
Rethinking

the Systems We Design

Onur Mutlu

onur@cmu.edu

September 19, 2014

Yale @ 75

mailto:onur@cmu.edu

Agenda

 Principled Computer Architecture/System Design

 How We Violate Those Principles Today

 Some Solution Approaches

 Concluding Remarks

2

First, Let’s Start With …

 The Real Reason We Are Here Today

 Yale @ 35

3

4

Some Teachings of Yale Patt

5

Design Principles

• Critical path design

• Bread and Butter design

• Balanced design

from Yale Patt’s EE 382N lecture notes

(Micro)architecture Design Principles

 Bread and butter design

 Spend time and resources on where it matters (i.e. improving
what the machine is designed to do)

 Common case vs. uncommon case

 Balanced design

 Balance instruction/data flow through uarch components

 Design to eliminate bottlenecks

 Critical path design

 Find the maximum speed path and decrease it

 Break a path into multiple cycles?

7

from my ECE 740 lecture notes

My Takeaways

 Quite reasonable principles

 Stated by other principled thinkers in similar or different
ways

 E.g., Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

 E.g., Gene M. Amdahl, "Validity of the single processor
approach to achieving large scale computing capabilities,"
AFIPS Conference, April 1967.

 E.g., Butler W. Lampson, “Hints for Computer System Design,”
SOSP 1983.

 …

 Will take the liberty to generalize them in the rest of the talk

 8

The Problem

 Systems designed today violate these principles

 Some system components individually might not (or might
seem not to) violate the principles

 But the overall system

 Does not spend time or resources where it matters

 Is grossly imbalanced

 Does not optimize for the critical work/application

9

Agenda

 Principled Computer Architecture/System Design

 How We Violate Those Principles Today

 Some Solution Approaches

 Concluding Remarks

10

A Computing System

 Three key components

 Computation

 Communication

 Storage/memory

11

Today’s Systems

 Are overwhelmingly processor centric

 Processor is heavily optimized and is considered the master

 Many system-level tradeoffs are constrained or dictated by
the processor – all data processed in the processor

 Data storage units are dumb slaves and are largely
unoptimized (except for some that are on the processor die)

12

Yet …

 “It’s the memory, stupid” (Anonymous DEC engineer)

13

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

128-entry window

N
o

rm
a

li
z
e

d
 E

x
e
c

u
ti

o
n

 T
im

e

Non-stall (compute) time

Full-window stall time

L2 Misses

Data from Runahead Execution [HPCA 2003]

Yet …

 Memory system is the major performance, energy,
QoS/predictability and reliability bottleneck in many (most?)
workloads

 And, it is becoming increasingly so

 Increasing hunger for more data and its (fast) analysis

 Demand to pack and consolidate more on-chip for efficiency

 Memory bandwidth and capacity not scaling as fast as demand

 Demand to guarantee SLAs, QoS, user satisfaction

 DRAM technology is not scaling well to smaller feature sizes,
exacerbating energy, reliability, capacity, bandwidth problems

14

This Processor-Memory Disparity

 Leads to designs that

 do not spend time or resources where it matters

 are grossly imbalanced

 do not optimize for the critical work/application

 Processor becomes overly complex and bloated

 To tolerate memory related issues

 Complex hierarchies are built just to move and store data
within the processor

 “The forgotten” memory system becomes dumb and
inadequate in many aspects

15

Several Examples

 Bulk data copy (and initialization)

 DRAM refresh

 Memory reliability

 Disparity of working memory and persistent storage

 Homogeneous memory

 Predictable performance and fairness in memory

16

Today’s Memory: Bulk Data Copy

Memory

MC L3 L2 L1 CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

17 1046ns, 3.6uJ (for 4KB page copy via DMA)

Future: RowClone (In-Memory Copy)

Memory

MC L3 L2 L1 CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

18 1046ns, 3.6uJ 90ns, 0.04uJ

DRAM Subarray Operation (load one byte)

Row Buffer (4 Kbits)

Data Bus

8 bits

DRAM array

4 Kbits

Step 1: Activate row

Transfer

row

Step 2: Read

Transfer byte

onto bus

RowClone: In-DRAM Row Copy

Row Buffer (4 Kbits)

Data Bus

8 bits

DRAM array

4 Kbits

Step 1: Activate row A

Transfer

row

Step 2: Activate row B

Transfer

row
0.01% area cost

RowClone: Latency and Energy Savings

0

0.2

0.4

0.6

0.8

1

1.2

Latency Energy

N
o

rm
al

iz
e

d
 S

av
in

gs

Baseline Intra-Subarray

Inter-Bank Inter-Subarray

11.6x 74x

21
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

End-to-End System Design

22

 DRAM (RowClone)

Microarchitecture

ISA

Operating System

Application
How does the software
communicate occurrences
of bulk copy/initialization
to hardware?

How to maximize latency
and energy savings?

How to ensure data
coherence?

How to handle data reuse?

RowClone: Overall Performance

23

0

10

20

30

40

50

60

70

80

bootup compile forkbench mcached mysql shell

%
 C

o
m

p
a
re

d
 t

o
 B

a
s
e
li

n
e

IPC Improvement Energy Reduction

RowClone: Multi-Core Performance

24

0.9

1

1.1

1.2

1.3

1.4

1.5

N
o

rm
a

li
z
e

d
 W

e
ig

h
te

d
 S

p
e

e
d

u
p

50 Workloads (4-core)

Baseline RowClone

Goal: Ultra-Efficient Processing Near Data

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller

Specialized
compute-capability

in memory

Memory imaging
core

Memory Bus

Memory similar to a “conventional” accelerator

Enabling Ultra-Efficient Search

▪ What is the right partitioning of computation

capability?

▪ What is the right low-cost memory substrate?

▪ What memory technologies are the best

enablers?

▪ How do we rethink/ease (visual) search

algorithms/applications?

Cache

Process
or
Core

 Interconnect

 Memory

Databa
se

Query vector

Results

Several Examples

 Bulk data copy (and initialization)

 DRAM refresh

 Memory reliability

 Disparity of working memory and persistent storage

 Homogeneous memory

 Memory QoS and predictable performance

27

DRAM Refresh

 DRAM capacitor charge leaks over time

 The memory controller needs to refresh each row
periodically to restore charge

 Activate each row every N ms

 Typical N = 64 ms

 Downsides of refresh

 -- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM capacity scaling

28

Refresh Overhead: Performance

29

8%

46%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Refresh Overhead: Energy

30

15%

47%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Retention Time Profile of DRAM

31

RAIDR: Eliminating Unnecessary Refreshes

 Observation: Most DRAM rows can be refreshed much less often
without losing data [Kim+, EDL’09][Liu+ ISCA’13]

 Key idea: Refresh rows containing weak cells

 more frequently, other rows less frequently

1. Profiling: Profile retention time of all rows

2. Binning: Store rows into bins by retention time in memory controller

 Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)

3. Refreshing: Memory controller refreshes rows in different bins at
different rates

 Results: 8-core, 32GB, SPEC, TPC-C, TPC-H

 74.6% refresh reduction @ 1.25KB storage

 ~16%/20% DRAM dynamic/idle power reduction

 ~9% performance improvement

 Benefits increase with DRAM capacity

 32
Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Several Examples

 Bulk data copy (and initialization)

 DRAM refresh

 Memory reliability

 Disparity of working memory and persistent storage

 Homogeneous memory

 Memory QoS and predictable performance

33

The DRAM Scaling Problem

 DRAM stores charge in a capacitor (charge-based memory)

 Capacitor must be large enough for reliable sensing

 Access transistor should be large enough for low leakage and high
retention time

 Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

 DRAM capacity, cost, and energy/power hard to scale

34

The DRAM Scaling Problem

 DRAM scaling has become a real problem the
system should be concerned about

 And, maybe embrace

35

 Row of Cells
 Row
 Row
 Row
 Row

 Wordline

 VLOW VHIGH
 Victim Row

 Victim Row
 Aggressor Row

Repeatedly opening and closing a row
induces disturbance errors in adjacent rows
in most real DRAM chips [Kim+ ISCA 2014]

Opened Closed

36

An Example of The Scaling Problem

Most DRAM Modules Are at Risk

86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C company

Up to

1.0×107
errors

Up to

2.7×106
errors

Up to

3.3×105
errors

37
Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” ISCA 2014.

DRAM Module x86 CPU

Y

X

loop:

 mov (X), %eax

 mov (Y), %ebx

 clflush (X)

 clflush (Y)

 mfence

 jmp loop

DRAM Module x86 CPU

loop:

 mov (X), %eax

 mov (Y), %ebx

 clflush (X)

 clflush (Y)

 mfence

 jmp loop

Y

X

DRAM Module x86 CPU

loop:

 mov (X), %eax

 mov (Y), %ebx

 clflush (X)

 clflush (Y)

 mfence

 jmp loop

Y

X

DRAM Module x86 CPU

loop:

 mov (X), %eax

 mov (Y), %ebx

 clflush (X)

 clflush (Y)

 mfence

 jmp loop

Y

X

Observed Errors in Real Systems

• In a more controlled environment, we can
induce as many as ten million disturbance errors

• Disturbance errors are a serious reliability issue

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec

42 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” ISCA 2014.

How Do We Solve The Problem?

 Tolerate it: Make DRAM and controllers more intelligent

 Just like flash memory and hard disks

 Eliminate or minimize it: Replace or (more likely) augment
DRAM with a different technology

 Embrace it: Design heterogeneous-reliability memories that
map error-tolerant data to less reliable portions

 …

43

App/Data A App/Data B App/Data C

M
em

o
ry

 e
rr

o
r

vu
ln

er
ab

ili
ty

Vulnerable
data

Tolerant
data

Exploiting Memory Error Tolerance

Heterogeneous-Reliability Memory

Low-cost memory Reliable memory

Vulnerable
data

Tolerant
data

Vulnerable
data

Tolerant
data

• ECC protected
• Well-tested chips

• NoECC or Parity
• Less-tested chips

44

On Microsoft’s Web Search application
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %

Several Examples

 Bulk data copy (and initialization)

 DRAM refresh

 DRAM reliability

 Disparity of working memory and persistent storage

 Homogeneous memory

 Memory QoS and predictable performance

45

Agenda

 Principled Computer Architecture/System Design

 How We Violate Those Principles Today

 Some Solution Approaches

 Concluding Remarks

46

Some Directions for the Future

 We need to rethink the entire memory/storage system

 Satisfy data-intensive workloads

 Fix many DRAM issues (energy, reliability, …)

 Enable emerging technologies

 Enable a better overall system design

 We need to find a better balance between moving data
versus moving computation

 Minimize system energy and bandwidth

 Maximize system performance and efficiency

 We need to enable system-level memory/storage QoS

 Provide predictable performance

 Build controllable and robust systems

47

Some Solution Principles (So Far)

 More data-centric system design

 Do not center everything around computation units

 Better cooperation across layers of the system

 Careful co-design of components and layers: system/arch/device

 More flexible interfaces

 Better-than-worst-case design

 Do not optimize for the worst case

 Worst case should not determine the common case

 Heterogeneity in design (specialization, asymmetry)

 Enables a more efficient design (No one size fits all)

 48

Agenda

 Principled Computer Architecture/System Design

 How We Violate Those Principles Today

 Some Solution Approaches

 Concluding Remarks

49

Role of the Architect

from Yale Patt’s EE 382N lecture notes

A Quote from Another Famous Architect

 “architecture […] based upon principle, and not upon
precedent”

51

Concluding Remarks

 It is time to design systems to be more balanced, i.e., more
memory-centric

 It is time to make memory/storage a priority in system
design and optimize it & integrate it better into the system

 It is time to design systems to be more focused on critical
pieces of work

 Future systems will/should be data-centric and memory-
centric, with appropriate attention to principles

52

Finally, people are always telling you:

Think outside the box

from Yale Patt’s EE 382N lecture notes

I prefer: Expand the box

from Yale Patt’s EE 382N lecture notes

Rethinking

the Systems We Design

Onur Mutlu

onur@cmu.edu

September 19, 2014

Yale @ 75

mailto:onur@cmu.edu

