
Memory Scaling:
A Systems Architecture Perspective

Onur Mutlu
onur@cmu.edu
August 6, 2013
MemCon 2013

The Main Memory System

n  Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

n  Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

2

Processor
and caches

Main Memory Storage (SSD/HDD)

Memory System: A Shared Resource View

3

Storage

State of the Main Memory System
n  Recent technology, architecture, and application trends

q  lead to new requirements
q  exacerbate old requirements

n  DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

n  Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

n  We need to rethink the main memory system
q  to fix DRAM issues and enable emerging technologies
q  to satisfy all requirements

4

Agenda

n  Major Trends Affecting Main Memory
n  The DRAM Scaling Problem and Solution Directions

q  Tolerating DRAM: New DRAM Architectures
q  Enabling Emerging Technologies: Hybrid Memory Systems

n  How Can We Do Better?
n  Summary

5

Major Trends Affecting Main Memory (I)
n  Need for main memory capacity, bandwidth, QoS increasing

n  Main memory energy/power is a key system design concern

n  DRAM technology scaling is ending

6

Major Trends Affecting Main Memory (II)
n  Need for main memory capacity, bandwidth, QoS increasing

q  Multi-core: increasing number of cores/agents
q  Data-intensive applications: increasing demand/hunger for data
q  Consolidation: cloud computing, GPUs, mobile, heterogeneity

n  Main memory energy/power is a key system design concern

n  DRAM technology scaling is ending

7

Example: The Memory Capacity Gap

n  Memory capacity per core expected to drop by 30% every two years
n  Trends worse for memory bandwidth per core!

8

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years

Major Trends Affecting Main Memory (III)
n  Need for main memory capacity, bandwidth, QoS increasing

n  Main memory energy/power is a key system design concern

q  ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,
IEEE Computer 2003]

q  DRAM consumes power even when not used (periodic refresh)

n  DRAM technology scaling is ending

9

Major Trends Affecting Main Memory (IV)
n  Need for main memory capacity, bandwidth, QoS increasing

n  Main memory energy/power is a key system design concern

n  DRAM technology scaling is ending

q  ITRS projects DRAM will not scale easily below X nm
q  Scaling has provided many benefits:

n  higher capacity (density), lower cost, lower energy

10

Agenda

n  Major Trends Affecting Main Memory
n  The DRAM Scaling Problem and Solution Directions

q  Tolerating DRAM: New DRAM Architectures
q  Enabling Emerging Technologies: Hybrid Memory Systems

n  How Can We Do Better?
n  Summary

11

The DRAM Scaling Problem
n  DRAM stores charge in a capacitor (charge-based memory)

q  Capacitor must be large enough for reliable sensing
q  Access transistor should be large enough for low leakage and high

retention time
q  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

n  DRAM capacity, cost, and energy/power hard to scale

12

Solutions to the DRAM Scaling Problem

n  Two potential solutions
q  Tolerate DRAM (by taking a fresh look at it)
q  Enable emerging memory technologies to eliminate/minimize

DRAM

n  Do both
q  Hybrid memory systems

13

Solution 1: Tolerate DRAM
n  Overcome DRAM shortcomings with

q  System-DRAM co-design
q  Novel DRAM architectures, interface, functions
q  Better waste management (efficient utilization)

n  Key issues to tackle
q  Reduce refresh energy
q  Improve bandwidth and latency
q  Reduce waste
q  Enable reliability at low cost

n  Liu, Jaiyen, Veras, Mutlu, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
n  Kim, Seshadri, Lee+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
n  Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
n  Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices” ISCA’13.
n  Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” 2013.

14

Solution 2: Emerging Memory Technologies
n  Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)
n  Example: Phase Change Memory

q  Expected to scale to 9nm (2022 [ITRS])
q  Expected to be denser than DRAM: can store multiple bits/cell

n  But, emerging technologies have shortcomings as well
q  Can they be enabled to replace/augment/surpass DRAM?

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM Alternative,”
ISCA 2009, CACM 2010, Top Picks 2010.

n  Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,” IEEE
Comp. Arch. Letters 2012.

n  Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.
n  Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

15

Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

An Orthogonal Issue: Memory Interference

Main
Memory

17

Core Core

Core Core

Cores’ interfere with each other when accessing shared main memory

n  Problem: Memory interference between cores is uncontrolled
à unfairness, starvation, low performance
à uncontrollable, unpredictable, vulnerable system

n  Solution: QoS-Aware Memory Systems
q  Hardware designed to provide a configurable fairness substrate

n  Application-aware memory scheduling, partitioning, throttling

q  Software designed to configure the resources to satisfy different
QoS goals

n  QoS-aware memory controllers and interconnects can
provide predictable performance and higher efficiency

An Orthogonal Issue: Memory Interference

Agenda

n  Major Trends Affecting Main Memory
n  The DRAM Scaling Problem and Solution Directions

q  Tolerating DRAM: New DRAM Architectures
q  Enabling Emerging Technologies: Hybrid Memory Systems

n  How Can We Do Better?
n  Summary

19

Tolerating DRAM: Example Techniques

n  Retention-Aware DRAM Refresh: Reducing Refresh Impact

n  Tiered-Latency DRAM: Reducing DRAM Latency

n  RowClone: Accelerating Page Copy and Initialization

n  Subarray-Level Parallelism: Reducing Bank Conflict Impact

20

DRAM Refresh
n  DRAM capacitor charge leaks over time

n  The memory controller needs to refresh each row
periodically to restore charge
q  Activate each row every N ms
q  Typical N = 64 ms

n  Downsides of refresh
 -- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM capacity scaling
 21

Refresh Overhead: Performance

22

8%	

46%	

Refresh Overhead: Energy

23

15%	

47%	

Retention Time Profile of DRAM

24

RAIDR: Eliminating Unnecessary Refreshes
n  Observation: Most DRAM rows can be refreshed much less often

without losing data [Kim+, EDL’09][Liu+ ISCA’13]

n  Key idea: Refresh rows containing weak cells
 more frequently, other rows less frequently

1. Profiling: Profile retention time of all rows
2. Binning: Store rows into bins by retention time in memory controller

 Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)
3. Refreshing: Memory controller refreshes rows in different bins at
different rates

n  Results: 8-core, 32GB, SPEC, TPC-C, TPC-H
q  74.6% refresh reduction @ 1.25KB storage
q  ~16%/20% DRAM dynamic/idle power reduction
q  ~9% performance improvement
q  Benefits increase with DRAM capacity

25
Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Going Forward

n  How to find out and expose weak memory cells/rows
q  Early analysis of modern DRAM chips:

n  Liu+, “An Experimental Study of Data Retention Behavior in
Modern DRAM Devices: Implications for Retention Time Profiling
Mechanisms”, ISCA 2013.

n  Low-cost system-level tolerance of DRAM errors

n  Tolerating cell-to-cell interference at the system level
q  For both DRAM and Flash. Early analysis of Flash chips:

n  Cai+, “Program Interference in MLC NAND Flash Memory:
Characterization, Modeling, and Mitigation,” ICCD 2013.

26

Tolerating DRAM: Example Techniques

n  Retention-Aware DRAM Refresh: Reducing Refresh Impact

n  Tiered-Latency DRAM: Reducing DRAM Latency

n  RowClone: Accelerating Page Copy and Initialization

n  Subarray-Level Parallelism: Reducing Bank Conflict Impact

27

28	

DRAM	
 Latency-­‐Capacity	
 Trend	

0	

20	

40	

60	

80	

100	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

2000	
 2003	
 2006	
 2008	
 2011	

La
te
nc
y	

(n
s)
	

Ca
pa

ci
ty
	
 (G

b)
	

Year	

Capacity	
 Latency	
 (tRC)	

16X	

-­‐20%	

DRAM	
 latency	
 con.nues	
 to	
 be	
 a	
 cri.cal	
 bo4leneck	

29	

DRAM	
 Latency	
 =	
 Subarray	
 Latency	
 +	
 I/O	
 Latency	

	
 	
 	
 What	
 Causes	
 the	
 Long	
 Latency?	

DRAM	
 Chip	

channel	

cell	
 array	

I/O	

DRAM	
 Chip	

channel	

I/O	

subarray	

DRAM	
 Latency	
 =	
 Subarray	
 Latency	
 +	
 I/O	
 Latency	

Dominant	

Su
ba

rr
ay
	

I/
O
	

30	

	
 	
 	
 Why	
 is	
 the	
 Subarray	
 So	
 Slow?	

Subarray	

ro
w
	
 d
ec
od

er
	

sense	
 amplifier	

ca
pa
ci
to
r	

access	

transistor	

wordline	

bi
tli
ne

	

Cell	

large	
 sense	
 amplifier	

bi
tli
ne

:	
 5
12
	
 c
el
ls
	
 cell	

•  Long	
 bitline	

– AmorQzes	
 sense	
 amplifier	
 cost	
 à	
 Small	
 area	

– Large	
 bitline	
 capacitance	
 à	
 High	
 latency	
 &	
 power	

se
ns
e	

am

pl
ifi
er
	

ro
w
	
 d
ec
od

er
	

31	

	
 	
 	
 Trade-­‐Off:	
 Area	
 (Die	
 Size)	
 vs.	
 Latency	

Faster	

Smaller	

Short	
 Bitline	

	

Long	
 Bitline	

	

Trade-­‐Off:	
 Area	
 vs.	
 Latency	

32	

	
 	
 	
 Trade-­‐Off:	
 Area	
 (Die	
 Size)	
 vs.	
 Latency	

0	

1	

2	

3	

4	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	

N
or
m
al
iz
ed

	
 D
RA

M
	
 A
re
a	

Latency	
 (ns)	

64	

32	

128	

256	
 512	
 cells/bitline	

Commodity	

DRAM	

Long	
 Bitline	

Ch
ea
pe

r	

Faster	

Fancy	
 DRAM	

Short	
 Bitline	

33	

Short	
 Bitline	

Low	
 Latency	
 	

	
 	
 	
 ApproximaQng	
 the	
 Best	
 of	
 Both	
 Worlds	

Long	
 Bitline	

Small	
 Area	
 	

Long	
 Bitline	

Low	
 Latency	
 	

Short	
 Bitline	
 Our	
 Proposal	

Small	
 Area	
 	

Short	
 Bitline	
 è	
 Fast	

Need	

IsolaGon	

Add	
 IsolaGon	

Transistors	

High	
 Latency	

Large	
 Area	
 	

34	

	
 	
 	
 ApproximaQng	
 the	
 Best	
 of	
 Both	
 Worlds	

Low	
 Latency	
 	

Our	
 Proposal	

Small	
 Area	
 	

Long	
 Bitline	

Small	
 Area	
 	

Long	
 Bitline	

High	
 Latency	

Short	
 Bitline	

Low	
 Latency	
 	

Short	
 Bitline	

Large	
 Area	
 	

Tiered-­‐Latency	
 DRAM	

Low	
 Latency	

Small	
 area	

using	
 long	

bitline	

35	

	
 	
 	
 Tiered-­‐Latency	
 DRAM	

Near	
 Segment	

Far	
 Segment	

IsolaGon	
 Transistor	

•  Divide	
 a	
 bitline	
 into	
 two	
 segments	
 with	
 an	

isolaQon	
 transistor	

Sense	
 Amplifier	

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

36	

0%	

50%	

100%	

150%	

0%	

50%	

100%	

150%	

	
 Commodity	
 DRAM	
 vs.	
 TL-­‐DRAM	
 	

La
te
nc
y	

Po
w
er
	

–56%	

+23%	

–51%	

+49%	

•  DRAM	
 Latency	
 (tRC)	
 •  DRAM	
 Power	

•  DRAM	
 Area	
 Overhead	

~3%:	
 mainly	
 due	
 to	
 the	
 isolaIon	
 transistors	

TL-­‐DRAM	

Commodity	

DRAM	

Near	
 	
 	
 	
 	
 	
 	
 Far	
 Commodity	

DRAM	

Near	
 	
 	
 	
 	
 	
 	
 Far	

TL-­‐DRAM	

	
 (52.5ns)	

37	

	
 	
 	
 Trade-­‐Off:	
 Area	
 (Die-­‐Area)	
 vs.	
 Latency	

0	

1	

2	

3	

4	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	

N
or
m
al
iz
ed

	
 D
RA

M
	
 A
re
a	

Latency	
 (ns)	

64	

32	

128	

256	
 	
 	
 	
 512	
 cells/bitline	
 	

	
 	
 	
 	

Ch
ea
pe

r	

Faster	

Near	
 Segment	
 Far	
 Segment	

38	

	
 	
 	
 Leveraging	
 Tiered-­‐Latency	
 DRAM	

•  TL-­‐DRAM	
 is	
 a	
 substrate	
 that	
 can	
 be	
 leveraged	

by	
 the	
 hardware	
 and/or	
 soOware	

•  Many	
 potenIal	
 uses	

1. Use	
 near	
 segment	
 as	
 hardware-­‐managed	
 inclusive	

cache	
 to	
 far	
 segment	

2. Use	
 near	
 segment	
 as	
 hardware-­‐managed	
 exclusive	

cache	
 to	
 far	
 segment	

3. Profile-­‐based	
 page	
 mapping	
 by	
 operaIng	
 system	

4. Simply	
 replace	
 DRAM	
 with	
 TL-­‐DRAM	
 	

39	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

1	
 (1-­‐ch)	
 2	
 (2-­‐ch)	
 4	
 (4-­‐ch)	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

1	
 (1-­‐ch)	
 2	
 (2-­‐ch)	
 4	
 (4-­‐ch)	

	
 	
 	
 Performance	
 &	
 Power	
 ConsumpQon	
 	
 	

11.5%	

	

N
or
m
al
iz
ed

	
 P
er
fo
rm

an
ce
	

Core-­‐Count	
 (Channel)	

N
or
m
al
iz
ed

	
 P
ow

er
	

Core-­‐Count	
 (Channel)	

10.7%	

	

12.4%	

	
 –23%	

	

–24%	

	

–26%	

	

Using	
 near	
 segment	
 as	
 a	
 cache	
 improves	

performance	
 and	
 reduces	
 power	
 consumpGon	

Tolerating DRAM: Example Techniques

n  Retention-Aware DRAM Refresh: Reducing Refresh Impact

n  Tiered-Latency DRAM: Reducing DRAM Latency

n  RowClone: Accelerating Page Copy and Initialization

n  Subarray-Level Parallelism: Reducing Bank Conflict Impact

40

Today’s	
 Memory:	
 Bulk	
 Data	
 Copy	

Memory
	

	

	

MC L3 L2 L1 CPU

1)	
 High	
 latency	

2)	
 High	
 bandwidth	
 uIlizaIon	

3)	
 Cache	
 polluIon	

4)	
 Unwanted	
 data	
 movement	

41	

Future:	
 RowClone	
 (In-­‐Memory	
 Copy)	

Memory
	

	

	

MC L3 L2 L1 CPU

1)	
 Low	
 latency	

2)	
 Low	
 bandwidth	
 uIlizaIon	

3)	
 No	
 cache	
 polluIon	

4)	
 No	
 unwanted	
 data	
 movement	

42	

DRAM operation (load one byte)

Row Buffer (4 Kbits)

Memory Bus

Data pins (8 bits)

DRAM array

4 Kbits

Step 1: Activate row

 Transfer row

Step 2: Read
Transfer byte onto bus

RowClone: in-DRAM Row Copy (and Initialization)

Row Buffer (4 Kbits)

Memory Bus

Data pins (8 bits)

DRAM array

4 Kbits

Step 1: Activate row A

Transfer row

Step 2: Activate row B

Transfer
row

RowClone:	
 Latency	
 and	
 Energy	
 Savings	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Latency	
 Energy	

N
or
m
al
iz
ed

	
 S
av
in
gs
	

Baseline	
 Intra-­‐Subarray	

Inter-­‐Bank	
 Inter-­‐Subarray	

11.6x	
 74x	

45	

Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” CMU Tech Report 2013.

RowClone:	
 Overall	
 Performance	

46	

Goal: Ultra-efficient heterogeneous architectures

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memory imaging
core

Memory Bus

Slide credit: Prof. Kayvon Fatahalian, CMU

Enabling Ultra-efficient (Visual) Search

▪  What is the right partitioning of computation capability?
▪  What is the right low-cost memory substrate?
▪  What memory technologies are the best enablers?
▪  How do we rethink/ease (visual) search algorithms/applications?

Cache

Processor
Core

Memory Bus

Main Memory

Database
(of images)

Query vector

Results

Picture credit: Prof. Kayvon Fatahalian, CMU

Tolerating DRAM: Example Techniques

n  Retention-Aware DRAM Refresh: Reducing Refresh Impact

n  Tiered-Latency DRAM: Reducing DRAM Latency

n  RowClone: In-Memory Page Copy and Initialization

n  Subarray-Level Parallelism: Reducing Bank Conflict Impact

49

SALP: Reducing DRAM Bank Conflicts
n  Problem: Bank conflicts are costly for performance and energy

q  serialized requests, wasted energy (thrashing of row buffer, busy wait)

n  Goal: Reduce bank conflicts without adding more banks (low cost)
n  Key idea: Exploit the internal subarray structure of a DRAM bank to

parallelize bank conflicts to different subarrays
q  Slightly modify DRAM bank to reduce subarray-level hardware sharing

n  Results on Server, Stream/Random, SPEC
q  19% reduction in dynamic DRAM energy
q  13% improvement in row hit rate
q  17% performance improvement
q  0.15% DRAM area overhead

50 Kim, Seshadri+ “A Case for Exploiting Subarray-Level
Parallelism in DRAM,” ISCA 2012. 0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

D

yn
am

ic
 E

ne
rg

y

Baseline MASA

-1
9%

0%

20%

40%

60%

80%

100%

R
ow

-B
uf

fe
r

H
it

-R
at

e

Baseline MASA

+
13

%

Agenda

n  Major Trends Affecting Main Memory
n  The DRAM Scaling Problem and Solution Directions

q  Tolerating DRAM: New DRAM Architectures
q  Enabling Emerging Technologies: Hybrid Memory Systems

n  How Can We Do Better?
n  Summary

51

Solution 2: Emerging Memory Technologies
n  Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)

n  Example: Phase Change Memory
q  Data stored by changing phase of material
q  Data read by detecting material’s resistance
q  Expected to scale to 9nm (2022 [ITRS])
q  Prototyped at 20nm (Raoux+, IBM JRD 2008)
q  Expected to be denser than DRAM: can store multiple bits/cell

n  But, emerging technologies have (many) shortcomings
q  Can they be enabled to replace/augment/surpass DRAM?

52

Phase Change Memory: Pros and Cons
n  Pros over DRAM

q  Better technology scaling (capacity and cost)
q  Non volatility
q  Low idle power (no refresh)

n  Cons
q  Higher latencies: ~4-15x DRAM (especially write)
q  Higher active energy: ~2-50x DRAM (especially write)
q  Lower endurance (a cell dies after ~108 writes)

n  Challenges in enabling PCM as DRAM replacement/helper:
q  Mitigate PCM shortcomings
q  Find the right way to place PCM in the system

53

PCM-based Main Memory (I)
n  How should PCM-based (main) memory be organized?

n  Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:
q  How to partition/migrate data between PCM and DRAM

54

PCM-based Main Memory (II)
n  How should PCM-based (main) memory be organized?

n  Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:

q  How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

55

An Initial Study: Replace DRAM with PCM
n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change

Memory as a Scalable DRAM Alternative,” ISCA 2009.
q  Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
q  Derived “average” PCM parameters for F=90nm

56

Results: Naïve Replacement of DRAM with PCM
n  Replace DRAM with PCM in a 4-core, 4MB L2 system
n  PCM organized the same as DRAM: row buffers, banks, peripherals
n  1.6x delay, 2.2x energy, 500-hour average lifetime

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a

Scalable DRAM Alternative,” ISCA 2009.
57

Architecting PCM to Mitigate Shortcomings
n  Idea 1: Use multiple narrow row buffers in each PCM chip

à Reduces array reads/writes à better endurance, latency, energy

n  Idea 2: Write into array at
 cache block or word
 granularity

 à Reduces unnecessary wear

58

DRAM PCM

Results: Architected PCM as Main Memory
n  1.2x delay, 1.0x energy, 5.6-year average lifetime
n  Scaling improves energy, endurance, density

n  Caveat 1: Worst-case lifetime is much shorter (no guarantees)
n  Caveat 2: Intensive applications see large performance and energy hits
n  Caveat 3: Optimistic PCM parameters?

59

Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

One Option: DRAM as a Cache for PCM
n  PCM is main memory; DRAM caches memory rows/blocks

q  Benefits: Reduced latency on DRAM cache hit; write filtering

n  Memory controller hardware manages the DRAM cache
q  Benefit: Eliminates system software overhead

n  Three issues:
q  What data should be placed in DRAM versus kept in PCM?
q  What is the granularity of data movement?
q  How to design a low-cost hardware-managed DRAM cache?

n  Two solutions:
q  Locality-aware data placement [Yoon+ , ICCD 2012]

q  Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

61

DRAM vs. PCM: An Observation
n  Row buffers are the same in DRAM and PCM
n  Row buffer hit latency same in DRAM and PCM
n  Row buffer miss latency small in DRAM, large in PCM

n  Accessing the row buffer in PCM is fast
n  What incurs high latency is the PCM array access à avoid this

62

CPU
DRAM
Ctrl

PCM
Ctrl

Bank Bank Bank Bank

Row	
 buffer	

DRAM Cache PCM Main Memory

N ns row hit
Fast row miss

N ns row hit
Slow row miss

Row-Locality-Aware Data Placement
n  Idea: Cache in DRAM only those rows that

q  Frequently cause row buffer conflicts à because row-conflict latency
is smaller in DRAM

q  Are reused many times à to reduce cache pollution and bandwidth
waste

n  Simplified rule of thumb:
q  Streaming accesses: Better to place in PCM
q  Other accesses (with some reuse): Better to place in DRAM

n  Yoon et al., “Row Buffer Locality-Aware Data Placement in Hybrid
Memories,” ICCD 2012 Best Paper Award.

63

Row-Locality-Aware Data Placement: Results

64

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Server Cloud Avg

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p

Workload

FREQ FREQ-Dyn RBLA RBLA-Dyn

10% 14% 17%

Memory	
 energy-­‐efficiency	
 and	
 fairness	
 also	

improve	
 correspondingly	

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Weighted Speedup Max. Slowdown Perf. per Watt
Normalized Metric

16GB PCM RBLA-Dyn 16GB DRAM

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 M
ax

. S
lo

w
do

w
n

Hybrid vs. All-PCM/DRAM	

65	

31%	
 befer	
 performance	
 than	
 all	
 PCM,	
 	

within	
 29%	
 of	
 all	
 DRAM	
 performance	

31%	

29%	

Agenda

n  Major Trends Affecting Main Memory
n  The DRAM Scaling Problem and Solution Directions

q  Tolerating DRAM: New DRAM Architectures
q  Enabling Emerging Technologies: Hybrid Memory Systems

n  How Can We Do Better?
n  Summary

66

Principles (So Far)

n  Better cooperation between devices and the system
q  Expose more information about devices to upper layers
q  More flexible interfaces

n  Better-than-worst-case design
q  Do not optimize for the worst case
q  Worst case should not determine the common case

n  Heterogeneity in design
q  Enables a more efficient design (No one size fits all)

67

Other Opportunities with Emerging Technologies

n  Merging of memory and storage
q  e.g., a single interface to manage all data

n  New applications
q  e.g., ultra-fast checkpoint and restore

n  More robust system design
q  e.g., reducing data loss

n  Processing tightly-coupled with memory
q  e.g., enabling efficient search and filtering

68

Coordinated Memory and Storage with NVM (I)
n  The traditional two-level storage model is a bottleneck with NVM

q  Volatile data in memory à a load/store interface
q  Persistent data in storage à a file system interface
q  Problem: Operating system (OS) and file system (FS) code to locate, translate,

buffer data become performance and energy bottlenecks with fast NVM stores

69

Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

Coordinated Memory and Storage with NVM (II)

n  Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
q  Improves both energy and performance
q  Simplifies programming model as well

70

Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

Performance Benefits of a Single-Level Store

71 Results for PostMark

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

User CPU User Memory Syscall CPU Syscall I/O

0.044
0.009

~5X

Energy Benefits of a Single-Level Store

72

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

Fr
ac

tio
n

of
 T

ot
al

En
er

gy

User CPU Syscall CPU DRAM NVM HDD

0.065
0.013

Results for PostMark

~5X

Agenda

n  Major Trends Affecting Main Memory
n  The DRAM Scaling Problem and Solution Directions

q  Tolerating DRAM: New DRAM Architectures
q  Enabling Emerging Technologies: Hybrid Memory Systems

n  How Can We Do Better?
n  Summary

73

Summary: Main Memory Scaling
n  Main memory scaling problems are a critical bottleneck for

system performance, efficiency, and usability

n  Solution 1: Tolerate DRAM with novel architectures
q  RAIDR: Retention-aware refresh
q  TL-DRAM: Tiered-Latency DRAM
q  RowClone: Fast page copy and initialization
q  SALP: Subarray-level parallelism

n  Solution 2: Enable emerging memory technologies
q  Replace DRAM with NVM by architecting NVM chips well
q  Hybrid memory systems with automatic data management
q  Coordinated management of memory and storage

n  Software/hardware/device cooperation essential for effective
scaling of main memory

74

More Material: Slides, Papers, Videos

n  These slides are a very short version of the
Scalable Memory Systems course at ACACES 2013

n  Website for Course Slides, Papers, and Videos
q  http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
q  http://users.ece.cmu.edu/~omutlu/projects.htm
q  Includes extended lecture notes and readings

n  Overview Reading
q  Onur Mutlu,

"Memory Scaling: A Systems Architecture Perspective"
Proceedings of the 5th International Memory Workshop
(IMW), Monterey, CA, May 2013. Slides (pptx) (pdf)

75

Thank you.

Feel free to email me with any feedback

onur@cmu.edu

76

Memory Scaling:
A Systems Architecture Perspective

Onur Mutlu
onur@cmu.edu
August 6, 2013
MemCon 2013

Backup Slides

78

Backup Slides Agenda

n  Building Large DRAM Caches for Hybrid Memories
n  Memory QoS and Predictable Performance
n  Subarray-Level Parallelism (SALP) in DRAM
n  Coordinated Memory and Storage with NVM

79

Building Large Caches for
Hybrid Memories

80

One Option: DRAM as a Cache for PCM
n  PCM is main memory; DRAM caches memory rows/blocks

q  Benefits: Reduced latency on DRAM cache hit; write filtering

n  Memory controller hardware manages the DRAM cache
q  Benefit: Eliminates system software overhead

n  Three issues:
q  What data should be placed in DRAM versus kept in PCM?
q  What is the granularity of data movement?
q  How to design a low-cost hardware-managed DRAM cache?

n  Two ideas:
q  Locality-aware data placement [Yoon+ , ICCD 2012]

q  Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

81

The Problem with Large DRAM Caches
n  A large DRAM cache requires a large metadata (tag +

block-based information) store
n  How do we design an efficient DRAM cache?

82

DRAM	
 PCM	

CPU

(small, fast cache) (high capacity)

Mem	

Ctlr	

Mem	

Ctlr	

LOAD	
 X	

Access X

Metadata:	

X	
 à	
 DRAM	

X	

Idea 1: Store Tags in Main Memory
n  Store tags in the same row as data in DRAM

q  Data and metadata can be accessed together

n  Benefit: No on-chip tag storage overhead
n  Downsides:

q  Cache hit determined only after a DRAM access
q  Cache hit requires two DRAM accesses

83

Cache	
 block	
 2	
 Cache	
 block	
 0	
 Cache	
 block	
 1	

DRAM row

Tag0	
 Tag1	
 Tag2	

Idea 2: Cache Tags in On-Chip SRAM
n  Recall Idea 1: Store all metadata in DRAM

q  To reduce metadata storage overhead

n  Idea 2: Cache in on-chip SRAM frequently-accessed
metadata
q  Cache only a small amount to keep SRAM size small

84

Idea 3: Dynamic Data Transfer Granularity
n  Some applications benefit from caching more data

q  They have good spatial locality

n  Others do not
q  Large granularity wastes bandwidth and reduces cache

utilization

n  Idea 3: Simple dynamic caching granularity policy
q  Cost-benefit analysis to determine best DRAM cache block size

n  Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and
Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

85

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

SRAM	
 Region	
 TIM	
 TIMBER	
 TIMBER-­‐Dyn	

N
or
m
al
iz
ed

	
 W
ei
gh
te
d	

Sp
ee
du

p	

86	

TIMBER	
 Performance	

-­‐6%	

Meza,	
 Chang,	
 Yoon,	
 Mutlu,	
 Ranganathan,	
 “Enabling	
 Efficient	
 and	

Scalable	
 Hybrid	
 Memories,”	
 IEEE	
 Comp.	
 Arch.	
 Legers,	
 2012.	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

SRAM	
 Region	
 TIM	
 TIMBER	
 TIMBER-­‐Dyn	

N
or
m
al
iz
ed

	
 P
er
fo
rm

an
ce
	
 p
er
	
 W

af
	

(fo
r	
 M

em
or
y	

Sy
st
em

)	

87	

TIMBER	
 Energy	
 Efficiency	

18%	

Meza,	
 Chang,	
 Yoon,	
 Mutlu,	
 Ranganathan,	
 “Enabling	
 Efficient	
 and	

Scalable	
 Hybrid	
 Memories,”	
 IEEE	
 Comp.	
 Arch.	
 Legers,	
 2012.	

Hybrid Main Memory: Research Topics
n  Many research topics from technology

layer to algorithms layer

n  Enabling NVM and hybrid memory
q  How to maximize performance?
q  How to maximize lifetime?
q  How to prevent denial of service?

n  Exploiting emerging tecnologies
q  How to exploit non-volatility?
q  How to minimize energy consumption?
q  How to minimize cost?
q  How to exploit NVM on chip?

88

Microarchitecture

ISA

Programs

Algorithms
Problems

Logic

Devices

Runtime System
(VM, OS, MM)

User

Security Challenges of Emerging Technologies

1. Limited endurance à Wearout attacks

2. Non-volatility à Data persists in memory after powerdown
 à Easy retrieval of privileged or private information

3. Multiple bits per cell à Information leakage (via side channel)

89

Memory QoS

90

Trend: Many Cores on Chip
n  Simpler and lower power than a single large core
n  Large scale parallelism on chip

91

IBM	
 Cell	
 BE	

8+1	
 cores	

Intel	
 Core	
 i7	

8	
 cores	

Tilera	
 TILE	
 Gx	

100	
 cores,	
 networked	

IBM	
 POWER7	

8	
 cores	

Intel	
 SCC	

48	
 cores,	
 networked	

Nvidia	
 Fermi	

448	
 “cores”	

AMD	
 Barcelona	

4	
 cores	

Sun	
 Niagara	
 II	

8	
 cores	

Many Cores on Chip

n  What we want:
q  N times the system performance with N times the cores

n  What do we get today?

92

Unfair Slowdowns due to Interference

Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

matlab
(Core 1)

gcc
(Core 2)

93

94

Uncontrolled Interference: An Example

CORE 1 CORE 2

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

matlab gcc

DRAM
Bank 3

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = rand();
 A[index] = B[index];
 …
}

95

A Memory Performance Hog

STREAM

-  Sequential memory access
-  Very high row buffer locality (96% hit rate)
-  Memory intensive

RANDOM

-  Random memory access
-  Very low row buffer locality (3% hit rate)
-  Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = j*linesize;
 A[index] = B[index];
 …
}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

96

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0 T1: Row 111

T0: Row 0 T0: Row 0 T1: Row 5

T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B
128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Effect of the Memory Performance Hog

0

0.5

1

1.5

2

2.5

3

STREAM RANDOM

97

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

Sl
ow

do
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc
0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Greater Problem with More Cores

n  Vulnerable to denial of service (DoS)

n  Unable to enforce priorities or SLAs
n  Low system performance

Uncontrollable, unpredictable system

98

Distributed DoS in Networked Multi-Core Systems

99

Attackers
(Cores 1-8)

Stock option pricing application
(Cores 9-64)

 Cores connected via
 packet-switched
 routers on chip

 ~5000X slowdown

Grot, Hestness, Keckler, Mutlu,
“Preemptive virtual clock: A Flexible,
Efficient, and Cost-effective QOS
Scheme for Networks-on-Chip,“
MICRO 2009.

How Do We Solve The Problem?

n  Inter-thread interference is uncontrolled in all memory
resources
q  Memory controller
q  Interconnect
q  Caches

n  We need to control it
q  i.e., design an interference-aware (QoS-aware) memory system

100

QoS-Aware Memory Systems: Challenges

n  How do we reduce inter-thread interference?
q  Improve system performance and core utilization
q  Reduce request serialization and core starvation

n  How do we control inter-thread interference?
q  Provide mechanisms to enable system software to enforce

QoS policies
q  While providing high system performance

n  How do we make the memory system configurable/flexible?
q  Enable flexible mechanisms that can achieve many goals

n  Provide fairness or throughput when needed
n  Satisfy performance guarantees when needed

101

Designing QoS-Aware Memory Systems: Approaches

n  Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12]

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,
ISCA’11, Top Picks ’12]

q  QoS-aware caches

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

q  QoS-aware thread scheduling to cores

102

n  Memory Channel Partitioning
q  Idea: System software maps badly-interfering applications’ pages

to different channels [Muralidhara+, MICRO’11]

n  Separate data of low/high intensity and low/high row-locality applications
n  Especially effective in reducing interference of threads with “medium” and

“heavy” memory intensity
q  11% higher performance over existing systems (200 workloads)

A Mechanism to Reduce Memory Interference

103

Core 0
App A

Core 1
App B

Channel 0

Bank 1

Channel 1

Bank 0

Bank 1

Bank 0

Conventional Page Mapping

Time Units

1 2 3 4 5

Channel Partitioning

Core 0
App A

Core 1
App B

Channel 0

Bank 1

Bank 0

Bank 1

Bank 0

Time Units

1 2 3 4 5

Channel 1

Designing QoS-Aware Memory Systems: Approaches

n  Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12][Subramanian+, HPCA’13]

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,
ISCA’11, Top Picks ’12]

q  QoS-aware caches

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12]

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

q  QoS-aware thread scheduling to cores [Das+ HPCA’13]

104

QoS-Aware Memory Scheduling

n  How to schedule requests to provide
q  High system performance
q  High fairness to applications
q  Configurability to system software

n  Memory controller needs to be aware of threads

105

Memory	

Controller	

Core	
 Core	

Core	
 Core	

Memory	

Resolves memory contention
by scheduling requests

QoS-Aware Memory Scheduling: Evolution
n  Stall-time fair memory scheduling [Mutlu+ MICRO’07]

q  Idea: Estimate and balance thread slowdowns

q  Takeaway: Proportional thread progress improves performance,
especially when threads are “heavy” (memory intensive)

n  Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]

q  Idea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

q  Takeaway: Preserving within-thread bank-parallelism improves
performance; request batching improves fairness

n  ATLAS memory scheduler [Kim+ HPCA’10]

q  Idea: Prioritize threads that have attained the least service from the
memory scheduler

q  Takeaway: Prioritizing “light” threads improves performance
106

Take	
 turns	
 accessing	
 memory	

Throughput vs. Fairness

107	

Fairness	
 biased	
 approach	

thread	
 C	

thread	
 B	

thread	
 A	

less	
 memory	
 	

intensive	

higher	

priority	

PrioriIze	
 less	
 memory-­‐intensive	
 threads	

Throughput	
 biased	
 approach	

Good	
 for	
 throughput	

starvaGon	
 è	
 unfairness	

thread	
 C	
 thread	
 B	
 thread	
 A	

Does	
 not	
 starve	

not	
 prioriGzed	
 è	
 	

reduced	
 throughput	

Single	
 policy	
 for	
 all	
 threads	
 is	
 insufficient	

Achieving the Best of Both Worlds

108	

thread	

thread	

higher	

priority	

thread	

thread	

thread	
 	

thread	

thread	

thread	

PrioriQze	
 memory-­‐non-­‐intensive	
 threads	

For	
 Throughput	

Unfairness	
 caused	
 by	
 memory-­‐intensive	

being	
 prioriQzed	
 over	
 each	
 other	
 	

• 	
 Shuffle	
 thread	
 ranking	

Memory-­‐intensive	
 threads	
 have	
 	

different	
 vulnerability	
 to	
 interference	

• 	
 Shuffle	
 asymmetrically	

For	
 Fairness	

thread	

thread	

thread	

thread	

Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1.   Group	
 threads	
 into	
 two	
 clusters	

2.   PrioriQze	
 non-­‐intensive	
 cluster	

3.   Different	
 policies	
 for	
 each	
 cluster	

109	

thread	

Threads	
 in	
 the	
 system	

thread	

thread	

thread	

thread	

thread	

thread	

Non-­‐intensive	
 	

cluster	

Intensive	
 cluster	

thread	

thread	

thread	

Memory-­‐non-­‐intensive	
 	

Memory-­‐intensive	
 	

PrioriGzed	

higher	

priority	

higher	

priority	

Throughput	

Fairness	

Kim+, “Thread Cluster Memory Scheduling,” MICRO 2010.

TCM: Quantum-Based Operation

110	

Time	

Previous	
 quantum	

(~1M	
 cycles)	

During	
 quantum:	

• Monitor	
 thread	
 behavior	

1. Memory	
 intensity	

2. Bank-­‐level	
 parallelism	

3. Row-­‐buffer	
 locality	

Beginning	
 of	
 quantum:	

• Perform	
 clustering	

• Compute	
 niceness	
 of	

intensive	
 threads	

Current	
 quantum	

(~1M	
 cycles)	

Shuffle	
 interval	

(~1K	
 cycles)	

Kim+, “Thread Cluster Memory Scheduling,” MICRO 2010.

TCM: Throughput and Fairness

FRFCFS	

STFM	

PAR-­‐BS	

ATLAS	

TCM	

4	

6	

8	

10	

12	

14	

16	

7.5	
 8	
 8.5	
 9	
 9.5	
 10	

M
ax
im

um
	
 S
lo
w
do

w
n	

Weighted	
 Speedup	

111	

Beger	
 system	
 throughput	

Be
g
er
	
 fa

irn
es
s	

24	
 cores,	
 4	
 memory	
 controllers,	
 96	
 workloads	
 	

TCM,	
 a	
 heterogeneous	
 scheduling	
 policy,	

provides	
 best	
 fairness	
 and	
 system	
 throughput	

TCM: Fairness-Throughput Tradeoff

112	

2	

4	

6	

8	

10	

12	

12	
 12.5	
 13	
 13.5	
 14	
 14.5	
 15	
 15.5	
 16	

M
ax
im

um
	
 S
lo
w
do

w
n	

Weighted	
 Speedup	

When	
 configuraQon	
 parameter	
 is	
 varied…	

Adjus.ng	
 	

ClusterThreshold	

TCM	
 allows	
 robust	
 fairness-­‐throughput	
 tradeoff	
 	

STFM	

PAR-­‐BS	

ATLAS	

TCM	

Beger	
 system	
 throughput	

Be
g
er
	
 fa

irn
es
s	
 FRFCFS	

More on TCM

n  Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling: Exploiting Differences in
Memory Access Behavior"
Proceedings of the 43rd International Symposium on Microarchitecture
(MICRO), pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

113

Memory Control in CPU-GPU Systems
n  Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

n  Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer sizes

n  Solution: Staged Memory Scheduling (SMS)
decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality
2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

n  Compared to state-of-the-art memory schedulers:
q  SMS is significantly simpler and more scalable
q  SMS provides higher performance and fairness

114 Ausavarungnirun+, “Staged Memory Scheduling,” ISCA 2012.

Key Idea: Decouple Tasks into Stages
n  Idea: Decouple the functional tasks of the memory controller

q  Partition tasks across several simpler HW structures (stages)

1) Maximize row buffer hits
q  Stage 1: Batch formation
q  Within each application, groups requests to the same row into

batches

2) Manage contention between applications
q  Stage 2: Batch scheduler
q  Schedules batches from different applications

3) Satisfy DRAM timing constraints
q  Stage 3: DRAM command scheduler
q  Issues requests from the already-scheduled order to each bank

115

SMS: Staged Memory Scheduling

116

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req
Req

Req

Req
Req

Req Req
Req Req Req

Req Req Req
Req Req

Req Req

Req Req Req

Req
Req Req

Req

Req

Req
Req

Req Req
Req Req Req

Req Req Req Req Req Req
Req

Req

Req Req
Batch Scheduler

Stage 1

Stage 2

Stage 3

Req

M
on

ol
ith

ic
 S

ch
ed

ul
er

Batch
Formation

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 1

Stage 2

SMS: Staged Memory Scheduling

117

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req Req Batch Scheduler

Batch
Formation

Stage 3

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Current Batch
Scheduling

Policy
SJF

Current Batch
Scheduling

Policy
RR

Batch Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

SMS: Staged Memory Scheduling

118

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

Stage 3:
DRAM
Command
Scheduler

GPU

Stage 2:

Ausavarungnirun+, “Staged Memory Scheduling,” ISCA 2012.

SMS Complexity
n  Compared to a row hit first scheduler, SMS consumes*

q  66% less area
q  46% less static power

n  Reduction comes from:
q  Monolithic scheduler à stages of simpler schedulers
q  Each stage has a simpler scheduler (considers fewer

properties at a time to make the scheduling decision)
q  Each stage has simpler buffers (FIFO instead of out-of-order)
q  Each stage has a portion of the total buffer size (buffering is

distributed across stages)

119 * Based on a Verilog model using 180nm library

SMS Performance

120

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

Sy
st

em
 P

er
fo

rm
an

ce

GPUweight

Previous Best
Best Previous
Scheduler

ATLAS TCM FR-FCFS

n  At every GPU weight, SMS outperforms the best previous
scheduling algorithm for that weight

SMS Performance

121

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

Sy
st

em
 P

er
fo

rm
an

ce

GPUweight

Previous Best

SMS SMS

Best Previous
Scheduler

CPU-GPU Performance Tradeoff

122

0
10
20
30
40
50
60
70
80
90

1 0.5 0.1 0.05 0

Fr
am

e
R

at
e

SJF Probability

GPU Frame Rate

0

1

2

3

4

5

6

1 0.5 0.1 0.05 0

W
ei

gh
te

d
Sp

ee
du

p

SJF Probability

CPU Performance

More on SMS

n  Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel
Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High Performance and
Scalability in Heterogeneous Systems"
Proceedings of the
39th International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2012. Slides (pptx)

123

Stronger Memory Service Guarantees [HPCA’13]
n  Uncontrolled memory interference slows down

applications unpredictably
n  Goal: Estimate and control slowdowns

n  MISE: An accurate slowdown estimation model
q  Request Service Rate is a good proxy for performance

n  Slowdown = Request Service Rate Alone / Request Service Rate Shared
q  Request Service Rate Alone estimated by giving an application highest

priority in accessing memory
q  Average slowdown estimation error of MISE: 8.2% (3000 data pts)

n  Memory controller leverages MISE to control slowdowns
q  To provide soft slowdown guarantees
q  To minimize maximum slowdown

124 Subramanian+, “MISE,” HPCA 2013.

More on MISE

n  Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, and
Onur Mutlu,
"MISE: Providing Performance Predictability and Improving
Fairness in Shared Main Memory Systems"
Proceedings of the
19th International Symposium on High-Performance Computer
Architecture (HPCA), Shenzhen, China, February 2013. Slides (pptx)

125

Memory QoS in a Parallel Application

n  Threads in a multithreaded application are inter-dependent
n  Some threads can be on the critical path of execution due

to synchronization; some threads are not
n  How do we schedule requests of inter-dependent threads to

maximize multithreaded application performance?

n  Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

n  Hardware/software cooperative limiter thread estimation:
n  Thread executing the most contended critical section
n  Thread that is falling behind the most in a parallel for loop

126 Ebrahimi+, “Parallel Application Memory Scheduling,” MICRO 2011.

More on PAMS

n  Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo Lee,
Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)

127

Summary: Memory QoS Approaches and Techniques

n  Approaches: Smart vs. dumb resources
q  Smart resources: QoS-aware memory scheduling
q  Dumb resources: Source throttling; channel partitioning
q  Both approaches are effective in reducing interference
q  No single best approach for all workloads

n  Techniques: Request scheduling, source throttling, memory
partitioning
q  All approaches are effective in reducing interference
q  Can be applied at different levels: hardware vs. software
q  No single best technique for all workloads

n  Combined approaches and techniques are the most powerful
q  Integrated Memory Channel Partitioning and Scheduling [MICRO’11]

128

SALP: Reducing DRAM Bank
Conflict Impact

129

Kim, Seshadri, Lee, Liu, Mutlu
A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM
ISCA 2012.

SALP: Reducing DRAM Bank Conflicts
n  Problem: Bank conflicts are costly for performance and energy

q  serialized requests, wasted energy (thrashing of row buffer, busy wait)

n  Goal: Reduce bank conflicts without adding more banks (low cost)
n  Key idea: Exploit the internal subarray structure of a DRAM bank to

parallelize bank conflicts to different subarrays
q  Slightly modify DRAM bank to reduce subarray-level hardware sharing

130 Kim, Seshadri+ “A Case for Exploiting Subarray-Level
Parallelism in DRAM,” ISCA 2012.

-1
9%

+
13

%

SALP: Key Ideas

n  A DRAM bank consists of mostly-independent subarrays
q  Subarrays share some global structures to reduce cost

131

Key Idea of SALP: Minimally reduce sharing of global structures

Reduce the sharing of …
Global decoder à Enables pipelined access to subarrays
Global row buffer à Utilizes multiple local row buffers

SALP: Reduce Sharing of Global Decoder

132

Local
row-buffer

Local
row-buffer
Global
row-buffer

··
·

Gl
ob

al
	
 D
ec
od

er
	

La
tc
h	

La
tc
h	

La
tc
h	

Instead of a global latch, have per-subarray latches

SALP: Reduce Sharing of Global Row-Buffer

133

W
ir

e

Global bitlines

Global
row-buffer

Local
row-buffer

Local
row-buffer

Switch

Switch

READ READ

DD

DD

Selectively connect local row-buffers to global row-
buffer using a Designated single-bit latch

SALP: Baseline Bank Organization

134

Local
row-buffer

Local
row-buffer

Global
row-buffer

Gl
ob

al
	
 D
ec
od

er
	

Global
bitlines

La
tc
h	

SALP: Proposed Bank Organization

135

Local
row-buffer

Local
row-buffer

Global
row-buffer

Gl
ob

al
	
 D
ec
od

er
	

La
tc
h	

La
tc
h	

D	

D	

Global
bitlines

Overhead of SALP in DRAM chip: 0.15%
1. Global latch à per-subarray local latches
2. Designated bit latches and wire to selectively
enable a subarray

SALP: Results
n  Wide variety of systems with different #channels, banks,

ranks, subarrays
n  Server, streaming, random-access, SPEC workloads

n  Dynamic DRAM energy reduction: 19%
q  DRAM row hit rate improvement: 13%

n  System performance improvement: 17%
q  Within 3% of ideal (all independent banks)

n  DRAM die area overhead: 0.15%
q  vs. 36% overhead of independent banks

136

More on SALP

n  Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu,
"A Case for Exploiting Subarray-Level Parallelism (SALP) in
DRAM"
Proceedings of the
39th International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2012. Slides (pptx)

137

Coordinated Memory and
Storage with NVM

138

Meza, Luo, Khan, Zhao, Xie, and Mutlu,
"A Case for Efficient Hardware-Software
Cooperative Management of Storage and
Memory”
WEED 2013.

Overview
n  Traditional systems have a two-level storage model

q  Access volatile data in memory with a load/store interface
q  Access persistent data in storage with a file system interface
q  Problem: Operating system (OS) and file system (FS) code and buffering

for storage lead to energy and performance inefficiencies

n  Opportunity: New non-volatile memory (NVM) technologies can help
provide fast (similar to DRAM), persistent storage (similar to Flash)
q  Unfortunately, OS and FS code can easily become energy efficiency and

performance bottlenecks if we keep the traditional storage model

n  This work: makes a case for hardware/software cooperative
management of storage and memory within a single-level
q  We describe the idea of a Persistent Memory Manager (PMM) for

efficiently coordinating storage and memory, and quantify its benefit
q  And, examine questions and challenges to address to realize PMM

139

A Tale of Two Storage Levels
n  Two-level storage arose in systems due to the widely different

access latencies and methods of the commodity storage devices
q  Fast, low capacity, volatile DRAM à working storage
q  Slow, high capacity, non-volatile hard disk drives à persistent storage

n  Data from slow storage media is buffered in fast DRAM
q  After that it can be manipulated by programs à programs cannot

directly access persistent storage
q  It is the programmer’s job to translate this data between the two

formats of the two-level storage (files and data structures)

n  Locating, transferring, and translating data and formats between
the two levels of storage can waste significant energy and
performance

140

Opportunity: New Non-Volatile Memories
n  Emerging memory technologies provide the potential for unifying

storage and memory (e.g., Phase-Change, STT-RAM, RRAM)
q  Byte-addressable (can be accessed like DRAM)
q  Low latency (comparable to DRAM)
q  Low power (idle power better than DRAM)
q  High capacity (closer to Flash)
q  Non-volatile (can enable persistent storage)
q  May have limited endurance (but, better than Flash)

n  Can provide fast access to both volatile data and persistent
storage

n  Question: if such devices are used, is it efficient to keep a
two-level storage model?

141

Eliminating Traditional Storage Bottlenecks

142

Normalized Total Energy

0

0.2

0.4

0.6

0.8

1.0

HDD Baseline NVM Baseline Persistent Memory

Fr
ac

tio
n

of
 T

ot
al

 E
ne

rg
y

0.065
0.013

Today
(DRAM +
HDD) and
two-level
storage
model Replace HDD

with NVM
(PCM-like),

keep two-level
storage model

Replace HDD
and DRAM
with NVM

(PCM-like),
eliminate all

OS+FS
overhead

Results for PostMark

Where is Energy Spent in Each Model?

143

0

0.2

0.4

0.6

0.8

1.0

HDD Baseline NVM Baseline Persistent Memory

Fr
ac

tio
n

of
 T

ot
al

 E
ne

rg
y

User CPU Syscall CPU DRAM NVM HDD

HDD access
wastes energy

FS/OS overhead
becomes important

Additional DRAM energy
due to buffering overhead

of two-level model

No FS/OS overhead
No additional buffering

overhead in DRAM

Results for PostMark

Our Proposal: Coordinated HW/SW
Memory and Storage Management

n  Goal: Unify memory and storage to eliminate wasted work to
locate, transfer, and translate data
q  Improve both energy and performance
q  Simplify programming model as well

144

Our Proposal: Coordinated HW/SW
Memory and Storage Management

n  Goal: Unify memory and storage to eliminate wasted work to
locate, transfer, and translate data
q  Improve both energy and performance
q  Simplify programming model as well

145

Before: Traditional Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

Our Proposal: Coordinated HW/SW
Memory and Storage Management

n  Goal: Unify memory and storage to eliminate wasted work to
locate, transfer, and translate data
q  Improve both energy and performance
q  Simplify programming model as well

146

After: Coordinated HW/SW Management

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

The Persistent Memory Manager (PMM)
n  Exposes a load/store interface to access persistent data

q  Applications can directly access persistent memory à no conversion,
translation, location overhead for persistent data

n  Manages data placement, location, persistence, security
q  To get the best of multiple forms of storage

n  Manages metadata storage and retrieval
q  This can lead to overheads that need to be managed

n  Exposes hooks and interfaces for system software
q  To enable better data placement and management decisions

147

The Persistent Memory Manager
n  Persistent Memory Manager

q  Exposes a load/store interface to access persistent data
q  Manages data placement, location, persistence, security
q  Manages metadata storage and retrieval
q  Exposes hooks and interfaces for system software

n  Example program manipulating a persistent object:

148

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Create persistent object and its handle
Allocate a persistent array and assign

Load/store interface

Putting Everything Together

149

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Load Store

DRAM Flash NVM HDD

Persistent Memory Manager
Hardware

Software
Data Layout, Persistence, Metadata, Security, ...

Hints from SW/OS/runtime

PMM	
 uses	
 access	
 and	
 hint	
 informaQon	
 to	
 allocate,	
 locate,	
 migrate	

and	
 access	
 data	
 in	
 the	
 heterogeneous	
 array	
 of	
 devices	

Opportunities and Benefits

n  We’ve identified at least five opportunities and benefits of a unified
storage/memory system that gets rid of the two-level model:

1.  Eliminating system calls for file operations

2.  Eliminating file system operations

3.  Efficient data mapping/location among heterogeneous devices

4.  Providing security and reliability in persistent memories

5.  Hardware/software cooperative data management

150

Evaluation Methodology
n  Hybrid real system / simulation-based approach

q  System calls are executed on host machine (functional correctness)
and timed to accurately model their latency in the simulator

q  Rest of execution is simulated in Multi2Sim (enables hardware-level
exploration)

n  Power evaluated using McPAT and memory power models

n  16 cores, 4-wide issue, 128-entry instruction window, 1.6 GHz

n  Volatile memory: 4GB DRAM, 4KB page size, 100-cycle latency

n  Persistent memory
q  HDD (measured): 4ms seek latency, 6Gbps bus rate

q  NVM: (modeled after PCM) 4KB page size, 160-/480-cycle (read/
write) latency

151

Evaluated Systems
n  HDD Baseline (HB)

q  Traditional system with volatile DRAM memory and persistent HDD storage
q  Overheads of operating system and file system code and buffering

n  HDD without OS/FS (HW)
q  Same as HDD Baseline, but with the ideal elimination of all OS/FS overheads
q  System calls take 0 cycles (but HDD access takes normal latency)

n  NVM Baseline (NB)
q  Same as HDD Baseline, but HDD is replaced with NVM
q  Still has OS/FS overheads of the two-level storage model

n  Persistent Memory (PM)
q  Uses only NVM (no DRAM) to ensure full-system persistence
q  All data accessed using loads and stores
q  Does not waste energy on system calls
q  Data is manipulated directly on the NVM device

152

Evaluated Workloads
n  Unix utilities that manipulate files

q  cp: copy a large file from one location to another
q  cp –r: copy files in a directory tree from one location to another
q  grep: search for a string in a large file
q  grep –r: search for a string recursively in a directory tree

n  PostMark: an I/O-intensive benchmark from NetApp
q  Emulates typical access patterns for email, news, web commerce

n  MySQL Server: a popular database management system
q  OLTP-style queries generated by Sysbench
q  MySQL (simple): single, random read to an entry
q  MySQL (complex): reads/writes 1 to 100 entries per transaction

153

0

0.2

0.4

0.6

0.8

1.0

H
D

D

N
V

M

P
M

H
D

D

N
V

M

P
M

H
D

D

N
V

M

P
M

H
D

D

N
V

M

P
M

H
D

D

N
V

M

P
M

H
D

D

N
V

M

P
M

H
D

D

N
V

M

P
M

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

User CPU User Memory Syscall CPU Syscall I/O

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

Performance Results

154

The workloads that see the greatest improvement from using a Persistent Memory
are those that spend a large portion of their time executing system call code due to

the two-level storage model

0

0.2

0.4

0.6

0.8

1.0

H
D

D

N
VM PM H
D

D

N
VM PM H
D

D

N
VM PM H
D

D

N
VM PM H
D

D

N
VM PM H
D

D

N
VM PM H
D

D

N
VM PM

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n
User CPU Syscall CPU DRAM NVM HDD

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

Energy Results: NVM to PMM

155

Between systems with and without OS/FS code, energy improvements come from:
1. reduced code footprint, 2. reduced data movement

Large	
 energy	
 reducQons	
 with	
 a	
 PMM	
 over	
 the	
 NVM	
 based	
 system	

Scalability Analysis: Effect of PMM Latency

156

Even if each PMM access takes a non-overlapped 50 cycles (conservative),
PMM still provides an overall improvement compared to the NVM baseline

0

0.25

0.50

0.75

1.00

1.25

cp

cp
 -

r

gr
ep

gr
ep

 -
r

P
os

tM
ar

k

M
yS

Q
L

(s
im

pl
e)

M
yS

Q
L

(c
om

pl
ex

)

cp

cp
 -

r

gr
ep

gr
ep

 -
r

P
os

tM
ar

k

M
yS

Q
L

(s
im

pl
e)

M
yS

Q
L

(c
om

pl
ex

)

cp

cp
 -

r

gr
ep

gr
ep

 -
r

P
os

tM
ar

k

M
yS

Q
L

(s
im

pl
e)

M
yS

Q
L

(c
om

pl
ex

)

cp

cp
 -

r

gr
ep

gr
ep

 -
r

P
os

tM
ar

k

M
yS

Q
L

(s
im

pl
e)

M
yS

Q
L

(c
om

pl
ex

)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

User CPU User Memory Syscall CPU Syscall I/O PMM

1 cycle 10 cycles 50 cyclesNB

1.53

Future	
 research	
 should	
 target	
 keeping	
 PMM	
 latencies	
 in	
 check	

New Questions and Challenges
n  We identify and discuss several open research questions

Ø  Q1. How to tailor applications for systems with persistent
memory?

Ø  Q2. How can hardware and software cooperate to support a
scalable, persistent single-level address space?

Ø  Q3. How to provide efficient backward compatibility (for two-
level stores) on persistent memory systems?

Ø  Q4. How to mitigate potential hardware performance and energy
overheads?

157

Single-Level Stores: Summary and Conclusions
n  Traditional two-level storage model is inefficient in terms of

performance and energy
q  Due to OS/FS code and buffering needed to manage two models
q  Especially so in future devices with NVM technologies, as we show

n  New non-volatile memory based persistent memory designs that
use a single-level storage model to unify memory and storage can
alleviate this problem

n  We quantified the performance and energy benefits of such a
single-level persistent memory/storage design
q  Showed significant benefits from reduced code footprint, data

movement, and system software overhead on a variety of workloads

n  Such a design requires more research to answer the questions we
have posed and enable efficient persistent memory managers
à can lead to a fundamentally more efficient storage system

158

End of Backup Slides

159

