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The Main Memory System

n Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits
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Memory System: A Shared Resource View

5

Storage

Most of the system is dedicated to storing and moving data 



State of the Main Memory System
n Recent technology, architecture, and application trends

q lead to new requirements
q exacerbate old requirements

n DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements

n Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging

n We need to rethink the main memory system
q to fix DRAM issues and enable emerging technologies 
q to satisfy all requirements
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Major Trends Affecting Main Memory (I)
n Need for main memory capacity, bandwidth, QoS increasing 

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (II)
n Need for main memory capacity, bandwidth, QoS increasing 

q Multi-core: increasing number of cores/agents
q Data-intensive applications: increasing demand/hunger for data
q Consolidation: cloud computing, GPUs, mobile, heterogeneity

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending 
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Example: The Memory Capacity Gap

n Memory capacity per core expected to drop by 30% every two years
n Trends worse for memory bandwidth per core!
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Core count doubling ~ every 2 years 
DRAM DIMM capacity doubling ~ every 3 years

Lim et al., ISCA 2009
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DRAM Is Critical for Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]
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Major Trends Affecting Main Memory (III)
n Need for main memory capacity, bandwidth, QoS increasing 

n Main memory energy/power is a key system design concern
q ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 

IEEE Computer’03] >40% power in DRAM [Ware, HPCA’10][Paul,ISCA’15]
q DRAM consumes power even when not used (periodic refresh)

n DRAM technology scaling is ending 
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Energy Waste in Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


Major Trends Affecting Main Memory (IV)
n Need for main memory capacity, bandwidth, QoS increasing 

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending 
q ITRS projects DRAM will not scale easily below X nm 
q Scaling has provided many benefits: 

n higher capacity (density), lower cost, lower energy
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Major Trends Affecting Main Memory (V)
n DRAM scaling has already become increasingly difficult

q Increasing cell leakage current, reduced cell reliability, 
increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

q Difficult to significantly improve capacity, energy

n Emerging memory technologies are promising
3D-Stacked DRAM higher bandwidth smaller capacity
Reduced-Latency DRAM
(e.g., RLDRAM, TL-DRAM) lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4) lower power higher latency

higher cost
Non-Volatile Memory (NVM) 
(e.g., PCM, STTRAM, ReRAM, 
3D Xpoint)

larger capacity
higher latency

higher dynamic power 
lower endurance
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q Increasing cell leakage current, reduced cell reliability, 
increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

q Difficult to significantly improve capacity, energy

n Emerging memory technologies are promising
3D-Stacked DRAM higher bandwidth smaller capacity
Reduced-Latency DRAM
(e.g., RL/TL-DRAM, FLY-RAM) lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4, Voltron) lower power higher latency

higher cost
Non-Volatile Memory (NVM) 
(e.g., PCM, STTRAM, ReRAM, 3D 
Xpoint)

larger capacity
higher latency

higher dynamic power 
lower endurance
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Major Trend: Hybrid Main Memory

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



Foreshadowing

Main Memory Needs 
Intelligent Controllers
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Industry Is Writing Papers About It, Too
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Call for Intelligent Memory Controllers
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Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion
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Maslow’s (Human) Hierarchy of Needs

n We need to start with reliability and security…

25

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.

Source: By User:Factoryjoe - Mazlow's Hierarchy of Needs.svg, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7964065



How Reliable/Secure/Safe is This Bridge?

26Source: http://www.technologystudent.com/struct1/tacom1.png



Collapse of the “Galloping Gertie”

27Source: AP



How Secure Are These People?

28Source: https://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg

Security is about preventing unforeseen consequences



The DRAM Scaling Problem
n DRAM stores charge in a capacitor (charge-based memory)

q Capacitor must be large enough for reliable sensing
q Access transistor should be large enough for low leakage and high 

retention time
q Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

n DRAM capacity, cost, and energy/power hard to scale
29



As Memory Scales, It Becomes Unreliable
n Data from all of Facebook’s servers worldwide
n Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.

30

Intuition:quadraticincrease 
in

capacity



Large-Scale Failure Analysis of DRAM Chips
n Analysis and modeling of memory errors found in all of 

Facebook’s server fleet

n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data 
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 
2015. 
[Slides (pptx) (pdf)] [DRAM Error Model] 

31

http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://2015.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pdf
https://www.ece.cmu.edu/~safari/tools/memerr/index.html


Infrastructures to Understand Such Issues

32

An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques 
for DRAM Retention Failures: A 
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing 
Them: An Experimental Study of DRAM 
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM 
Timing for the Common-Case (Lee et al., 
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf


Infrastructures to Understand Such Issues

33Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs



SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies,” HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


SoftMC

n https://github.com/CMU-SAFARI/SoftMC

35

https://github.com/CMU-SAFARI/SoftMC


Data Retention in Memory [Liu et al., ISCA 2013]

n Retention Time Profile of DRAM looks like this:

36

Location dependent
Stored value pattern dependent

Time dependent



Takeaway

Main Memory Needs 
Intelligent Controllers
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More on DRAM Refresh (I)
n Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2012. 
Slides (pdf)

38

http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf


More on DRAM Refresh (II)
n Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,

"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf


More on DRAM Refresh (III)

40

n Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM 
Retention Failures via Profiling at Aggressive Conditions"
Proceedings of the 44th International Symposium on Computer 
Architecture (ISCA), Toronto, Canada, June 2017.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

n First experimental analysis of (mobile) LPDDR4 chips
n Analyzes the complex tradeoff space of retention time profiling
n Idea: enable fast and robust profiling at higher refresh intervals & temperatures

https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf
http://isca17.ece.utoronto.ca/doku.php
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pdf


A Curious Discovery [Kim et al., ISCA 2014]

One can 
predictably induce errors 

in most DRAM memory chips
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DRAM RowHammer

A simple hardware failure mechanism 
can create a widespread 

system security vulnerability
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Row of Cells
Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row
Hammered Row

Repeatedly reading a row enough times (before memory gets 
refreshed) induces disturbance errors in adjacent rows in 
most real DRAM chips you can buy today

OpenedClosed
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Modern DRAM is Prone to Disturbance Errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C company

Up to
1.0×107

errors 

Up to
2.7×106

errors 

Up to
3.3×105

errors 
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Most DRAM Modules Are Vulnerable

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
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Recent DRAM Is More Vulnerable
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First
Appearance

Recent DRAM Is More Vulnerable



47
All modules from 2012–2013	are vulnerable

First
Appearance

Recent DRAM Is More Vulnerable



CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)  
clflush (Y)
mfence
jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer
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A real reliability & security issue 

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec

53Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014.

Observed Errors in Real Systems



One Can Take Over an Otherwise-Secure System

54

Exploiting the DRAM rowhammer bug to 
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them: 
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


RowHammer Security Attack Example
n “Rowhammer” is a problem with some recent DRAM devices in which 

repeatedly accessing a row of memory can cause bit flips in adjacent rows 
(Kim et al., ISCA 2014). 
q Flipping Bits in Memory Without Accessing Them: An Experimental Study of 

DRAM Disturbance Errors (Kim et al., ISCA 2014)

n We tested a selection of laptops and found that a subset of them 
exhibited the problem. 

n We built two working privilege escalation exploits that use this effect. 
q Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

n One exploit uses rowhammer-induced bit flips to gain kernel privileges on 
x86-64 Linux when run as an unprivileged userland process. 

n When run on a machine vulnerable to the rowhammer problem, the 
process was able to induce bit flips in page table entries (PTEs). 

n It was able to use this to gain write access to its own page table, and 
hence gain read-write access to all of physical memory.

55Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html


Security Implications
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Security Implications
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More Security Implications (I)

58
Source: https://lab.dsst.io/32c3-slides/7197.html

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

“We can gain unrestricted access to systems of website visitors.”

https://lab.dsst.io/32c3-slides/7197.html


More Security Implications (II)

59
Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16 

“Can gain control of a smart phone deterministically”



More Security Implications (III)
n Using an integrated GPU in a mobile system to remotely 

escalate privilege via the WebGL interface 

60



More Security Implications (IV)
n Rowhammer over RDMA (I)
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More Security Implications (V)
n Rowhammer over RDMA (II)
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More Security Implications?
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Apple’s Patch for RowHammer
n https://support.apple.com/en-gb/HT204934

HP, Lenovo, and other vendors released similar patches

https://support.apple.com/en-gb/HT204934


Our Solution to RowHammer
• PARA: Probabilistic Adjacent Row Activation

• Key Idea
– After closing a row, we activate (i.e., refresh) one of 

its neighbors with a low probability: p	=	0.005

• Reliability Guarantee
– When p=0.005, errors in one year: 9.4×10-14

– By adjusting the value of p, we can vary the strength 
of protection against errors

65



Advantages of PARA
• PARA refreshes rows infrequently

– Low power
– Low performance-overhead

• Average slowdown: 0.20% (for 29 benchmarks)
• Maximum slowdown: 0.75%

• PARA is stateless
– Low cost
– Low complexity

• PARA is an effective and low-overhead solution 
to prevent disturbance errors

66



Requirements for PARA
• If implemented in DRAM chip (done today)

– Enough slack in timing and refresh parameters
– Plenty of slack today: 

• Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common Case,” HPCA 2015.
• Chang et al., “Understanding Latency Variation in Modern DRAM Chips,” SIGMETRICS 2016.
• Lee et al., “Design-Induced Latency Variation in Modern DRAM Chips,” SIGMETRICS 2017.
• Chang et al., “Understanding Reduced-Voltage Operation in Modern DRAM Devices,” SIGMETRICS 

2017.
• Ghose et al., “What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed 

Experimental Study,” SIGMETRICS 2018.

• If implemented in memory controller
– Better coordination between memory controller and 

DRAM
– Memory controller should know which rows are 

physically adjacent 67



Probabilistic Activation in Real Life (I)

68https://twitter.com/isislovecruft/status/1021939922754723841

https://twitter.com/isislovecruft/status/1021939922754723841


Probabilistic Activation in Real Life (II)

69https://twitter.com/isislovecruft/status/1021939922754723841

https://twitter.com/isislovecruft/status/1021939922754723841


More on RowHammer Analysis

70

n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer 
Architecture (ISCA), Minneapolis, MN, June 2014. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code 
and Data]

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer


Future of Memory Reliability

71https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

n Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Lausanne, Switzerland, March 2017. 
[Slides (pptx) (pdf)] 

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf


A RowHammer Retrospective
n Onur Mutlu and Jeremie Kim,

"RowHammer: A Retrospective"
IEEE Transactions on Computer-Aided Design of Integrated 
Circuits and Systems (TCAD) Special Issue on Top Picks in 
Hardware and Embedded Security, 2019.
[Preliminary arXiv version]
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https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf


Industry Is Writing Papers About It, Too

73



Call for Intelligent Memory Controllers
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Aside: Intelligent Controller for NAND Flash

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm
NAND Flash

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, 
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, 
PIEEE 2017, HPCA 2018, SIGMETRICS 2018]



Aside: Intelligent Controller for NAND Flash

76

https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642


Takeaway

Main Memory Needs 
Intelligent Controllers
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Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications 

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion
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Three Key Systems Trends

1. Data access is a major bottleneck
q Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
q Especially true for off-chip to on-chip movement
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The Need for More Memory Performance

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



Do We Want This?

81Source: V. Milutinovic



Or This?

82Source: V. Milutinovic



Maslow’s (Human) Hierarchy of Needs, Revisited

83

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Everlasting energy

Source: https://www.simplypsychology.org/maslow.html

Maslow, “A Theory of Human Motivation,” 
Psychological Review, 1943. 

Maslow, “Motivation and Personality,”
Book, 1954-1970.



Challenge and Opportunity for Future

High Performance,
Energy Efficient,

Sustainable
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The Problem

Data access is the major performance and energy bottleneck

Our current
design principles 

cause great energy waste
(and great performance loss)
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The Problem

Processing of data 
is performed 

far away from the data
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A Computing System
n Three key components
n Computation 
n Communication
n Storage/memory

87

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



A Computing System
n Three key components
n Computation 
n Communication
n Storage/memory

88

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



Today’s Computing Systems
n Are overwhelmingly processor centric
n All data processed in the processor à at great system cost
n Processor is heavily optimized and is considered the master
n Data storage units are dumb and are largely unoptimized

(except for some that are on the processor die)
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Yet …
n “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Performance Perspective

n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction 
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance 
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February 
2003. Slides (pdf)
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf


The Performance Perspective (Today)
n All of Google’s Data Center Workloads (2015): 

92Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



The Performance Perspective (Today)
n All of Google’s Data Center Workloads (2015): 

93Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



Perils of Processor-Centric Design
n Grossly-imbalanced systems

q Processing done only in one place
q Everything else just stores and moves data: data moves a lot
à Energy inefficient 
à Low performance
à Complex

n Overly complex and bloated processor (and accelerators)
q To tolerate data access from memory
q Complex hierarchies and mechanisms 
à Energy inefficient 
à Low performance
à Complex
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Perils of Processor-Centric Design

95

Most of the system is dedicated to storing and moving data 



The Energy Perspective

96

Dally, HiPEAC 2015



Data Movement vs. Computation Energy

97

Dally, HiPEAC 2015

A memory access consumes ~1000X 
the energy of a complex addition 



Data Movement vs. Computation Energy
n Data movement is a major system energy bottleneck

q Comprises 41% of mobile system energy during web browsing [2]
q Costs ~115 times as much energy as an ADD operation [1, 2]
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[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)
[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)



Energy Waste in Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


We Do Not Want to Move Data!

100

Dally, HiPEAC 2015

A memory access consumes ~1000X 
the energy of a complex addition 



We Need A Paradigm Shift To …

n Enable computation with minimal data movement

n Compute where it makes sense (where data resides)

n Make computing architectures more data-centric
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Goal: Processing Inside Memory

n Many questions … How do we design the:
q compute-capable memory & controllers?
q processor chip and in-memory units?
q software and hardware interfaces?
q system software and languages?
q algorithms?

Cache

Processor
Core

Interconnect

Memory
Database

Graphs

Media 
Query

Results

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons



Why In-Memory Computation Today?

n Push from Technology
q DRAM Scaling at jeopardy 
à Controllers close to DRAM
à Industry open to new memory architectures

n Pull from Systems and Applications
q Data access is a major system and application bottleneck
q Systems are energy limited
q Data movement much more energy-hungry than computation
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Dally, HiPEAC 2015



Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications 

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion
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Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory
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Approach 1: Minimally Changing DRAM
n DRAM has great capability to perform bulk data movement and 

computation internally with small changes
q Can exploit internal connectivity to move data
q Can exploit analog computation capability
q …

n Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
q RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)
q Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
q Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial 

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)
q "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity 

DRAM Technology” (Seshadri et al., MICRO 2017)
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


Starting Simple: Data Copy and Initialization

107

Forking

00000
00000
00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration
Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]



Today’s Systems: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

1081046ns, 3.6uJ    (for 4KB page copy via DMA)



Future Systems: In-Memory Copy

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

1091046ns, 3.6uJ à 90ns, 0.04uJ



RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer 
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
Idea: Two consecutive ACTivates



RowClone: Latency and Energy Savings
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Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013.



More on RowClone
n Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. 
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and 
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session 
Slides (pptx) (pdf)] [Poster (pptx) (pdf)] 
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf


Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator



In-Memory Bulk Bitwise Operations
n We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
n At low cost
n Using analog computation capability of DRAM

q Idea: activating multiple rows performs computation
n 30-60X performance and energy improvement

q Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations 
Using Commodity DRAM Technology,” MICRO 2017.

n New memory technologies enable even more opportunities
q Memristors, resistive RAM, phase change mem, STT-MRAM, …
q Can operate on data with minimal movement
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In-DRAM AND/OR: Triple Row Activation
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½VDD

½VDD

dis

A

B

C

Final State
AB + BC + AC

½VDD+δ

C(A + B) + 
~C(AB)en

0

VDD

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.



In-DRAM NOT: Dual Contact Cell

116

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Idea: 
Feed the 

negated value 
in the sense amplifier

into a special row



Performance: In-DRAM Bitwise Operations

117

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Energy of In-DRAM Bitwise Operations

118

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Ambit vs. DDR3: Performance and Energy
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Performance Improvement Energy Reduction

32X 35X

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



Bulk Bitwise Operations in Workloads

[1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017



Example Data Structure: Bitmap Index

n Alternative to B-tree and its variants
n Efficient for performing range queries and joins
n Many bitwise operations to perform a query
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Performance: Bitmap Index on Ambit

122
Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

>5.4-6.6X Performance Improvement



Performance: BitWeaving on Ambit

123

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

>4-12X Performance Improvement



More on In-DRAM Bulk AND/OR

n Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015. 
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal


More on Ambit

n Vivek Seshadri et al., “Ambit: In-Memory Accelerator 
for Bulk Bitwise Operations Using Commodity DRAM 
Technology,” MICRO 2017.
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


More on In-DRAM Bulk Bitwise Execution
n Vivek Seshadri and Onur Mutlu,

"In-DRAM Bulk Bitwise Execution Engine"
Invited Book Chapter in Advances in Computers, to appear 
in 2020.
[Preliminary arXiv version]
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https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf


Challenge and Opportunity for Future

Computing Architectures
with 

Minimal Data Movement
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Challenge: Intelligent Memory Device

Does memory
have to be

dumb?
128



Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications 

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion
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Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory
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Opportunity: 3D-Stacked Logic+Memory

131

Logic

Memory

Other “True 3D” technologies
under development



DRAM Landscape (circa 2015)

132
Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.



Two Key Questions in 3D-Stacked PIM

n What are the performance and energy benefits of using         
3D-stacked memory as a coarse-grained accelerator?
q By changing the entire system
q By performing simple function offloading

n What is the minimal processing-in-memory support we can 
provide?
q With minimal changes to system and programming
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Graph Processing

134

n Large graphs are everywhere (circa 2015)

n Scalable large-scale graph processing is challenging

36 Million 
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128…

32 Cores

Speedup



Key Bottlenecks in Graph Processing
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for (v: graph.vertices) {
for (w: v.successors) {

w.next_rank += weight * v.rank;
}

}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank

w.next_rank

w.edges

…



Tesseract System for Graph Processing

Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Logic

Memory

Tesseract System for Graph Processing
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Crossbar Network
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PF Buffer

MTP
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Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Communications via
Remote Function Calls



Logic

Memory

Tesseract System for Graph Processing
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Evaluated Systems

HMC-MC
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing Performance

+56% +25%
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms



Tesseract Graph Processing Performance
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Tesseract Graph Processing System Energy
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HMC-OoO Tesseract with Prefetching

Memory Layers Logic Layers Cores

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



More on Tesseract
n Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, 

and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]
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http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf


Two Key Questions in 3D-Stacked PIM

n What are the performance and energy benefits of using         
3D-stacked memory as a coarse-grained accelerator?
q By changing the entire system
q By performing simple function offloading

n What is the minimal processing-in-memory support we can 
provide?
q With minimal changes to system and programming

144



PIM on Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata

Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki 
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data 
Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural 
Support for Programming Languages and Operating 
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


Consumer Devices

Consumer devices are everywhere!

Energy consumption is
a first-class concern in consumer devices



Four Important Workloads

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec



Energy Cost of Data Movement

Data Movement

1st key observation:  62.7% of the total system 
energy is spent on data movement

Potential solution: move computation close to data

Challenge: limited area and energy budget

Processing-In-Memory (PIM)

SoC

DRAML2L1
CPU

CPUCPUCPU
Compute 

Unit 



Using PIM to Reduce Data Movement

2nd key observation: a significant fraction of the
data movement often comes from simple functions

PIM 
Core

PIM 
Accelerator

PIM 
Accelerator

PIM 
Accelerator

We can design lightweight logic to implement
these simple functions in memory

Small embedded
low-power core

Small fixed-function 
accelerators

Offloading to PIM logic reduces energy and improves 
performance, on average, by 55.4% and 54.2%



Workload Analysis

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec



TensorFlow Mobile

57.3% of the inference energy is spent on
data movement

54.4% of the data movement energy comes from 
packing/unpacking and quantization

Inference Prediction



Packing

Reorders elements of matrices to minimize 
cache misses during matrix multiplication

Up to 40% of the
inference energy and 31% of

inference execution time 

Packing’s data movement 
accounts for up to 

35.3% of the inference energy

PackingMatrix Packed Matrix

A simple data reorganization process
that requires simple arithmetic 



Quantization

Converts 32-bit floating point to 8-bit integers to improve 
inference execution time and energy consumption 

Up to 16.8% of the 
inference energy

and 16.1% of 
inference execution time 

Majority of quantization
energy comes from 

data movement

Quantizationfloating point integer

A simple data conversion operation that requires 
shift, addition, and multiplication operations



Normalized Energy 
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Normalized Runtime
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More on PIM for Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


Truly Distributed GPU Processing with PIM?

Logic layer 
SM

Crossbar switch

Vault 
Ctrl

…. Vault 
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack) SM (Streaming Multiprocessor)



Accelerating GPU Execution with PIM (I)
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 

158

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
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Accelerating GPU Execution with PIM (II)
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Haifa, Israel, 
September 2016.
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https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/


Accelerating Linked Data Structures
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/


Accelerating Dependent Cache Misses
n Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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Two Key Questions in 3D-Stacked PIM

n What are the performance and energy benefits of using         
3D-stacked memory as a coarse-grained accelerator?
q By changing the entire system
q By performing simple function offloading

n What is the minimal processing-in-memory support we can 
provide?
q With minimal changes to system and programming
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PEI: PIM-Enabled Instructions (Ideas)
n Goal: Develop mechanisms to get the most out of near-data 

processing with minimal cost, minimal changes to the system, no 
changes to the programming model

n Key Idea 1: Expose each PIM operation as a cache-coherent, 
virtually-addressed host processor instruction (called PEI) that 
operates on only a single cache block
q e.g., __pim_add(&w.next_rank, value) à pim.add r1, (r2)
q No changes sequential execution/programming model
q No changes to virtual memory
q Minimal changes to cache coherence
q No need for data mapping: Each PEI restricted to a single memory module

n Key Idea 2: Dynamically decide where to execute a PEI (i.e., the 
host processor or PIM accelerator) based on simple locality 
characteristics and simple hardware predictors
q Execute each operation at the location that provides the best performance
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Simple PIM Operations as ISA Extensions (II)

164

Main Memory

w.next_rankw.next_rank

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;
}

}
Host Processor

w.next_rankw.next_rank
64 bytes in

64 bytes out

Conventional Architecture



Simple PIM Operations as ISA Extensions (III)
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Main Memory

w.next_rankw.next_rank

Host Processor

value
8 bytes in

0 bytes out

In-Memory Addition

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

__pim_add(&w.next_rank, value);
}

}

pim.add r1, (r2)



PEI: PIM-Enabled Instructions (Example)

166

n Executed either in memory or in the processor: dynamic decision
q Low-cost locality monitoring for a single instruction

n Cache-coherent, virtually-addressed, single cache block only
n Atomic between different PEIs
n Not atomic with normal instructions (use pfence for ordering)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

__pim_add(&w.next_rank, value);
}

}
pfence();

pim.add r1, (r2)

pfence



Example (Abstract) PEI uArchitecture
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PEI: Initial Evaluation Results
n Initial evaluations with 10 emerging data-intensive workloads

q Large-scale graph processing
q In-memory data analytics
q Machine learning and data mining
q Three input sets (small, medium, large)                                                  

for each workload to analyze the impact                                            
of data locality

n Pin-based cycle-level x86-64 simulation

n Performance Improvement and Energy Reduction: 
n 47% average speedup with large input data sets
n 32% speedup with small input data sets
n 25% avg. energy reduction in a single node with large input data sets
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PEI Performance Delta: Large Data Sets
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PEI Energy Consumption
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Simpler PIM: PIM-Enabled Instructions
n Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead, 
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]  

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf


Automatic Code and Data Mapping
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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Automatic Offloading of Critical Code
n Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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Automatic Offloading of Prefetch Mechanisms
n Milad Hashemi, Onur Mutlu, and Yale N. Patt,

"Continuous Runahead: Transparent Hardware Acceleration for 
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on 
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf


Efficient Automatic Data Coherence Support

n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal


Efficient Automatic Data Coherence Support
n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan 

Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators"
Proceedings of the 46th International Symposium on Computer 
Architecture (ISCA), Phoenix, AZ, USA, June 2019.
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https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/


Challenge and Opportunity for Future

Computing Architectures
with 

Minimal Data Movement
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Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion
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Eliminating the Adoption Barriers

How to Enable Adoption 
of Processing in Memory
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Barriers to Adoption of PIM

1. Functionality of and applications & software for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime and compilation systems for adaptive scheduling, 
data mapping, access/sharing control

5. Infrastructures and models to assess benefits and feasibility

180

All can be solved with change of mindset



We Need to Revisit the Entire Stack
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Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

We can get there step by step



PIM Review and Open Problems
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Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory 
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf


PIM Review and Open Problems (II)

183

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"
Invited Article in IBM Journal of Research & Development, Special Issue on 
Hardware for Artificial Intelligence, to appear in November 2019.
[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf


Key Challenge 1: Code Mapping

Logic layer 
SM

Crossbar switch

Vault 
Ctrl

…. Vault 
Ctrl

Logic layer

?

Main GPU

3D-stacked memory
(memory stack)

• Challenge 1: Which operations should be executed 
in memory vs. in CPU?

?
SM (Streaming Multiprocessor)



Key Challenge 2: Data Mapping

Logic layer 
SM

Crossbar switch

Vault 
Ctrl

…. Vault 
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack)

• Challenge 2: How should data be mapped to 
different 3D memory stacks? 

SM (Streaming Multiprocessor)



How to Do the Code and Data Mapping?
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems"
Proceedings of the 43rd International Symposium on Computer 
Architecture (ISCA), Seoul, South Korea, June 2016. 
[Slides (pptx) (pdf)] 
[Lightning Session Slides (pptx) (pdf)] 
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How to Schedule Code?
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel 
Architectures and Compilation Techniques (PACT), Haifa, Israel, 
September 2016.
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https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/


Challenge: Coherence for Hybrid CPU-PIM Apps
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Traditional
coherence

No coherence
overhead



How to Maintain Coherence?

n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal


How to Support Virtual Memory?
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/


How to Design Data Structures for PIM?
n Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,

"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms 
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]
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https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://spaa.acm.org/
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pdf


Simulation Infrastructures for PIM

n Ramulator extended for PIM
q Flexible and extensible DRAM simulator
q Can model many different memory standards and proposals
q Kim+, “Ramulator: A Flexible and Extensible DRAM 

Simulator”, IEEE CAL 2015.
q https://github.com/CMU-SAFARI/ramulator-pim
q https://github.com/CMU-SAFARI/ramulator
q [Source Code for Ramulator-PIM]
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https://github.com/CMU-SAFARI/ramulator-pim
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator-pim


An FPGA-based Test-bed for PIM?

n Hasan Hassan et al., SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf


Simulation Infrastructures for PIM (in SSDs) 
n Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati, 

Saugata Ghose, and Onur Mutlu,
"MQSim: A Framework for Enabling Realistic Studies of 
Modern Multi-Queue SSD Devices"
Proceedings of the 16th USENIX Conference on File and Storage 
Technologies (FAST), Oakland, CA, USA, February 2018.
[Slides (pptx) (pdf)]
[Source Code]
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https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim


Performance & Energy Models for PIM
n Gagandeep Singh, Juan Gomez-Luna, Giovanni Mariani, Geraldo F. 

Oliveira, Stefano Corda, Sander Stujik, Onur Mutlu, and Henk Corporaal,
"NAPEL: Near-Memory Computing Application Performance 
Prediction via Ensemble Learning"
Proceedings of the 56th Design Automation Conference (DAC), Las Vegas, 
NV, USA, June 2019.
[Slides (pptx) (pdf)]
[Poster (pptx) (pdf)]
[Source Code for Ramulator-PIM]
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https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19.pdf
https://dac.com/
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/NAPEL-near-memory-computing-performance-prediction-via-ML_dac19-poster.pdf
https://github.com/CMU-SAFARI/ramulator-pim


New Applications and Use Cases for PIM
n Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 

Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies"
BMC Genomics, 2018.
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.
arxiv.org Version (pdf)
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


Genome Read In-Memory (GRIM) Filter: 
Fast Seed Location Filtering in DNA Read Mapping 

using Processing-in-Memory Technologies

Jeremie Kim, 
Damla Senol, Hongyi Xin, Donghyuk Lee, 

Saugata Ghose, Mohammed Alser, Hasan Hassan, 
Oguz Ergin, Can Alkan, and Onur Mutlu



Executive Summary
n Genome Read Mapping is a very important problem and is the first 

step in many types of genomic analysis
q Could lead to improved health care, medicine, quality of life

n Read mapping is an approximate string matching problem
q Find the best fit of 100 character strings into a 3 billion character dictionary
q Alignment is currently the best method for determining the similarity between 

two strings, but is very expensive

n We propose an in-memory processing algorithm GRIM-Filter for 
accelerating read mapping, by reducing the number of required 
alignments

n We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.
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Google Workloads
for Consumer Devices:

Mitigating Data Movement Bottlenecks

Amirali Boroumand
Saugata Ghose,  Youngsok Kim, Rachata Ausavarungnirun,

Eric Shiu, RahulThakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu



Open Problems: PIM Adoption

Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, Onur Mutlu,
"Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, 
Future Research Directions"
Invited Book Chapter, to appear in 2018.
[Preliminary arxiv.org version]

200https://arxiv.org/pdf/1802.00320.pdf

https://people.inf.ethz.ch/omutlu/acaces2018.html
https://arxiv.org/pdf/1802.00320.pdf
https://arxiv.org/pdf/1802.00320.pdf


PIM Review and Open Problems

201

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory 
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf


PIM Review and Open Problems (II)

202

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"
Invited Article in IBM Journal of Research & Development, Special Issue on 
Hardware for Artificial Intelligence, to appear in November 2019.
[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf


Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion
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Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures
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Challenge and Opportunity for Future

Fundamentally
Low-Latency

(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Computing Architectures
with 

Minimal Data Movement
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Key Takeaway

Main Memory Needs 
Intelligent Controllers
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Concluding Remarks
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A Quote from A Famous Architect
n “architecture […] based upon principle, and not upon 

precedent”
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Precedent-Based Design?
n “architecture […] based upon principle, and not upon 

precedent”
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Principled Design
n “architecture […] based upon principle, and not upon 

precedent”
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The Overarching Principle
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Another Example: Precedent-Based Design

214Source: http://cookiemagik.deviantart.com/art/Train-station-207266944



Principled Design

215Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256



Another Principled Design

216Source: By Martín Gómez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903
Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/



Another Principled Design

217Source: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=172107



Principle Applied to Another Structure

218
Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/
Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0, 
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava

https://commons.wikimedia.org/w/index.php?curid=31493356


The Overarching Principle
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Overarching Principle for Computing?

220Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg



Concluding Remarks

n It is time to design principled system architectures to solve 
the memory problem

n Design complete systems to be balanced, high-performance, 
and energy-efficient, i.e., data-centric (or memory-centric)

n Enable computation capability inside and close to memory

n This can
q Lead to orders-of-magnitude improvements 
q Enable new applications & computing platforms
q Enable better understanding of nature
q …
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The Future of Processing in Memory is Bright

n Regardless of challenges 
q in underlying technology and overlying problems/requirements 

222

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Can enable:

- Orders of magnitude 
improvements

- New applications and 
computing systems

Yet, we have to

- Think across the stack

- Design enabling systems



We Need to Revisit the Entire Stack

223

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

We can get there step by step



If In Doubt, See Other Doubtful Technologies
n A very “doubtful” emerging technology 

q for at least two decades

224https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642


PIM Review and Open Problems
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Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory 
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf


PIM Review and Open Problems (II)

226

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"
Invited Article in IBM Journal of Research & Development, Special Issue on 
Hardware for Artificial Intelligence, to appear in November 2019.
[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf
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Slides Not Covered 
But Could Be Useful

231



Readings, Videos, Reference Materials



Accelerated Memory Course (~6.5 hours)

n ACACES 2018 
q Memory Systems and Memory-Centric Computing Systems
q Taught by Onur Mutlu July 9-13, 2018
q ~6.5 hours of lectures

n Website for the Course including Videos, Slides, Papers
q https://safari.ethz.ch/memory_systems/ACACES2018/
q https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-

HXxomthrpDpMJm05P6J9x

n All Papers are at:
q https://people.inf.ethz.ch/omutlu/projects.htm
q Final lecture notes and readings (for all topics)
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https://safari.ethz.ch/memory_systems/ACACES2018/
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-HXxomthrpDpMJm05P6J9x
https://people.inf.ethz.ch/omutlu/projects.htm


Longer Memory Course (~18 hours)

n Tu Wien 2019 
q Memory Systems and Memory-Centric Computing Systems
q Taught by Onur Mutlu June 12-19, 2019
q ~18 hours of lectures

n Website for the Course including Videos, Slides, Papers
q https://safari.ethz.ch/memory_systems/TUWien2019
q https://www.youtube.com/playlist?list=PL5Q2soXY2Zi_gntM55

VoMlKlw7YrXOhbl

n All Papers are at:
q https://people.inf.ethz.ch/omutlu/projects.htm
q Final lecture notes and readings (for all topics)
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https://safari.ethz.ch/memory_systems/TUWien2019
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Some Overview Talks
https://www.youtube.com/watch?v=kgiZlSOcGFM&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl

n Future Computing Architectures
q https://www.youtube.com/watch?v=kgiZlSOcGFM&list=PL5Q2soXY2Zi8D_5MG

V6EnXEJHnV2YFBJl&index=1

n Enabling In-Memory Computation
q https://www.youtube.com/watch?v=oHqsNbxgdzM&list=PL5Q2soXY2Zi8D_5M

GV6EnXEJHnV2YFBJl&index=7

n Accelerating Genome Analysis
q https://www.youtube.com/watch?v=hPnSmfwu2-

A&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=9

n Rethinking Memory System Design
q https://www.youtube.com/watch?v=F7xZLNMIY1E&list=PL5Q2soXY2Zi8D_5MG

V6EnXEJHnV2YFBJl&index=3
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Reference Overview Paper I
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Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory 
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf


Reference Overview Paper II

Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, Onur Mutlu,
"Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, 
Future Research Directions"
Invited Book Chapter, to appear in 2018.
[Preliminary arxiv.org version]

237https://arxiv.org/pdf/1802.00320.pdf

https://people.inf.ethz.ch/omutlu/acaces2018.html
https://arxiv.org/pdf/1802.00320.pdf
https://arxiv.org/pdf/1802.00320.pdf


Reference Overview Paper III
n Onur Mutlu and Lavanya Subramanian,

"Research Problems and Opportunities in Memory 
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2014/2015. 

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf
http://superfri.org/superfri
https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf


Reference Overview Paper IV

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

n Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Lausanne, Switzerland, March 2017. 
[Slides (pptx) (pdf)] 

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf


Reference Overview Paper V
n Onur Mutlu,

"Memory Scaling: A Systems Architecture 
Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara, 
CA, August 2013. [Slides (pptx) (pdf)]
[Video] [Coverage on StorageSearch] 

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com/
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://www.storagesearch.com/ram-new-thinking.html
https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf


Reference Overview Paper VI

241https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642


Reference Overview Paper VII
n Onur Mutlu and Jeremie Kim,

"RowHammer: A Retrospective"
IEEE Transactions on Computer-Aided Design of Integrated 
Circuits and Systems (TCAD) Special Issue on Top Picks in 
Hardware and Embedded Security, 2019.
[Preliminary arXiv version]
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https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf


Reference Overview Paper VIII
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Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"
Invited Article in IBM Journal of Research & Development, Special Issue on 
Hardware for Artificial Intelligence, to appear in November 2019.
[Preliminary arXiv version]

https://arxiv.org/pdf/1907.12947.pdf

https://arxiv.org/pdf/1907.12947.pdf
https://www.research.ibm.com/journal/
https://arxiv.org/pdf/1907.12947.pdf
https://arxiv.org/pdf/1907.12947.pdf


Related Videos and Course Materials (I)
n Undergraduate Computer Architecture Course Lecture 

Videos (2015, 2014, 2013)
n Undergraduate Computer Architecture Course 

Materials (2015, 2014, 2013)

n Graduate Computer Architecture Course Lecture 
Videos (2018, 2017, 2015, 2013)

n Graduate Computer Architecture Course 
Materials (2018, 2017, 2015, 2013)

n Parallel Computer Architecture Course Materials
(Lecture Videos)
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https://www.youtube.com/playlist?list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/watch?v=zLP_X4wyHbY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgFdD9x7RsjQC4a8KQjmUkQ
https://www.youtube.com/watch?v=BJ87rZCGWU0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s14/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/watch?v=g3yH68hAaSk&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2018/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece740/f15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece740/f13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece742/f12/doku.php?id=lectures
https://www.youtube.com/playlist?feature=edit_ok&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4


Related Videos and Course Materials (II)
n Freshman Digital Circuits and Computer Architecture 

Course Lecture Videos (2018, 2017)
n Freshman Digital Circuits and Computer Architecture 

Course Materials (2018)

n Memory Systems Short Course Materials
(Lecture Video on Main Memory and DRAM Basics)
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https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi_QedyPWtRmFUJ2F8DdYP7l
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http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
https://www.youtube.com/watch?v=ZLCy3pG7Rc0


Some Open Source Tools (I)
n Rowhammer – Program to Induce RowHammer Errors

q https://github.com/CMU-SAFARI/rowhammer
n Ramulator – Fast and Extensible DRAM Simulator

q https://github.com/CMU-SAFARI/ramulator
n MemSim – Simple Memory Simulator

q https://github.com/CMU-SAFARI/memsim
n NOCulator – Flexible Network-on-Chip Simulator

q https://github.com/CMU-SAFARI/NOCulator
n SoftMC – FPGA-Based DRAM Testing Infrastructure

q https://github.com/CMU-SAFARI/SoftMC

n Other open-source software from my group
q https://github.com/CMU-SAFARI/
q http://www.ece.cmu.edu/~safari/tools.html
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https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/memsim
https://github.com/CMU-SAFARI/NOCulator
https://github.com/CMU-SAFARI/SoftMC
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html


Some Open Source Tools (II)
n MQSim – A Fast Modern SSD Simulator 

q https://github.com/CMU-SAFARI/MQSim
n Mosaic – GPU Simulator Supporting Concurrent Applications

q https://github.com/CMU-SAFARI/Mosaic
n IMPICA – Processing in 3D-Stacked Memory Simulator

q https://github.com/CMU-SAFARI/IMPICA
n SMLA – Detailed 3D-Stacked Memory Simulator

q https://github.com/CMU-SAFARI/SMLA
n HWASim – Simulator for Heterogeneous CPU-HWA Systems

q https://github.com/CMU-SAFARI/HWASim

n Other open-source software from my group
q https://github.com/CMU-SAFARI/
q http://www.ece.cmu.edu/~safari/tools.html
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https://github.com/CMU-SAFARI/MQSim
https://github.com/CMU-SAFARI/Mosaic
https://github.com/CMU-SAFARI/IMPICA
https://github.com/CMU-SAFARI/SMLA
https://github.com/CMU-SAFARI/HWASim
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html


More Open Source Tools (III)
n A lot more open-source software from my group

q https://github.com/CMU-SAFARI/
q http://www.ece.cmu.edu/~safari/tools.html
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Referenced Papers

n All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en

https://people.inf.ethz.ch/omutlu/acaces2018.html

249

https://people.inf.ethz.ch/omutlu/projects.htm
http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en
https://people.inf.ethz.ch/omutlu/acaces2018.html


Ramulator: A Fast and Extensible 
DRAM Simulator 

[IEEE Comp Arch Letters’15]
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Ramulator Motivation
n DRAM and Memory Controller landscape is changing
n Many new and upcoming standards
n Many new controller designs
n A fast and easy-to-extend simulator is very much needed
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Ramulator
n Provides out-of-the box support for many DRAM standards:

q DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

n ~2.5X faster than fastest open-source simulator
n Modular and extensible to different standards
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Case Study: Comparison of DRAM Standards

253

Across 22 
workloads, 
simple CPU 
model



Ramulator Paper and Source Code
n Yoongu Kim, Weikun Yang, and Onur Mutlu,

"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 

n Source code is released under the liberal MIT License
q https://github.com/CMU-SAFARI/ramulator
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http://www.computer.org/web/cal
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