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The Main Memory System 

 
 

n  Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor 

n  Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits 
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Processor 
and caches 

Main Memory Storage (SSD/HDD) 



Memory System: A Shared Resource View 
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Storage 



State of the Main Memory System 
n  Recent technology, architecture, and application trends 

q  lead to new requirements 
q  exacerbate old requirements 

n  DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements 

n  Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging 

n  We need to rethink the main memory system 
q  to fix DRAM issues and enable emerging technologies  
q  to satisfy all requirements 
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Agenda 

n  Major Trends Affecting Main Memory 
n  The DRAM Scaling Problem and Solution Directions 

q  Tolerating DRAM: New DRAM Architectures 
q  Enabling Emerging Technologies: Hybrid Memory Systems 

n  How Can We Do Better? 
n  Summary 
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Major Trends Affecting Main Memory (I) 
n  Need for main memory capacity, bandwidth, QoS increasing  

n  Main memory energy/power is a key system design concern 

n  DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (II) 
n  Need for main memory capacity, bandwidth, QoS increasing  

q  Multi-core: increasing number of cores/agents 
q  Data-intensive applications: increasing demand/hunger for data 
q  Consolidation: cloud computing, GPUs, mobile, heterogeneity 

n  Main memory energy/power is a key system design concern 

 
 
n  DRAM technology scaling is ending  
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Example: The Memory Capacity Gap 

 

n  Memory capacity per core expected to drop by 30% every two years 
n  Trends worse for memory bandwidth per core! 
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Core count doubling ~ every 2 years  
DRAM DIMM capacity doubling ~ every 3 years 



Major Trends Affecting Main Memory (III) 
n  Need for main memory capacity, bandwidth, QoS increasing  

 
n  Main memory energy/power is a key system design concern 

q  ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 
IEEE Computer 2003] 

q  DRAM consumes power even when not used (periodic refresh) 

n  DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (IV) 
n  Need for main memory capacity, bandwidth, QoS increasing  

 
 
n  Main memory energy/power is a key system design concern 

 
n  DRAM technology scaling is ending  

q  ITRS projects DRAM will not scale easily below X nm  
q  Scaling has provided many benefits:  

n  higher capacity (density), lower cost, lower energy 
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Agenda 

n  Major Trends Affecting Main Memory 
n  The DRAM Scaling Problem and Solution Directions 

q  Tolerating DRAM: New DRAM Architectures 
q  Enabling Emerging Technologies: Hybrid Memory Systems 

n  How Can We Do Better? 
n  Summary 
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The DRAM Scaling Problem 
n  DRAM stores charge in a capacitor (charge-based memory) 

q  Capacitor must be large enough for reliable sensing 
q  Access transistor should be large enough for low leakage and high 

retention time 
q  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] 

n  DRAM capacity, cost, and energy/power hard to scale 
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Solutions to the DRAM Scaling Problem 

n  Two potential solutions 
q  Tolerate DRAM (by taking a fresh look at it) 
q  Enable emerging memory technologies to eliminate/minimize 

DRAM 

n  Do both 
q  Hybrid memory systems 
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Solution 1: Tolerate DRAM 
n  Overcome DRAM shortcomings with 

q  System-DRAM co-design 
q  Novel DRAM architectures, interface, functions 
q  Better waste management (efficient utilization) 

n  Key issues to tackle 
q  Reduce refresh energy 
q  Improve bandwidth and latency 
q  Reduce waste 
q  Enable reliability at low cost 

n  Liu, Jaiyen, Veras, Mutlu, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 
n  Kim, Seshadri, Lee+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012. 
n  Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013. 
n  Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices” ISCA’13. 
n  Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” 2013. 
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Solution 2: Emerging Memory Technologies 
n  Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile) 
n  Example: Phase Change Memory 

q  Expected to scale to 9nm (2022 [ITRS]) 
q  Expected to be denser than DRAM: can store multiple bits/cell 

n  But, emerging technologies have shortcomings as well 
q  Can they be enabled to replace/augment/surpass DRAM? 

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” 
ISCA 2009, CACM 2010, Top Picks 2010. 

n  Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,” IEEE 
Comp. Arch. Letters 2012. 

n  Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012. 
n  Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.  
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Hybrid Memory Systems 

 

 
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award. 
 

CPU 
DRAM
Ctrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



An Orthogonal Issue: Memory Interference 

Main  
Memory 
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Core Core 

Core Core 

Cores’ interfere with each other when accessing shared main memory 



n  Problem: Memory interference between cores is uncontrolled 
à unfairness, starvation, low performance 
à uncontrollable, unpredictable, vulnerable system 

 

n  Solution: QoS-Aware Memory Systems 
q  Hardware designed to provide a configurable fairness substrate  

n  Application-aware memory scheduling, partitioning, throttling 

q  Software designed to configure the resources to satisfy different 
QoS goals 

n  QoS-aware memory controllers and interconnects can 
provide predictable performance and higher efficiency 

An Orthogonal Issue: Memory Interference 



Agenda 

n  Major Trends Affecting Main Memory 
n  The DRAM Scaling Problem and Solution Directions 

q  Tolerating DRAM: New DRAM Architectures 
q  Enabling Emerging Technologies: Hybrid Memory Systems 

n  How Can We Do Better? 
n  Summary 
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Tolerating DRAM: Example Techniques 

n  Retention-Aware DRAM Refresh: Reducing Refresh Impact 
 
n  Tiered-Latency DRAM: Reducing DRAM Latency 

n  RowClone: Accelerating Page Copy and Initialization  

n  Subarray-Level Parallelism: Reducing Bank Conflict Impact 
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DRAM Refresh 
n  DRAM capacitor charge leaks over time 

n  The memory controller needs to refresh each row 
periodically to restore charge 
q  Activate each row every N ms 
q  Typical N = 64 ms 

n  Downsides of refresh 
    -- Energy consumption: Each refresh consumes energy 

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed 

-- QoS/predictability impact: (Long) pause times during refresh 
-- Refresh rate limits DRAM capacity scaling  
 21 



Refresh Overhead: Performance 
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8%	
  

46%	
  



Refresh Overhead: Energy 
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15%	
  

47%	
  



Retention Time Profile of DRAM 
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RAIDR: Eliminating Unnecessary Refreshes 
n  Observation: Most DRAM rows can be refreshed much less often 

without losing data [Kim+, EDL’09][Liu+ ISCA’13] 

n  Key idea: Refresh rows containing weak cells  
    more frequently, other rows less frequently 

1. Profiling: Profile retention time of all rows 
2. Binning: Store rows into bins by retention time in memory controller 

 Efficient storage with Bloom Filters (only 1.25KB for 32GB memory) 
3. Refreshing: Memory controller refreshes rows in different bins at 
different rates 

n  Results: 8-core, 32GB, SPEC, TPC-C, TPC-H 
q  74.6% refresh reduction @ 1.25KB storage 
q  ~16%/20% DRAM dynamic/idle power reduction 
q  ~9% performance improvement  
q  Benefits increase with DRAM capacity 

25 
Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Going Forward 

n  How to find out and expose weak memory cells/rows 
q  Early analysis of modern DRAM chips:  

n  Liu+, “An Experimental Study of Data Retention Behavior in 
Modern DRAM Devices: Implications for Retention Time Profiling 
Mechanisms”, ISCA 2013. 

n  Low-cost system-level tolerance of DRAM errors 

n  Tolerating cell-to-cell interference at the system level  
q  For both DRAM and Flash. Early analysis of Flash chips: 

n  Cai+, “Program Interference in MLC NAND Flash Memory: 
Characterization, Modeling, and Mitigation,” ICCD 2013. 
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Tolerating DRAM: Example Techniques 

n  Retention-Aware DRAM Refresh: Reducing Refresh Impact 
 
n  Tiered-Latency DRAM: Reducing DRAM Latency 

n  RowClone: Accelerating Page Copy and Initialization  

n  Subarray-Level Parallelism: Reducing Bank Conflict Impact 
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Tolerating DRAM: Example Techniques 

n  Retention-Aware DRAM Refresh: Reducing Refresh Impact 
 
n  Tiered-Latency DRAM: Reducing DRAM Latency 

n  RowClone: Accelerating Page Copy and Initialization  

n  Subarray-Level Parallelism: Reducing Bank Conflict Impact 
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Future:	
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DRAM operation (load one byte) 

Row Buffer (4 Kbits) 

Memory Bus 

Data pins (8 bits) 

DRAM array 

4 Kbits 

Step 1: Activate row 

 Transfer row 

Step 2: Read   
Transfer byte onto bus 



RowClone: in-DRAM Row Copy (and Initialization) 

Row Buffer (4 Kbits) 

Memory Bus 

Data pins (8 bits) 

DRAM array 

4 Kbits 

Step 1: Activate row A 

Transfer row 

Step 2: Activate row B 

 
Transfer 
row 



RowClone:	
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Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” CMU Tech Report 2013. 
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  Overall	
  Performance	
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Goal: Ultra-efficient heterogeneous architectures  
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Slide credit: Prof. Kayvon Fatahalian, CMU 



Enabling Ultra-efficient (Visual) Search 

 
▪  What is the right partitioning of computation capability? 
▪  What is the right low-cost memory substrate? 
▪  What memory technologies are the best enablers? 
▪  How do we rethink/ease (visual) search algorithms/applications? 

Cache 

Processor 
Core 

Memory Bus 

Main Memory 

Database 
(of images)   

Query vector 

Results 

Picture credit: Prof. Kayvon Fatahalian, CMU 



Tolerating DRAM: Example Techniques 

n  Retention-Aware DRAM Refresh: Reducing Refresh Impact 
 
n  Tiered-Latency DRAM: Reducing DRAM Latency 

n  RowClone: In-Memory Page Copy and Initialization  

n  Subarray-Level Parallelism: Reducing Bank Conflict Impact 
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SALP: Reducing DRAM Bank Conflicts 
n  Problem: Bank conflicts are costly for performance and energy 

q  serialized requests, wasted energy (thrashing of row buffer, busy wait) 

n  Goal: Reduce bank conflicts without adding more banks (low cost) 
n  Key idea: Exploit the internal subarray structure of a DRAM bank to 

parallelize bank conflicts to different subarrays 
q  Slightly modify DRAM bank to reduce subarray-level hardware sharing 

n  Results on Server, Stream/Random, SPEC  
q  19% reduction in dynamic DRAM energy 
q  13% improvement in row hit rate 
q  17% performance improvement  
q  0.15% DRAM area overhead 

 

50 Kim, Seshadri+ “A Case for Exploiting Subarray-Level  
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Solution 2: Emerging Memory Technologies 
n  Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile) 

n  Example: Phase Change Memory 
q  Data stored by changing phase of material  
q  Data read by detecting material’s resistance 
q  Expected to scale to 9nm (2022 [ITRS]) 
q  Prototyped at 20nm (Raoux+, IBM JRD 2008) 
q  Expected to be denser than DRAM: can store multiple bits/cell 

n  But, emerging technologies have (many) shortcomings 
q  Can they be enabled to replace/augment/surpass DRAM? 
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Phase Change Memory: Pros and Cons 
n  Pros over DRAM 

q  Better technology scaling (capacity and cost) 
q  Non volatility 
q  Low idle power (no refresh) 

n  Cons 
q  Higher latencies: ~4-15x DRAM (especially write) 
q  Higher active energy: ~2-50x DRAM (especially write) 
q  Lower endurance (a cell dies after ~108 writes) 

n  Challenges in enabling PCM as DRAM replacement/helper: 
q  Mitigate PCM shortcomings 
q  Find the right way to place PCM in the system 
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PCM-based Main Memory (I) 
n  How should PCM-based (main) memory be organized? 

 

n  Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:  
q  How to partition/migrate data between PCM and DRAM 
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PCM-based Main Memory (II) 
n  How should PCM-based (main) memory be organized? 

 
n  Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:  

q  How to redesign entire hierarchy (and cores) to overcome 
PCM shortcomings 
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An Initial Study: Replace DRAM with PCM 
n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 

Memory as a Scalable DRAM Alternative,” ISCA 2009. 
q  Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC) 
q  Derived “average” PCM parameters for F=90nm 
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Results: Naïve Replacement of DRAM with PCM 
n  Replace DRAM with PCM in a 4-core, 4MB L2 system 
n  PCM organized the same as DRAM: row buffers, banks, peripherals 
n  1.6x delay, 2.2x energy, 500-hour average lifetime 

 
n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 

Scalable DRAM Alternative,” ISCA 2009. 
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Architecting PCM to Mitigate Shortcomings 
n  Idea 1: Use multiple narrow row buffers in each PCM chip 

à Reduces array reads/writes à better endurance, latency, energy 

n  Idea 2: Write into array at 
    cache block or word  
    granularity 

 à Reduces unnecessary wear    

58 

DRAM PCM 



Results: Architected PCM as Main Memory  
n  1.2x delay, 1.0x energy, 5.6-year average lifetime 
n  Scaling improves energy, endurance, density 

n  Caveat 1: Worst-case lifetime is much shorter (no guarantees) 
n  Caveat 2: Intensive applications see large performance and energy hits 
n  Caveat 3: Optimistic PCM parameters? 
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Hybrid Memory Systems 

 

 
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award. 
 

CPU 
DRAM
Ctrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



One Option: DRAM as a Cache for PCM 
n  PCM is main memory; DRAM caches memory rows/blocks 

q  Benefits: Reduced latency on DRAM cache hit; write filtering 

n  Memory controller hardware manages the DRAM cache 
q  Benefit: Eliminates system software overhead 

n  Three issues: 
q  What data should be placed in DRAM versus kept in PCM? 
q  What is the granularity of data movement? 
q  How to design a low-cost hardware-managed DRAM cache? 

n  Two solutions: 
q  Locality-aware data placement [Yoon+ , ICCD 2012] 

q  Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012] 
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DRAM vs. PCM: An Observation 
n  Row buffers are the same in DRAM and PCM 
n  Row buffer hit latency same in DRAM and PCM 
n  Row buffer miss latency small in DRAM, large in PCM 

 
 
 

n  Accessing the row buffer in PCM is fast 
n  What incurs high latency is the PCM array access à avoid this 
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Row-Locality-Aware Data Placement 
n  Idea: Cache in DRAM only those rows that 

q  Frequently cause row buffer conflicts à because row-conflict latency 
is smaller in DRAM 

q  Are reused many times à to reduce cache pollution and bandwidth 
waste 

n  Simplified rule of thumb: 
q  Streaming accesses: Better to place in PCM  
q  Other accesses (with some reuse): Better to place in DRAM 

n  Yoon et al., “Row Buffer Locality-Aware Data Placement in Hybrid 
Memories,” ICCD 2012 Best Paper Award. 
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Row-Locality-Aware Data Placement: Results 
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Agenda 

n  Major Trends Affecting Main Memory 
n  The DRAM Scaling Problem and Solution Directions 

q  Tolerating DRAM: New DRAM Architectures 
q  Enabling Emerging Technologies: Hybrid Memory Systems 

n  How Can We Do Better? 
n  Summary 
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Principles (So Far) 

n  Better cooperation between devices and the system 
q  Expose more information about devices to upper layers 
q  More flexible interfaces 

n  Better-than-worst-case design 
q  Do not optimize for the worst case 
q  Worst case should not determine the common case 

n  Heterogeneity in design 
q  Enables a more efficient design (No one size fits all)  
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Other Opportunities with Emerging Technologies 

n  Merging of memory and storage 
q  e.g., a single interface to manage all data 

n  New applications 
q  e.g., ultra-fast checkpoint and restore 

n  More robust system design 
q  e.g., reducing data loss 

n  Processing tightly-coupled with memory 
q  e.g., enabling efficient search and filtering 
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Coordinated Memory and Storage with NVM (I) 
n  The traditional two-level storage model is a bottleneck with NVM 

q  Volatile data in memory à a load/store interface 
q  Persistent data in storage à a file system interface 
q  Problem: Operating system (OS) and file system (FS) code to locate, translate, 

buffer data become performance and energy bottlenecks with fast NVM stores 
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Coordinated Memory and Storage with NVM (II) 

n  Goal: Unify memory and storage management in a single unit to 
eliminate wasted work to locate, transfer, and translate data 
q  Improves both energy and performance 
q  Simplifies programming model as well 
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Unified Memory/Storage 

Processor 
and caches 

Persistent (e.g., Phase-Change) Memory 

Load/Store 

Persistent Memory 
Manager 

Feedback 

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013. 



Performance Benefits of a Single-Level Store 
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Energy Benefits of a Single-Level Store 
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q  Enabling Emerging Technologies: Hybrid Memory Systems 

n  How Can We Do Better? 
n  Summary 
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Summary: Main Memory Scaling 
n  Main memory scaling problems are a critical bottleneck for 

system performance, efficiency, and usability 

n  Solution 1: Tolerate DRAM with novel architectures 
q  RAIDR: Retention-aware refresh 
q  TL-DRAM: Tiered-Latency DRAM 
q  RowClone: Fast page copy and initialization 
q  SALP: Subarray-level parallelism 

n  Solution 2: Enable emerging memory technologies  
q  Replace DRAM with NVM by architecting NVM chips well 
q  Hybrid memory systems with automatic data management 
q  Coordinated management of memory and storage 

n  Software/hardware/device cooperation essential for effective 
scaling of main memory 
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More Material: Slides, Papers, Videos 

n  These slides are a very short version of the             
Scalable Memory Systems course at ACACES 2013 

n  Website for Course Slides, Papers, and Videos 
q  http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html 
q  http://users.ece.cmu.edu/~omutlu/projects.htm   
q  Includes extended lecture notes and readings 

n  Overview Reading 
q  Onur Mutlu, 

"Memory Scaling: A Systems Architecture Perspective" 
Proceedings of the 5th International Memory Workshop 
(IMW), Monterey, CA, May 2013. Slides (pptx) (pdf)  
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Thank you. 

Feel free to email me with any feedback 
 

onur@cmu.edu 
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Memory Scaling: 
A Systems Architecture Perspective 

Onur Mutlu 
onur@cmu.edu 
August 6, 2013 
MemCon 2013 

 
 



Backup Slides 
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Backup Slides Agenda 

n  Building Large DRAM Caches for Hybrid Memories 
n  Memory QoS and Predictable Performance 
n  Subarray-Level Parallelism (SALP) in DRAM 
n  Coordinated Memory and Storage with NVM 
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Building Large Caches for 
Hybrid Memories 
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One Option: DRAM as a Cache for PCM 
n  PCM is main memory; DRAM caches memory rows/blocks 

q  Benefits: Reduced latency on DRAM cache hit; write filtering 

n  Memory controller hardware manages the DRAM cache 
q  Benefit: Eliminates system software overhead 

n  Three issues: 
q  What data should be placed in DRAM versus kept in PCM? 
q  What is the granularity of data movement? 
q  How to design a low-cost hardware-managed DRAM cache? 

n  Two ideas: 
q  Locality-aware data placement [Yoon+ , ICCD 2012] 

q  Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012] 
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The Problem with Large DRAM Caches 
n  A large DRAM cache requires a large metadata (tag + 

block-based information) store 
n  How do we design an efficient DRAM cache? 
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Idea 1: Store Tags in Main Memory 
n  Store tags in the same row as data in DRAM 

q  Data and metadata can be accessed together 

n  Benefit: No on-chip tag storage overhead 
n  Downsides:  

q  Cache hit determined only after a DRAM access 
q  Cache hit requires two DRAM accesses 
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Idea 2: Cache Tags in On-Chip SRAM 
n  Recall Idea 1: Store all metadata in DRAM  

q  To reduce metadata storage overhead 

n  Idea 2: Cache in on-chip SRAM frequently-accessed 
metadata 
q  Cache only a small amount to keep SRAM size small 
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Idea 3: Dynamic Data Transfer Granularity 
n  Some applications benefit from caching more data 

q  They have good spatial locality 

n  Others do not 
q  Large granularity wastes bandwidth and reduces cache 

utilization 

n  Idea 3: Simple dynamic caching granularity policy 
q  Cost-benefit analysis to determine best DRAM cache block size 

n  Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and 
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 
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Hybrid Main Memory: Research Topics 
n  Many research topics from technology 

layer to algorithms layer 

n  Enabling NVM and hybrid memory 
q  How to maximize performance? 
q  How to maximize lifetime? 
q  How to prevent denial of service? 

n  Exploiting emerging tecnologies 
q  How to exploit non-volatility? 
q  How to minimize energy consumption? 
q  How to minimize cost? 
q  How to exploit NVM on chip? 
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Security Challenges of Emerging Technologies 

1. Limited endurance à Wearout attacks 
 
 
 
 
2. Non-volatility à Data persists in memory after powerdown 
    à Easy retrieval of privileged or private information 
 
 
 
3. Multiple bits per cell à Information leakage (via side channel) 
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Memory QoS 
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Trend: Many Cores on Chip 
n  Simpler and lower power than a single large core 
n  Large scale parallelism on chip 
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Many Cores on Chip 

n  What we want: 
q  N times the system performance with N times the cores 

n  What do we get today? 
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Unfair Slowdowns due to Interference 

Memory Performance Hog 
Low priority 

High priority 

(Core 0) (Core 1) 

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service  
in multi-core systems,” USENIX Security 2007. 

matlab 
(Core 1) 

gcc 
(Core 2) 
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Uncontrolled Interference: An Example 
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// initialize large arrays A, B 
 
for (j=0; j<N; j++) { 
     index = rand(); 
     A[index] = B[index]; 
     … 
} 
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A Memory Performance Hog 

STREAM 

-  Sequential memory access  
-  Very high row buffer locality (96% hit rate) 
-  Memory intensive 

RANDOM 

-  Random memory access 
-  Very low row buffer locality (3% hit rate) 
-  Similarly memory intensive 

// initialize large arrays A, B 
 
for (j=0; j<N; j++) { 
     index = j*linesize; 
     A[index] = B[index]; 
     … 
} 

streaming random 

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
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What Does the Memory Hog Do? 
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Effect of the Memory Performance Hog 
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1.18X slowdown 

2.82X slowdown 

Results on Intel Pentium D running Windows XP 
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)  
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Greater Problem with More Cores 

n  Vulnerable to denial of service (DoS) 

n  Unable to enforce priorities or SLAs  
n  Low system performance 
 

Uncontrollable, unpredictable system 
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Distributed DoS in Networked Multi-Core Systems 
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Attackers 
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     ~5000X slowdown 

Grot, Hestness, Keckler, Mutlu,  
“Preemptive virtual clock: A Flexible,  
Efficient, and Cost-effective QOS  
Scheme for Networks-on-Chip,“ 
MICRO 2009. 



How Do We Solve The Problem? 

n  Inter-thread interference is uncontrolled in all memory 
resources 
q  Memory controller 
q  Interconnect 
q  Caches 

n  We need to control it 
q  i.e., design an interference-aware (QoS-aware) memory system 
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QoS-Aware Memory Systems: Challenges 

n  How do we reduce inter-thread interference? 
q  Improve system performance and core utilization 
q  Reduce request serialization and core starvation 
 

n  How do we control inter-thread interference? 
q  Provide mechanisms to enable system software to enforce 

QoS policies  
q  While providing high system performance 

n  How do we make the memory system configurable/flexible?  
q  Enable flexible mechanisms that can achieve many goals 

n  Provide fairness or throughput when needed 
n  Satisfy performance guarantees when needed 
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Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

q  QoS-aware thread scheduling to cores 
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n  Memory Channel Partitioning 
q  Idea: System software maps badly-interfering applications’ pages 

to different channels [Muralidhara+, MICRO’11] 

 
n  Separate data of low/high intensity and low/high row-locality applications 
n  Especially effective in reducing interference of threads with “medium” and 

“heavy” memory intensity  
q  11% higher performance over existing systems (200 workloads) 

A Mechanism to Reduce Memory Interference 
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Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12][Subramanian+, HPCA’13] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

q  QoS-aware thread scheduling to cores [Das+ HPCA’13] 
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QoS-Aware Memory Scheduling 

n  How to schedule requests to provide 
q  High system performance 
q  High fairness to applications 
q  Configurability to system software  

n  Memory controller needs to be aware of threads 
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QoS-Aware Memory Scheduling: Evolution 
n  Stall-time fair memory scheduling [Mutlu+ MICRO’07] 

q  Idea: Estimate and balance thread slowdowns 

q  Takeaway: Proportional thread progress improves performance, 
especially when threads are “heavy” (memory intensive) 

n  Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09] 

q  Idea: Rank threads and service in rank order (to preserve bank 
parallelism); batch requests to prevent starvation 

q  Takeaway: Preserving within-thread bank-parallelism improves 
performance; request batching improves fairness 

n  ATLAS memory scheduler [Kim+ HPCA’10] 

q  Idea: Prioritize threads that have attained the least service from the 
memory scheduler  

q  Takeaway: Prioritizing “light” threads improves performance 
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Achieving the Best of Both Worlds 
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Thread Cluster Memory Scheduling [Kim+ MICRO’10] 

1.   Group	
  threads	
  into	
  two	
  clusters	
  
2.   PrioriQze	
  non-­‐intensive	
  cluster	
  
3.   Different	
  policies	
  for	
  each	
  cluster	
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TCM: Quantum-Based Operation 
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TCM: Throughput and Fairness 
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TCM: Fairness-Throughput Tradeoff 
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More on TCM 

n  Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter, 
"Thread Cluster Memory Scheduling: Exploiting Differences in 
Memory Access Behavior"  
Proceedings of the 43rd International Symposium on Microarchitecture 
(MICRO), pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)  
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Memory Control in CPU-GPU Systems 
n  Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 

n  Problem: Existing monolithic application-aware memory 
scheduler designs are hard to scale to large request buffer sizes 

n  Solution: Staged Memory Scheduling (SMS)  
decomposes the memory controller into three simple stages: 
1) Batch formation: maintains row buffer locality 
2) Batch scheduler: reduces interference between applications 
3) DRAM command scheduler: issues requests to DRAM 

n  Compared to state-of-the-art memory schedulers: 
q  SMS is significantly simpler and more scalable 
q  SMS provides higher performance and fairness 

114 Ausavarungnirun+, “Staged Memory Scheduling,” ISCA 2012. 



Key Idea: Decouple Tasks into Stages 
n  Idea: Decouple the functional tasks of the memory controller 

q  Partition tasks across several simpler HW structures (stages) 

1) Maximize row buffer hits 
q  Stage 1: Batch formation  
q  Within each application, groups requests to the same row into 

batches 

2) Manage contention between applications 
q  Stage 2: Batch scheduler  
q  Schedules batches from different applications 

3) Satisfy DRAM timing constraints 
q  Stage 3: DRAM command scheduler 
q  Issues requests from the already-scheduled order to each bank 

115 



SMS: Staged Memory Scheduling 

116 

 
Memory Scheduler 

 

Core 1 Core 2 Core 3 Core 4 

To DRAM 

GPU 

Req 
Req 

Req 

Req 
Req 

Req Req 
Req Req Req 

Req Req Req 
Req Req 

Req Req 

Req Req Req 

Req 
Req Req 

Req 

Req 

Req 
Req 

Req Req 
Req Req Req 

Req Req Req Req Req Req 
Req 

Req 

Req Req 
Batch Scheduler 

Stage 1 

Stage 2 

Stage 3 

Req 

M
on

ol
ith

ic
 S

ch
ed

ul
er

 

Batch 
Formation 

DRAM 
Command 
Scheduler 

Bank 1 Bank 2 Bank 3 Bank 4 



Stage 1 

Stage 2 

SMS: Staged Memory Scheduling 
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SMS Complexity 
n  Compared to a row hit first scheduler, SMS consumes* 

q  66% less area 
q  46% less static power 

n  Reduction comes from: 
q  Monolithic scheduler à stages of simpler schedulers 
q  Each stage has a simpler scheduler (considers fewer 

properties at a time to make the scheduling decision) 
q  Each stage has simpler buffers (FIFO instead of out-of-order) 
q  Each stage has a portion of the total buffer size (buffering is 

distributed across stages) 

119 * Based on a Verilog model using 180nm library 



SMS Performance 
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n  At every GPU weight, SMS outperforms the best previous 
scheduling algorithm for that weight 

SMS Performance 
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CPU-GPU Performance Tradeoff 
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More on SMS 

n  Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel 
Loh, and Onur Mutlu, 
"Staged Memory Scheduling: Achieving High Performance and 
Scalability in Heterogeneous Systems" 
Proceedings of the 
39th International Symposium on Computer Architecture (ISCA), 
Portland, OR, June 2012. Slides (pptx)  
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Stronger Memory Service Guarantees [HPCA’13] 
n  Uncontrolled memory interference slows down  

applications unpredictably 
n  Goal: Estimate and control slowdowns 

n  MISE: An accurate slowdown estimation model  
q  Request Service Rate is a good proxy for performance 

n  Slowdown = Request Service Rate Alone / Request Service Rate Shared 
q  Request Service Rate Alone estimated by giving an application highest 

priority in accessing memory 
q  Average slowdown estimation error of MISE: 8.2% (3000 data pts) 

n  Memory controller leverages MISE to control slowdowns 
q  To provide soft slowdown guarantees 
q  To minimize maximum slowdown 

124 Subramanian+, “MISE,” HPCA 2013. 



More on MISE 

n  Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, and 
Onur Mutlu, 
"MISE: Providing Performance Predictability and Improving 
Fairness in Shared Main Memory Systems"  
Proceedings of the 
19th International Symposium on High-Performance Computer 
Architecture (HPCA), Shenzhen, China, February 2013. Slides (pptx) 
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Memory QoS in a Parallel Application 

n  Threads in a multithreaded application are inter-dependent 
n  Some threads can be on the critical path of execution due 

to synchronization; some threads are not 
n  How do we schedule requests of inter-dependent threads to 

maximize multithreaded application performance? 

n  Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non-limiter threads 
to reduce memory interference among them [Ebrahimi+, MICRO’11] 

n  Hardware/software cooperative limiter thread estimation: 
n  Thread executing the most contended critical section 
n  Thread that is falling behind the most in a parallel for loop 

 
126 Ebrahimi+, “Parallel Application Memory Scheduling,” MICRO 2011. 



More on PAMS 

n  Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo Lee, 
Onur Mutlu, and Yale N. Patt,  
"Parallel Application Memory Scheduling" 
Proceedings of the 44th International Symposium on Microarchitecture 
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)  
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Summary: Memory QoS Approaches and Techniques 

n  Approaches: Smart vs. dumb resources 
q  Smart resources: QoS-aware memory scheduling 
q  Dumb resources: Source throttling; channel partitioning 
q  Both approaches are effective in reducing interference 
q  No single best approach for all workloads 

n  Techniques: Request scheduling, source throttling, memory 
partitioning 
q  All approaches are effective in reducing interference 
q  Can be applied at different levels: hardware vs. software 
q  No single best technique for all workloads 

n  Combined approaches and techniques are the most powerful 
q  Integrated Memory Channel Partitioning and Scheduling [MICRO’11] 
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SALP: Reducing DRAM Bank 
Conflict Impact 

129 

Kim, Seshadri, Lee, Liu, Mutlu 
A Case for Exploiting Subarray-Level Parallelism 
(SALP) in DRAM  
ISCA 2012. 



SALP: Reducing DRAM Bank Conflicts 
n  Problem: Bank conflicts are costly for performance and energy 

q  serialized requests, wasted energy (thrashing of row buffer, busy wait) 

n  Goal: Reduce bank conflicts without adding more banks (low cost) 
n  Key idea: Exploit the internal subarray structure of a DRAM bank to 

parallelize bank conflicts to different subarrays 
q  Slightly modify DRAM bank to reduce subarray-level hardware sharing 

 

130 Kim, Seshadri+ “A Case for Exploiting Subarray-Level  
Parallelism in DRAM,” ISCA 2012. 
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SALP: Key Ideas 

n  A DRAM bank consists of mostly-independent subarrays 
q  Subarrays share some global structures to reduce cost 

131 

Key Idea of SALP: Minimally reduce sharing of global structures 

Reduce the sharing of … 
Global decoder à Enables pipelined access to subarrays 
Global row buffer à Utilizes multiple local row buffers 



SALP: Reduce Sharing of Global Decoder 
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SALP: Reduce Sharing of Global Row-Buffer 
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SALP: Baseline Bank Organization 
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SALP: Proposed Bank Organization 
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SALP: Results 
n  Wide variety of systems with different #channels, banks, 

ranks, subarrays 
n  Server, streaming, random-access, SPEC workloads 

n  Dynamic DRAM energy reduction: 19%  
q  DRAM row hit rate improvement: 13%  

n  System performance improvement: 17% 
q  Within 3% of ideal (all independent banks) 

n  DRAM die area overhead: 0.15%  
q  vs. 36% overhead of independent banks 
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More on SALP 

n  Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu, 
"A Case for Exploiting Subarray-Level Parallelism (SALP) in 
DRAM" 
Proceedings of the 
39th International Symposium on Computer Architecture (ISCA), 
Portland, OR, June 2012. Slides (pptx)  
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Coordinated Memory and 
Storage with NVM 
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Meza, Luo, Khan, Zhao, Xie, and Mutlu, 
"A Case for Efficient Hardware-Software 
Cooperative Management of Storage and 
Memory” 
WEED 2013. 



Overview 
n  Traditional systems have a two-level storage model 

q  Access volatile data in memory with a load/store interface 
q  Access persistent data in storage with a file system interface 
q  Problem: Operating system (OS) and file system (FS) code and buffering 

for storage lead to energy and performance inefficiencies 

n  Opportunity: New non-volatile memory (NVM) technologies can help 
provide fast (similar to DRAM), persistent storage (similar to Flash) 
q  Unfortunately, OS and FS code can easily become energy efficiency and 

performance bottlenecks if we keep the traditional storage model 

n  This work: makes a case for hardware/software cooperative 
management of storage and memory within a single-level 
q  We describe the idea of a Persistent Memory Manager (PMM) for 

efficiently coordinating storage and memory, and quantify its benefit 
q  And, examine questions and challenges to address to realize PMM 
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A Tale of Two Storage Levels 
n  Two-level storage arose in systems due to the widely different 

access latencies and methods of the commodity storage devices 
q  Fast, low capacity, volatile DRAM à working storage 
q  Slow, high capacity, non-volatile hard disk drives à persistent storage 

n  Data from slow storage media is buffered in fast DRAM 
q  After that it can be manipulated by programs à programs cannot 

directly access persistent storage 
q  It is the programmer’s job to translate this data between the two 

formats of the two-level storage (files and data structures) 

n  Locating, transferring, and translating data and formats between 
the two levels of storage can waste significant energy and 
performance 

140 



Opportunity: New Non-Volatile Memories 
n  Emerging memory technologies provide the potential for unifying 

storage and memory (e.g., Phase-Change, STT-RAM, RRAM) 
q  Byte-addressable (can be accessed like DRAM) 
q  Low latency (comparable to DRAM) 
q  Low power (idle power better than DRAM) 
q  High capacity (closer to Flash) 
q  Non-volatile (can enable persistent storage) 
q  May have limited endurance (but, better than Flash) 

n  Can provide fast access to both volatile data and persistent 
storage 

n  Question: if such devices are used, is it efficient to keep a      
two-level storage model? 
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Eliminating Traditional Storage Bottlenecks 
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Where is Energy Spent in Each Model? 
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Our Proposal: Coordinated HW/SW      
Memory and Storage Management 

n  Goal: Unify memory and storage to eliminate wasted work to 
locate, transfer, and translate data 
q  Improve both energy and performance 
q  Simplify programming model as well 
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Our Proposal: Coordinated HW/SW    
Memory and Storage Management 

n  Goal: Unify memory and storage to eliminate wasted work to 
locate, transfer, and translate data 
q  Improve both energy and performance 
q  Simplify programming model as well 
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Our Proposal: Coordinated HW/SW     
Memory and Storage Management 

n  Goal: Unify memory and storage to eliminate wasted work to 
locate, transfer, and translate data 
q  Improve both energy and performance 
q  Simplify programming model as well 
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The Persistent Memory Manager (PMM) 
n  Exposes a load/store interface to access persistent data 

q  Applications can directly access persistent memory à no conversion, 
translation, location overhead for persistent data  

n  Manages data placement, location, persistence, security 
q  To get the best of multiple forms of storage 

n  Manages metadata storage and retrieval 
q  This can lead to overheads that need to be managed 

n  Exposes hooks and interfaces for system software 
q  To enable better data placement and management decisions 
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The Persistent Memory Manager 
n  Persistent Memory Manager 

q  Exposes a load/store interface to access persistent data 
q  Manages data placement, location, persistence, security 
q  Manages metadata storage and retrieval 
q  Exposes hooks and interfaces for system software 

n  Example program manipulating a persistent object: 
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2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5
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Putting Everything Together 
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2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.
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Opportunities and Benefits 

n  We’ve identified at least five opportunities and benefits of a unified 
storage/memory system that gets rid of the two-level model: 

1.  Eliminating system calls for file operations 

2.  Eliminating file system operations 

3.  Efficient data mapping/location among heterogeneous devices 

4.  Providing security and reliability in persistent memories 

5.  Hardware/software cooperative data management 
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Evaluation Methodology 
n  Hybrid real system / simulation-based approach 

q  System calls are executed on host machine (functional correctness) 
and timed to accurately model their latency in the simulator 

q  Rest of execution is simulated in Multi2Sim (enables hardware-level 
exploration) 

n  Power evaluated using McPAT and memory power models 

n  16 cores, 4-wide issue, 128-entry instruction window, 1.6 GHz 

n  Volatile memory: 4GB DRAM, 4KB page size, 100-cycle latency 

n  Persistent memory 
q  HDD (measured): 4ms seek latency, 6Gbps bus rate 

q  NVM: (modeled after PCM) 4KB page size, 160-/480-cycle (read/
write) latency 
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Evaluated Systems 
n  HDD Baseline (HB) 

q  Traditional system with volatile DRAM memory and persistent HDD storage 
q  Overheads of operating system and file system code and buffering 

n  HDD without OS/FS (HW) 
q  Same as HDD Baseline, but with the ideal elimination of all OS/FS overheads 
q  System calls take 0 cycles (but HDD access takes normal latency) 

n  NVM Baseline (NB) 
q  Same as HDD Baseline, but HDD is replaced with NVM 
q  Still has OS/FS overheads of the two-level storage model 

n  Persistent Memory (PM) 
q  Uses only NVM (no DRAM) to ensure full-system persistence 
q  All data accessed using loads and stores 
q  Does not waste energy on system calls 
q  Data is manipulated directly on the NVM device 
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Evaluated Workloads 
n  Unix utilities that manipulate files 

q  cp: copy a large file from one location to another 
q  cp –r: copy files in a directory tree from one location to another 
q  grep: search for a string in a large file 
q  grep –r: search for a string recursively in a directory tree 

n  PostMark: an I/O-intensive benchmark from NetApp 
q  Emulates typical access patterns for email, news, web commerce 

n  MySQL Server: a popular database management system 
q  OLTP-style queries generated by Sysbench 
q  MySQL (simple): single, random read to an entry 
q  MySQL (complex): reads/writes 1 to 100 entries per transaction 
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The workloads that see the greatest improvement from using a Persistent Memory 
are those that spend a large portion of their time executing system call code due to 

the two-level storage model 
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Between systems with and without OS/FS code, energy improvements come from:  
1. reduced code footprint, 2. reduced data movement 

Large	
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Scalability Analysis: Effect of PMM Latency 
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Even if each PMM access takes a non-overlapped 50 cycles (conservative),  
PMM still provides an overall improvement compared to the NVM baseline 
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New Questions and Challenges 
n  We identify and discuss several open research questions 

Ø  Q1. How to tailor applications for systems with persistent 
memory? 

Ø  Q2. How can hardware and software cooperate to support a 
scalable, persistent single-level address space? 

Ø  Q3. How to provide efficient backward compatibility (for two-
level stores) on persistent memory systems? 

Ø  Q4. How to mitigate potential hardware performance and energy 
overheads? 
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Single-Level Stores: Summary and Conclusions 
n  Traditional two-level storage model is inefficient in terms of 

performance and energy 
q  Due to OS/FS code and buffering needed to manage two models 
q  Especially so in future devices with NVM technologies, as we show 

n  New non-volatile memory based persistent memory designs that 
use a single-level storage model to unify memory and storage can 
alleviate this problem 

n  We quantified the performance and energy benefits of such a 
single-level persistent memory/storage design 
q  Showed significant benefits from reduced code footprint, data 

movement, and system software overhead on a variety of workloads 

n  Such a design requires more research to answer the questions we 
have posed and enable efficient persistent memory managers 
à can lead to a fundamentally more efficient storage system 
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