Rethinking
the Systems We Design

SAFARI

Onur Mutlu
onur@cmu.edu
September 19, 2014
Yale @ 75

Carnegie Mellon

mailto:onur@cmu.edu

Agenda
Principled Computer Architecture/System Design
How We Violate Those Principles Today
Some Solution Approaches

Concluding Remarks

SAFARI

First, Let’s Start With ...

= The Real Reason We Are Here Today

= Yale @ 35

SAFARI

Some Teachings of Yale Patt

THE UNIVERSITY OF TEXAS AT AUSTIN
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

EE 382N: Microarchitecture
Spring 2014

Welcome to EE 382N - Microarchitecture

The University of Texas at Austin

Spring 2002

SAFARI

Design Principles

« Critical path design
 Bread and Butter design

« Balanced design

from Yale Patt's EE 382N lecture notes

(Micro)architecture Design Principles

Bread and butter design

o Spend time and resources on where it matters (i.e. improving
what the machine is designed to do)

o Common case vs. uncommon case

Balanced design
o Balance instruction/data flow through uarch components
o Design to eliminate bottlenecks

Critical path design
o Find the maximum speed path and decrease it
Break a path into multiple cycles?

from my ECE 740 lecture notes

My Takeaways

Quite reasonable principles

Stated by other principled thinkers in similar or different

ways

o E.g., Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

o E.g., Gene M. Amdahl, "Validity of the single processor
approach to achieving large scale computing capabilities,"
AFIPS Conference, April 1967.

o E.g., Butler W. Lampson, “Hints for Computer System Design,”
SOSP 1983.

a ...

Will take the liberty to generalize them in the rest of the talk

8

The Problem

Systems designed today violate these principles

Some system components individually might not (or might
seem not to) violate the principles

But the overall system

o Does not spend time or resources where it matters
o Is grossly imbalanced

o Does not optimize for the critical work/application

Agenda
Principled Computer Architecture/System Design
How We Violate Those Principles Today
Some Solution Approaches

Concluding Remarks

10

A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Computing System

Communication

Today’s Systems

Are overwhelming
Processor is heavi

Many system-leve
the processor — al

y processor centric

y optimized and is considered the master

tradeoffs are constrained or dictated by
data processed in the processor

Data storage units are dumb slaves and are largely

unoptimized (except for some that are on the processor die)
Computing System

(\
Computing E a Communication E a Memory/Storage
Unit Unit Unit
_ J

Memory System

Storage System

12

Yet ...

= It's the memory, stupid” (Anonymous DEC engineer)

100

@ Non-stall (compute) time

B Full-window stall time

gg L2 Misses

Normalized Execution Time
(@)
o

128-entry window Data from Runahead Execution [HPCA 2003]

13

Yet ...

Memory system is the major performance, energy,
QoS/predictability and reliability bottleneck in many (most?)
workloads

And, it is becoming increasingly so

Q

o O O 0O

Increasing hunger for more data and its (fast) analysis
Demand to pack and consolidate more on-chip for efficiency
Memory bandwidth and capacity not scaling as fast as demand
Demand to guarantee SLAs, QoS, user satisfaction

DRAM technology is not scaling well to smaller feature sizes,
exacerbating energy, reliability, capacity, bandwidth problems

14

This Processor-Memory Disparity

= Leads to designsstiat Memory
Shared

o do’
Memory

Shared)y are (| Control
nterconnect

o —

N
O O O
Soole@ns &

Shared

4 | Memory

N “TITE H | Control

Shared
Memory
Control

N E1eYS

QrIowd

<

1t matters

plication

Me

s dumb and

15

Several Examples

Bulk data copy (and initialization)

DRAM refresh

Memory reliability

Disparity of working memory and persistent storage
Homogeneous memory

Predictable performance and fairness in memory

16

Today’s Memory: Bulk Data Copy

1) High latency
3) Cache pollution \\

2) High bandwidth utilization

4) Unwanted data movement

1046ns, 3.6ul (for 4KB page copy via DMA)

17

Future: RowClone (In-Memory Copy)

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement

10068s03)6ul

18

DRAM Subarray Operation (load one byte)

Transfer
row

4 Kbits

Step 1: Activate row

DRAM array

CCITTTTTREFRRRRRITTTTTTITTTTITTTITT] Row Buffer (4 Kbits)
Step 2: Read

Transfer byte
onto bus

Data Bus

RowClone: In-DRAM Row Copy

Transfer
row

Trans
row

4 Kbits

Step 1: Activate row A

Step 2: Activate row B

DRAM array

0.01% area «

CEEP PPV PP PP PP PP TP PPV I I TTE] Row Buffer (4 Kbits)

|8 bits

Data Bus

RowClone: Latency and Energy Savings

M Baseline M Intra-Subarray
W Inter-Bank M Inter-Subarray

1.2

=
|

A

74X

o
o
|

o
H
|

Normalized Savings
o
(@)

o
N
|

Latency Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

21

End-to-End System Design

Application

Operating System

Microarchitecture

DRAM (RowClone)

How does the software
communicate occurrences
of bulk copy/initialization
to hardware?

How to ensure data
coherence?

How to maximize latency
and energy savings?

How to handle data reuse?

22

RowClone: Overall Performance

80 _ S
m [PC Improvement m Energy Reduction

% Compared to Baseline

bootup compile forkbench mcached mysql shell

23

RowClone: Multi-Core Performance

1.5

==Baseline ==RowClone
1.4

1.3

1.2

1.1

1 4

Normalized Weighted Speedup

0.9
50 Workloads (4-core)

24

Goal: Ultra-Eftficient Processing Near Data

[[
:| GPU GPU X
CPU CPU core 1 :(throughpuf)(fhroughpuf):
core core :] core core |i
video :
core
c c é(h Gptﬁ : GPU |
PU PU _l) :(fhroughput)(fhroughput): :
core core meged i| core core [: Memory
LLC
N Specialized
Memory Controller [compute-capability
iIn memory

Memory Bus

Memory similar to a “conventional” acceler:

Enabling Ultra-Etficient Search

Process

Databa
se

|
Car |
|
|

Query vector

Interconnect

Results

= What is the right partitioning of computation
capability?

= What is the right low-cost memory substrate?

= What memory technologies are the best
enablers?

E How Adno we rethinlk/aacea (viciiall caarch

Several Examples

Bulk data copy (and initialization)

Memory reliability

Disparity of working memory and persistent storage
Homogeneous memory

Memory QoS and predictable performance

27

DRAM Refresh T

DRAM capacitor charge leaks over time CAP ——

= SENSE

The memory controller needs to refresh each row V
periodically to restore charge

o Activate each row every N ms
o Typical N = 64 ms

Downsides of refresh
-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM capacity scaling

28

Refresh Overhead: Performance

100

Present i Future

= D o0
< == <

% time spent refreshing

DO
==

0"2Gb 4Gb 8Gb 16Gb 32Gb 64Gb
Device capacity

2
Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. ¥

Refresh Overhead: Energy

% DRAM energy spent refreshing

100— -

Present i Future

o0
<

o
S

B
<

b
-

-

2Gb 4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

30

Retention Time Profile of DRAM

04-128ms

128-250ms

RAIDR: Eliminating Unnecessary Refreshes

= Observation: Most DRAM rows can be refreshgd much less often

without losing data [Kim+, EDL'09][Liu+ ISCA'13] £’ 2

g, 1052

o 1077 4y

= Key idea: Refresh rows containing weak cellsz v . |E._1999..C.e.ll§-@2.5_6.ms ______________ e
% 1079 ~ cells ms ; 2%

more frequently, other rows less frequently o =®=eEme 0

1. Profiling: Profile retention time of all rows glo—;gzcm@mme ”””””””” s

Refresh interval (s)

2. Binning: Store rows into bins by retention time in memory controller
Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)

3. Refreshing: Memory controller refreshes rows in different bins at
different rates 160

S0%

B Auto
I RAIDR

~ 140

= Results: 8-core, 32GB, SPEC, TPC-C, TPC-H Z 12
0 74.6% refresh reduction @ 1.25KB storage :
o ~16%/20% DRAM dynamic/idle power reduction
o ~9% performance improvement
o Benefits increase with DRAM capacity

C

-
e
o

co
-}

B
=]

Energy per acce
o)
=

\®]
-}

O"4Gb 8Gb 16Gb 32Gb 64 Gb

Device capacity
SAFARI Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Several Examples

Bulk data copy (and initialization)

DRAM refresh

Disparity of working memory and persistent storage
Homogeneous memory

Memory QoS and predictable performance

33

The DRAM Scaling Problem

DRAM stores charge in a capacitor (charge-based memory)
o Capacitor must be large enough for reliable sensing

o Access transistor should be large enough for low leakage and high
retention time

o Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

WL BL

1

CAP

-

= SENSE

DRAM capacity, cost, and energy/power hard to scale

SAFARI

34

The DRAM Scaling Problem

DRAM scaling has become a real problem the
system should be concerned about

o And, maybe embrace

SAFARI

35

An Example of The Scaling Problem

= Row of Cells = Wordline

— Victim Row —
Aggressar i’ V omw

— Victim Row —

= Row —

Repeatedly opening and closing a row
induces disturbance errors in adjacent rows
in most real DRAM chips [Kim+ ISCA 2014] ..

Most DRAM Modules Are at Risk

A company B company C company

Up to Up to Up to
1.0x107 2.7x10°® 3.3x10°
errors errors errors

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” ISCA 2014. 37

DRAM Module

e PR YR YD
TNt .l.lm I.!..“..! oo ©
T A W o seesa,,
L] .
. o .
ot ot
‘A e

o
o olloe
=
o oo
o '
ofo
of

el

o omo

1 oo °
o

. 1 .
!L
s

.
.
o . . .
. . »
® 0%%. 000 00000 ** %% 4%, o ¢ %000 * 00®e * seed e
900 5000 s 2000 o0 200 o0 . G ee ® %22 20800 o 8000 o sssse oo
“ ““ o 00 o4 ® —_““ ““ "“
.o 28 o mN _og e e
%% o °

.

loop:
mov (), %Teax
mov (), %ebx
clflush ()
clflush ()
mfence
Jmp loop

DRAM Module

e PR YR YD
TNt .l.lm I.!..“..! oo ©
T A W o seesa,,
L] .
. o .
ot ot
‘A e

o
o olloe
=
o oo
o '
ofo
of

el

o omo

1 oo °
o

. 1 .
!L
s

.
.
o . . .
. . »
® 0%%. 000 00000 ** %% 4%, o ¢ %000 * 00®e * seed e
900 5000 s 2000 o0 200 o0 . G ee ® %22 20800 o 8000 o sssse oo
“ ““ o 00 o4 ® —_““ ““ "“
.o 28 o mN _og e e
%% o °

.

loop:
mov (), %Teax
mov (), %ebx
clflush ()
clflush ()
mfence
Jmp loop

DRAM Module

e PR YR YD
TNt .l.lm I.!..“..! oo ©
T A W o seesa,,
L] .
. o .
ot ot
‘A e

o
o olloe
=
o oo
o '
ofo
of

el

o omo

1 oo °
o

. 1 .
!L
s

.
.
o . . .
. . »
® 0%%. 000 00000 ** %% 4%, o ¢ %000 * 00®e * seed e
900 5000 s 2000 o0 200 o0 . G ee ® %22 20800 o 8000 o sssse oo
“ ““ o 00 o4 ® —_““ ““ "“
.o 28 o mN _og e e
%% o °

.

loop:
mov (), %Teax
mov (), %ebx
clflush ()
clflush ()
mfence
Jmp loop

DRAM Module

e PR YR YD
TNt .l.l.m I.!..“..! oo ©
T A W o seesa,,
L] .
. o .
ot ot
‘A e

°

A
=

o oo
o '
elo

el

o omo

1 oo °
o

. 1 .
‘L
s

.
.
o . . .
. . »
® 2%%5000 05000 ** %% % ° o o%0000 * 00”0 * seed e
900 5000 s 2000 o0 200 o0 . G ee ® %22 20800 o 8000 o sssse oo
“ ““ o 00 o4 ® __““ ““ "“
.o 28 o mN _og e e
%% o °

.

loop:
mov (), %Teax
mov (), %ebx
clflush ()
clflush ()
mfence
Jmp loop

Observed Errors in Real Systems

CPU Architecture Errors Access-Rate
Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec
Intel Sandy Bridge (2011) 16.1K 11.6M/sec
AMD Piledriver (2012) 59 6.1M/sec

* In a more controlled environment, we can
induce as many as ten million disturbance errors

* Disturbance errors are a serious reliability issue

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 42
DRAM Disturbance Errors,” ISCA 2014.

How Do We Solve The Problem?

Tolerate it: Make DRAM and controllers more intelligent
o Just like flash memory and hard disks

Eliminate or minimize it: Replace or (more likely) augment
DRAM with a different technology

Embrace it: Design heterogeneous-reliability memories that
map error-tolerant data to less reliable portions

43

Exploiting Memory Error Tolerance

Vulnerable
data

Reliable memory

On Microsoft’s Web Search application
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %

Heterogeneous-Reliability Memory

44

Several Examples

= Bulk data copy (and initialization)
= DRAM refresh
= DRAM reliability

= | Disparity of working memory and persistent storage

= | Homogeneous memory

=| Memory QoS and predictable performance

45

Agenda
Principled Computer Architecture/System Design
How We Violate Those Principles Today
Some Solution Approaches

Concluding Remarks

46

Some Directions for the Future

We need to rethink the entire memory/storage system
o Satisfy data-intensive workloads

o Fix many DRAM issues (energy, reliability, ...)

o Enable emerging technologies

o Enable a better overall system design

We need to find a better balance between moving data
versus moving computation

o Minimize system energy and bandwidth

o Maximize system performance and efficiency

We need to enable system-level memory/storage QoS
o Provide predictable performance
o Build controllable and robust systems

47

Some Solution Principles (So Far)

= More data-centric systernr Problem
o Do not center everythinc

Algorithm

= Better cooperation acros:

o Careful co-design of comr Program
o More flexible interfaces

= Heterogeneity in design |

o Electrons
o Enables a more efficient

48

Agenda
Principled Computer Architecture/System Design
How We Violate Those Principles Today
Some Solution Approaches

Concluding Remarks

49

Role of the Architect

Role of the Architect
-- Look Backward (Examine old code)
-- Look forward (Listen to the dreamers)
-- Look Up (Nature of the problems)

-- Look Down (Predict the future of
technology)

from Yale Patt's EE 382N lecture notes

A Quote from Another Famous Architect

= “architecture [...] based upon principle, and not upon
precedent”

Concluding Remarks

It is time to design systems to be more balanced, i.e., more
memory-centric

It is time to make memory/storage a priority in system
design and optimize it & integrate it better into the system

It is time to design systems to be more focused on critical
pieces of work

Future systems will/should be data-centric and memory-
centric, with appropriate attention to principles

52

Finally, people are always telling you:
Think outside the box

from Yale Patt's EE 382N lecture notes

| prefer: Expand the box

from Yale Patt's EE 382N lecture notes

Rethinking
the Systems We Design

SAFARI

Onur Mutlu
onur@cmu.edu
September 19, 2014
Yale @ 75

Carnegie Mellon

mailto:onur@cmu.edu

