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Trend: Many Cores on Chip 
n  Simpler and lower power than a single large core 
n  Large scale parallelism on chip 
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Many Cores on Chip 

n  What we want: 
q  N times the system performance with N times the cores 

n  What do we get today? 
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Unfair Slowdowns due to Interference 

Memory Performance Hog 
Low priority 

High priority 

(Core 0) (Core 1) 

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service  
in multi-core systems,” USENIX Security 2007. 
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Uncontrolled Interference: An Example 
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Memory System is the Major Shared Resource 
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Much More of a Shared Resource in Future 
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Inter-Thread/Application Interference 

n  Problem: Threads share the memory system, but memory 
system does not distinguish between threads’ requests 

n  Existing memory systems  
q  Free-for-all, shared based on demand 
q  Control algorithms thread-unaware and thread-unfair 
q  Aggressive threads can deny service to others 
q  Do not try to reduce or control inter-thread interference 

8 



Unfair Slowdowns due to Interference 

(Core 0) (Core 1) 

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service  
in multi-core systems,” USENIX Security 2007. 
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Uncontrolled Interference: An Example 
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// initialize large arrays A, B 
 
for (j=0; j<N; j++) { 
     index = rand(); 
     A[index] = B[index]; 
     … 
} 
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A Memory Performance Hog 

STREAM 

-  Sequential memory access  
-  Very high row buffer locality (96% hit rate) 
-  Memory intensive 

RANDOM 

-  Random memory access 
-  Very low row buffer locality (3% hit rate) 
-  Similarly memory intensive 

// initialize large arrays A, B 
 
for (j=0; j<N; j++) { 
     index = j*linesize; 
     A[index] = B[index]; 
     … 
} 

streaming random 

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
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What Does the Memory Hog Do? 

Row Buffer 
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Memory Request Buffer 

T0: STREAM 
T1: RANDOM 

Row size: 8KB, cache block size: 64B 
128 (8KB/64B) requests of T0 serviced before T1 

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
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DRAM Controllers 

n  A row-conflict memory access takes significantly longer 
than a row-hit access 

n  Current controllers take advantage of the row buffer 

n  Commonly used scheduling policy (FR-FCFS) [Rixner 2000]* 

(1) Row-hit first: Service row-hit memory accesses first 
(2) Oldest-first: Then service older accesses first 

n  This scheduling policy aims to maximize DRAM throughput 
n  But, it is unfair when multiple threads share the DRAM system   

*Rixner et al., “Memory Access Scheduling,” ISCA 2000. 
*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997. 



Effect of the Memory Performance Hog 
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1.18X slowdown 

2.82X slowdown 

Results on Intel Pentium D running Windows XP 
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)  
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Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
 



Greater Problem with More Cores 

n  Vulnerable to denial of service (DoS) [Usenix Security’07] 

n  Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10] 

n  Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12] 
 

Uncontrollable, unpredictable system 
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Greater Problem with More Cores 

n  Vulnerable to denial of service (DoS) [Usenix Security’07] 

n  Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10] 

n  Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12] 
 

Uncontrollable, unpredictable system 
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Distributed DoS in Networked Multi-Core Systems 
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Attackers 
(Cores 1-8) 

Stock option pricing application 
(Cores 9-64) 

    Cores connected via  
    packet-switched 
    routers on chip 

     ~5000X latency increase 

Grot, Hestness, Keckler, Mutlu,  
“Preemptive virtual clock: A Flexible,  
Efficient, and Cost-effective QOS  
Scheme for Networks-on-Chip,“ 
MICRO 2009. 



How Do We Solve The Problem? 

n  Inter-thread interference is uncontrolled in all memory 
resources 
q  Memory controller 
q  Interconnect 
q  Caches 

n  We need to control it 
q  i.e., design an interference-aware (QoS-aware) memory system 
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QoS-Aware Memory Systems: Challenges 

n  How do we reduce inter-thread interference? 
q  Improve system performance and core utilization 
q  Reduce request serialization and core starvation 
 

n  How do we control inter-thread interference? 
q  Provide mechanisms to enable system software to enforce 

QoS policies  
q  While providing high system performance 

n  How do we make the memory system configurable/flexible?  
q  Enable flexible mechanisms that can achieve many goals 

n  Provide fairness or throughput when needed 
n  Satisfy performance guarantees when needed 
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Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

q  QoS-aware thread scheduling to cores 
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QoS-Aware Memory Scheduling 

n  How to schedule requests to provide 
q  High system performance 
q  High fairness to applications 
q  Configurability to system software  

n  Memory controller needs to be aware of threads 
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QoS-Aware Memory Scheduling: 
Evolution 

 
 
 
 



QoS-Aware Memory Scheduling: Evolution 
n  Stall-time fair memory scheduling [Mutlu+ MICRO’07] 

q  Idea: Estimate and balance thread slowdowns 

q  Takeaway: Proportional thread progress improves performance, 
especially when threads are “heavy” (memory intensive) 

n  Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09] 

q  Idea: Rank threads and service in rank order (to preserve bank 
parallelism); batch requests to prevent starvation 

n  ATLAS memory scheduler [Kim+ HPCA’10] 
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Within-Thread Bank Parallelism	
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Parallelism-Aware Batch Scheduling [ISCA’08] 

n  Principle 1: Schedule requests from a 
thread back to back 
q  Preserves each thread’s bank parallelism 
q  But, this can cause starvation… 

n  Principle 2: Group a fixed number of oldest 
requests from each thread into a “batch” 
q  Service the batch before all other requests 
q  Form a new batch when the current batch is done 
q  Eliminates starvation, provides fairness 
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QoS-Aware Memory Scheduling: Evolution 
n  Stall-time fair memory scheduling [Mutlu+ MICRO’07] 

q  Idea: Estimate and balance thread slowdowns 

q  Takeaway: Proportional thread progress improves performance, 
especially when threads are “heavy” (memory intensive) 

n  Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09] 

q  Idea: Rank threads and service in rank order (to preserve bank 
parallelism); batch requests to prevent starvation 

q  Takeaway: Preserving within-thread bank-parallelism improves 
performance; request batching improves fairness 

n  ATLAS memory scheduler [Kim+ HPCA’10] 

q  Idea: Prioritize threads that have attained the least service from the 
memory scheduler  

q  Takeaway: Prioritizing “light” threads improves performance 
26 



QoS-Aware Memory Scheduling: Evolution 

n  Thread cluster memory scheduling [Kim+ MICRO’10] 

q  Idea: Cluster threads into two groups (latency vs. bandwidth 
sensitive); prioritize the latency-sensitive ones; employ a fairness 
policy in the bandwidth sensitive group 

q  Takeaway: Heterogeneous scheduling policy that is different based 
on thread behavior maximizes both performance and fairness 

n  Integrated Memory Channel Partitioning and Scheduling 
[Muralidhara+ MICRO’11] 

n  Idea: Only prioritize very latency-sensitive threads in the scheduler; 
mitigate all other applications’ interference via channel partitioning 

n  Takeaway: Intelligently combining application-aware channel 
partitioning and memory scheduling provides better performance 
than either 
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QoS-Aware Memory Scheduling: Evolution 

n  Parallel application memory scheduling [Ebrahimi+ MICRO’11] 

q  Idea: Identify and prioritize limiter threads of a multithreaded 
application in the memory scheduler; provide fast and fair progress 
to non-limiter threads 

q  Takeaway: Carefully prioritizing between limiter and non-limiter 
threads of a parallel application improves performance 

n  Staged memory scheduling [Ausavarungnirun+ ISCA’12] 

n  Idea: Divide the functional tasks of an application-aware memory 
scheduler into multiple distinct stages, where each stage is 
significantly simpler than a monolithic scheduler 

n  Takeaway: Staging enables the design of a scalable and relatively 
simpler application-aware memory scheduler that works on very 
large request buffers 
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QoS-Aware Memory Scheduling: Evolution 

n  MISE [Subramanian+ HPCA’13] 

n  Idea: Estimate the performance of a thread by estimating its change 
in memory request service rate when run alone vs. shared à use 
this simple model to estimate slowdown to design a scheduling 
policy that provides predictable performance or fairness 

n  Takeaway: Request service rate of a thread is a good proxy for its 
performance; alone request service rate can be estimated by giving 
high priority to the thread in memory scheduling for a while 
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QoS-Aware Memory Scheduling: Evolution 

n  Prefetch-aware shared resource management [Ebrahimi+ 
ISCA’12] [Ebrahimi+ MICRO’09] [Lee+ MICRO’08] 

q  Idea: Prioritize prefetches depending on how they affect system 
performance; even accurate prefetches can degrade performance of 
the system  

q  Takeaway: Carefully controlling and prioritizing prefetch requests 
improves performance and fairness 

n  DRAM-Aware last-level cache policies [Lee+ HPS Tech Report’10] 
[Lee+ HPS Tech Report’10] 
q  Idea: Design cache eviction and replacement policies such that they 

proactively exploit the state of the memory controller and DRAM 
(e.g., proactively evict data from the cache that hit in open rows) 

q  Takeaway: Coordination of last-level cache and DRAM policies 
improves performance and fairness 
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Stall-Time Fair Memory Scheduling 

 
 
 
 

Onur Mutlu and Thomas Moscibroda,  
"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"  

40th International Symposium on Microarchitecture (MICRO),  
pages 146-158, Chicago, IL, December 2007. Slides (ppt)  

STFM Micro 2007 Talk 



The Problem: Unfairness 

n  Vulnerable to denial of service (DoS) [Usenix Security’07] 

n  Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10] 

n  Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12] 
 

Uncontrollable, unpredictable system 

32 



How Do We Solve the Problem? 
n  Stall-time fair memory scheduling [Mutlu+ MICRO’07] 

n  Goal: Threads sharing main memory should experience 
similar slowdowns compared to when they are run alone à 
fair scheduling 

n  Also improves overall system performance by ensuring cores make 
“proportional” progress 

n  Idea: Memory controller estimates each thread’s slowdown 
due to interference and schedules requests in a way to 
balance the slowdowns 

n  Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for 
Chip Multiprocessors,” MICRO 2007.  
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Stall-Time Fairness in Shared DRAM Systems 

n  A DRAM system is fair if it equalizes the slowdown of equal-priority threads  
relative to when each thread is run alone on the same system 

n  DRAM-related stall-time: The time a thread spends waiting for DRAM memory 

n  STshared: DRAM-related stall-time when the thread runs with other threads 
n  STalone:  DRAM-related stall-time when the thread runs alone 

n  Memory-slowdown = STshared/STalone    
q  Relative increase in stall-time 

 
n  Stall-Time Fair Memory scheduler (STFM) aims to equalize             

Memory-slowdown for interfering threads, without sacrificing performance 
q  Considers inherent DRAM performance of each thread 
q  Aims to allow proportional progress of threads 
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STFM Scheduling Algorithm [MICRO’07] 
 
n  For each thread, the DRAM controller 

q  Tracks STshared  
q  Estimates STalone  

n  Each cycle, the DRAM controller 
q  Computes Slowdown = STshared/STalone for threads with legal requests 
q  Computes unfairness = MAX Slowdown / MIN Slowdown 

n  If unfairness < α 
q  Use DRAM throughput oriented scheduling policy 

n  If unfairness ≥ α 
q  Use fairness-oriented scheduling policy  

n  (1) requests from thread with MAX Slowdown first  
n  (2) row-hit first , (3) oldest-first 
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How Does STFM Prevent Unfairness? 
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STFM Pros and Cons 
n  Upsides:  

q  First work on fair multi-core memory scheduling 
q  Good at providing fairness 
q  Being fair improves performance  

n  Downsides: 
q  Does not handle all types of interference 
q  Somewhat complex to implement 
q  Slowdown estimations can be incorrect 
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Parallelism-Aware Batch Scheduling 

 
 
 
 

Onur Mutlu and Thomas Moscibroda,  
"Parallelism-Aware Batch Scheduling: Enhancing both  
Performance and Fairness of Shared DRAM Systems” 

35th International Symposium on Computer Architecture (ISCA),  
pages 63-74, Beijing, China, June 2008. Slides (ppt) 

PAR-BS ISCA 2008 Talk 



Another Problem due to Interference 

n  Processors try to tolerate the latency of DRAM requests by 
generating multiple outstanding requests 
q  Memory-Level Parallelism (MLP)  
q  Out-of-order execution, non-blocking caches, runahead execution 

 
n  Effective only if the DRAM controller actually services the 

multiple requests in parallel in DRAM banks 
 
n  Multiple threads share the DRAM controller 
n  DRAM controllers are not aware of a thread’s MLP 

q  Can service each thread’s outstanding requests serially, not in parallel 

 

39 



Bank Parallelism of a Thread 
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Thread A: Bank 0, Row 1 
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Bank Parallelism Interference in DRAM 
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Parallelism-Aware Batch Scheduling (PAR-BS) 

n  Principle 1: Parallelism-awareness 
q  Schedule requests from a thread (to 

different banks) back to back 
q  Preserves each thread’s bank parallelism 
q  But, this can cause starvation… 

n  Principle 2: Request Batching 
q  Group a fixed number of oldest requests 

from each thread into a “batch” 
q  Service the batch before all other requests 
q  Form a new batch when the current one is done 
q  Eliminates starvation, provides fairness 
q  Allows parallelism-awareness within a batch 
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Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008. 



PAR-BS Components 

n  Request batching 
 
 
 

n  Within-batch scheduling 
q  Parallelism aware 
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Request Batching 

n  Each memory request has a bit (marked) associated with it 

n  Batch formation: 
q  Mark up to Marking-Cap oldest requests per bank for each thread 
q  Marked requests constitute the batch 
q  Form a new batch when no marked requests are left 

n  Marked requests are prioritized over unmarked ones 
q  No reordering of requests across batches: no starvation, high fairness 

n  How to prioritize requests within a batch? 

45 



Within-Batch Scheduling 

n  Can use any existing DRAM scheduling policy 
q  FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality 

n  But, we also want to preserve intra-thread bank parallelism 
q  Service each thread’s requests back to back 

n  Scheduler computes a ranking of threads when the batch is 
formed 
q  Higher-ranked threads are prioritized over lower-ranked ones 
q  Improves the likelihood that requests from a thread are serviced in 

parallel by different banks 
n  Different threads prioritized in the same order across ALL banks 
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HOW? 



How to Rank Threads within a Batch 
n  Ranking scheme affects system throughput and fairness 

n  Maximize system throughput 
q  Minimize average stall-time of threads within the batch 

n  Minimize unfairness (Equalize the slowdown of threads) 
q  Service threads with inherently low stall-time early in the batch 
q  Insight: delaying memory non-intensive threads results in high 

slowdown 

n  Shortest stall-time first (shortest job first) ranking 
q  Provides optimal system throughput [Smith, 1956]* 

q  Controller estimates each thread’s stall-time within the batch 
q  Ranks threads with shorter stall-time higher 

47 
* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956. 



n  Maximum number of marked requests to any bank (max-bank-load) 
q  Rank thread with lower max-bank-load higher (~ low stall-time) 

n  Total number of marked requests (total-load) 
q  Breaks ties: rank thread with lower total-load higher 

Shortest Stall-Time First Ranking 

48 

T2 T3 T1 

T0 

Bank 0 Bank 1 Bank 2 Bank 3 

T3 

T3 T1 T3 

T2 T2 T1 T2 

T1 T0 T2 T0 

T3 T2 T3 

T3 

T3 

T3 
max-bank-load total-load 

T0 1 3 

T1 2 4 

T2 2 6 

T3 5 9 

Ranking: 
T0 > T1 > T2 > T3 



7 

5 

3 

Example Within-Batch Scheduling Order 

49 

T2 T3 T1 

T0 

Bank 0 Bank 1 Bank 2 Bank 3 

T3 

T3 T1 T3 

T2 T2 T1 T2 

T1 T0 T2 T0 

T3 T2 T3 

T3 

T3 

T3 Baseline Scheduling  
Order (Arrival order) 

PAR-BS Scheduling 
Order 

T2 

T3 

T1 T0 

Bank 0 Bank 1 Bank 2 Bank 3 

T3 

T3 

T1 

T3 T2 T2 

T1 T2 T1 

T0 

T2 

T0 

T3 T2 

T3 

T3 

T3 

T3 

T0 T1 T2 T3 

4 4 5 7 

AVG: 5 bank access latencies AVG: 3.5 bank access latencies 

Stall times 

T0 T1 T2 T3 

1 2 4 7 Stall times 

Ti
m

e 

1 
2 

4 

6 

Ranking: T0 > T1 > T2 > T3 

1 
2 
3 
4 
5 
6 
7 

Ti
m

e 



Putting It Together: PAR-BS Scheduling Policy 
n  PAR-BS Scheduling Policy 

  (1) Marked requests first 
  (2) Row-hit requests first 
  (3) Higher-rank thread first (shortest stall-time first) 
  (4) Oldest first 

n  Three properties: 
q  Exploits row-buffer locality and intra-thread bank parallelism   
q  Work-conserving 

n  Services unmarked requests to banks without marked requests  

q  Marking-Cap is important 
n  Too small cap: destroys row-buffer locality 
n  Too large cap: penalizes memory non-intensive threads    

n  Many more trade-offs analyzed in the paper 
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scheduling 



Hardware Cost 

n  <1.5KB storage cost for 
q  8-core system with 128-entry memory request buffer 

n  No complex operations (e.g., divisions) 

n  Not on the critical path 
q  Scheduler makes a decision only every DRAM cycle 
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Unfairness on 4-, 8-, 16-core Systems 
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System Performance (Hmean-speedup) 
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PAR-BS Pros and Cons 

n  Upsides:  
q  First work to identify the notion of bank parallelism destruction 

across multiple threads 
q  Simple mechanism 

n  Downsides: 
q  Implementation in multiple controllers needs coordination for 

best performance à too frequent coordination since batching 
is done frequently 

q  Does not always prioritize the latency-sensitive applications 
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ATLAS Memory Scheduler 

 
 
 
 

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter, 
"ATLAS: A Scalable and High-Performance  

Scheduling Algorithm for Multiple Memory Controllers"  
16th International Symposium on High-Performance Computer Architecture (HPCA),  

Bangalore, India, January 2010. Slides (pptx)  

ATLAS HPCA 2010 Talk 



Rethinking Memory Scheduling 
A thread alternates between two states (episodes) 

§ Compute episode: Zero outstanding memory requests è High IPC 
§ Memory episode: Non-zero outstanding memory requests è Low IPC 
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Goal: Minimize time spent in memory episodes 
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How to Minimize Memory Episode Time 

§   Minimizes time spent in memory episodes across all threads 
§   Supported by queueing theory: 

§  Shortest-Remaining-Processing-Time scheduling is optimal in 
single-server queue 

Remaining length of a memory episode? 

 Prioritize thread whose memory episode will end the soonest  

Time 
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ts
 

How much longer? 
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Predicting Memory Episode Lengths 

Large attained service è Large expected remaining service 
 

Q: Why? 
A: Memory episode lengths are Pareto distributed… 
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We discovered: past is excellent predictor for future 
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Pareto Distribution of Memory Episode Lengths 
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Attained service correlates with 
remaining service 

The longer an episode has lasted 
è The longer it will last further 



Prioritize the job with  
shortest-remaining-processing-time 

 
Provably optimal 

§  Remaining service: Correlates with attained service 

§  Attained service: Tracked by per-thread counter 

Least Attained Service (LAS) Memory Scheduling 
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Prioritize the memory episode with 
least-remaining-service 

Our Approach Queueing Theory 

Least-attained-service (LAS) scheduling: 

Minimize memory episode time 

However, LAS does not consider  
long-term thread behavior 

Prioritize the memory episode with 
least-attained-service 



Long-Term Thread Behavior 

61 

Mem. 
episode 

Thread 1 Thread 2 

Short-term 
thread behavior 

Mem. 
episode 

Long-term 
thread behavior 

Compute  
episode 

Compute 
episode 

> 
priority 

< 
priority 

Prioritizing Thread 2 is more beneficial:  
results in very long stretches of compute episodes 

Short memory episode Long memory episode 



Quantum-Based Attained Service of a Thread 
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LAS Thread Ranking 

Each thread’s attained service (AS) is tracked by MCs 
 

ASi = A thread’s AS during only the i-th quantum 

Each thread’s TotalAS computed as: 
 

TotalASi = α · TotalASi-1 + (1- α) · ASi 
High α è More bias towards history 

 
Threads are ranked, favoring threads with lower TotalAS 

Threads are serviced according to their ranking 

During a quantum 

End of a quantum 

Next quantum 
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ATLAS Scheduling Algorithm 

ATLAS 
§  Adaptive per-Thread Least Attained Service 
 
§  Request prioritization order 
 1. Prevent starvation: Over threshold request 
 2. Maximize performance: Higher LAS rank 
 3. Exploit locality: Row-hit request 
 4. Tie-breaker: Oldest request 
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How to coordinate MCs to agree upon a consistent ranking? 
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System throughput = ∑ Speedup 

ATLAS consistently provides higher system throughput than 
all previous scheduling algorithms 
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Properties of ATLAS 

§  LAS-ranking 
§  Bank-level parallelism 
§  Row-buffer locality 
 
§  Very infrequent coordination 

§  Scale attained service with 
thread weight (in paper) 

 
§  Low complexity: Attained 

service requires a single 
counter per thread in each MC 
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§  Maximize system performance 
 
 
 
§  Scalable to large number of controllers 
 
 
 

§  Configurable by system software 

Goals Properties of ATLAS 



ATLAS Pros and Cons 
n  Upsides: 

q  Good at improving performance 
q  Low complexity 
q  Coordination among controllers happens infrequently 

n  Downsides: 
q  Lowest ranked threads get delayed significantly à high 

unfairness 
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TCM: 
Thread Cluster Memory Scheduling 

 
 
 
 

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter, 
"Thread Cluster Memory Scheduling:  

Exploiting Differences in Memory Access Behavior"  
43rd International Symposium on Microarchitecture (MICRO),  
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)  

TCM Micro 2010 Talk 



No	
  previous	
  memory	
  scheduling	
  algorithm	
  provides	
  
both	
  the	
  best	
  fairness	
  and	
  system	
  throughput	
  

1	
  

3	
  

5	
  

7	
  

9	
  

11	
  

13	
  

15	
  

17	
  

7	
   7.5	
   8	
   8.5	
   9	
   9.5	
   10	
  

M
ax
im

um
	
  S
lo
w
do

w
n	
  

Weighted	
  Speedup	
  

FCFS	
  
FRFCFS	
  
STFM	
  
PAR-­‐BS	
  
ATLAS	
  

Previous Scheduling Algorithms are Biased 

70	
  

System	
  throughput	
  bias	
  

Fairness	
  bias	
  

BeZer	
  system	
  throughput	
  

Be
Z
er
	
  fa

irn
es
s	
  

24	
  cores,	
  4	
  memory	
  controllers,	
  96	
  workloads	
  	
  



Take	
  turns	
  accessing	
  memory	
  

Throughput vs. Fairness 
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Achieving the Best of Both Worlds 
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Thread Cluster Memory Scheduling [Kim+ MICRO’10] 

1.   Group	
  threads	
  into	
  two	
  clusters	
  
2.   PrioriDze	
  non-­‐intensive	
  cluster	
  
3.   Different	
  policies	
  for	
  each	
  cluster	
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Clustering Threads 
Step1	
  Sort	
  threads	
  by	
  MPKI	
  (misses	
  per	
  kiloinstruc[on)	
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Priori3ze	
  non-­‐intensive	
  cluster	
  

•  Increases	
  system	
  throughput	
  
– Non-­‐intensive	
  threads	
  have	
  greater	
  poten[al	
  for	
  
making	
  progress	
  

•  Does	
  not	
  degrade	
  fairness	
  
– Non-­‐intensive	
  threads	
  are	
  “light”	
  
– Rarely	
  interfere	
  with	
  intensive	
  threads	
  

Prioritization Between Clusters 
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Priori3ze	
  threads	
  according	
  to	
  MPKI	
  

•  Increases	
  system	
  throughput	
  
– Least	
  intensive	
  thread	
  has	
  the	
  greatest	
  poten[al	
  
for	
  making	
  progress	
  in	
  the	
  processor	
  

Non-Intensive Cluster 
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Periodically	
  shuffle	
  the	
  priority	
  of	
  threads	
  
	
  

•  Is	
  trea[ng	
  all	
  threads	
  equally	
  good	
  enough?	
  
•  BUT:	
  Equal	
  turns	
  ≠	
  Same	
  slowdown	
  

Intensive Cluster 
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Why are Threads Different? 
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Niceness 
How	
  to	
  quan3fy	
  difference	
  between	
  threads?	
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Shuffling: Round-Robin vs. Niceness-Aware 
1.  Round-­‐Robin	
  shuffling	
  
2.  Niceness-­‐Aware	
  shuffling	
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Shuffling: Round-Robin vs. Niceness-Aware 
1.  Round-­‐Robin	
  shuffling	
  
2.  Niceness-­‐Aware	
  shuffling	
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Shuffling: Round-Robin vs. Niceness-Aware 
1.  Round-­‐Robin	
  shuffling	
  
2.  Niceness-­‐Aware	
  shuffling	
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Shuffling: Round-Robin vs. Niceness-Aware 
1.  Round-­‐Robin	
  shuffling	
  
2.  Niceness-­‐Aware	
  shuffling	
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TCM Outline 
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TCM: Quantum-Based Operation 
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Time	
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TCM: Scheduling Algorithm 
1.  Highest-­‐rank:	
  Requests	
  from	
  higher	
  ranked	
  threads	
  priori[zed	
  

•  Non-­‐Intensive	
  cluster	
  >	
  Intensive	
  cluster	
  
•  Non-­‐Intensive	
  cluster:	
  lower	
  intensity	
  è	
  higher	
  rank	
  
•  Intensive	
  cluster:	
  rank	
  shuffling	
  

2.  Row-­‐hit:	
  Row-­‐buffer	
  hit	
  requests	
  are	
  priori[zed	
  

3.  Oldest:	
  Older	
  requests	
  are	
  priori[zed	
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TCM: Implementation Cost 
Required	
  storage	
  at	
  memory	
  controller	
  (24	
  cores)	
  
	
  
	
  
	
  
	
  
	
  
	
  
•  No	
  computa[on	
  is	
  on	
  the	
  cri[cal	
  path	
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Thread	
  memory	
  behavior	
   Storage	
  

MPKI	
   ~0.2kb	
  

Bank-­‐level	
  parallelism	
   ~0.6kb	
  

Row-­‐buffer	
  locality	
   ~2.9kb	
  

Total	
   <	
  4kbits	
  



Previous Work 
FRFCFS	
  [Rixner	
  et	
  al.,	
  ISCA00]:	
  Priori[zes	
  row-­‐buffer	
  hits	
  

–  Thread-­‐oblivious	
  è	
  Low	
  throughput	
  &	
  Low	
  fairness	
  

STFM	
  [Mutlu	
  et	
  al.,	
  MICRO07]:	
  Equalizes	
  thread	
  slowdowns	
  
–  Non-­‐intensive	
  threads	
  not	
  priori[zed	
  è	
  Low	
  throughput	
  

PAR-­‐BS	
  [Mutlu	
  et	
  al.,	
  ISCA08]:	
  Priori[zes	
  oldest	
  batch	
  of	
  requests	
  
while	
  preserving	
  bank-­‐level	
  parallelism	
  

–  Non-­‐intensive	
  threads	
  not	
  always	
  priori[zed	
  è	
  Low	
  
throughput	
  

ATLAS	
  [Kim	
  et	
  al.,	
  HPCA10]:	
  Priori[zes	
  threads	
  with	
  less	
  memory	
  
service	
  

– Most	
  intensive	
  thread	
  starves	
  è	
  Low	
  fairness	
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TCM: Throughput and Fairness 
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BeZer	
  system	
  throughput	
  

Be
Z
er
	
  fa

irn
es
s	
  

24	
  cores,	
  4	
  memory	
  controllers,	
  96	
  workloads	
  	
  

TCM,	
  a	
  heterogeneous	
  scheduling	
  policy,	
  
provides	
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  and	
  system	
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TCM: Fairness-Throughput Tradeoff 
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Operating System Support 
•  ClusterThreshold	
  is	
  a	
  tunable	
  knob	
  

– OS	
  can	
  trade	
  off	
  between	
  fairness	
  and	
  throughput	
  

•  Enforcing	
  thread	
  weights	
  
– OS	
  assigns	
  weights	
  to	
  threads	
  
– TCM	
  enforces	
  thread	
  weights	
  within	
  each	
  cluster	
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Conclusion 
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•  No	
  previous	
  memory	
  scheduling	
  algorithm	
  provides	
  
both	
  high	
  system	
  throughput	
  and	
  fairness	
  
– Problem:	
  They	
  use	
  a	
  single	
  policy	
  for	
  all	
  threads	
  

•  TCM	
  groups	
  threads	
  into	
  two	
  clusters	
  
1.  Priori[ze	
  non-­‐intensive	
  cluster	
  è	
  throughput	
  
2.  Shuffle	
  priori[es	
  in	
  intensive	
  cluster	
  è	
  fairness	
  
3.  Shuffling	
  should	
  favor	
  nice	
  threads	
  è	
  fairness	
  

•  TCM	
  provides	
  the	
  best	
  system	
  throughput	
  and	
  fairness	
  



TCM Pros and Cons 
n  Upsides: 

q  Provides both high fairness and high performance 

n  Downsides: 
q  Scalability to large buffer sizes? 
q  Effectiveness in a heterogeneous system? 
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Staged Memory Scheduling 

 
 
 
 

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu, 
"Staged Memory Scheduling: Achieving High Performance  

and Scalability in Heterogeneous Systems” 
39th International Symposium on Computer Architecture (ISCA),  

Portland, OR, June 2012.  

SMS ISCA 2012 Talk 



Executive Summary 
n  Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 

n  Problem: Existing monolithic application-aware memory 
scheduler designs are hard to scale to large request buffer sizes 

n  Solution: Staged Memory Scheduling (SMS)  
decomposes the memory controller into three simple stages: 
1) Batch formation: maintains row buffer locality 
2) Batch scheduler: reduces interference between applications 
3) DRAM command scheduler: issues requests to DRAM 

n  Compared to state-of-the-art memory schedulers: 
q  SMS is significantly simpler and more scalable 
q  SMS provides higher performance and fairness 
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n  All cores contend for limited off-chip bandwidth 
q  Inter-application interference degrades system performance 
q  The memory scheduler can help mitigate the problem 

n  How does the memory scheduler deliver good performance 
and fairness? 

Main Memory is a Bottleneck 
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Currently open row 
B 

n  Prioritize row-buffer-hit requests [Rixner+, ISCA’00] 

q  To maximize memory bandwidth 

n  Prioritize latency-sensitive applications [Kim+, HPCA’10] 

q  To maximize system throughput 

n  Ensure that no application is starved [Mutlu and Moscibroda, 
MICRO’07] 

q  To minimize unfairness 

Three Principles of Memory Scheduling 
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Memory Scheduling for CPU-GPU Systems 
n  Current and future systems integrate a GPU along with 

multiple cores 

n  GPU shares the main memory with the CPU cores 

n  GPU is much more (4x-20x) memory-intensive than CPU 

n  How should memory scheduling be done when GPU is 
integrated on-chip? 
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n  GPU occupies a significant portion of the request buffers 

q  Limits the MC’s visibility of the CPU applications’ differing 
memory behavior à can lead to a poor scheduling decision 

Introducing the GPU into the System 
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Naïve Solution: Large Monolithic Buffer 
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n  A large buffer requires more complicated logic to: 
q  Analyze memory requests (e.g., determine row buffer hits) 
q  Analyze application characteristics 
q  Assign and enforce priorities  

n  This leads to high complexity, high power, large die area 

Problems with Large Monolithic Buffer 
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More Complex Memory Scheduler 
 
 



n  Design a new memory scheduler that is: 
q  Scalable to accommodate a large number of requests 
q  Easy to implement 
q  Application-aware 
q  Able to provide high performance and fairness, especially in 

heterogeneous CPU-GPU systems 

Our Goal 
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Key Functions of a Memory Controller 
n  Memory controller must consider three different things 

concurrently when choosing the next request: 
 
1) Maximize row buffer hits 

q  Maximize memory bandwidth 

2) Manage contention between applications 
q  Maximize system throughput and fairness 

3) Satisfy DRAM timing constraints 
 
n  Current systems use a centralized memory controller 

design to accomplish these functions  
q  Complex, especially with large request buffers 
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Key Idea: Decouple Tasks into Stages 
n  Idea: Decouple the functional tasks of the memory controller 

q  Partition tasks across several simpler HW structures (stages) 

1) Maximize row buffer hits 
q  Stage 1: Batch formation  
q  Within each application, groups requests to the same row into 

batches 

2) Manage contention between applications 
q  Stage 2: Batch scheduler  
q  Schedules batches from different applications 

3) Satisfy DRAM timing constraints 
q  Stage 3: DRAM command scheduler 
q  Issues requests from the already-scheduled order to each bank 
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SMS: Staged Memory Scheduling 
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Stage 2 

SMS: Staged Memory Scheduling 
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Stage 1: Batch Formation 
n  Goal: Maximize row buffer hits 
 
n  At each core, we want to batch requests that access the 

same row within a limited time window 

n  A batch is ready to be scheduled under two conditions 
1) When the next request accesses a different row  
2) When the time window for batch formation expires 

n  Keep this stage simple by using per-core FIFOs 
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Core 1 Core 2 Core 3 Core 4 

Stage 1: Batch Formation Example 
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SMS: Staged Memory Scheduling 
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Stage 2: Batch Scheduler 
n  Goal: Minimize interference between applications 

n  Stage 1 forms batches within each application 
n  Stage 2 schedules batches from different applications 

q  Schedules the oldest batch from each application 

n  Question: Which application’s batch should be scheduled 
next? 

n  Goal: Maximize system performance and fairness 
q  To achieve this goal, the batch scheduler chooses between 

two different policies 
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Stage 2: Two Batch Scheduling Algorithms 
n  Shortest Job First (SJF) 

q  Prioritize the applications with the fewest outstanding memory 
requests because they make fast forward progress 

q  Pro: Good system performance and fairness 
q  Con: GPU and memory-intensive applications get deprioritized 
 
 

n  Round-Robin (RR) 
q  Prioritize the applications in a round-robin manner to ensure 

that memory-intensive applications can make progress 
q  Pro: GPU and memory-intensive applications are treated fairly 
q  Con: GPU and memory-intensive applications significantly 

slow down others 
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Stage 2: Batch Scheduling Policy 
n  The importance of the GPU varies between systems and 

over time à Scheduling policy needs to adapt to this 

n  Solution: Hybrid Policy 
n  At every cycle: 

q  With probability p : Shortest Job First à Benefits the CPU 
q  With probability 1-p : Round-Robin à Benefits the GPU 

n  System software can configure p based on the importance/
weight of the GPU 
q  Higher GPU importance à Lower p value 
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SMS: Staged Memory Scheduling 
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Stage 3: DRAM Command Scheduler 
n  High level policy decisions have already been made by: 

q  Stage 1: Maintains row buffer locality 
q  Stage 2: Minimizes inter-application interference 

n  Stage 3: No need for further scheduling 
n  Only goal: service requests while satisfying DRAM 

timing constraints 

n  Implemented as simple per-bank FIFO queues 
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Putting Everything Together 
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Complexity 
n  Compared to a row hit first scheduler, SMS consumes* 

q  66% less area 
q  46% less static power 

n  Reduction comes from: 
q  Monolithic scheduler à stages of simpler schedulers 
q  Each stage has a simpler scheduler (considers fewer 

properties at a time to make the scheduling decision) 
q  Each stage has simpler buffers (FIFO instead of out-of-order) 
q  Each stage has a portion of the total buffer size (buffering is 

distributed across stages) 

117 * Based on a Verilog model using 180nm library 



Methodology 
n  Simulation parameters 

q  16 OoO CPU cores, 1 GPU modeling AMD Radeon™ 5870 
q  DDR3-1600 DRAM 4 channels, 1 rank/channel, 8 banks/channel 

n  Workloads 
q  CPU: SPEC CPU 2006 
q  GPU: Recent games and GPU benchmarks 
q  7 workload categories based on the memory-intensity of CPU 

applications 
à Low memory-intensity (L) 
à Medium memory-intensity (M)  
à High memory-intensity (H) 
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Comparison to Previous Scheduling Algorithms 
n  FR-FCFS [Rixner+, ISCA’00] 

q  Prioritizes row buffer hits 
q  Maximizes DRAM throughput 
q  Low multi-core performance ç Application unaware 

n  ATLAS [Kim+, HPCA’10] 
q  Prioritizes latency-sensitive applications 
q  Good multi-core performance 
q  Low fairness ç Deprioritizes memory-intensive applications 

n  TCM [Kim+, MICRO’10] 
q  Clusters low and high-intensity applications and treats each 

separately 
q  Good multi-core performance and fairness 
q  Not robust ç Misclassifies latency-sensitive applications 
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Evaluation Metrics 
n  CPU performance metric: Weighted speedup 

 

n  GPU performance metric: Frame rate speedup 

n  CPU-GPU system performance: CPU-GPU weighted speedup 
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Evaluated System Scenario: CPU Focused 
n  GPU has low weight (weight = 1) 

n  Configure SMS such that p, SJF probability, is set to 0.9 
q  Mostly uses SJF batch scheduling à prioritizes latency-

sensitive applications (mainly CPU) 
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n  SJF batch scheduling policy allows latency-sensitive 
applications to get serviced as fast as possible 
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Evaluated System Scenario: GPU Focused 
n  GPU has high weight (weight = 1000) 

n  Configure SMS such that p, SJF probability, is set to 0 
q  Always uses round-robin batch scheduling à prioritizes 

memory-intensive applications (GPU) 
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n  Round-robin batch scheduling policy schedules GPU 
requests more frequently  
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Performance at Different GPU Weights 
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n  At every GPU weight, SMS outperforms the best previous 
scheduling algorithm for that weight 

Performance at Different GPU Weights 
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Additional Results in the Paper 
n  Fairness evaluation 

q  47.6% improvement over the best previous algorithms 

n  Individual CPU and GPU performance breakdowns 

n  CPU-only scenarios 
q  Competitive performance with previous algorithms 

n  Scalability results 
q  SMS’ performance and fairness scales better than previous 

algorithms as the number of cores and memory channels 
increases 

n  Analysis of SMS design parameters 
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Conclusion 
n  Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 

n  Problem: Existing monolithic application-aware memory 
scheduler designs are hard to scale to large request buffer size 

n  Solution: Staged Memory Scheduling (SMS)  
decomposes the memory controller into three simple stages: 
1) Batch formation: maintains row buffer locality 
2) Batch scheduler: reduces interference between applications 
3) DRAM command scheduler: issues requests to DRAM 

n  Compared to state-of-the-art memory schedulers: 
q  SMS is significantly simpler and more scalable 
q  SMS provides higher performance and fairness 

128 



Strong Memory Service Guarantees 
n  Goal: Satisfy performance bounds/requirements in the 

presence of shared main memory, prefetchers, 
heterogeneous agents, and hybrid memory 

n  Approach:  
q  Develop techniques/models to accurately estimate the 

performance of an application/agent in the presence of 
resource sharing 

q  Develop mechanisms (hardware and software) to enable the 
resource partitioning/prioritization needed to achieve the 
required performance levels for all applications 

q  All the while providing high system performance  
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MISE:  
Providing Performance Predictability  

in Shared Main Memory Systems 

Lavanya Subramanian, Vivek Seshadri,  
Yoongu Kim, Ben Jaiyen, Onur Mutlu 
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Unpredictable Application Slowdowns 
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Need for Predictable Performance 
n  There is a need for predictable performance 

q  When multiple applications share resources  
q  Especially if some applications require performance 

guarantees 

n  Example 1: In mobile systems 
q  Interactive applications run with non-interactive applications 
q  Need to guarantee performance for interactive applications 
 

n  Example 2: In server systems 
q  Different users’ jobs consolidated onto the same server 
q  Need to provide bounded slowdowns to critical jobs  
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Our Goal: Predictable performance  

in the presence of memory interference 
 



Outline 
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1. Estimate Slowdown 
q Key Observations 
q  Implementation 
q MISE Model: Putting it All Together 
q Evaluating the Model 

2. Control Slowdown 
q Providing Soft Slowdown Guarantees 
q Minimizing Maximum Slowdown 

 



Slowdown: Definition 
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Key Observation 1 
For a memory bound application,   

Performance ∝ Memory request service rate 
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Key Observation 2 
Request Service Rate Alone (RSRAlone) of an application can be 

estimated by giving the application highest priority in 
accessing memory  

 
Highest priority à Little interference 

(almost as if the application were run alone) 
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Key Observation 2 
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Memory Interference-induced Slowdown Estimation 
(MISE) model for memory bound applications 
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Key Observation 3 
n  Memory-bound application 
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Key Observation 3 
n  Non-memory-bound application 
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Measuring RSRShared and α 
n  Request Service Rate Shared (RSRShared) 

q  Per-core counter to track number of requests serviced 
q  At the end of each interval, measure 

n  Memory Phase Fraction (  ) 
q  Count number of stall cycles at the core 
q  Compute fraction of cycles stalled for memory 
 

Length Interval
Serviced Requests ofNumber   RSRShared =

α
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Estimating Request Service Rate Alone (RSRAlone) 

n  Divide each interval into shorter epochs 
 
n  At the beginning of each epoch 

q  Memory controller randomly picks an application as the 
highest priority application 

 
n  At the end of an interval, for each application, estimate  

PriorityHigh Given n Applicatio Cycles ofNumber 
EpochsPriority High  During Requests ofNumber RSR

           

Alone =
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Inaccuracy in Estimating RSRAlone 
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Accounting for Interference in RSRAlone Estimation 

n  Solution: Determine and remove interference cycles from 
RSRAlone calculation 

 
 
n  A cycle is an interference cycle if 

q  a request from the highest priority application is 
waiting in the request buffer and 

q  another application’s request was issued previously 
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Outline 
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1. Estimate Slowdown 
q Key Observations 
q  Implementation 
q MISE Model: Putting it All Together 
q Evaluating the Model 

2. Control Slowdown 
q Providing Soft Slowdown Guarantees 
q Minimizing Maximum Slowdown 

 



MISE Model: Putting it All Together  
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Previous Work on Slowdown Estimation 
n  Previous work on slowdown estimation 

q  STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO ‘07]  

q  FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS ‘10] 

q  Per-thread Cycle Accounting [Du Bois+, HiPEAC ‘13] 

n  Basic Idea: 
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Two Major Advantages of MISE Over STFM 

n  Advantage 1: 
q  STFM estimates alone performance while an 

application is receiving interference à Hard 
q  MISE estimates alone performance while giving an 

application the highest priority à Easier 
 

n  Advantage 2: 
q  STFM does not take into account compute phase for 

non-memory-bound applications  
q  MISE accounts for compute phase à Better accuracy 
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Methodology 
n  Configuration of our simulated system 

q  4 cores 
q  1 channel, 8 banks/channel 
q  DDR3 1066 DRAM  
q  512 KB private cache/core 

 
n  Workloads 

q  SPEC CPU2006  
q  300 multi programmed workloads 
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Quantitative Comparison 
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Comparison to STFM 
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Providing “Soft” Slowdown Guarantees 
n  Goal 

1. Ensure QoS-critical applications meet a prescribed 
slowdown bound 

2. Maximize system performance for other applications 
 

n  Basic Idea 
q  Allocate just enough bandwidth to QoS-critical 

application 
q  Assign remaining bandwidth to other applications 
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MISE-QoS: Mechanism to Provide Soft QoS 

n  Assign an initial bandwidth allocation to QoS-critical application 

n  Estimate slowdown of QoS-critical application using the MISE 
model 

n  After every N intervals 

q  If slowdown > bound B +/- ε, increase bandwidth allocation 

q  If slowdown < bound B +/- ε, decrease bandwidth allocation 

n  When slowdown bound not met for N intervals 
q  Notify the OS so it can migrate/de-schedule jobs 
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Methodology 
n  Each application (25 applications in total) considered the 

QoS-critical application 
n  Run with 12 sets of co-runners of different memory 

intensities 
n  Total of 300 multiprogrammed workloads 
n  Each workload run with 10 slowdown bound values 
n  Baseline memory scheduling mechanism 

q  Always prioritize QoS-critical application  
 [Iyer+, SIGMETRICS 2007] 

q  Other applications’ requests scheduled in FRFCFS order 
 [Zuravleff +, US Patent 1997, Rixner+, ISCA 2000] 
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A Look at One Workload 
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Effectiveness of MISE in Enforcing QoS 
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Predicted  
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Predicted  
Not Met 

QoS Bound  
Met 78.8% 2.1% 

QoS Bound  
Not Met 2.2% 16.9% 

Across 3000 data points 

 
 
 
 

MISE-QoS meets the bound for 80.9% of workloads 
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Higher performance when bound is loose 
 

When slowdown bound is 10/3  
MISE-QoS improves system performance by 10%    



Other Results in the Paper 
n  Sensitivity to model parameters 

q  Robust across different values of model parameters 

n  Comparison of STFM and MISE models in enforcing soft 
slowdown guarantees 
q  MISE significantly more effective in enforcing guarantees 

 
n  Minimizing maximum slowdown 

q  MISE improves fairness across several system configurations 
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Summary 
n  Uncontrolled memory interference slows down  

applications unpredictably 
n  Goal: Estimate and control slowdowns 
n  Key contribution 

q  MISE: An accurate slowdown estimation model  
q  Average error of MISE: 8.2% 

n  Key Idea 
q  Request Service Rate is a proxy for performance 
q  Request Service Rate Alone estimated by giving an application highest 

priority in accessing memory 

n  Leverage slowdown estimates to control slowdowns 
q  Providing soft slowdown guarantees 
q  Minimizing maximum slowdown 
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MISE:  
Providing Performance Predictability  

in Shared Main Memory Systems 

Lavanya Subramanian, Vivek Seshadri,  
Yoongu Kim, Ben Jaiyen, Onur Mutlu 
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Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

q  QoS-aware thread scheduling to cores 
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Fairness via Source Throttling 

 
 
 
 

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt, 
"Fairness via Source Throttling: A Configurable and High-Performance  

Fairness Substrate for Multi-Core Memory Systems"  
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),  

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)  

FST ASPLOS 2010 Talk 



Many Shared Resources 

Core 0 Core 1 Core 2 Core N 

Shared Cache 

Memory Controller 

DRAM 
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DRAM 
Bank 1 

DRAM 
Bank 2 

... DRAM 
Bank K 

... 

Shared Memory 
Resources 

Chip Boundary 
On-chip 
Off-chip 
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The Problem with “Smart Resources” 

n  Independent interference control mechanisms in 
caches, interconnect, and memory can contradict 
each other 

n  Explicitly coordinating mechanisms for different 
resources requires complex implementation 

n  How do we enable fair sharing of the entire 
memory system by controlling interference in a 
coordinated manner? 
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An Alternative Approach: Source Throttling 

n  Manage inter-thread interference at the cores, not at the 
shared resources 

n  Dynamically estimate unfairness in the memory system  
n  Feed back this information into a controller 
n  Throttle cores’ memory access rates accordingly 

q  Whom to throttle and by how much depends on performance 
target (throughput, fairness, per-thread QoS, etc) 

q  E.g., if unfairness > system-software-specified target then 
throttle down core causing unfairness &  
throttle up core that was unfairly treated 

n  Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12. 
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Fairness via Source Throttling (FST) 

n  Two components (interval-based) 

n  Run-time unfairness evaluation (in hardware) 
q  Dynamically estimates the unfairness in the memory system 
q  Estimates which application is slowing down which other 

n  Dynamic request throttling (hardware or software) 
q  Adjusts how aggressively each core makes requests to the 

shared resources 
q  Throttles down request rates of cores causing unfairness 

n  Limit miss buffers, limit injection rate 
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Runtime 
Unfairness 
Evaluation 

Dynamic 
Request Throttling 

1- Estimating system unfairness  
2- Find app. with the highest 
slowdown (App-slowest) 
3- Find app. causing most 
interference for App-slowest  
(App-interfering) 

if (Unfairness Estimate >Target)  
{ 
 1-Throttle down App-interfering 
 2-Throttle up App-slowest 
} 
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Runtime 
Unfairness 
Evaluation 

Dynamic 
Request Throttling 

1- Estimating system unfairness  
2- Find app. with the highest 
slowdown (App-slowest) 
3- Find app. causing most 
interference for App-slowest  
(App-interfering) 

if (Unfairness Estimate >Target)  
{ 
 1-Throttle down App-interfering 
 2-Throttle up App-slowest 
} 

FST 
Unfairness Estimate 

App-slowest 
App-interfering 
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Estimating System Unfairness 
 
n  Unfairness =  

n  Slowdown of application i =  

n  How can            be estimated in shared mode? 

n              is the number of extra cycles it takes  
application i to execute due to interference 

n    
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Tracking Inter-Core Interference 
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Tracking DRAM Row-Buffer Interference 
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Tracking Inter-Core Interference 
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Runtime 
Unfairness 
Evaluation 

Dynamic 
Request Throttling 

1- Estimating system unfairness  
2- Find app. with the highest 
slowdown (App-slowest) 
3- Find app. causing most 
interference for App-slowest  
(App-interfering) 

if (Unfairness Estimate >Target)  
{ 
 1-Throttle down App-interfering 
 2-Throttle up App-slowest 
} 

FST 
Unfairness Estimate 

App-slowest 
App-interfering 
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Fairness via Source Throttling (FST) 
 



Tracking Inter-Core Interference 

n  To identify App-interfering, for each core i 
q  FST separately tracks interference caused by each core j 

( j ≠ i ) 
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Fairness via Source Throttling (FST) 
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Dynamic Request Throttling 
 
n  Goal: Adjust how aggressively each core makes requests to 

the shared memory system  

n  Mechanisms: 
q  Miss Status Holding Register (MSHR) quota 

n  Controls the number of concurrent requests accessing shared 
resources from each application 

q  Request injection frequency 
n  Controls how often memory requests are issued to the last level 

cache from the MSHRs 
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Dynamic Request Throttling 
 
n  Throttling level assigned to each core determines both 

MSHR quota and request injection rate 
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FST at Work 
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System Software Support 
 
n  Different fairness objectives can be configured by       

system software 
q  Keep maximum slowdown in check 

n  Estimated Max Slowdown < Target Max Slowdown 

q  Keep slowdown of particular applications in check to achieve a 
particular performance target 
n  Estimated Slowdown(i) < Target Slowdown(i) 

n  Support for thread priorities 
q  Weighted Slowdown(i) =  

        Estimated Slowdown(i) x Weight(i) 
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FST Hardware Cost 

n  Total storage cost required for 4 cores is ~12KB 

n  FST does not require any structures or logic that are on the 
processor’s critical path 
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FST Evaluation Methodology 

n  x86 cycle accurate simulator 
n  Baseline processor configuration 

q  Per-core 
n  4-wide issue, out-of-order, 256 entry ROB 

q  Shared (4-core system) 
n  128 MSHRs  
n  2 MB, 16-way L2 cache 

q  Main Memory 
n  DDR3 1333 MHz 
n  Latency of 15ns per command (tRP, tRCD, CL) 
n  8B wide core to memory bus 
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FST: System Unfairness Results 
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FST: System Performance Results 
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Source Throttling Results: Takeaways 

n  Source throttling alone provides better performance than a 
combination of “smart” memory scheduling and fair caching 
q  Decisions made at the memory scheduler and the cache 

sometimes contradict each other 

n  Neither source throttling alone nor “smart resources” alone 
provides the best performance 

n  Combined approaches are even more powerful  
q  Source throttling and resource-based interference control 
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Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

q  QoS-aware thread scheduling to cores 
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Memory Channel Partitioning 

 
 
 
 

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,  
"Reducing Memory Interference in Multicore Systems via  

Application-Aware Memory Channel Partitioning” 
 44th International Symposium on Microarchitecture (MICRO),  

Porto Alegre, Brazil, December 2011. Slides (pptx)  

MCP Micro 2011 Talk 



Outline 
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Goal:  
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Inter-Application Interference  

Previous Approach: 
Application-Aware Memory 

Request Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Our Second Approach: 
Integrated Memory 

Partitioning and Scheduling 



Application-Aware Memory Request Scheduling 

n  Monitor application memory access 
characteristics 

 
n  Rank applications based on memory access 

characteristics 
 
n  Prioritize requests at the memory controller, 

based on ranking 
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Application-Aware Memory Request Scheduling 

191 

Advantages 
n  Reduces interference between applications by  

 request reordering 
n  Improves system performance 

Disadvantages 
n  Requires modifications to memory scheduling logic for 

q  Ranking 
q  Prioritization 

n  Cannot completely eliminate interference by request 
reordering  



Our Approach 
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Previous Approach: 
Application-Aware Memory 

Request Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Our Second Approach: 
Integrated Memory 

Partitioning and Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Goal:  
Mitigate  

Inter-Application Interference  



Observation: Modern Systems Have Multiple Channels 

A new degree of freedom 
Mapping data across multiple channels 
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Data Mapping in Current Systems 
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Partitioning Channels Between Applications 
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Overview: Memory Channel Partitioning (MCP)  

n  Goal 
q  Eliminate harmful interference between applications 

 
n  Basic Idea 

q  Map the data of badly-interfering applications to different 
channels 

 
n  Key Principles 

q  Separate low and high memory-intensity applications 
q  Separate low and high row-buffer locality applications 
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Key Insight 1: Separate by Memory Intensity 
High memory-intensity applications interfere with low 

memory-intensity applications in shared memory channels 
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Key Insight 2: Separate by Row-Buffer Locality 
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High row-buffer locality applications interfere with low  
row-buffer locality applications in shared memory channels 
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Memory Channel Partitioning (MCP) Mechanism 

1. Profile applications 
2. Classify applications into groups 
3. Partition channels between application groups 
4. Assign a preferred channel to each application 
5. Allocate application pages to preferred channel 
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1. Profile Applications 
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n  Hardware counters collect application memory 
access characteristics 

n  Memory access characteristics 
q  Memory intensity: 
 Last level cache Misses Per Kilo Instruction (MPKI) 

q  Row-buffer locality: 
 Row-buffer Hit Rate (RBH) - percentage of 
accesses that hit in the row buffer 



2. Classify Applications 
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3. Partition Channels Among Groups: Step 1 
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3. Partition Channels Among Groups: Step 2 
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Channel 3 
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.
 
.

High Intensity 
Low Row-Buffer 

Locality 

High Intensity 
High Row-Buffer 

Locality 

Low Intensity 
Channel 2 
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4. Assign Preferred Channel to Application 
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Channel 1 

Low Intensity 

Channel 2 

MPKI: 1 

MPKI: 3 

MPKI: 4 

MPKI: 1 

MPKI: 3 

MPKI: 4 

n  Assign each application a preferred channel from 
its group’s allocated channels 

n  Distribute applications to channels such that 
group’s bandwidth demand is balanced across its 
channels 

 
 



5. Allocate Page to Preferred Channel 

n  Enforce channel preferences                    
computed in the previous step 

 
n  On a page fault, the operating system 

q  allocates page to preferred channel if free page 
available in preferred channel 

q  if free page not available, replacement policy tries to 
allocate page to preferred channel 

q  if it fails, allocate page to another channel 
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Interval Based Operation 
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time 

Current Interval Next Interval 

1. Profile applications 

2. Classify applications into groups 
3. Partition channels between groups 
4. Assign preferred channel to applications 

5. Enforce channel preferences 



Integrating Partitioning and Scheduling 

207 

Previous Approach: 
Application-Aware Memory 

Request Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Our Second Approach: 
Integrated Memory 

Partitioning and Scheduling 

Goal:  
Mitigate  

Inter-Application Interference  



Observations 
 
n  Applications with very low memory-intensity rarely 

access memory                                                         
à Dedicating channels to them results in precious 
memory bandwidth waste 

n  They have the most potential to keep their cores busy  
à We would really like to prioritize them 

n  They interfere minimally with other applications            
à Prioritizing them does not hurt others 
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Integrated Memory Partitioning and Scheduling (IMPS) 

n  Always prioritize very low memory-intensity 
applications in the memory scheduler 

 
 
n  Use memory channel partitioning to mitigate 

interference between other applications 
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Hardware Cost 
n  Memory Channel Partitioning (MCP) 

q  Only profiling counters in hardware 
q  No modifications to memory scheduling logic 
q  1.5 KB storage cost for a 24-core, 4-channel system 
 

n  Integrated Memory Partitioning and Scheduling (IMPS) 
q  A single bit per request 
q  Scheduler prioritizes based on this single bit 
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Methodology 
n  Simulation Model 

q  24 cores, 4 channels, 4 banks/channel 
q  Core Model 

n  Out-of-order, 128-entry instruction window 
n  512 KB L2 cache/core 

q  Memory Model – DDR2 
 

n  Workloads 
q  240 SPEC CPU 2006 multiprogrammed workloads  

(categorized based on memory intensity) 
 

n  Metrics 
q  System Performance 
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Previous Work on Memory Scheduling 
n  FR-FCFS [Zuravleff et al., US Patent 1997, Rixner et al., ISCA 2000] 

q  Prioritizes row-buffer hits and older requests 
q  Application-unaware 
 
 

n  ATLAS [Kim et al., HPCA 2010] 

q  Prioritizes applications  with low memory-intensity 
 
 

n  TCM [Kim et al., MICRO 2010] 

q  Always prioritizes low memory-intensity applications 
q  Shuffles request priorities of high memory-intensity applications 
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Comparison to Previous Scheduling Policies 
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Averaged over 240 workloads 
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IMPS improves performance regardless of scheduling policy 
Highest improvement over FRFCFS as IMPS designed for FRFCFS  

Interaction with Memory Scheduling 
Averaged over 240 workloads 



MCP Summary 
n  Uncontrolled inter-application interference in main memory 

degrades system performance 

n  Application-aware memory channel partitioning (MCP) 
q  Separates the data of badly-interfering applications              

to different channels, eliminating interference  
 

n  Integrated memory partitioning and scheduling (IMPS) 
q  Prioritizes very low memory-intensity applications in scheduler 
q  Handles other applications’ interference by partitioning 
 

n  MCP/IMPS provide better performance than application-
aware memory request scheduling at lower hardware cost 
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Summary: Memory QoS Approaches and Techniques 

n  Approaches: Smart vs. dumb resources 
q  Smart resources: QoS-aware memory scheduling 
q  Dumb resources: Source throttling; channel partitioning 
q  Both approaches are effective in reducing interference 
q  No single best approach for all workloads 

n  Techniques: Request scheduling, source throttling, memory 
partitioning 
q  All approaches are effective in reducing interference 
q  Can be applied at different levels: hardware vs. software 
q  No single best technique for all workloads 

n  Combined approaches and techniques are the most powerful 
q  Integrated Memory Channel Partitioning and Scheduling [MICRO’11] 
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Handling Interference in Parallel Applications 

n  Threads in a multithreaded application are inter-dependent 
n  Some threads can be on the critical path of execution due 

to synchronization; some threads are not 
n  How do we schedule requests of inter-dependent threads to 

maximize multithreaded application performance? 

n  Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non-limiter threads 
to reduce memory interference among them [Ebrahimi+, MICRO’11] 

n  Hardware/software cooperative limiter thread estimation: 
n  Thread executing the most contended critical section 
n  Thread that is falling behind the most in a parallel for loop 
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Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

q  QoS-aware thread scheduling to cores [Das+ HPCA’13] 
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Conclusions: Topic 3 

n  Technology, application, architecture trends dictate            
new needs from memory system 

n  A fresh look at (re-designing) the memory hierarchy 
q  Scalability: DRAM-System Codesign and New Technologies 
q  QoS: Reducing and controlling main memory interference:     

QoS-aware memory system design 
q  Efficiency: Customizability, minimal waste, new technologies 

n  QoS-unaware memory: uncontrollable and unpredictable 
n  Providing QoS awareness improves performance, 

predictability, fairness, and utilization of the memory system 
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Additional Material 

221 



Two Works 

n  Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh 
Kumar, and Mani Azimi, 
"Application-to-Core Mapping Policies to Reduce Memory 
System Interference in Multi-Core Systems"  
Proceedings of the 
19th International Symposium on High-Performance Computer 
Architecture (HPCA), Shenzhen, China, February 2013. Slides (pptx) 

n  Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo Lee, 
Onur Mutlu, and Yale N. Patt,  
"Parallel Application Memory Scheduling" 
Proceedings of the 44th International Symposium on Microarchitecture 
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)  

222 


