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Executive Summary
q Motivation: Nanopore sequencing is an emerging and a promising 

technology with its ability to generate long reads and provide 
portability. 

q Problem: 
q High error rates of the technology 
q Critical importance of the tools to 1) overcome the high error rates 

of the technology, and 2) enable fast, real-time data analysis. 
q Goal: Analyze the multiple steps and the associated tools in the 

genome assembly pipeline using nanopore sequence data.
q Key Contributions:

o Analysis of the tools in multiple dimensions: accuracy, performance, 
memory usage and scalability.

o New bottlenecks and tradeoffs that different combinations of tools 
lead to

o Guidelines for both practitioners and tool developers
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Outline
qBackground and Motivation
o Nanopore Sequencing Technology

o Comparison with Prior Technologies
o Nanopore Genome Assembly Pipeline

o Our Goal

qExperimental Methodology
qResults and Analysis
qConclusion
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Nanopore Sequencing Technology
q Nanopore sequencing is an emerging and a

promising single-molecule DNA sequencing
technology.

q First nanopore sequencing device, MinION, made
commercially available by Oxford Nanopore
Technologies (ONT) in May 2014.
o Inexpensive
o Long read length (>882Kbp)
o Produces data in real time
o Pocket-sized and portable

5



Damla Senol Cali
02/16/2019

Nanopore Sequencing
q Nanopore is a nano-scale hole.
q In nanopore sequencers, an ionic current passes through the

nanopores.
q When the DNA strand passes through the nanopore, the

sequencer measures the change in current.
q This change is used to identify the bases in the strand with the

help of different electrochemical structures of the different
bases.
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Why Nanopore Sequencing?
Nanopore Sequencing 

Technology

q Do not require an amplification 

step before the sequencing 

process,

q Do not require any labeling of 

the DNA or nucleotide for 

detection during sequencing, 

q Allow sequencing of very long 
reads, and 

q Provide portability, low cost and 

high throughput. 

q One major drawback: high error 

rates  (∽10-15%)
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(Prior) High-Throughput 
Sequencing Technologies

q Require an amplification step 

before the sequencing process,

q Require labeling of the DNA or 

nucleotide for detection during 
sequencing,

q Generate billions of short but

accurate reads,

q Provide high throughput, high 

speed and low cost,

q Suffers from massive amount of 

data and short reads, which poses 

challenges due to the repetitive 

sequences in the genome. 
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Nanopore Genome Assembly Pipeline
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Our Goal
q Comprehensively analyze the multiple steps and the

associated state-of-the-art tools in genome assembly
pipelines using nanopore sequence data in terms of
accuracy, performance, memory usage, and
scalability.

q Reveal bottlenecks and trade-offs that different
combinations of tools lead to.

q Provide guidelines for both practitioners, such that
they can determine the appropriate tools and tool
combinations that can satisfy their goals, and tool
developers, such that they can make design choices to
improve current and future tools.
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Outline
qBackground and Motivation
qExperimental Methodology
qResults and Analysis
qConclusion
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Experimental Methodology
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Experimental Methodology (cont.)
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Accuracy Metrics
q Average Identity

o Percentage similarity between the assembly 
and the reference genome

o Higher (≃100%) is preferred
q Coverage

o Ratio of the #aligned bases in the reference 
genome to the length of reference genome

o Higher (≃100%) is preferred
q Number of mismatches

o Total number of single-base differences 
between the assembly and the reference 
genome

o Lower (≃0) is preferred
q Number of indels

o Total number of insertions and deletions 
between the assembly and the reference 
genome

o Lower (≃0) is preferred

Performance Metrics
q Wall clock time
q Peak memory usage
q Parallel speedup
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Outline
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Nanopore Genome Assembly Pipeline
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Basecalling Tools
q Metrichor

o ONT’s cloud-based basecaller 

o Uses recurrent neural networks (RNN) for basecalling 

q Nanonet

o ONT’s offline and open-source alternative for Metrichor

o Uses RNN for basecalling 

q Scrappie

o ONT’s newest basecaller that explicitly addresses basecalling 

errors in homopolymer regions 

q Nanocall [David+, Bioinformatics 2016]

o Uses Hidden Markov Models (HMM) for basecalling

q DeepNano [Boža+, PloS One 2017]

o Uses RNN for basecalling 
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Nanopore Genome Assembly Pipeline

16

Basecalling
Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano

Read-to-Read Overlap Finding
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Assembly
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Pipeline A: [Basecalling tool] 
+ Canu

Pipeline B: [Basecalling tool] 
+ GraphMap + Miniasm

Pipeline C: [Basecalling tool] 
+ Minimap + Miniasm
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Basecalling – Accuracy
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Accuracy Analysis Results for Basecalling Tools

Identity (%) Coverage (%) # Mismatches # Indels

Scrappie Nanocall DeepNanoNanonetMetrichor
Observation 1-a: Metrichor, Nanonet and Scrappie have similar 

identity and coverage trends among all of the evaluated 
scenarios.
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Basecalling – Accuracy
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Accuracy Analysis Results for Basecalling Tools
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Observation 1-b: However, Nanocall and DeepNano cannot 

reach these three basecallers’ accuracies: they have lower identity 
and lower coverage.
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Basecalling – Accuracy
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Observation 1-c: Scrappie has the highest accuracy with the 
lowest number of mismatches and indels.
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Basecalling – Speed
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Observation 2: RNN-based basecallers, Nanonet and Scrappie 
are faster than HMM-based basecaller, Nanocall. 
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Basecalling – Speed
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Observation 3: When #threads=1, desktop is approximately 2x 
faster than big-mem because of desktop’s higher CPU frequency. 
It is an indication that all of these three tools are computationally 

expensive. 
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Basecalling – Memory
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Observation 4: Scrappie and Nanocall have a linear increase in 
memory usage when number of threads increases. In contrast, 

Nanonet has a constant memory usage for all evaluated thread 
units.
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Basecalling – Summary
q The choice of the tool for the basecalling step plays an 

important role to overcome the high error rates of 
nanopore sequencing technology. 

q Basecalling with RNNs (e.g. Metrichor, Nanonet, 
Scrappie) provides higher accuracy and higher speed 
than basecalling with HMMs.

q The newest basecaller of ONT, Scrappie, also has the 
potential to overcome the homopolymer basecalling 
problem. 
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Outline
qBackground and Motivation
qExperimental Methodology
qResults and Analysis
o Basecalling Tools
o Read-to-Read Overlap Finding Tools

§ Accuracy

§ Performance

o Assembly Tools
o Read Mapping and Polishing Tools (optional)

qConclusion
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Nanopore Genome Assembly Pipeline
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Read-to-Read Overlap Finding Tools

q GraphMap [Sovic +́, Nature Communications 2016]

o First partitions the entire read data set into k-length substrings 

(i.e., k-mers), and then stores them in a hash table with the 

positions.

o Detects the overlaps by finding the k-mer similarity between 

any two given reads, using the generated hash table. 

q Minimap [Li+, Bioinformatics 2016]

o Partitions the entire read data set into k-mers, but instead of 

creating a hash table for the full set of k-mers, finds the 

minimum representative set of k-mers, called minimizers, and 

creates a hash table with only these minimizers. 

o Finds the overlaps between two reads by finding minimizer 

similarity. 
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Nanopore Genome Assembly Pipeline
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Basecalling
Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano

Read-to-Read Overlap Finding
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Pipeline A: Metrichor +
[R-to-R Overlap Finding tool] + Miniasm

Pipeline B: Nanonet +
[R-to-R Overlap Finding tool] + Miniasm

Pipeline C: Scrappie +
[R-to-R Overlap Finding tool] + Miniasm

Pipeline D: Nanocall +
[R-to-R Overlap Finding tool] + Miniasm

Pipeline E: DeepNano +
[R-to-R Overlap Finding tool] + Miniasm
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R-to-R Overlap Finding – Accuracy
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Observation 5: Pipelines with GraphMap or Minimap end up with 
similar accuracy results.
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R-to-R Overlap Finding – Performance
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Observation 6: The memory usage of both GraphMap and 
Minimap is dependent on the hash table size but independent of 

number of threads. Minimap requires 4.6x less memory than 
GraphMap, on average.
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R-to-R Overlap Finding – Performance
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Observation 7: Minimap is 2.5x faster than GraphMap, on 
average. Since in Minimap, the size of dataset that needs to be 

scanned is greatly shrunk by storing minimizers instead of k-mers, 
it performs much less computation than GraphMap. 
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R-to-R Overlap Finding – Summary

q Storing minimizers instead of all k-mers, as done by 
Minimap, does not affect the overall accuracy of the 
first three steps of the pipeline. 

q By storing minimizers, Minimap has a much lower 
memory usage and thus much higher performance than 
GraphMap.
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Outline
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Nanopore Genome Assembly Pipeline
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Assembly Tools
q Canu [Koren+, Genome Research 2017]

o Performs error-correction as the initial step of its own pipeline
§ Improves the accuracy of the bases in the reads
§ Computationally-expensive

o After the error-correction step, finds overlaps between 
corrected reads and constructs a draft assembly 

q Miniasm [Li+, Bioinformatics 2016]
o Skips the error-correction step, and constructs the draft 

assembly from the uncorrected read overlaps computed in the 
previous step. 

o Lowers computational cost but the accuracy of the draft 
assembly depends directly on the accuracy of the uncorrected 
basecalled reads.
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Assembly – Accuracy & Performance
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Observation 8: Canu provides higher accuracy than Miniasm, 
with the help of the error-correction step that is present in its own 

pipeline. On average, Canu provides 96.1% identity whereas 
Miniasm provides 84.4% identity.

Observation 9: Canu is much more computationally intensive 
and greatly (i.e., by 1096.3x) slower than Miniasm, because of its 

very expensive error-correction step.
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Assembly – Summary
q There is a trade-off between accuracy and performance 

when deciding on the appropriate tool for the assembly 
step. 

q Canu produces highly accurate assemblies, but it is 
resource intensive and slow. In contrast, Miniasm is a 
fast assembler, but it cannot produce as accurate draft 
assemblies as Canu. 

q Miniasm can potentially be used for fast initial analysis 
and then further polishing can be applied in the next 
step to produce higher-quality assemblies.
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Nanopore Genome Assembly Pipeline
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Read Mapping & Polishing – Summary
q Further polishing can significantly increase the accuracy 

of the assemblies. 

q Pipelines with Minimap and Racon can provide a 
significant speedup compared with the pipelines with 
BWA-MEM and Nanopolish, while resulting with high-
quality consensus sequences.

q More details in the paper..
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Outline
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Future Implications
q The choice of the tool for basecalling plays a critical role in overcoming the

high error rates of nanopore sequencing technology.
o RNNs perform better than HMMs in terms of both accuracy and

performance.

q Since parallelizing the tool can increase the memory usage, dividing the
input data into batches, or limiting the memory usage of each thread, or
dividing the computation instead of dividing the dataset between
simultaneous threads can prevent large increases in memory usage, while
providing performance benefits from parallelization.

q In the future, laptops may become a popular platform for running genome
assembly tools, as the portability of a laptop makes it a good fit for in-field
analysis.
o Greater memory constraints
o Lower computational power, and
o Limited battery life.
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Conclusion
q Motivation: Nanopore sequencing is an emerging and a promising 

technology with its ability to generate long reads and provide 
portability. 

q Problem: 
q High error rates of the technology 
q Critical importance of the tools to 1) overcome the high error rates 

of the technology, and 2) enable fast, real-time data analysis. 
q Goal: Analyze the multiple steps and the associated tools in the 

genome assembly pipeline using nanopore sequence data.
q Key Contributions:

o Analysis of the tools in multiple dimensions: accuracy, performance, 
memory usage and scalability.

o New bottlenecks and tradeoffs that different combinations of tools 
lead to

o Guidelines for both practitioners and tool developers
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Genome Sequencing

Genome

DNA

Genome sequencing is the
process of determining the
order of the DNA sequence in
an organism’s genome.

Genome Sequencing plays a
pivotal role in:
o Disease discovery
o Personalized medicine
o Evolution
o Forensics
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Genome Sequencing
Large DNA molecule

Small DNA fragments

Reads

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT
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Genome Sequence Analysis

Read Mapping, method of aligning the 
reads against the reference genome in 

order to detect matches and variations.

ACGTACCCCGT
GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT

48

Reads

De novo Assembly, method of 
merging the reads in order to construct

the original sequence.

Reference
Genome

Original
Sequence
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High-Throughput Sequencing
High-throughput sequencing (HTS) technology:
q Has dominated the sequencing market since 2000, and
q Generates billions of short reads in a cheap and fast way,

but
q Suffers from massive amount of data and short reads,

which poses challenges to read mapping and to de novo
assembly due to the repetitive sequences in the genome.

Solution(s):

q Successful computational tools that can process and
analyze this amount of data quickly and accurately, or

q New alternative sequencing technologies that can produce
longer reads.

49



Damla Senol Cali
02/16/2019

Advantages of Nanopore Sequencing

Nanopores are suitable for sequencing because they: 

q Do not require any labeling of the DNA or nucleotide for 
detection during sequencing, 

q Rely on the electronic or chemical structure of the 
different nucleotides for identification, 

q Allow sequencing of very long reads, and 

q Provide portability, low cost and high throughput. 
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Challenges of Nanopore Sequencing
q One major drawback: high error rates 

q Nanopore sequence analysis tools have a critical role to:

o Overcome high error rates, and

o Take better advantage of the technology 

q Faster tools are critically needed to:

o Take better advantage of the real-time data production 
capability of MinION, and

o Enable fast, real-time data analysis 
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Step 1: Basecalling

ACTGTCGAGTCGTAGAGA…TTT

TAGTATATATTTTGGGGT…TAA

TTTGTCGAGTCGTAGAGA…TAG

52

Basecalling

Read-to-
Read Overlap 

Finding

Assembly

DNA reads

Assembled genome

Overlaps

Raw signal data Translates the raw signal output into bases to
generate DNA reads.
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Step 2: Read-to-Read Overlap Finding

ACTGTCGAGTCGT…TTT

ACTTATATATTTTT…TTT

TTTGTCGAGTCGT…ACT
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Basecalling

Read-to-
Read Overlap 

Finding

Assembly

DNA reads

Assembled genome

Overlaps

Raw signal data Read-to-read overlap
o is a common sequence between two reads, and
o occurs when the matched regions of these reads

originate from the same part of the complete
genome.

ACTGTCGAGTCGT…TTT

ACTTATATATTTTT…TTT
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Step 3: Assembly

ACTGTCGAGTCGT…TTT

TAGTATATATTTTT…TAA

TTTGTCGAGTCGT…TAG

ACTGTCGAGTCGT…TTT

ACTTATATATTTTT…TTT

TTTGTCGAGTCGT…ACT

ACTGTCGAGTCGT…TTTTTTGTCGAGTCGT…ACTACTTATATATTTTT…TTT
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Basecalling

Read-to-
Read Overlap 

Finding

Assembly

DNA reads

Assembled genome

Overlaps

Raw signal data Assembly algorithms,
o generate an overlap graph with the overlaps

from the previous step,
o traverse this graph, then
o construct the assembled genome.

ACTTATATATTTTT…TTTTTTGTCGAGTCGT…ACTACTGTCGAGTCGT…TTT

Which one is correct?
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GraphMap vs. Minimap
q GraphMap

o Finds k-mers and store them in hash table with the positions.

o Finds overlaps between two reads by k-mer similarity.
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GraphMap vs. Minimap
q Minimap

o Finds minimum representative set of k-mers, i.e. minimizers
and store them in hash table, instead of storing all k-mers.

o Finds overlaps between two reads by minimizer similarity.
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Basecalling – Speedup
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Observation 5: When the number of threads exceeds the number 
of physical cores, the simultaneous multithreading overhead 
prevents continued linear speedup of Nanonet, Scrappie and 

Nanocall because of the CPU-intensive workload of these tools.
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R-to-R Overlap Finding – Speedup
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Read Mapping & Polishing Tools
q Read Mapping tools

o BWA-MEM
§ Commonly used long-read mapper

o GraphMap and Minimap (from Step 2)

q Polishing tools

o Nanopolish
§ HMM-based approach for polishing

o Racon
§ Alignment graph-based approach for polishing
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Read Mapping & Polishing – Accuracy
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Observation 11: Both Nanopolish and Racon significantly 
increase the accuracy of the draft assemblies.

For example, Nanopolish increases the identity and coverage of the draft 
assembly generated with the Metrichor+Minimap+Miniasm pipeline from 

87.71% and 94.85%, respectively, to 92.33% and 96.31%. 
Similarly, Racon increases them to 97.70% and 99.91%, respectively.

Observation 12: For Racon, the choice of read mapper does not 
affect the accuracy of the polishing step.



Damla Senol Cali
02/16/2019

Read Mapping & Polishing – Speed
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Observation 13: Nanopolish is computationally much more 
intensive and thus greatly slower than Racon.

Nanopolish runs take days to complete whereas Racon runs take minutes. 
This is mainly because Nanopolish works on each base individually, whereas 
Racon works on the windows. Since each window is much longer (i.e., 20kb) 
than a single base, the computational workload is greatly smaller in Racon. 

Observation 14: BWA-MEM is computationally more expensive 
than Minimap.

Although the choice of BWA-MEM and Minimap for the read mapping step 
does not affect the accuracy of the polishing step, these two tools have a 

significant difference in performance.


