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First, Let’s Start With … 

 The Real Reason We Are Here Today 

 

 Yale @ 35 
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Some Teachings of Yale Patt 
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Design Principles 

• Critical path design 
 

• Bread and Butter design 
 

• Balanced design 

from Yale Patt’s EE 382N lecture notes 



(Micro)architecture Design Principles 

 Bread and butter design 

 Spend time and resources on where it matters (i.e. improving 
what the machine is designed to do) 

 Common case vs. uncommon case 

 

 Balanced design 

 Balance instruction/data flow through uarch components 

 Design to eliminate bottlenecks 

 

 Critical path design 

 Find the maximum speed path and decrease it 

 Break a path into multiple cycles? 
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from my ECE 740 lecture notes 



My Takeaways 

 Quite reasonable principles 
 

 Stated by other principled thinkers in similar or different 
ways 

 E.g., Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966 

 E.g., Gene M. Amdahl, "Validity of the single processor 
approach to achieving large scale computing capabilities," 
AFIPS Conference, April 1967. 

 E.g., Butler W. Lampson, “Hints for Computer System Design,” 
SOSP 1983. 

 … 

 

 Will take the liberty to generalize them in the rest of the talk 
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The Problem 

 Systems designed today violate these principles 

 

 Some system components individually might not (or might 
seem not to) violate the principles 

 

 But the overall system 

 Does not spend time or resources where it matters 

 Is grossly imbalanced 

 Does not optimize for the critical work/application 
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A Computing System 

 Three key components 

 Computation  

 Communication 

 Storage/memory 
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Today’s Systems 

 Are overwhelmingly processor centric 

 Processor is heavily optimized and is considered the master 

 Many system-level tradeoffs are constrained or dictated by 
the processor – all data processed in the processor 

 Data storage units are dumb slaves and are largely 
unoptimized (except for some that are on the processor die) 
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Yet … 

 “It’s the memory, stupid” (Anonymous DEC engineer) 
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Yet … 

 Memory system is the major performance, energy, 
QoS/predictability and reliability bottleneck in many (most?) 
workloads 

 

 And, it is becoming increasingly so 

 Increasing hunger for more data and its (fast) analysis 

 Demand to pack and consolidate more on-chip for efficiency 

 Memory bandwidth and capacity not scaling as fast as demand  

 Demand to guarantee SLAs, QoS, user satisfaction 

 DRAM technology is not scaling well to smaller feature sizes, 
exacerbating energy, reliability, capacity, bandwidth problems 
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This Processor-Memory Disparity 

 Leads to designs that 

 do not spend time or resources where it matters 

 are grossly imbalanced 

 do not optimize for the critical work/application 

 

 Processor becomes overly complex and bloated 

 To tolerate memory related issues  

 Complex hierarchies are built just to move and store data 
within the processor 

 

 “The forgotten” memory system becomes dumb and 
inadequate in many aspects 
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Several Examples 

 Bulk data copy (and initialization) 

 

 DRAM refresh 

 

 Memory reliability 

 

 Disparity of working memory and persistent storage 

 

 Homogeneous memory 

 

 Predictable performance and fairness in memory 
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Today’s Memory: Bulk Data Copy 

Memory 

 
 
 
 
 
 

 

MC L3 L2 L1 CPU 

1) High latency 

2) High bandwidth utilization 

3) Cache pollution 

4) Unwanted data movement 

17 1046ns, 3.6uJ    (for 4KB page copy via DMA) 



Future: RowClone (In-Memory Copy) 

Memory 

 
 
 
 
 
 

 

MC L3 L2 L1 CPU 

1) Low latency 

2) Low bandwidth utilization 

3) No cache pollution 

4) No unwanted data movement 

18 1046ns, 3.6uJ 90ns, 0.04uJ 



DRAM Subarray Operation (load one byte) 

Row Buffer (4 Kbits) 

Data Bus 

8 bits 

DRAM array 

4 Kbits 

Step 1: Activate row 

 

Transfer 

row 

Step 2: Read   

Transfer byte 

onto bus 



RowClone: In-DRAM Row Copy 

Row Buffer (4 Kbits) 

Data Bus 

8 bits 

DRAM array 

4 Kbits 

Step 1: Activate row A 

Transfer 

row 

Step 2: Activate row B 

 

Transfer 

row 
0.01% area cost 



RowClone: Latency and Energy Savings 
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Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013. 



End-to-End System Design 
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 DRAM (RowClone) 

Microarchitecture 

ISA 

Operating System 

Application 
How does the software 
communicate occurrences 
of bulk copy/initialization 
to hardware? 

How to maximize latency 
and energy savings? 

How to ensure data 
coherence? 

How to handle data reuse? 



RowClone: Overall Performance 
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RowClone: Multi-Core Performance 

24 

0.9

1

1.1

1.2

1.3

1.4

1.5

N
o

rm
a

li
z
e

d
 W

e
ig

h
te

d
 S

p
e

e
d

u
p

 

50 Workloads (4-core) 

Baseline RowClone



Goal: Ultra-Efficient Processing Near Data 

CPU 
core 
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core 

CPU 
core 

CPU 
core 

mini-CPU 
core 

video 
core 

GPU 
(throughput) 

core 

GPU 
(throughput) 

core 

GPU 
(throughput) 

core 

GPU 
(throughput) 

core 

LLC 
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compute-capability 
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Memory imaging 
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Memory similar to a “conventional” accelerator 



Enabling Ultra-Efficient Search 

 

 

 

 

 

 

▪ What is the right partitioning of computation 

capability? 

▪ What is the right low-cost memory substrate? 

▪ What memory technologies are the best 

enablers? 

▪ How do we rethink/ease (visual) search 

algorithms/applications? 

Cache 
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Results 



Several Examples 

 Bulk data copy (and initialization) 

 

 DRAM refresh 

 

 Memory reliability 

 

 Disparity of working memory and persistent storage 

 

 Homogeneous memory 

 

 Memory QoS and predictable performance 
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DRAM Refresh 

 DRAM capacitor charge leaks over time 

 

 The memory controller needs to refresh each row 
periodically to restore charge 

 Activate each row every N ms 

 Typical N = 64 ms 

 

 Downsides of refresh 

    -- Energy consumption: Each refresh consumes energy 

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed 

-- QoS/predictability impact: (Long) pause times during refresh 

-- Refresh rate limits DRAM capacity scaling  
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Refresh Overhead: Performance 

29 

8% 

46% 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Refresh Overhead: Energy 
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15% 

47% 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Retention Time Profile of DRAM 
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RAIDR: Eliminating Unnecessary Refreshes 

 Observation: Most DRAM rows can be refreshed much less often 
without losing data [Kim+, EDL’09][Liu+ ISCA’13] 
 

 Key idea: Refresh rows containing weak cells  

    more frequently, other rows less frequently 

1. Profiling: Profile retention time of all rows 

2. Binning: Store rows into bins by retention time in memory controller 

 Efficient storage with Bloom Filters (only 1.25KB for 32GB memory) 

3. Refreshing: Memory controller refreshes rows in different bins at 
different rates 

 

 Results: 8-core, 32GB, SPEC, TPC-C, TPC-H 

 74.6% refresh reduction @ 1.25KB storage 

 ~16%/20% DRAM dynamic/idle power reduction 

 ~9% performance improvement  

 Benefits increase with DRAM capacity 
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Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Several Examples 

 Bulk data copy (and initialization) 

 

 DRAM refresh 

 

 Memory reliability 

 

 Disparity of working memory and persistent storage 

 

 Homogeneous memory 

 

 Memory QoS and predictable performance 
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The DRAM Scaling Problem 

 DRAM stores charge in a capacitor (charge-based memory) 

 Capacitor must be large enough for reliable sensing 

 Access transistor should be large enough for low leakage and high 
retention time 

 Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] 

 

 

 

 

 

 

 

 

 DRAM capacity, cost, and energy/power hard to scale 
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The DRAM Scaling Problem 

 DRAM scaling has become a real problem the 
system should be concerned about 

 And, maybe embrace 

35 



 Row of Cells 
 Row 
 Row 
 Row 
 Row 

 Wordline 

 VLOW  VHIGH 
 Victim Row 

 Victim Row 
 Aggressor Row 

Repeatedly opening and closing a row 
induces disturbance errors in adjacent rows 
in most real DRAM chips [Kim+ ISCA 2014] 

Opened Closed 
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An Example of  The Scaling Problem 



Most DRAM Modules Are at Risk 

86% 
(37/43) 

83% 
(45/54) 

88% 
(28/32) 

A company B company C company 

Up to 

1.0×107  
errors  

Up to 

2.7×106 
errors  

Up to 

3.3×105  
errors  

37 
Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014. 



DRAM Module x86 CPU 

Y 

X 

loop: 

  mov (X), %eax 

  mov (Y), %ebx 

  clflush (X)   

  clflush (Y) 

  mfence 

  jmp loop 



DRAM Module x86 CPU 

  

  

loop: 

  mov (X), %eax 

  mov (Y), %ebx 

  clflush (X)   

  clflush (Y) 

  mfence 

  jmp loop 

Y 

X 



DRAM Module x86 CPU 

  

  

loop: 

  mov (X), %eax 

  mov (Y), %ebx 

  clflush (X)   

  clflush (Y) 

  mfence 

  jmp loop 

Y 

X 



DRAM Module x86 CPU 

  

  

loop: 

  mov (X), %eax 

  mov (Y), %ebx 

  clflush (X)   

  clflush (Y) 

  mfence 

  jmp loop 

Y 
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Observed Errors in Real Systems 

 

 

 

 

 
 

• In a more controlled environment, we can 
induce as many as ten million disturbance errors 

• Disturbance errors are a serious reliability issue 

CPU Architecture Errors Access-Rate 

Intel Haswell (2013) 22.9K 12.3M/sec 

Intel Ivy Bridge (2012) 20.7K 11.7M/sec 

Intel Sandy Bridge (2011) 16.1K 11.6M/sec 

AMD Piledriver (2012) 59 6.1M/sec 

42 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014. 



How Do We Solve The Problem? 

 Tolerate it: Make DRAM and controllers more intelligent 

 Just like flash memory and hard disks 

 

 Eliminate or minimize it: Replace or (more likely) augment 
DRAM with a different technology 

 

 Embrace it: Design heterogeneous-reliability memories that 
map error-tolerant data to less reliable portions 

 

 … 
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Exploiting Memory Error Tolerance 

Heterogeneous-Reliability Memory 

Low-cost memory Reliable memory 

Vulnerable 
data 

Tolerant 
data 

Vulnerable 
data 

Tolerant 
data 

• ECC protected 
• Well-tested chips 

• NoECC or Parity 
• Less-tested chips 
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On Microsoft’s Web Search application 
Reduces server hardware cost by 4.7 % 
Achieves single server availability target of 99.90 % 



Several Examples 

 Bulk data copy (and initialization) 

 

 DRAM refresh 

 

 DRAM reliability 

 

 Disparity of working memory and persistent storage 

 

 Homogeneous memory 

 

 Memory QoS and predictable performance 

45 



Agenda 

 Principled Computer Architecture/System Design 

 

 How We Violate Those Principles Today 

 

 Some Solution Approaches  

 

 Concluding Remarks 

 

 

 

 

46 



Some Directions for the Future 
 

 We need to rethink the entire memory/storage system 

 Satisfy data-intensive workloads 

 Fix many DRAM issues (energy, reliability, …) 

 Enable emerging technologies 

 Enable a better overall system design 
 

 

 We need to find a better balance between moving data 
versus moving computation  

 Minimize system energy and bandwidth 

 Maximize system performance and efficiency 
 

 

 We need to enable system-level memory/storage QoS 

 Provide predictable performance 

 Build controllable and robust systems 
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Some Solution Principles (So Far) 

 More data-centric system design 

 Do not center everything around computation units 

 

 Better cooperation across layers of the system 

 Careful co-design of components and layers: system/arch/device 

 More flexible interfaces 

 

 Better-than-worst-case design 

 Do not optimize for the worst case 

 Worst case should not determine the common case 

 

 Heterogeneity in design (specialization, asymmetry) 

 Enables a more efficient design (No one size fits all)  

 48 
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Role of the Architect 

from Yale Patt’s EE 382N lecture notes 



A Quote from Another Famous Architect 

 “architecture […] based upon principle, and not upon 
precedent” 
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Concluding Remarks 

 

 It is time to design systems to be more balanced, i.e., more 
memory-centric 

 

 It is time to make memory/storage a priority in system 
design and optimize it & integrate it better into the system 

 

 It is time to design systems to be more focused on critical 
pieces of work 

 

 Future systems will/should be data-centric and memory-
centric, with appropriate attention to principles 
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Finally, people are always telling you: 

Think outside the box 

from Yale Patt’s EE 382N lecture notes 



I prefer: Expand the box 

from Yale Patt’s EE 382N lecture notes 
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