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Brief Self Introduction

◼ Onur Mutlu

❑ Full Professor @ ETH Zurich CS (EE), since September 2015

❑ Strecker Professor @ Carnegie Mellon University ECE (CS), 2009-2016, 2016-…

❑ PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD

❑ https://people.inf.ethz.ch/omutlu/

❑ omutlu@gmail.com (Best way to reach me)

❑ https://people.inf.ethz.ch/omutlu/projects.htm

◼ Research and Teaching in:

❑ Computer architecture, hardware security, bioinformatics, computing platforms

❑ Memory and storage systems

❑ Hardware security, safety, predictability

❑ Fault tolerance

❑ Hardware/software cooperation

❑ Architectures for bioinformatics, health, medicine

❑ … 
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Research Focus: Computer architecture, HW/SW, bioinformatics, security

• Memory and storage (DRAM, flash, emerging), interconnects

• Heterogeneous & parallel systems, GPUs, systems for data analytics

• System/architecture interaction, new execution models, new interfaces

• Hardware security, energy efficiency, fault tolerance, performance 

• Genome sequence analysis & assembly algorithms and architectures

• Biologically inspired systems & system design for bio/medicine

Graphics and Vision Processing

Heterogeneous

Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Broad research 
spanning apps, systems, logic
with architecture at the center

Current Research Focus Areas



Four Key Directions

◼ Fundamentally Secure/Reliable/Safe Architectures

◼ Fundamentally Energy-Efficient Architectures

❑ Memory-centric (Data-centric) Architectures

◼ Fundamentally Low-Latency Architectures

◼ Architectures for Genomics, Medicine, Health
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A Motivating Detour:

Genome Sequence Analysis
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Our Dream

◼ Can we build devices that can analyze a genome within a 
minute?
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What Is a Genome Made Of?

7

Cell
Nucleus

The discovery of DNA’s double-helical structure (Watson+, 1953) 
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human chromosome #12
from HeLa’s cell

DNA Under Electron Microscope



DNA Sequencing

◼ Goal: 

❑ Find the complete sequence of A, C, G, T’s in DNA.

◼ Challenge: 

❑ There is no machine that takes long DNA as an input, and gives 
the complete sequence as output

❑ All sequencing machines chop DNA into pieces and identify 
relatively small pieces (but not how they fit together)
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Untangling Yarn Balls & DNA Sequencing
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Genome Sequencers

… and more! All produce data with 
different properties.

Roche/454

Illumina HiSeq2000

Ion Torrent PGM
Ion Torrent Proton

AB SOLiD

Oxford Nanopore GridION

Oxford Nanopore MinION

Complete
Genomics

Illumina MiSeq

Pacific Biosciences RS
Illumina 
NovaSeq
6000



The Genomic Era

◼ 1990-2003: The Human Genome Project (HGP) provides a complete 
and accurate sequence of all DNA base pairs that make up the 
human genome and finds 20,000 to 25,000 human genes.
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13 year-long
$3,000,000,000



The Genomic Era (continued)
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development of high-throughput 
sequencing (HTS) technologies

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

Number of Genomes 
Sequenced

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped


Genome 
Analysis
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Example Question: If I give you a bunch of 
sequences, tell me where they are the same 

and where they are different.

Multiple sequence alignment



Genome Sequence Alignment: Example

16Source: By Aaron E. Darling, István Miklós, Mark A. Ragan - Figure 1 from Darling AE, Miklós I, Ragan MA (2008). 
"Dynamics of Genome Rearrangement in Bacterial Populations". PLOS Genetics. DOI:10.1371/journal.pgen.1000128., CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=30550950

https://commons.wikimedia.org/w/index.php?curid=30550950


The Genetic Similarity Between Species
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99.9%

96%

Human ~ Chimpanzee

Human ~ Human

90%

Human ~ Cat

80%

Human ~ Cow

50-60%

Human ~ Banana
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Metagenomics, genome assembly, de novo sequencing

http://math.oregonstate.edu/~koslickd

uncleaned de Bruijn graph

Question 2: Given a bunch of short sequences, 
Can you identify the approximate species cluster 
for genomically unknown organisms (bacteria)?

http://math.oregonstate.edu/~koslickd
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300 M
bases/min

Illumina HiSeq4000  

2 M
bases/min

on average

(0.6%)

Bottlenecked in Mapping!!



The Read Mapping Bottleneck
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ACGTACGTACGTACGT

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACGTTTTTAAAACGTA

ACGACGGGGAGTACGTACGT
TATATATACGTACTAAAGTACGT

150X slower

Illumina HiSeq4000  

Million 
bases/minute300 Million 

bases/minute2



Read Mapping

◼ Map many short DNA fragments (reads) to a known 
reference genome with some minor differences 
allowed
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Reference genome

Reads
DNA, logicallyDNA, physically

Mapping short reads to reference genome is 
challenging (billions of 50-300 base pair reads)



Challenges in Read Mapping

◼ Need to find many mappings of each read

❑ A short read may map to many locations, especially with High-
Throughput DNA Sequencing technologies

❑ How can we find all mappings efficiently?

◼ Need to tolerate small variances/errors in each read

❑ Each individual is different: Subject’s DNA may slightly differ from 
the reference (Mismatches, insertions, deletions)

❑ How can we efficiently map each read with up to e errors present?

◼ Need to map each read very fast (i.e., performance is important)

❑ Human DNA is 3.2 billion base pairs long → Millions to billions of 

reads (State-of-the-art mappers take weeks to map a human’s DNA)

❑ How can we design a much higher performance read mapper?
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Our First Step: Comprehensive Mapping

◼ + Guaranteed to find all mappings → sensitive

◼ + Can tolerate up to e errors

23

http://mrfast.sourceforge.net/

Alkan+, "Personalized copy number and segmental duplication 
maps using next-generation sequencing”, Nature Genetics 2009.

http://mrfast.sourceforge.net/


candidate alignment 
locations (CAL)

4%

Read Alignment
(Edit-distance comp)

93%

SAM printing
3%

Read Mapping Execution Time Breakdown 



Read Alignment/Verification

◼ Edit distance is defined as the minimum number of edits 
(i.e. insertions, deletions, or substitutions) needed to make 
the read exactly match the reference segment.
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Idea

Filter fast before you align

Minimize costly 

“approximate string comparisons”
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Our First Filter: Pure Software Approach

◼ Download source code and try for yourself

❑ Download link to FastHASH
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http://mrfast.sourceforge.net/


Next Step: SIMD Acceleration (New Algorithm)

28

Xin+, "Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter 
to Accelerate Alignment Verification in Read Mapping”, Bioinformatics 2015.
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High throughput DNA 
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Read Pre-Alignment Filtering 
Fast & Low False Positive Rate

1 2
Read Alignment
Slow & Zero False Positives

3

Billions of Short Reads

Hardware Acceleratorx1012

mappings
x103

mappings

Low Speed & High Accuracy

Medium Speed, Medium Accuracy

High Speed, Low Accuracy

Our FPGA-based Filter: GateKeeper

Alignment 
Filter

st

1
FPGA-based 

Alignment Filter.



FPGA-Based Alignment Filtering

◼ Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur 
Mutlu, and Can Alkan
"GateKeeper: A New Hardware Architecture for 
Accelerating Pre-Alignment in DNA Short Read Mapping"
Bioinformatics, [published online, May 31], 2017.
[Source Code]
[Online link at Bioinformatics Journal]
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https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/BilkentCompGen/GateKeeper
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx342


DNA Read Mapping & Filtering

◼ Problem: Heavily bottlenecked by Data Movement

◼ GateKeeper FPGA performance limited by DRAM bandwidth 
[Alser+, Bioinformatics 2017]

◼ Ditto for SHD on SIMD [Xin+, Bioinformatics 2015]

◼ Solution: Processing-in-memory can alleviate the bottleneck

◼ However, we need to design mapping & filtering algorithms 
to fit processing-in-memory
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In-Memory DNA Sequence Analysis

◼ Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


Alser et al., “GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA 
Short Read Mapping,” Bioinformatics 2017.
Kim et al., “Genome Read In-Memory (GRIM) Filter,” BMC Genomics 2018.

Key Principles and Results

◼ Two key principles:

❑ Exploit the structure of the genome to minimize computation

❑ Morph and exploit the structure of the underlying hardware to 
maximize performance and efficiency

◼ Algorithm-architecture co-design for DNA read mapping

❑ Speeds up read mapping by ~200X (sometimes more)

❑ Improves accuracy of read mapping in the presence of errors
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Xin et al., “Accelerating Read Mapping with FastHASH,” BMC Genomics 2013.

Xin et al., “Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter to Accelerate 
Alignment Verification in Read Mapping,” Bioinformatics 2015.



New Genome Sequencing Technologies

34

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics (BIB), 2018.
[Open arxiv.org version] 

Oxford Nanopore MinION

https://academic.oup.com/bib
https://arxiv.org/pdf/1711.08774.pdf


Nanopore Genome Assembly Pipeline

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly”, Briefings in Bioinformatics, 2018. [Open arxiv.org version] 

https://arxiv.org/pdf/1711.08774.pdf


More on Genome Analysis: Another Talk
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Recall Our Dream

◼ Can we build devices that can analyze a genome within a 
minute?

◼ Still a long ways to go

❑ Energy efficiency

❑ Performance (latency)

❑ Security

❑ Huge memory bottleneck

37



Four Key Directions

◼ Fundamentally Secure/Reliable/Safe Architectures

◼ Fundamentally Energy-Efficient Architectures

❑ Memory-centric (Data-centric) Architectures

◼ Fundamentally Low-Latency Architectures

◼ Architectures for Genomics, Medicine, Health
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Memory & Storage

39



The Main Memory System

◼ Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

◼ Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits

40

Processors

and caches
Main Memory Storage (SSD/HDD)



The Main Memory System

◼ Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

◼ Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits

41

Main Memory Storage (SSD/HDD)FPGAs



The Main Memory System

◼ Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

◼ Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits

42

Main Memory Storage (SSD/HDD)GPUs



Memory System: A Shared Resource View

43

Storage

Most of the system is dedicated to storing and moving data 



State of the Main Memory System

◼ Recent technology, architecture, and application trends

❑ lead to new requirements

❑ exacerbate old requirements

◼ DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements

◼ Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging

◼ We need to rethink the main memory system

❑ to fix DRAM issues and enable emerging technologies 

❑ to satisfy all requirements
44



Major Trends Affecting Main Memory (I)

◼ Need for main memory capacity, bandwidth, QoS increasing 

◼ Main memory energy/power is a key system design concern

◼ DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (II)

◼ Need for main memory capacity, bandwidth, QoS increasing 

❑ Multi-core: increasing number of cores/agents

❑ Data-intensive applications: increasing demand/hunger for data

❑ Consolidation: cloud computing, GPUs, mobile, heterogeneity

◼ Main memory energy/power is a key system design concern

◼ DRAM technology scaling is ending 
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Consequence: The Memory Capacity Gap

◼ Memory capacity per core expected to drop by 30% every two years

◼ Trends worse for memory bandwidth per core!
47

Core count doubling ~ every 2 years 

DRAM DIMM capacity doubling ~ every 3 years

Lim et al., ISCA 2009
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DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  

Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



DRAM Latency Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  

Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 

Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance 

bottleneck



Major Trends Affecting Main Memory (III)

◼ Need for main memory capacity, bandwidth, QoS increasing 

◼ Main memory energy/power is a key system design concern

❑ ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 

IEEE Computer’03] >40% power in DRAM [Ware, HPCA’10][Paul,ISCA’15]

❑ DRAM consumes power even when not used (periodic refresh)

◼ DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (IV)

◼ Need for main memory capacity, bandwidth, QoS increasing 

◼ Main memory energy/power is a key system design concern

◼ DRAM technology scaling is ending 

❑ ITRS projects DRAM will not scale easily below X nm 

❑ Scaling has provided many benefits: 

◼ higher capacity (density), lower cost, lower energy
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The DRAM Scaling Problem

◼ DRAM stores charge in a capacitor (charge-based memory)

❑ Capacitor must be large enough for reliable sensing

❑ Access transistor should be large enough for low leakage and high 
retention time

❑ Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

◼ DRAM capacity, cost, and energy/power hard to scale
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Limits of Charge Memory

◼ Difficult charge placement and control

❑ Flash: floating gate charge

❑ DRAM: capacitor charge, transistor leakage

◼ Reliable sensing becomes difficult as charge 
storage unit size reduces
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Major Trends Affecting Main Memory (V)

◼ DRAM scaling has already become increasingly difficult

❑ Increasing cell leakage current, reduced cell reliability, 
increasing manufacturing difficulties [Kim+ ISCA 2014],

[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

❑ Difficult to significantly improve capacity, energy

◼ Emerging memory technologies are promising

3D-Stacked DRAM higher bandwidth smaller capacity

Reduced-Latency DRAM
(e.g., RLDRAM, TL-DRAM)

lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4)

lower power
higher latency

higher cost

Non-Volatile Memory (NVM) 
(e.g., PCM, STTRAM, ReRAM, 
3D Xpoint)

larger capacity
higher latency

higher dynamic power 
lower endurance
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Major Trends Affecting Main Memory (V)

◼ DRAM scaling has already become increasingly difficult

❑ Increasing cell leakage current, reduced cell reliability, 
increasing manufacturing difficulties [Kim+ ISCA 2014],

[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

❑ Difficult to significantly improve capacity, energy

◼ Emerging memory technologies are promising

3D-Stacked DRAM higher bandwidth smaller capacity

Reduced-Latency DRAM
(e.g., RL/TL-DRAM, FLY-RAM)

lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4, Voltron)

lower power
higher latency

higher cost

Non-Volatile Memory (NVM) 
(e.g., PCM, STTRAM, ReRAM, 3D 
Xpoint)

larger capacity
higher latency

higher dynamic power 
lower endurance
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Major Trend: Hybrid Main Memory

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
Ctrl

DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



One Foreshadowing

Main Memory Needs 

Intelligent Controllers
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Industry Is Writing Papers About It, Too
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Call for Intelligent Memory Controllers
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Agenda

◼ Brief Introduction

◼ A Motivating Example

◼ Memory System Trends

◼ What Will You Learn In This Course

❑ And, how to make the best of it…

◼ Memory Fundamentals

◼ Key Memory Challenges and Solution Directions

❑ Security, Reliability, Safety

❑ Energy and Performance: Data-Centric Systems

❑ Latency and Latency-Reliability Tradeoffs 

◼ Summary and Future Lookout
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Course Logistics

62



What Will You Learn in This Course?

◼ Memory Systems and Memory-Centric Computing Systems

❑ July 9-13, 2018

◼ Topic 1: Main Memory Trends and Basics

◼ Topic 2: Memory Reliability & Security: RowHammer and Beyond

◼ Topic 3: In-memory Computation

◼ Topic 4: Low-Latency and Low-Energy Memory

◼ Topic 5 (unlikely): Enabling and Exploiting Non-Volatile Memory

◼ Topic 6 (unlikely): Flash Memory and SSD Scaling

◼ Major Overview Reading:

❑ Mutlu and Subramanian, “Research Problems and Opportunities 
in Memory Systems,” SUPERFRI 2014.
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This Course

◼ Will cover many problems and potential solutions related to 
the design of memory systems in the many core era

◼ The design of the memory system poses many

❑ Difficult research and engineering problems

❑ Important fundamental problems

❑ Industry-relevant problems

❑ Problems whose solutions can revolutionize the world

◼ Many creative and insightful solutions are needed to solve 
these problems

◼ Goal: Acquire the basics to develop such solutions (by 
covering fundamentals and cutting edge research)
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Course Information

◼ My Contact Information

❑ Onur Mutlu

❑ omutlu@gmail.com

❑ https://people.inf.ethz.ch/omutlu

❑ +41-79-572-1444 (my cell phone)

❑ Find me during breaks and/or email any time.

◼ Website for Course Slides, Papers, Updates

❑ https://people.inf.ethz.ch/omutlu/acaces2018.html

◼ For the curious:

❑ ACACES 2013 Course: Scalable Memory Systems

❑ https://people.inf.ethz.ch/omutlu/acaces2013-memory.html
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How To Make the Best Out of This Course

◼ Be alert during lectures – they will be fast paced

◼ Do the readings (and explore even more)

❑ I will provide many references

◼ Go back and reinforce fundamentals (as needed)

❑ I will provide pointers to basic computer architecture materials 
(lecture videos, slides, readings, exams, …)

◼ Remember “Chance favors the prepared mind.” (Pasteur)
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Unfortunately, No Time For:

◼ Memory Interference and QoS

◼ Predictable Performance

❑ QoS-aware Memory Controllers

◼ Emerging Memory Technologies and Hybrid Memories

◼ Cache Management

◼ Interconnects

◼ You can find many materials on these at my online lectures

❑ https://people.inf.ethz.ch/omutlu/teaching.html
67
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Readings, Videos, Reference Materials



Reference Overview Paper I

Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, Onur Mutlu,
"Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, 
Future Research Directions"
Invited Book Chapter, to appear in 2018.
[Preliminary arxiv.org version]

69https://arxiv.org/pdf/1802.00320.pdf

https://people.inf.ethz.ch/omutlu/acaces2018.html
https://arxiv.org/pdf/1802.00320.pdf
https://arxiv.org/pdf/1802.00320.pdf


Reference Overview Paper II

◼ Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory 
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2014/2015. 

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf
http://superfri.org/superfri
https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf


Reference Overview Paper III

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

◼ Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Lausanne, Switzerland, March 2017. 
[Slides (pptx) (pdf)] 

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf


Reference Overview Paper IV

◼ Onur Mutlu,
"Memory Scaling: A Systems Architecture 
Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara, 
CA, August 2013. [Slides (pptx) (pdf)]
[Video] [Coverage on StorageSearch] 

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com/
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://www.storagesearch.com/ram-new-thinking.html
https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf


Reference Overview Paper V
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https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642


Related Videos and Course Materials (I)

◼ Undergraduate Computer Architecture Course Lecture 
Videos (2015, 2014, 2013)

◼ Undergraduate Computer Architecture Course 
Materials (2015, 2014, 2013)

◼ Graduate Computer Architecture Course Lecture 
Videos (2017, 2015, 2013)

◼ Graduate Computer Architecture Course 
Materials (2017, 2015, 2013)

◼ Parallel Computer Architecture Course Materials
(Lecture Videos)
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https://www.youtube.com/playlist?list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/watch?v=zLP_X4wyHbY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgFdD9x7RsjQC4a8KQjmUkQ
https://www.youtube.com/watch?v=BJ87rZCGWU0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s14/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
http://www.ece.cmu.edu/~ece740/f15/doku.php?id=schedule
http://www.ece.cmu.edu/~ece740/f13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece742/f12/doku.php?id=lectures
https://www.youtube.com/playlist?feature=edit_ok&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4


Related Videos and Course Materials (II)

◼ Freshman Digital Circuits and Computer Architecture 
Course Lecture Videos (2018, 2017)

◼ Freshman Digital Circuits and Computer Architecture 
Course Materials (2018)

◼ Memory Systems Short Course Materials

(Lecture Video on Main Memory and DRAM Basics)

75

https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi_QedyPWtRmFUJ2F8DdYP7l
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
https://www.youtube.com/watch?v=ZLCy3pG7Rc0


Some Open Source Tools (I)
◼ Rowhammer – Program to Induce RowHammer Errors

❑ https://github.com/CMU-SAFARI/rowhammer

◼ Ramulator – Fast and Extensible DRAM Simulator

❑ https://github.com/CMU-SAFARI/ramulator

◼ MemSim – Simple Memory Simulator

❑ https://github.com/CMU-SAFARI/memsim

◼ NOCulator – Flexible Network-on-Chip Simulator

❑ https://github.com/CMU-SAFARI/NOCulator

◼ SoftMC – FPGA-Based DRAM Testing Infrastructure

❑ https://github.com/CMU-SAFARI/SoftMC

◼ Other open-source software from my group

❑ https://github.com/CMU-SAFARI/

❑ http://www.ece.cmu.edu/~safari/tools.html
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https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/memsim
https://github.com/CMU-SAFARI/NOCulator
https://github.com/CMU-SAFARI/SoftMC
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html


Some Open Source Tools (II)
◼ MQSim – A Fast Modern SSD Simulator 

❑ https://github.com/CMU-SAFARI/MQSim

◼ Mosaic – GPU Simulator Supporting Concurrent Applications

❑ https://github.com/CMU-SAFARI/Mosaic

◼ IMPICA – Processing in 3D-Stacked Memory Simulator

❑ https://github.com/CMU-SAFARI/IMPICA

◼ SMLA – Detailed 3D-Stacked Memory Simulator

❑ https://github.com/CMU-SAFARI/SMLA

◼ HWASim – Simulator for Heterogeneous CPU-HWA Systems

❑ https://github.com/CMU-SAFARI/HWASim

◼ Other open-source software from my group

❑ https://github.com/CMU-SAFARI/

❑ http://www.ece.cmu.edu/~safari/tools.html
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https://github.com/CMU-SAFARI/MQSim
https://github.com/CMU-SAFARI/Mosaic
https://github.com/CMU-SAFARI/IMPICA
https://github.com/CMU-SAFARI/SMLA
https://github.com/CMU-SAFARI/HWASim
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html


More Open Source Tools (III)

◼ A lot more open-source software from my group

❑ https://github.com/CMU-SAFARI/

❑ http://www.ece.cmu.edu/~safari/tools.html
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Referenced Papers

◼ All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en

https://people.inf.ethz.ch/omutlu/acaces2018.html
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Memory Fundamentals
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Memory in a Modern System
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Ideal Memory

◼ Zero access time (latency)

◼ Infinite capacity

◼ Zero cost

◼ Infinite bandwidth (to support multiple accesses in parallel)
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The Problem

◼ Ideal memory’s requirements oppose each other

◼ Bigger is slower

❑ Bigger → Takes longer to determine the location

◼ Faster is more expensive

❑ Memory technology: SRAM vs. DRAM vs. Disk vs. Tape

◼ Higher bandwidth is more expensive

❑ Need more banks, more ports, higher frequency, or faster 
technology

83



Memory Technology: DRAM

◼ Dynamic random access memory

◼ Capacitor charge state indicates stored value

❑ Whether the capacitor is charged or discharged indicates 
storage of 1 or 0

❑ 1 capacitor

❑ 1 access transistor

◼ Capacitor leaks through the RC path

❑ DRAM cell loses charge over time

❑ DRAM cell needs to be refreshed

❑ Read Liu et al., “RAIDR: Retention-aware Intelligent DRAM 
Refresh,” ISCA 2012.
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◼ Static random access memory

◼ Two cross coupled inverters store a single bit

❑ Feedback path enables the stored value to persist in the “cell”

❑ 4 transistors for storage

❑ 2 transistors for access

Memory Technology: SRAM

85

row select

b
it
lin

e

_
b
it
lin

e



An Aside: Phase Change Memory

◼ Phase change material (chalcogenide glass) exists in two states:

❑ Amorphous: Low optical reflexivity and high electrical resistivity

❑ Crystalline: High optical reflexivity and low electrical resistivity

86

PCM is resistive memory:  High resistance (0), Low resistance (1)

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM 
Alternative,” ISCA 2009.



Reading: PCM As Main Memory

◼ Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,
"Architecting Phase Change Memory as a Scalable DRAM 
Alternative"
Proceedings of the 36th International Symposium on Computer 
Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides 
(pdf)
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http://users.ece.cmu.edu/~omutlu/pub/pcm_isca09.pdf
http://isca09.cs.columbia.edu/
http://users.ece.cmu.edu/~omutlu/pub/lee_isca09_talk.pdf


Reading: More on PCM As Main Memory

◼ Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, 
Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer 
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1, 
pages 60-70, January/February 2010. 
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Memory Bank: A Fundamental Concept

◼ Interleaving (banking)

❑ Problem: a single monolithic memory array takes long to 
access and does not enable multiple accesses in parallel

❑ Goal: Reduce the latency of memory array access and enable 
multiple accesses in parallel

❑ Idea: Divide the array into multiple banks that can be 
accessed independently (in the same cycle or in consecutive 
cycles)

◼ Each bank is smaller than the entire memory storage

◼ Accesses to different banks can be overlapped

❑ An issue: How do you map data to different banks? (i.e., how 
do you interleave data across banks?)
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Memory Bank Organization and Operation

◼ Read access sequence:

1. Decode row address 
& drive word-lines

2. Selected bits drive 
bit-lines

• Entire row read

3. Amplify row data

4. Decode column 
address & select subset 
of row

• Send to output

5. Precharge bit-lines

• For next access
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Why Memory Hierarchy?

◼ We want both fast and large

◼ But we cannot achieve both with a single level of memory

◼ Idea: Have multiple levels of storage (progressively bigger 
and slower as the levels are farther from the processor) 
and ensure most of the data the processor needs is kept in 
the fast(er) level(s)
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Memory Hierarchy

◼ Fundamental tradeoff

❑ Fast memory: small

❑ Large memory: slow

◼ Idea: Memory hierarchy

◼ Latency, cost, size, 

bandwidth
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Caching Basics: Exploit Temporal Locality

◼ Idea: Store recently accessed data in automatically 
managed fast memory (called cache)

◼ Anticipation: the data will be accessed again soon

◼ Temporal locality principle

❑ Recently accessed data will be again accessed in the near 
future

❑ This is what Maurice Wilkes had in mind:

◼ Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE 
Trans. On Electronic Computers, 1965.

◼ “The use is discussed of a fast core memory of, say 32000 words 
as a slave to a slower core memory of, say, one million words in 
such a way that in practical cases the effective access time is 
nearer that of the fast memory than that of the slow memory.”
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Caching Basics: Exploit Spatial Locality

◼ Idea: Store addresses adjacent to the recently accessed 
one in automatically managed fast memory

❑ Logically divide memory into equal size blocks

❑ Fetch to cache the accessed block in its entirety

◼ Anticipation: nearby data will be accessed soon

◼ Spatial locality principle

❑ Nearby data in memory will be accessed in the near future

◼ E.g., sequential instruction access, array traversal

❑ This is what IBM 360/85 implemented

◼ 16 Kbyte cache with 64 byte blocks

◼ Liptay, “Structural aspects of the System/360 Model 85 II: the 
cache,” IBM Systems Journal, 1968.

94



A Note on Manual vs. Automatic Management

◼ Manual: Programmer manages data movement across levels

-- too painful for programmers on substantial programs

❑ “core” vs “drum” memory in the 50’s

❑ still done in some embedded processors (on-chip scratch pad 
SRAM in lieu of a cache)

◼ Automatic: Hardware manages data movement across levels, 
transparently to the programmer

++ programmer’s life is easier

❑ simple heuristic: keep most recently used items in cache

❑ the average programmer doesn’t need to know about it

◼ You don’t need to know how big the cache is and how it works to 
write a “correct” program! (What if you want a “fast” program?)
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Automatic Management in Memory Hierarchy

◼ Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

◼ “By a slave memory I mean one which automatically 
accumulates to itself words that come from a slower main 
memory, and keeps them available for subsequent use 
without it being necessary for the penalty of main memory 
access to be incurred again.”
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Historical Aside: Other Cache Papers

◼ Fotheringham, “Dynamic Storage Allocation in the Atlas 
Computer, Including an Automatic Use of a Backing Store,” 
CACM 1961.

❑ http://dl.acm.org/citation.cfm?id=366800

◼ Bloom, Cohen, Porter, “Considerations in the Design of a 
Computer with High Logic-to-Memory Speed Ratio,” AIEE 
Gigacycle Computing Systems Winter Meeting, Jan. 1962.
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Cache in 1962 (Bloom, Cohen, Porter)
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A Modern Memory Hierarchy

99

Register File
32 words, sub-nsec

L1 cache
~32 KB, ~nsec

L2 cache
512 KB ~ 1MB, many nsec

L3 cache, 
.....

Main memory (DRAM), 
GB, ~100 nsec

Swap Disk
100 GB, ~10 msec

manual/compiler
register spilling

automatic
demand 
paging

Automatic
HW cache
management

Memory
Abstraction



The DRAM Subsystem



DRAM Subsystem Organization

◼ Channel

◼ DIMM

◼ Rank

◼ Chip

◼ Bank

◼ Row/Column
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Page Mode DRAM

◼ A DRAM bank is a 2D array of cells: rows x columns

◼ A “DRAM row” is also called a “DRAM page”

◼ “Sense amplifiers” also called “row buffer”

◼ Each address is a <row,column> pair

◼ Access to a “closed row”

❑ Activate command opens row (placed into row buffer)

❑ Read/write command reads/writes column in the row buffer

❑ Precharge command closes the row and prepares the bank for 
next access

◼ Access to an “open row”

❑ No need for activate command
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The DRAM Bank Structure
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DRAM Bank Operation
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The DRAM Chip

◼ Consists of multiple banks (8 is a common number today)

◼ Banks share command/address/data buses

◼ The chip itself has a narrow interface (4-16 bits per read)

◼ Changing the number of banks, size of the interface (pins), 
whether or not command/address/data buses are shared 
has significant impact on DRAM system cost
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128M x 8-bit DRAM Chip
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DRAM Rank and Module

◼ Rank: Multiple chips operated together to form a wide 
interface

◼ All chips comprising a rank are controlled at the same time

❑ Respond to a single command

❑ Share address and command buses, but provide different data

◼ A DRAM module consists of one or more ranks

❑ E.g., DIMM (dual inline memory module)

❑ This is what you plug into your motherboard

◼ If we have chips with 8-bit interface, to read 8 bytes in a 
single access, use 8 chips in a DIMM
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A 64-bit Wide DIMM (One Rank)
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A 64-bit Wide DIMM (One Rank)

◼ Advantages:
❑ Acts like a high-

capacity DRAM chip 
with a wide 
interface

❑ Flexibility: memory 
controller does not 
need to deal with 
individual chips

◼ Disadvantages:
❑ Granularity: 

Accesses cannot be 
smaller than the 
interface width

109Mutlu+, “Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors,” MICRO 2007.



Multiple DIMMs
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◼ Advantages:

❑ Enables even 
higher capacity

◼ Disadvantages:

❑ Interconnect 
complexity and 
energy 
consumption 
can be high

→ Scalability is 

limited by this



DRAM Channels

◼ 2 Independent Channels: 2 Memory Controllers (Above)

◼ 2 Dependent/Lockstep Channels: 1 Memory Controller with 
wide interface (Not shown above)

111Mutlu+, “Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors,” MICRO 2007.



Generalized Memory Structure
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Generalized Memory Structure
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Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

Lee+, “Decoupled Direct Memory Access,” PACT 2015.



The DRAM Subsystem

The Top Down View



DRAM Subsystem Organization

◼ Channel

◼ DIMM

◼ Rank

◼ Chip

◼ Bank

◼ Row/Column
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The DRAM subsystem

Memory channel Memory channel

DIMM (Dual in-line memory module)

Processor

“Channel”



Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM



Breaking down a DIMM

DIMM (Dual in-line memory module)

Side view

Front of DIMM Back of DIMM

Rank 0: collection of 8 chips Rank 1
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Breaking down a Rank
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Breaking down a Chip
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Breaking down a Bank
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DRAM Subsystem Organization

◼ Channel

◼ DIMM

◼ Rank

◼ Chip

◼ Bank

◼ Row/Column
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Example: Transferring a cache block
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Example: Transferring a cache block
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Example: Transferring a cache block
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A 64B cache block takes 8 I/O cycles to transfer.

During the process, 8 columns are read sequentially.

. . .



Latency Components: Basic DRAM Operation

◼ CPU → controller transfer time

◼ Controller latency

❑ Queuing & scheduling delay at the controller

❑ Access converted to basic commands

◼ Controller → DRAM transfer time

◼ DRAM bank latency

❑ Simple CAS (column address strobe) if row is “open” OR

❑ RAS (row address strobe) + CAS if array precharged OR

❑ PRE + RAS + CAS (worst case)

◼ DRAM → Controller transfer time

❑ Bus latency (BL)

◼ Controller to CPU transfer time
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We did not cover the remaining 

slides in Lecture 1.
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The remaining slides are useful 

for more background.
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We may cover some (but not all) 

of them in the rest of the course. 
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Multiple Banks (Interleaving) and Channels

◼ Multiple banks

❑ Enable concurrent DRAM accesses

❑ Bits in address determine which bank an address resides in

◼ Multiple independent channels serve the same purpose

❑ But they are even better because they have separate data buses

❑ Increased bus bandwidth

◼ Enabling more concurrency requires reducing

❑ Bank conflicts

❑ Channel conflicts

◼ How to select/randomize bank/channel indices in address?

❑ Lower order bits have more entropy

❑ Randomizing hash functions (XOR of different address bits)
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How Multiple Banks Help
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Address Mapping (Single Channel)

◼ Single-channel system with 8-byte memory bus

❑ 2GB memory, 8 banks, 16K rows & 2K columns per bank

◼ Row interleaving

❑ Consecutive rows of memory in consecutive banks

❑ Accesses to consecutive cache blocks serviced in a pipelined manner

◼ Cache block interleaving

◼ Consecutive cache block addresses in consecutive banks

◼ 64 byte cache blocks

◼ Accesses to consecutive cache blocks can be serviced in parallel
138
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Bank Mapping Randomization

◼ DRAM controller can randomize the address mapping to 
banks so that bank conflicts are less likely

◼ Reading:

❑ Rau, “Pseudo-randomly Interleaved Memory,” ISCA 1991.
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Address Mapping (Multiple Channels)

◼ Where are consecutive cache blocks?
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Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits
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3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C

Low Col. High ColumnRow (14 bits) Byte in bus (3 bits)Bank (3 bits)

3 bits8 bits

C



Interaction with Virtual→Physical Mapping

◼ Operating System influences where an address maps to in 
DRAM

◼ Operating system can influence which bank/channel/rank a 
virtual page is mapped to. 

◼ It can perform page coloring to 

❑ Minimize bank conflicts

❑ Minimize inter-application interference [Muralidhara+ MICRO’11]

❑ Minimize latency in the network [Das+ HPCA’13]
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Column (11 bits)Bank (3 bits)Row (14 bits) Byte in bus (3 bits)

Page offset (12 bits)Physical Frame number (19 bits)

Page offset (12 bits)Virtual Page number (52 bits) VA
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Memory Channel Partitioning

◼ Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, 
Mahmut Kandemir, and Thomas Moscibroda, 
"Reducing Memory Interference in Multicore Systems via 
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on 
Microarchitecture (MICRO), Porto Alegre, Brazil, December 
2011. Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx


Application-to-Core Mapping

◼ Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory 
System Interference in Multi-Core Systems"
Proceedings of the 19th International Symposium on High-Performance 
Computer Architecture (HPCA), Shenzhen, China, February 2013. 
Slides (pptx)
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http://users.ece.cmu.edu/~omutlu/pub/application-to-core-mapping_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/das_hpca13_talk.pptx


More on Reducing Bank Conflicts

◼ Read Sections 1 through 4 of:

❑ Kim et al., “A Case for Exploiting Subarray-Level Parallelism in 
DRAM,” ISCA 2012.
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Subarray Level Parallelism

◼ Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu,
"A Case for Exploiting Subarray-Level Parallelism (SALP) in 
DRAM"
Proceedings of the 39th International Symposium on Computer 
Architecture (ISCA), Portland, OR, June 2012. Slides (pptx)
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https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
http://isca2012.ittc.ku.edu/
https://people.inf.ethz.ch/omutlu/pub/kim_isca12_talk.pptx


DRAM Refresh (I)

◼ DRAM capacitor charge leaks over time

◼ The memory controller needs to read each row periodically 
to restore the charge

❑ Activate + precharge each row every N ms

❑ Typical N = 64 ms

◼ Implications on performance?

-- DRAM bank unavailable while refreshed

-- Long pause times: If we refresh all rows in burst, every 64ms 
the DRAM will be unavailable until refresh ends

◼ Burst refresh: All rows refreshed immediately after one 
another

◼ Distributed refresh: Each row refreshed at a different time, 
at regular intervals

146



DRAM Refresh (II)

◼ Distributed refresh eliminates long pause times

◼ How else we can reduce the effect of refresh on 
performance?

❑ Can we reduce the number of refreshes?
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-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed

-- QoS/predictability impact: (Long) pause times during refresh

-- Refresh rate limits DRAM density scaling 

Downsides of DRAM Refresh
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Liu et al., “RAIDR: Retention-aware Intelligent DRAM Refresh,” ISCA 2012.



More on DRAM Refresh (I)

◼ Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,
"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2012. 
Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf


DRAM Retention Analysis

◼ Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf


Data Retention in Memory [Liu et al., ISCA 2013]

◼ Data Retention Time Profile of DRAM looks like this:
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Location dependent
Stored value pattern dependent

Time dependent



DRAM Refresh-Access Parallelization

◼ Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris 
Wilkerson, Yoongu Kim, and Onur Mutlu,
"Improving DRAM Performance by Parallelizing Refreshes with 
Accesses"
Proceedings of the 20th International Symposium on High-Performance 
Computer Architecture (HPCA), Orlando, FL, February 2014. 
[Summary] [Slides (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pdf


Memory Controllers



DRAM versus Other Types of Memories

◼ Long latency memories have similar characteristics that 
need to be controlled.

◼ The following discussion will use DRAM as an example, but 
many scheduling and control issues are similar in the 
design of controllers for other types of memories

❑ Flash memory

❑ Other emerging memory technologies

◼ Phase Change Memory

◼ Spin-Transfer Torque Magnetic Memory

❑ These other technologies can place other demands on the 
controller

154



Flash Memory (SSD) Controllers

◼ Similar to DRAM memory controllers, except:

❑ They are flash memory specific

❑ They do much more: error correction, garbage collection, 
page remapping, …

155Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory 

Lifetime”, ICCD 2012.



Another View of the SSD Controller

156

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

https://arxiv.org/pdf/1711.11427.pdf

https://arxiv.org/pdf/1711.11427.pdf


On Modern SSD Controllers (I)

157https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642
https://arxiv.org/pdf/1706.08642


On Modern SSD Controllers (II)

◼ Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, Saugata 
Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of Modern 
Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage 
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]
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https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim


On Modern SSD Controllers (III)

◼ Arash Tavakkol, Mohammad Sadrosadati, Saugata Ghose, Jeremie Kim, 
Yixin Luo, Yaohua Wang, Nika Mansouri Ghiasi, Lois Orosa, Juan G. 
Luna and Onur Mutlu,
"FLIN: Enabling Fairness and Enhancing Performance in 
Modern NVMe Solid State Drives"
Proceedings of the 45th International Symposium on Computer 
Architecture (ISCA), Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]
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https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18.pdf
http://iscaconf.org/isca2018/
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/FLIN-fair-and-high-performance-NVMe-SSD-scheduling_isca18-lightning-talk.pdf
https://www.youtube.com/watch?v=eeR18a3_G_A


DRAM Types

◼ DRAM has different types with different interfaces optimized 
for different purposes

❑ Commodity: DDR, DDR2, DDR3, DDR4, …

❑ Low power (for mobile): LPDDR1, …, LPDDR5, …

❑ High bandwidth (for graphics): GDDR2, …, GDDR5, …

❑ Low latency: eDRAM, RLDRAM, …

❑ 3D stacked: WIO, HBM, HMC, …

❑ …

◼ Underlying microarchitecture is fundamentally the same

◼ A flexible memory controller can support various DRAM types 

◼ This complicates the memory controller

❑ Difficult to support all types (and upgrades)
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DRAM Types (circa 2015)

161

Kim et al., “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE Comp Arch Letters 2015.



DRAM Controller: Functions

◼ Ensure correct operation of DRAM (refresh and timing)

◼ Service DRAM requests while obeying timing constraints of 
DRAM chips

❑ Constraints: resource conflicts (bank, bus, channel), minimum 
write-to-read delays

❑ Translate requests to DRAM command sequences

◼ Buffer and schedule requests to for high performance + QoS

❑ Reordering, row-buffer, bank, rank, bus management

◼ Manage power consumption and thermals in DRAM

❑ Turn on/off DRAM chips, manage power modes
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A Modern DRAM Controller (I)
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A Modern DRAM Controller



DRAM Scheduling Policies (I)

◼ FCFS (first come first served)

❑ Oldest request first

◼ FR-FCFS (first ready, first come first served)

1. Row-hit first

2. Oldest first

Goal: Maximize row buffer hit rate → maximize DRAM throughput

❑ Actually, scheduling is done at the command level

◼ Column commands (read/write) prioritized over row commands 
(activate/precharge)

◼ Within each group, older commands prioritized over younger ones
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Review: DRAM Bank Operation
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DRAM Scheduling Policies (II)

◼ A scheduling policy is a request prioritization order

◼ Prioritization can be based on

❑ Request age

❑ Row buffer hit/miss status

❑ Request type (prefetch, read, write)

❑ Requestor type (load miss or store miss)

❑ Request criticality

◼ Oldest miss in the core?

◼ How many instructions in core are dependent on it?

◼ Will it stall the processor?

❑ Interference caused to other cores

❑ …
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Row Buffer Management Policies

◼ Open row
❑ Keep the row open after an access

+ Next access might need the same row → row hit

-- Next access might need a different row → row conflict, wasted energy

◼ Closed row
❑ Close the row after an access (if no other requests already in the request 

buffer need the same row)

+ Next access might need a different row → avoid a row conflict

-- Next access might need the same row → extra activate latency

◼ Adaptive policies

❑ Predict whether or not the next access to the bank will be to 
the same row
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Open vs. Closed Row Policies

Policy First access Next access Commands 
needed for next 
access

Open row Row 0 Row 0 (row hit) Read 

Open row Row 0 Row 1 (row 
conflict)

Precharge + 
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in 
request buffer 
(row hit)

Read

Closed row Row 0 Row 0 – access not 
in request buffer 
(row closed)

Activate Row 0 + 
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 + 
Read + Precharge
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DRAM Power Management

◼ DRAM chips have power modes

◼ Idea: When not accessing a chip power it down

◼ Power states

❑ Active (highest power)

❑ All banks idle

❑ Power-down

❑ Self-refresh (lowest power)

◼ Tradeoff: State transitions incur latency during which the 
chip cannot be accessed
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Difficulty of DRAM Control



Why are DRAM Controllers Difficult to Design?

◼ Need to obey DRAM timing constraints for correctness

❑ There are many (50+) timing constraints in DRAM

❑ tWTR: Minimum number of cycles to wait before issuing a read 
command after a write command is issued

❑ tRC: Minimum number of cycles between the issuing of two 
consecutive activate commands to the same bank

❑ …

◼ Need to keep track of many resources to prevent conflicts

❑ Channels, banks, ranks, data bus, address bus, row buffers

◼ Need to handle DRAM refresh

◼ Need to manage power consumption

◼ Need to optimize performance & QoS (in the presence of constraints)

❑ Reordering is not simple

❑ Fairness and QoS needs complicates the scheduling problem
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Many DRAM Timing Constraints

◼ From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing 
Write-Caused Interference in Memory Systems,” HPS Technical Report, 
April 2010.
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More on DRAM Operation

◼ Kim et al., “A Case for Exploiting Subarray-Level Parallelism 
(SALP) in DRAM,” ISCA 2012.

◼ Lee et al., “Tiered-Latency DRAM: A Low Latency and Low 
Cost DRAM Architecture,” HPCA 2013.
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Why So Many Timing Constraints? (I)

175

Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM,” ISCA 2012.



Why So Many Timing Constraints? (II)

176

Lee et al., “Tiered-Latency DRAM: A Low Latency 
and Low Cost DRAM Architecture,” HPCA 2013.



DRAM Controller Design Is Becoming More Difficult

◼ Heterogeneous agents: CPUs, GPUs, and HWAs 

◼ Main memory interference between CPUs, GPUs, HWAs

◼ Many timing constraints for various memory types

◼ Many goals at the same time: performance, fairness, QoS, 
energy efficiency, …
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Reality and Dream

◼ Reality: It difficult to optimize all these different constraints 
while maximizing performance, QoS, energy-efficiency, … 

◼ Dream: Wouldn’t it be nice if the DRAM controller 
automatically found a good scheduling policy on its own?
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Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers

◼ Problem: DRAM controllers difficult to design → It is difficult for 

human designers to design a policy that can adapt itself very well 
to different workloads and different system conditions

◼ Idea: Design a memory controller that adapts its scheduling 
policy decisions to workload behavior and system conditions 
using machine learning.

◼ Observation: Reinforcement learning maps nicely to memory 
control.

◼ Design: Memory controller is a reinforcement learning agent that 
dynamically and continuously learns and employs the best 
scheduling policy.



Self-Optimizing DRAM Controllers

◼ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich 
Caruana, 
"Self Optimizing Memory Controllers: A 
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on 
Computer Architecture (ISCA), pages 39-50, Beijing, 
China, June 2008.
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Goal: Learn to choose actions to maximize r0 + r1 + 2r2 + … ( 0   < 1) 

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


Self-Optimizing DRAM Controllers

◼ Dynamically adapt the memory scheduling policy via 
interaction with the system at runtime 

❑ Associate system states and actions (commands) with long term 
reward values: each action at a given state leads to a learned reward

❑ Schedule command with highest estimated long-term reward value in 
each state

❑ Continuously update reward values for <state, action> pairs based on 
feedback from system

181



Self-Optimizing DRAM Controllers

◼ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 
"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


States, Actions, Rewards
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❖ Reward function

• +1 for scheduling 
Read and Write 
commands

• 0 at all other 
times

Goal is to maximize 
long-term       
data bus 
utilization

❖ State attributes

• Number of reads, 
writes, and load 
misses in 
transaction queue

• Number of pending 
writes and ROB 
heads waiting for 
referenced row

• Request’s relative 

ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP



Performance Results
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Self Optimizing DRAM Controllers

◼ Advantages

+ Adapts the scheduling policy dynamically to changing workload 
behavior and to maximize a long-term target

+ Reduces the designer’s burden in finding a good scheduling 
policy. Designer specifies:

1) What system variables might be useful

2) What target to optimize, but not how to optimize it

◼ Disadvantages and Limitations

-- Black box: designer much less likely to implement what she  
cannot easily reason about

-- How to specify different reward functions that can achieve 
different objectives? (e.g., fairness, QoS)

-- Hardware complexity?
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More on Self-Optimizing DRAM Controllers

◼ Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 
"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
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Simulating Memory

187



Ramulator: A Fast and Extensible 

DRAM Simulator 

[IEEE Comp Arch Letters’15]

188



Ramulator Motivation

◼ DRAM and Memory Controller landscape is changing

◼ Many new and upcoming standards

◼ Many new controller designs

◼ A fast and easy-to-extend simulator is very much needed
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Ramulator

◼ Provides out-of-the box support for many DRAM standards:

❑ DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

◼ ~2.5X faster than fastest open-source simulator

◼ Modular and extensible to different standards
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Case Study: Comparison of DRAM Standards

191

Across 22 
workloads, 
simple CPU 
model



Ramulator Paper and Source Code

◼ Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 

◼ Source code is released under the liberal MIT License

❑ https://github.com/CMU-SAFARI/ramulator
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http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator


Optional Assignment

◼ Review the Ramulator paper

❑ Email me your review (omutlu@gmail.com) 

◼ Download and run Ramulator

❑ Compare DDR3, DDR4, SALP, HBM for the libquantum
benchmark (provided in Ramulator repository)

❑ Email me your report (omutlu@gmail.com) 

◼ This may help you get into memory systems research 
quickly
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Topics We Will Not Cover
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No Time, Unfortunately, for:

◼ Memory Interference and QoS

◼ Predictable Performance

❑ QoS-aware Memory Controllers

◼ Emerging Memory Technologies and Hybrid Memories

◼ Cache Management

◼ Interconnects

◼ You can find many materials on these at my online lectures

❑ https://people.inf.ethz.ch/omutlu/teaching.html
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Inside A DRAM Chip
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DRAM Module and Chip
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Goals

• Cost

• Latency

• Bandwidth

• Parallelism

• Power

• Energy

• Reliability

• …
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DRAM Chip
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Sense Amplifier
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Sense Amplifier – Two Stable States
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Sense Amplifier Operation
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DRAM Cell – Capacitor
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Capacitor to Sense Amplifier
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DRAM Cell Operation
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DRAM Subarray – Building Block for 
DRAM Chip
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DRAM Bank
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DRAM Chip
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DRAM Operation
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Some More Suggested Readings
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Some Key Readings on DRAM (I)

◼ DRAM Organization and Operation

❑ Lee et al., “Tiered-Latency DRAM: A Low Latency and Low 
Cost DRAM Architecture,” HPCA 2013.

https://people.inf.ethz.ch/omutlu/pub/tldram_hpca13.pdf

❑ Kim et al., “A Case for Subarray-Level Parallelism (SALP) in 
DRAM,” ISCA 2012.

https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf

❑ Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-
Stacked Memory Bandwidth at Low Cost,” ACM TACO 2016.

https://people.inf.ethz.ch/omutlu/pub/smla_high-bandwidth-
3d-stacked-memory_taco16.pdf
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Some Key Readings on DRAM (II)
◼ DRAM Refresh

❑ Liu et al., “RAIDR: Retention-Aware Intelligent DRAM 
Refresh,” ISCA 2012. 
https://people.inf.ethz.ch/omutlu/pub/raidr-dram-
refresh_isca12.pdf

❑ Chang et al., “Improving DRAM Performance by Parallelizing 
Refreshes with Accesses,” HPCA 2014.

https://people.inf.ethz.ch/omutlu/pub/dram-access-refresh-
parallelization_hpca14.pdf

❑ Patel et al., “The Reach Profiler (REAPER): Enabling the 
Mitigation of DRAM Retention Failures via Profiling at 
Aggressive Conditions,” ISCA 2017.

https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-
profiling-lpddr4_isca17.pdf
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Reading on Simulating Main Memory

◼ How to evaluate future main memory systems?

◼ An open-source simulator and its brief description

◼ Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 
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Some Key Readings on Memory Control 1
❑ Mutlu+, “Parallelism-Aware Batch Scheduling: Enhancing both Performance 

and Fairness of Shared DRAM Systems,” ISCA 2008. 

https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf

❑ Kim et al., “Thread Cluster Memory Scheduling: Exploiting Differences in 
Memory Access Behavior,” MICRO 2010.

https://people.inf.ethz.ch/omutlu/pub/tcm_micro10.pdf

❑ Subramanian et al., “BLISS: Balancing Performance, Fairness and 
Complexity in Memory Access Scheduling,” TPDS 2016.

https://people.inf.ethz.ch/omutlu/pub/bliss-memory-scheduler_ieee-
tpds16.pdf

❑ Usui et al., “DASH: Deadline-Aware High-Performance Memory Scheduler 
for Heterogeneous Systems with Hardware Accelerators,” TACO 2016.

https://people.inf.ethz.ch/omutlu/pub/dash_deadline-aware-
heterogeneous-memory-scheduler_taco16.pdf
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Some Key Readings on Memory Control 2
❑ Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning 

Approach,” ISCA 2008. 

https://people.inf.ethz.ch/omutlu/pub/rlmc_isca08.pdf

❑ Ebrahimi et al., “Fairness via Source Throttling: A Configurable and High-
Performance Fairness Substrate for Multi-Core Memory Systems,” ASPLOS 
2010.

https://people.inf.ethz.ch/omutlu/pub/fst_asplos10.pdf

❑ Subramanian et al., “The Application Slowdown Model: Quantifying and 
Controlling the Impact of Inter-Application Interference at Shared Caches 
and Main Memory,” MICRO 2015.

https://people.inf.ethz.ch/omutlu/pub/application-slowdown-
model_micro15.pdf

❑ Lee et al., “Decoupled Direct Memory Access: Isolating CPU and IO Traffic 
by Leveraging a Dual-Data-Port DRAM,” PACT 2015.

https://people.inf.ethz.ch/omutlu/pub/decoupled-dma_pact15.pdf
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More Readings

◼ To come as we cover the future topics

◼ Search for “DRAM” or “Memory” in:

❑ https://people.inf.ethz.ch/omutlu/projects.htm
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Evaluating New Ideas 

for New (Memory) Architectures



Potential Evaluation Methods

◼ How do we assess an idea will improve a target metric X?

◼ A variety of evaluation methods are available:

❑ Theoretical proof

❑ Analytical modeling/estimation

❑ Simulation (at varying degrees of abstraction and accuracy)

❑ Prototyping with a real system (e.g., FPGAs)

❑ Real implementation
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The Difficulty in Architectural Evaluation

◼ The answer is usually workload dependent

❑ E.g., think caching

❑ E.g., think pipelining

❑ E.g., think any idea we talked about (RAIDR, Mem. Sched., …)

◼ Workloads change

◼ System has many design choices and parameters

❑ Architect needs to decide many ideas and many parameters 
for a design

❑ Not easy to evaluate all possible combinations!

◼ System parameters may change
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Simulation: The Field of Dreams



Dreaming and Reality

◼ An architect is in part a dreamer, a creator

◼ Simulation is a key tool of the architect

◼ Simulation enables

❑ The exploration of many dreams

❑ A reality check of the dreams

❑ Deciding which dream is better

◼ Simulation also enables

❑ The ability to fool yourself with false dreams
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Why High-Level Simulation?

◼ Problem: RTL simulation is intractable for design space 
exploration → too time consuming to design and evaluate

❑ Especially over a large number of workloads

❑ Especially if you want to predict the performance of a good 
chunk of a workload on a particular design

❑ Especially if you want to consider many design choices

◼ Cache size, associativity, block size, algorithms

◼ Memory control and scheduling algorithms

◼ In-order vs. out-of-order execution

◼ Reservation station sizes, ld/st queue size, register file size, …

◼ …

◼ Goal: Explore design choices quickly to see their impact on 
the workloads we are designing the platform for
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Different Goals in Simulation
◼ Explore the design space quickly and see what you want to

❑ potentially implement in a next-generation platform

❑ propose as the next big idea to advance the state of the art

❑ the goal is mainly to see relative effects of design decisions

◼ Match the behavior of an existing system so that you can

❑ debug and verify it at cycle-level accuracy

❑ propose small tweaks to the design that can make a difference in 
performance or energy

❑ the goal is very high accuracy

◼ Other goals in-between:

❑ Refine the explored design space without going into a full 
detailed, cycle-accurate design

❑ Gain confidence in your design decisions made by higher-level 
design space exploration
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Tradeoffs in Simulation

◼ Three metrics to evaluate a simulator

❑ Speed

❑ Flexibility

❑ Accuracy

◼ Speed: How fast the simulator runs (xIPS, xCPS, slowdown)

◼ Flexibility: How quickly one can modify the simulator to 
evaluate different algorithms and design choices?

◼ Accuracy: How accurate the performance (energy) numbers 
the simulator generates are vs. a real design (Simulation 
error)

◼ The relative importance of these metrics varies depending 
on where you are in the design process (what your goal is)
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Trading Off Speed, Flexibility, Accuracy

◼ Speed & flexibility affect:

❑ How quickly you can make design tradeoffs

◼ Accuracy affects:

❑ How good your design tradeoffs may end up being

❑ How fast you can build your simulator (simulator design time)

◼ Flexibility also affects:

❑ How much human effort you need to spend modifying the 
simulator

◼ You can trade off between the three to achieve design 
exploration and decision goals
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High-Level Simulation

◼ Key Idea: Raise the abstraction level of modeling to give up 
some accuracy to enable speed & flexibility (and quick 
simulator design)

◼ Advantage

+ Can still make the right tradeoffs, and can do it quickly

+ All you need is modeling the key high-level factors, you can 
omit corner case conditions

+ All you need is to get the “relative trends” accurately, not 
exact performance numbers

◼ Disadvantage

-- Opens up the possibility of potentially wrong decisions

-- How do you ensure you get the “relative trends” accurately?
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Simulation as Progressive Refinement

◼ High-level models (Abstract, C)

◼ …

◼ Medium-level models (Less abstract)

◼ …

◼ Low-level models (RTL with everything modeled)

◼ …

◼ Real design

◼ As you refine (go down the above list)

❑ Abstraction level reduces

❑ Accuracy (hopefully) increases (not necessarily, if not careful)

❑ Flexibility reduces; Speed likely reduces except for real design

❑ You can loop back and fix higher-level models
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Making The Best of Architecture

◼ A good architect is comfortable at all levels of refinement

❑ Including the extremes

◼ A good architect knows when to use what type of 
simulation 

❑ And, more generally, what type of evaluation method

◼ Recall: A variety of evaluation methods are available:

❑ Theoretical proof

❑ Analytical modeling

❑ Simulation (at varying degrees of abstraction and accuracy)

❑ Prototyping with a real system (e.g., FPGAs)

❑ Real implementation
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Ramulator: A Fast and Extensible 

DRAM Simulator 

[IEEE Comp Arch Letters’15]
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Ramulator Motivation

◼ DRAM and Memory Controller landscape is changing

◼ Many new and upcoming standards

◼ Many new controller designs

◼ A fast and easy-to-extend simulator is very much needed
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Ramulator

◼ Provides out-of-the box support for many DRAM standards:

❑ DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

◼ ~2.5X faster than fastest open-source simulator

◼ Modular and extensible to different standards
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Case Study: Comparison of DRAM Standards
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Across 22 
workloads, 
simple CPU 
model



Ramulator Paper and Source Code

◼ Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 

◼ Source code is released under the liberal MIT License

❑ https://github.com/CMU-SAFARI/ramulator
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Optional Assignment

◼ Review the Ramulator paper

❑ Email me your review

◼ Download and run Ramulator

❑ Compare DDR3, DDR4, SALP, HBM for the libquantum
benchmark (provided in Ramulator repository)

❑ Email me your report

◼ This may help you get into memory systems research 
quickly
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