each state [Restle+ IEDM 1992, Kim+ JJAP 2010], and that the distribution of time constants for these exponential distributions is itself exponentially distributed [Kim+ IEEE TED 2011].
- The shape of our observed distributions appear to be consistent with this prior work.