The Non-IID Data Quagmire of Decentralized Machine Learning

ICML 2020

Kevin Hsieh, Amar Phanishayee, Onur Mutlu, Phillip Gibbons

Carnegie Mellon University

ML Training with Decentralized Data

Geo-Distributed Learning

Federated Learning

Data Sovereignty and Privacy

Major Challenges in Decentralized ML

Challenge 1: Communication Bottlenecks

Solutions: Federated Averaging, Gaia, Deep Gradient Compression

Major Challenges in Decentralized ML

Geo-Distributed Learning

Federated Learning

Challenge 2: Data are often highly skewed (non-iid data)

Solutions: Understudied! Is it a real problem?

Our Work in a Nutshell

Proposed **Solution**

Real-World Dataset Experimental Study

5

Geographical mammal images from Flickr

736K pictures in 42 mammal classes

Real-World Dataset Highly skewed labels among geographic regions

Experimental Study Skewed data labels are a fundamental and pervasive problem

The problem is even worse for DNNs with batch normalization

The degree of skew determines the difficulty of the problem

Proposed Solution Replace batch normalization with group normalization

SkewScout: communication-efficient decentralized learning over arbitrarily skewed data

Real-World Dataset

Flickr-Mammal Dataset

42 mammal classes from Open Images and ImageNet

Roverse

Reverse geocoding to country, subcontinent, and continent

https://doi.org/10.5281/zenodo.3676081

736K Pictures with Labels and Geographic Information

Top-3 Mammals in Each Continent

Each top-3 mammal takes 44-92% share of global images

Vast majority of mammals are dominated by 2-3 continents

The labels are even more skewed among subcontinents

Experimental Study

Scope of Experimental Study

ML Application

Decentralized Learning Algorithms

Skewness of Data Label Partitions

- Image Classification (with various DNNs and datasets)
- Face recognition

Gaia [NSDI'17] FederatedAveraging [AISTATS'17] DeepGradientCompression [ICLR'18]

2-5 Partitions -more partitions are worse

All decentralized learning algorithms lose significant accuracy

Tight synchronization (BSP) is accurate but too slow

Skewed data is a pervasive and fundamental problem

Even BSP loses accuracy for DNNs with Batch Normalization layers

Degree of Skew is a Key Factor

CIFAR-10 with GN-LeNet

Degree of skew can determine the difficulty of the problem

Τ1

Batch Normalization — Problem and Solution

Background: Batch Normalization

Standard normal distribution ($\mu = 0, \sigma = 1$) in each minibatch at training time

Normalize with estimated global μ and σ at test time

Batch normalization enables larger learning rates and avoid sharp local minimum (generalize better)

Batch Normalization with Skewed Data

CIFAR-10 with BN-LeNet (2 Partitions)

Minibatch μ and σ vary significantly among partitions Global μ and σ do not work for all partitions

Solution: Use Group Normalization [Wu and He, ECCV'18]

Batch Normalization

Group Normalization

Designed for small minibatches We apply as a solution for skewed data

Results with Group Normalization

GroupNorm recovers the accuracy loss for BSP and reduces accuracy losses for decentralized algorithms

SkewScout: Decentralized learning over arbitrarily skewed data

23

Overview of SkewScout

- Recall that degree of data skew determines difficulty
- SkewScout: Adapts communication to the skew-induced accuracy loss

Minimize commutation when accuracy loss is acceptable Work with different decentralized learning algorithms

Evaluation of SkewScout

All data points achieves the same validation accuracy

Significant saving over BSP Only within 1.5X more than Oracle

Key Takeaways

Flickr-Mammal dataset: Highly skewed
 label distribution in the real world

Skewed data is a pervasive problem
Batch normalization is particularly problematic

- SkewScout: adapts decentralized learning over arbitrarily skewed data
 Group normalization is a good alternative to batch normalization