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Motivation

• Branch prediction and prefetching are widely used by 
processors to improve performance.

• Incorrect branch predictions and inaccurate prefetch 
requests result in memory references that are not 
needed by correct execution: useless speculative 
memory references

• These useless references may be detrimental to 
processor performance because they cause
– L1/L2 cache pollution
– Bandwidth/resource contention
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Why are Useless References Bad?
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Talk Outline

• Motivation
– Negative performance impact of speculative 

references is primarily due to L2 cache pollution

• Analysis of Speculative Memory References
• Solution (Cache Filtering Techniques)

• Experimental Evaluation
• Conclusion
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Speculative L2 Misses

• Current Model:

• A speculative L2-miss allocates a cache block in both L1 
and L2 caches (like a non-speculative L2 miss)

• Useless speculative blocks occupy entries in both cache 
levels � pollution in both cache levels

L1 
Cache

L2 Cache Memory
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Breakdown of Speculative Data Blocks
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Two Observations on Speculative References

• Observation 1: 
If a speculatively-fetched cache block is needed 
by correct path execution, then it is most likely 
needed while it resides in the L1 cache.

• Observation 2: 
If a speculatively-fetched cache block is not 
needed while it resides in the L1 cache, then it is 
likely that the block will never be needed or it will 
be needed after it is evicted from the L2 cache.
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Solution to L2 Pollution: L1 Cache as a Filter

• New Model:

• A speculative L2-miss allocates a cache block only in L1 (unlike a 
non-speculative L2 miss)

• A speculatively-fetched block is marked as speculative in the L1 
cache

• If it is referenced by a non-speculative instruction while it is in the L1 
cache, the block is written back into L2 when it is evicted.

L1 
Cache

L2 Cache MemoryFilter
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L1 Cache as a Filter: Two Filtering Policies

• If a speculatively-fetched block is NOT 
referenced by a non-speculative instruction 
while it is in the L1 cache:
– Filter the block out of the L2 cache to reduce L2 

pollution

• Filtering Policy 1: 
It is NOT written back into L2 (no-spec-L2fill) 

• Filtering Policy 2: 
It is written back into L2, but into the LRU slot of its set
(spec-L2fill-lru)



10

Tradeoffs in Two Policies

• no-spec-L2fill policy:
+ Eliminates all L2 pollution due to speculative references

- Filters out some useful speculatively-fetched blocks that would 
have been used if placed in L2.

• spec-L2fill-lru policy:
+ Captures the benefit of useful speculatively-fetched blocks that 

are used shortly after being evicted from L1.

- Some L2 pollution due to speculative references remains, but 
the effect is less pronounced because a useless block occupies 
an L2 cache line for a shorter amount of time.
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Implementation Cost

• The processor needs to distinguish between speculative 
and non-speculative L2 misses
– Requires 1 bit per L2 miss buffer (MSHR) entry
– All hardware prefetches are initially speculative
– Instruction and data L2 miss requests are considered to be non-

speculative until they are known to be speculative
• On the resolution of a mispredicted branch all younger miss buffer 

entries are marked as speculative

• Each L1 cache block has an associated speculative bit
– Set if the L2 miss was marked speculative in miss buffer
– Reset if an instruction that accessed the cache block is retired

• Each L1 cache block has an associated write-back bit
– Set if a speculative block is referenced by a non-speculative 

instruction
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Experimental Evaluation

• 8-wide aggressive superscalar, out-of-order baseline, 
128-entry instruction window

• Aggressive branch prediction
– 64K-entry gshare, 64K-entry PAs hybrid, 64K-entry selector

• 64 KB, 4-way L1 Instruction and Data Caches
• 512 MB, 8-way Unified L2 cache
• Minimum 500-cycle main memory latency

• Evaluated the filtering mechanisms on two baselines:
– Stream-baseline: with an aggressive hardware stream prefetcher
– Runahead-baseline: with runahead execution [Mutlu et. al.,  

HPCA’03], a method of aggressive speculative pre-execution 
under an L2 cache miss
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IPC Delta of Filtering on Stream-baseline
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IPC Delta of Filtering on Runahead-baseline
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Observations

• spec-L2fill-lru is a better filtering policy in the presence of 
prefetcher references.
– Many prefetched blocks are needed by correct execution shortly 

after they are evicted from L1 cache.

• Filtering is more effective for wrong-path references than 
for prefetcher references
– If wrong-path references are not needed while they are in the L1 

cache, they are more likely to be never needed than prefetcher 
references.

– More analysis and data in the paper (Section 3.1)
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Sensitivity to L1 cache size (Stream-baseline)
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Sensitivity to L1 cache size (Runahead-baseline)
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Conclusions

• Negative performance impact of speculative references 
is mainly due to L2 cache pollution.

• Using the L1 cache as a filter to reduce the L2 cache 
pollution is effective.

• Filtering policies are more effective for wrong-path 
references than for prefetcher references.

• The bigger the filter (L1 cache), the more effective the 
filtering policies.


