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Who Am I?

Onur Mutlu
Professor @ ETH Zurich CS, since September 2015 (officially May 2016)
Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-...
PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD
https://people.inf.ethz.ch/omutlu/

omutlu@gmail.com (Best way to reach me)

Office hours: By appointment (email me)
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Research and Teaching in:

Computer architecture, computer systems, bioinformatics
Memory and storage systems

Hardware security

Fault tolerance

Hardware/software cooperation
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Current Research Focus Areas

Research Focus: Computer architecture, HW/SW, bioinformatics
» Memory and storage (DRAM, flash, emerging), interconnects

* Heterogeneous & parallel systems, GPUs, systems for data analytics
 System/architecture interaction, new execution models, new interfaces
 Hardware security, energy efficiency, fault tolerance, performance

* Biologically inspired systems & system design for bio/medicine

Hterogeneous Persistent Memory/Storage

Processors and
Accelerators Broad research

e iI& 2 spanning apps, systems, logic
B . i with architecture at the center

Graphics and Vision Processing
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Four Key Current Directions

= Fundamentally Secure/Reliable/Safe Architectures

= Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

= Fundamentally Low-Latency Architectures

= | Architectures for Genomics, Medicine, Health

SAFARI



Overview

System design for bioinformatics is a critical problem
a It has large scientific, medical, societal, personal implications

This talk is about accelerating a key step in bioinformatics:
genome sequence analysis

o In particular, read mapping

Many bottlenecks exist in accessing and manipulating huge
amounts of genomic data during analysis

We will cover various recent ideas to accelerate read mapping
o My personal journey since September 2006

SAFARI >



Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory

Future Opportunities: New Sequencing Technologies
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What Is a2 Genome Made Of?

The chromosome is The genes consist of DNA

made up of genes <

L)

/’_,.

Bases
- Adenine
- Cytosine

— Guanine

Chromosome - 23 pairs  Nucleotide
Base

e
Cell A /
Nucleus

SAFARI The discovery of DNA's double-helical structure (Watson+, 1953) 7/




The Central Dogma ot Molecular Biology

=
Protein

Genotypes Phenotypes

Translation
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DNA Under Electron Microscope

human chromosome #12

m, | from Hela’s cell
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DNA Sequencing

Goal:
o Find the complete sequence of A, C, G, T's in DNA.

Challenge:

o There is no machine that takes long DNA as an input, and gives
the complete sequence as output

o All sequencing machines chop DNA into pieces and identify
relatively small pieces (but not how they fit together)

SAFARI 10



Untangling Yarn Balls & DNA Sequencing
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lllumina HiSeq2000
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Complete
Genomics

Oxford Nanopore MinlON

lllumina
NovaSeq
6000

Oxford Nanopore GridlION

... and more! All produce data with
different properties.



The Genomic Era

= 1990-2003: The Human Genome Project (HGP) provides a complete
and accurate sequence of all DNA base pairs that make up the
human genome and finds 20,000 to 25,000 human genes
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The Genomic Era (continued)

development of high-throughput
sequencing (HTS) technologies

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Number of Genomes 2 N N7
Sequenced - & .62,"0(_’0

2014 201 5 2016 2017 Source; IHumina
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High-Throughput Sequencing (HTS)
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High-Throughput Sequencing (HTS)

—_— The sequencer adds the molecule "T”
to all bases near the flow cell surface and

observes the chemical reaction via a CMOS sensor.
If a reaction happens then the base is “A”

CATAGCTGTTTCETGTGTGA AA

G
A
Oligonucieotide length A é é
é A C ;G G
GG peA a8, ATT T
A A SCSAGA ¢cTA 21 aA A
c C GACTG CAC gaAC C
¢ 6 SAGAS Gce ¢ ¢
C é g
C -G

Glass flow cell surface

As a workaround, HTS technologies sequence random short DNA fragments (75-300
basepairs long) of copies of the original molecule.
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High-Throughput Sequencing

Massively parallel sequencing technology
o Illumina, Roche 454, Ion Torrent, SOLID...

Small DNA fragments are first amplified and then

sequenced in parallel, leading to
o High throughput

o High speed

o Low cost
a

Short reads
Amplification step limits the read length since too short or too long
fragments are not amplified well.

Sequencing is done by either reading optical signals as each base is

added, or by detecting hydrogen ions instead of light, leading to:

o Low error rates (relatively)

o Reads lack information about their order and which part of genome
they are originated from

SAFARI 17



TAT‘AATA G

Billions of Short Reads
TATATATACGTACTAGTACGT

TTTAGTACGTACGT
ATACGTACTAGTACGT

I |
G TACGTA Short Read . : Read

ACGTACTAGTACGT
TTAGTACGTACGT
TACGTACTAAAGTACGT
\.TACGTACTAGTACGT
TTTAAAACGTA

GTACTAGTACGT
GGGAGTACGTACGT

OOP=P-P-0D

Reference Genome

!l Sequencing Genome Read Mapping n

Analysis
reference: TTTATCGCTTCCATGACGCAG
readl: ATCGCATCC
read2: TATCGCATC
read3: CATCCATGA
read4: CGCTTCCAT
read5: CCATGACGC
read6: TTCCATGAC

a Variant Calling Scientific Discoveryn



Multiple sequence alignment

PHDHtm = eeeeeemeeeeem oo MMMMMMMMMMMMMMMMMM = — = ===

160826¢€5S T acid 10 ----MasprsscFQSGAGL I”.GP.-.L DI TLVVIMGIAVAIIVEIARIFWEP——— (55)
13541150 T wveole 10 ----MaspxusscFQSGAGL LVVYIGIAVAIMVELAXIFWPP-—-- (55)
RFACO1077 F acid 13 -MrsMaxkononsnFQSGAGL LIIYIGIAMGVIVELAERVEFWRPV--- (358)
1579133¢€ H NRC1 10 ----mssconsccLMSSAGLVIY SVVAVGAFFGLVVLLAQFFA—-———— (53)
RAG221S A fulg 14 nmaxarsxexaxreP’LMSSAGI TILAAGIVTGVLIIILNAYYGLWP- (68)
RPCD1000 P abys 9 —ee-- MaxsxrTiPPTGAG T“.AII-'I I GAVALTLILIIFEIILEVVGPRIFG (56)
RPEO1741 P hori 9 —-e-- maxExrToPPTGAGL DA-BTRATINI T GATALVLILIIFEILLEVVGPRIFG (56€)
AEO0Q0914 M ther 10 ----MaxxoxxrzPPSGAGLVS -lg'I'ET.-S AL QVVVMS ITILAVECLVLRFSG————— (52)
RMJ09857 M jann R 4SERESTCLATSAGL IS : % I HVICGVEVAFVIIEAILTYGREFL——— (353)
15920803 & toko 13 -mMpssxkxxxsrveLASMAGL F FLLIIISIIMVAGVIVASILIPP?—— (58)
AEQOEEEZ2 &S solf 11 -mpssxwxxsrveVMSMAGL 1 IVIGASLALTIIVIVITRLF---—-- (99)
RPROD24S1 P asro 12 --\:PQR.%'Y"GL’JPEVAAGJ.; X DN LT A VVISLATIGLLIAINLLLPPL—— (58)
RAPDO437 A psrn Kpss P IWGAAILVSAWAAAEIF.JPAV" (59)
5803165 H sapi WEFVEVLVMSLLFIASVEMLE IWGKYTRS  (96)
13324684 M nmusc WEHVPVLVMSLLFIAAVEMLE IWGEYTRS (86)
6002114 D mela F VEVLVMSLLFIASVEMLE IWGEYNRS (100)
14574310 C eleg SIGYVPVLVMSLVEIASVE IWGEETRS (81)
1069717¢ Y lipo SVDIVVVMVLSLGFIFSVVALS ILAFKVSTEK (91)
320857 S c=re SLVVLEFLSVGFIFSVIALS LLTEEFTEI (88)
€320932 S cere LVVLFILAVGFIFSVVALEVISEVAGE (82)

Example Question: If I give you a bunch of
sequences, tell me where they are the same
and where they are different.
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The Genetic Similarity Between Species

t

Human ~ Chimpanzee
96%

Human ~ Cat
90%

Human ~ Human
99.9%

Human ~ Cow
80%

Human ~ Banana
50-60%

SAFARI



Metagenomics, genome assembly, de novo sequencing

Question 2: Given a bunch of short sequences,
Can you identify the approximate species cluster

for genomically unknown organisms (bacteria)?

/
A

uncleaned de Bruijn graph

http://math.oregonstate.edu/~koslickd | B
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Billions of Short Reads
ATATATACGTACTAGTACG

AGTACGTACG
ATACGTACTAGTACG
\CG ACGTA
ACGTACTAGTACG

AGTACGTACG
ACGTACTAAAGTACG
ACGTACTAGTACG

AAAACGTA
GTACTAGTACG
GGGAGTACGTACG

Reference Genome

Sequencing Read Mapping

Bottlenecked in Mapping!!

=,

-

Gy GTC .
llumina HiSeqd4000 6, "G4,

300 M -

Gy Gty 0 " 2M
Fenc AN |
BC MERGICRAGR |
S b)Y '\ /3
bases/min

bases/min




The Read Mapping Bottleneck

ACGTACGTACGTACGT
CCCCCCTATATATACGTACTAGTACGT
CGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT
\CGTACGCCCCTACGTA

TATATATACGTACTAGTACGT
"SGACTTTAGTACGTACGT

TATATATACGTACTAAAGTACGT
| TATATATACGTACTAGTACGT
SCGTTTTTAAAACGTA

ATATATACGTACTAGTACGT

"GACGGGGAGTACGTACGT
W ATATATACGTACTAAAGTACGT

Illumina HiSeq4000
3 OO Million 2Milli0n
bases/minute bases/minute

150X slower

SAFARI 23



Read Mapping Execution Time Breakdown

candidate

sAM alignment

printing locations
3% (CAL)

4%

Verificatio
n
[PERCENT
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Read Mapping

= Map many short DNA fragments (reads) to a known
reference genome with some minor differences
allowed

Reference genome

25



Challenges in Read Mapping

Need to find many mappings of each read

o A short read may map to many locations, especially with High-
Throughput DNA Sequencing technologies

o How can we find all mappings efficiently?

Need to tolerate small variances/errors in each read

o Each individual is different: Subject’'s DNA may slightly differ from
the reference (Mismatches, insertions, deletions)

o How can we efficiently map each read with up to e errors present?

Need to map each read very fast (i.e., performance is important)

o Human DNA is 3.2 billion base pairs long - Millions to billions of
reads (State-of-the-art mappers take weeks to map a human’s DNA)

o How can we design a much higher performance read mapper?

26



Read Alignment/Verification

Edit distance is defined as the minimum number of edits
(i.e. insertions, deletions, or substitutions) needed to make
the read exactly match the reference segment.

organization x operation organization x translation
Ref oIIrganization Ref organizlation
Read ation Read tr-an-slation
Ref oIIrganization Ref organ.ization
Read oIIr-a----tion Read tr-an.l-ation

match Ref organization

Celetion Read tr-anslation

- inserton

mismatch



Why Is Read Alignment Slow?

» Quadratic-time dynamic-
programming algorithm(s)

= Data dependencies limit the
computation parallelism

= Entire matrix computed even
though strings may be
dissimilar.

TATAATA G

QOP=P>=1>=O>

Read Alignment




Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory

Future Opportunities: New Sequencing Technologies

SAFARI
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Read Mapping Algorithms: Two Styles

Hash based seed-and-extend (hash table, suffix array, suffix tree)
o Index the “k-mers” in the genome into a hash table (pre-processing)

o When searching a read, find the location of a k-mer in the read; then
extend through alignment

o More sensitive, but slow
o Requires large memory; this can be reduced with cost to run time

Burrows-Wheeler Transform & Ferragina-Manzini Index based
aligners

o BWT is a compression method used to compress the genome index

o Perfect matches can be found very quickly, memory lookup costs
increase for imperfect matches

o Reduced sensitivity

SAFARI



Hash Table Based Read Mappers

= Key Idea
a Preprocess the reference into a Hash Table

o Use Hash Table to map reads

SAFARI
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Hash Table-Based Mappers [Alkan+ Nature Gen’09)

k-mer or 12-mer Location list—where the k-mer
(string of length k) occurs in reference gnome

AAAAAAAAAAAC | 13 | 421 | 412 {765 889
AAAAAAAAAAAT | NULL

CCCCCCcccccc 24 | 459 | 744 | 988 | 989

FTTTTITETTT 36 | 535 [123

Once for a reference

32



Hash Table Based Read Mappers

= Key Idea
o Preprocess the reference into a Hash Table

a Use Hash Table to map reads

33



Hash Table-Based Mappers [Alkan+ Nature Gen'09)

AAAAAAAAAAAACCCCCCCCCCCCTTTTITITITITIT [
~ read
Innnnrr'irid;éty 111 [ k-merS
S
Reference
Hash Table 30 Genome
(HT)

324 |557 |94O |

AAAAAAAAAAAA i = .
N Valid

CCCCCCCCCCCC [zt |fpso | 744 | oms | o0 | mapping

| B
[TTTTTTTTTT] EN ZEESR

Verification/Local Alignment read

34



Advantages of Hash Table Based Mappers

= + Guaranteed to find a// mappings = sensitive
= + Can tolerate up to eerrors

nature |
genetlcs http://mrfast.sourceforge.net/

Personalized copy number and segmental duplication
maps using next-generation sequencing

Can Alkan'-2, Jeffrey M Kidd!, Tomas Marques-Bonet"?, Gozde Aksay', Francesca Antonacci,
Fereydoun Hormozdiari?, Jacob O Kitzman!, Carl Baker!, Maika Malig!, Onur Mutlu’, S Cenk Sahinalp?,
Richard A Gibbs® & Evan E Eichler!»2

Alkan+, "Personalized copy humber and segmental duplication
maps using next-generation sequencing”, Nature Genetics 2009.


http://mrfast.sourceforge.net/
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html

Problem and Goal

= Poor performance of existing read mappers: Very slow
a Verification/alignment takes too long to execute

o Verification requires a memory access for reference genome +
many base-pair-wise comparisons between the reference and
the read (edit distance computation)

Execution | u Verification
time (s) —

m Other

0 5000 10000 15000 20000

= Goal: Speed up the mapper by reducing the cost of
verification

36



Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory

Future Opportunities: New Sequencing Technologies

SAFARI
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Reducing the Cost of Verification

= We observe that most verification (edit distance
computation) calculations are unnecessary

o 1 out of 1000 potential locations passes the verification
process

= We observe that we can get rid of unnecessary verification
calculations by

o Detecting and rejecting early invalid mappings (filtering)
a Reducing the number of potential mappings

38



Key Observations [Xin+, BMC Genomics 2013

Observation 1

o Adjacent k-mers in the read should also be adjacent in the
reference genome

a Read mapper can quickly reject mappings that do not satisfy
this property

Observation 2

o Some k-mers are cheaper to verify than others because they
have shorter location lists (they occur less frequently in the
reference genome)

Mapper needs to examine only e+1 k-mers’ locations to tolerate e
errors

o Read mapper can choose the cheapest e+ k-mers and verify
their locations

39



FastHASH Mechanisms [Xin+, BMC Genomics 2013]

Adjacency Filtering (AF): Rejects obviously invalid

mapping locations at early stage to avoid unnecessary
verifications

Cheap K-mer Selection (CKS): Reduces the absolute
number of potential mapping locations

40



Adjacency Filtering (AF)

Goal: detect and filter out invalid mappings at early stage

Key Insight: For a valid mapping, adjacent k-mers in the
read are also adjacent in the reference genome

TTTT < read

=3[

Reference genome

Valid mapping Invalid mapping

Key Idea: search for adjacent locations in the k-mers’
location lists

a If more than e k-mers fail = there must be more than e
errors - invalid mapping

41



Adjacency Filtering (AF)

wMeeeeeeeeee&mlllmll <~ read
‘ +24
Ihhhhrririd;é'tb 111 & k-mers
Reference
Hash Table S » Genome
(HT) AN
952? | N
AAAAAAAAAAAA 12 ||324 | 557 | 940 : ,'A/AAAAAAAAAAACCCCCCCCCCC(,I [TTTTTTTTTT
CCCCCCCCCCCC 24 459 | 744 | 988 |f989
TTTTTTTTTT] — T ARAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTTT
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FastHASH Mechanisms [Xin+, BMC Genomics 2013]

Adjacency Filtering (AF): Rejects obviously invalid

mapping locations at early stage to avoid unnecessary
verifications

Cheap K-mer Selection (CKS): Reduces the absolute
number of potential mapping locations

43



Cheap K-mer Selection (CKS)

Goal: Reduce the number of potential mappings

Key insight:
o K-mers have different cost to examine: Some k-mers are

chegper as they have fewer locations than others (occur less
frequently in reference genome)

Key idea:
o Sort the k-mers based on their number of locations
o Select the k-mers with fewest locations to verify

44



Cheap K-mer Selection

= e=2 (examine 3 k-mers) read
326 338 326 376 388
cafionss1 1451
2 loc. 2 loc.
Nﬂmber of Logatiqas—
1K loc. 2K loc. 1K loc.
Beapgse Bkanars
Previous work needs FastHASH verifies only:
to verify:
8 locations
3004 locations

45



Methodology

Implemented FastHASH on top of state-of-the-art mapper: mrFAST
o New version mrFAST-2.5.0.0 over mrFAST-2.1.0.6

Tested with real read sets generated from Illumina platform
o 1M reads of a human (160 base pairs)

o 500K reads of a chimpanzee (101 base pairs)

o 500K reads of a orangutan (70 base pairs)

Tested with simulated reads generated from reference genome
o 1M simulated reads of human (180 base pairs)

Evaluation system
o Intel Core i7 Sandy Bridge machine
o 16 GB of main memory

46



FastHASH Speedup

Bl human

— 19 | m chimpanzee
[] orangutan
[] simulated

20

speedup factor over mrFAST 2.1.0.6

e: edit distance 47



Analysis

Reduction of potential mappings with FastHASH

f potential mappings (Log10 Scale)

v
~—

Q\
—

10

(o)

B Number of potential mappings

0 Number of potential mappings with FastHASH

E Number of valid mappings

o
999 Il |77

—

—

99%

99%

FastHASH filters out over 99% of the potential
mappings without sacrificing any valid mappings

Reduction of potential mappings with FastHASH
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FastHASH Conclusion

Problem: Existing read mappers perform poorly in mapping
billions of short reads to the reference genome, in the
presence of errors

Observation: Most of the verification calculations are
unnecessary - filter them out

Key Idea: To reduce the cost of unnecessary verification
o Reject invalid mappings early (Adjacency Filtering)

o Reduce the number of possible mappings to examine (Cheap
K-mer Selection)

Key Result: FastHASH obtains up to 19x speedup over the
state-of-the-art mapper without losing valid mappings

49



More on FastHASH

= Download source code and try for yourself
o Download link to FastHASH

Xin et al. BMC Genomics 2013, 14(Suppl 1):513
http://www.biomedcentral.com/1471-2164/14/51/513
P BMC
Genomics

Accelerating read mapping with FastHASH

Hongyi Xin' Donghyuk Lee' Farhad Hormozdiari®, Samihan Yedkar', Onur Mutlu'”, Can Alkan®

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013
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The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design
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o Exploiting Structure of the Genome
o Exploiting SIMD Instructions
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Future Opportunities: New Sequencing Technologies
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An Example: Shifted Hamming Distance

Bioinformatics, 31(10), 2015, 1553—1560

doi: 10.1093/bioinformatics/btu856

Advance Access Publication Date: 10 January 2015
Original Paper

Sequence analysis

Shifted Hamming distance: a fast and accurate
SIMD-friendly filter to accelerate
alignment verification in read mapping

Hongyi Xin'*, John Greth?, John Emmons?, Gennady Pekhimenko’,
Carl Kingsford?®, Can Alkan** and Onur Mutlu®*

Xin+, "Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter_

to Accelerate Alignment Verification in Read Mapping”, Bioinformatics 2015.
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Shifted Hamming Distance

Key observation:

o If two strings differ by £ edits, then every bp match can be
aligned in at most 2£ shifts.

Key idea:

o Compute “Shifted Hamming Distance”: AND of 2E Hamming
Distances of two strings, to identify invalid mappings

Uses bit-parallel operations that nicely map to SIMD instructions

Key result:

a SHD is 3x faster than SegAn (the best implementation of Gene
Myers’ bit-vector algorithm), with only a 7% false positive rate

o The fastest CPU-based filtering (pre-alignment) mechanism
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Insight: Shifting a String Helps Similarity Search

3 matches

5 mismatches

A

N

B

U

¢-_ I

L

%

To cancel the effect of

deletion, we need to shift to

right direction
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Insight: Shifting a String Helps Similarity Search

7 matches 1 mismatches

1 [|S||T|JA|IN|/B]JU||L
8 N I O
ISTNBULrU:

VV*:

[sTlNB[[ullL]
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Highly Paralle] Matrix Computation

Query

QOP=EP=LD>=-0OP

Reference

CTATAATACG

N //

2 Deletion Hamming masks

: AN -

We need to compute 2E+1
vectors, E=edit distance
threshold

dp[i][]j]= @ if X[i]=Y[]]
1 if X[1]#Y[]]
No data dependencies!

2 Insertion Hamming

masks
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Key Idea of SHD Filtering

Generate 2E+1
masks

AND all masks,
ACCEPT iff number of ‘1’ < Threshold

Amend random zeros:
101 > 111 & 1001 > 1111

Query :GAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
Reference :GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

Hamming Mask :000000000010000000000001111111011110001110110101101111111110001000001111011010010101
1-Deletion Mask :111111111110011111011111000000000000000000000000000000000000000000011000000000000000
2-Deletion Mask :000000001011011100111111111111101111000111011010110111111111000100010011101101001010
3-Deletion Mask :111111111110111011001101110111011000100100111111111111100101100110010110111011101111

l1-Insertion Mask :111111111110111110111111011101100010010011111111111110010110011000101011101110111110
2-Insertion Mask :000000100111110011111111100100011010101001101011111111111110111001111111000111101100
3-Insertion Mask :111111110111011001100011111111101011011111100110010111011111111011101111010111001000

-—-—- Masks after amendment ---

Hamming Mask :000000000010000000000001111111111110001111111101111111111110001000001111111111111111
1-Deletion Mask :111111111111111111111111000000000000000000000000000000000000000000011000000000000000
2-Deletion Mask :000000001111111111111111111111111111000111111111111111111111000100011111111111111110
3-Deletion Mask :111111111111111111111111111111111000111111111111111111111111111111111111111111111111

l1-Insertion Mask :111111111111111111111111111111100011111111111111111111111111111000111111111111111110
2-Insertion Mask :000000111111111111111111111100011111111111111111111111111111111111111111000111111100
3-Insertion Mask :111111111111111111100011111111111111111111111111111111111111111111111111111111111000

AND Mask :000000000010000000000001000000000000000000000000000000000000000000001000000000000000

\GAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

Needleman-Wunsch .
Alignment : LLULCLLIEE TRREEEREEEEE CEEREEEE R e et e e e e e e

\GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG
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Alignment vs. Pre-alignment (Filtering)

Needleman-Wunsch SHD
TATAATA G TATAATACG

0| 1] 2
AIOW A 1“

« Independent vectors can be processed in parallel using
hardware technologies

|dp[i]1[j-1] // Inser. dp[i][j]=|@ if X[i]=Y[]]

dp[i][j]l=1+max|dp[i-1][]j] // Del. |1 if X[i]#Y[]]
|dp[i-1][j-1]// Subs.

Each cell depends on three No data dependencies!

pre-computed cells!
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New Bottleneck: Filtering (Pre-Alignment)

Sequencing generates many reads, each of which
potentially mapping to many locations

9

Filtering (Pre-alignment) eliminates the need to verify/align
read to invalid mapping locations

9

Alignment/verification (costly edit distance computation) is
performed only on reads that pass the filter)

New bottleneck in read mapping becomes the “filtering
(pre-alignment)” step
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Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory

Future Opportunities: New Sequencing Technologies

SAFARI
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Location Filtering

Alighment is expensive
o We need to align millions to billions of reads

M t
' Our goal is to accelerate read mapping
by improving the filtering step

UL 1111111l TGO Lalbll\al\ly

Both methods are used by mappers today, but filtering has
replaced alignment as the bottleneck [xin+, BMc Genomics 2013]
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Ideal Filtering Algorithm

Filter out all
incorrect mappings

Minimal Maximal

False True Reject
Accept Rate

Rate

0 Fs Faster Than
Reject Rate Mapper

Do not filter out any
correct mappings
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Alignment vs. Pre-alignment (Filtering)

Needleman-Wunsch GateKeeper
TATAATACG TATAATACG

0| 1] 2
AIOW A 1“

« Independent vectors can be processed in parallel using
hardware technologies

|dp[i]1[j-1] // Inser. dp[i][j]=|@ if X[i]=Y[]]

dp[i][j]l=1+max|dp[i-1][]j] // Del. |1 if X[i]#Y[]]
|dp[i-1][j-1]// Subs.

Each cell depends on three No data dependencies!

pre-computed cells!
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Our Solution: GateKeeper

st

Alignment Frr B
Filter D FPGA-based

Alignment Filter.

x1012 x103

mappings mappings
- iz

QOP=EP=->P=-0Op>

AT, TACGT AAGTA T
Billions of Short Reads

m High throughput DNA Read Pre-Alignment Filtering Read Alighment
sequencing (HTS) technologies Fast & Low False Positive Rate Slow & Zero False Positives
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GateKeeper Walkthrough

Generate 2E+1
masks

AND all masks,
ACCEPT iff number of ‘1’ < Threshold

Amend random zeros:
101 > 111 & 1001 > 1111

Query :GAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA
Reference :GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

Hamming Mask :000000000010000000000001111111011110001110110101101111111110001000001111011010010101
1-Deletion Mask :111111111110011111011111000000000000000000000000000000000000000000011000000000000000
2-Deletion Mask :000000001011011100111111111111101111000111011010110111111111000100010011101101001010
3-Deletion Mask :111111111110111011001101110111011000100100111111111111100101100110010110111011101111

l1-Insertion Mask :111111111110111110111111011101100010010011111111111110010110011000101011101110111110
2-Insertion Mask :000000100111110011111111100100011010101001101011111111111110111001111111000111101100
3-Insertion Mask :111111110111011001100011111111101011011111100110010111011111111011101111010111001000

-—-—- Masks after amendment ---

Hamming Mask :000000000010000000000001111111111110001111111101111111111110001000001111111111111111
1-Deletion Mask :111111111111111111111111000000000000000000000000000000000000000000011000000000000000
2-Deletion Mask :000000001111111111111111111111111111000111111111111111111111000100011111111111111110
3-Deletion Mask :111111111111111111111111111111111000111111111111111111111111111111111111111111111111

l1-Insertion Mask :111111111111111111111111111111100011111111111111111111111111111000111111111111111110
2-Insertion Mask :000000111111111111111111111100011111111111111111111111111111111111111111000111111100
3-Insertion Mask :111111111111111111100011111111111111111111111111111111111111111111111111111111111000

AND Mask :000000000010000000000001000000000000000000000000000000000000000000001000000000000000

\GAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

Needleman-Wunsch .
Alignment : LLULCLLIEE TRREEEREEEEE CEEREEEE R e et e e e e e e

\GAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG
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GateKeeper Walkthrough (cont’d)

AND all masks,
ACCEPT iff number of ‘1’ < Threshold

« (2E)*(ReadLength) 2-AND
operations.

« (ReadLength/4) 5-input LUT.

« log,ReadlLength-bit counter.

Generate 2E+1 Amend random zeros:
NESS 101 > 111 & 1001 > 1111

 E right-shift registers (length=ReadLength) '
« E left-shift registers (length=ReadLength) |
« (2E+1) * (ReadLength) 2-XOR operatlons ;

VVVVVVl A 4

\_//\_ L l i
(0111100011.10001111 11111100011110

Hamming mask after amending

-
dL

« (2E+1)*(ReadLength) 5-input LUT.




GateKeeper Accelerator Architecture

= Maximum data throughput =~13.3 billion bases/sec

= Can examine 8 (300 bp) or 16 (100 bp) mappings concurrently at 250 MHz

= Occupies 50% (100 bp) to 919% (300 bp) of the FPGA slice LUTs and registers

iAIignment Verification

Alignment Filtering (FPGA)
(CPU/FPGA)

Preprocessing Host (CPU)

nnnnnnnnnnanennaneans S— GateKeeper . >

read#1 read#N

ACTATAATACG

Read Controller

read pairs

(MrFAST #
. \{:’

2K

|

Encoder E¥® oo1

Input stream E
of binary pairs :

GateKeeper
Processing
Core #N

GateKeeper
Processing
Core #1

QOP>=EP>=ED>-HO>0

input reads
(.fastq)

reference
genome (.fasta)

GateKeeper

Mapping Controller

Accepted Alignments
E (correct & false positives)

#lmap#1 | J--+[ Imap.#N |

PCie

SAFARI
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GateKeeper vs. SHD

= FPGA (Xilinx VC709) = Intel SIMD

= Multi-core (parallel) = Single-core (sequential)

= Examines a single = Examines a single
mapping @ 125 MHz mapping @ ~2MHz

= Limited to PCIe Gen3(4x) = Limited to a read length
transfer rate (128 bits @ of 128 bp (SSE register

250MHz) size)
= Amending requires: = Amending requires:
o (2E+1) 5-input LUT. o 4(2E+1) bitwise OR.

o 4(2E+1) packed shuffle.
o 3(2E+1) shift.
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GateKeeper: Speed & Accuracy Results

90x-130x faster filter

than SHD (Xin et al., 2015) and the Adjacency Filter (Xin et al., 2013)

4x lower false accept rate

than the Adjacency Filter (Xin et al., 2013)

10x speedup in read mapping

with the addition of GateKeeper to the mrFAST mapper (Alkan et al., 2009)

Freely available online

github.com/BilkentCompGen/GateKeeper
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https://github.com/BilkentCompGen/GateKeeper
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https://github.com/BilkentCompGen/GateKeeper

Conclusions

FPGA-based pre-alignment greatly speeds up read mapping
o 10x speedup of a state-of-the-art mapper (mrFAST)

FPGA-based pre-alignment can be integrated with the
sequencer

o It can help to hide the complexity and details of the FPGA
o Enables real-time filtering while sequencing
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More on GateKeeper

Download and test for yourself
https://qithub.com/BilkentCompGen/GateKeeper

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating
Pre-Alignment in DNA Short Read Mapping”, Bioinformatics, 2017.

Sequence analysis
GateKeeper: A New Hardware Architecture for

Accelerating Pre-Alignment in DNA Short Read
Mapping

Mohammed Alser!”, Hasan Hassan?, Hongyi Xin?, Oguz Erginz, Onur Mutlu*”, and
Can Alkan'”
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https://github.com/BilkentCompGen/GateKeeper
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf

Next Talk: MAGNET (AACBB 2018)

Key observation: the use of AND operation to check if a zero
(match) exists in a column introduces filtering inaccuracy.

Key Idea: count the consecutive zeros in each mask and
select the longest in a divide-and-conquer approach.

MAGNET is 17x to 105x more accurate than GateKeeper
and SHD.

GAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCC
GAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCC

0000000000000000000000001300000000000001111110111100011101101011011111111100010000(¢11110110100101
0000000000001111111111113300111110111141/000000000000000000000000000000000000000000011000000000000C
000000000000100000000010141011100111131111111101111000111011010110111111111000100030011101101001C
0000000000001011111111113301110110011¢011011101100010010011111111111110010110011003%01101110111011
0000000000011111111111113%01111101111¥410111011000100100111111111111100101100110001¢10111011101111
0000000000100000000010013¥11100111111301001000110101010011010111111111111101110011311110001111011
0000000001011111111111013%10110011000411111111010110111111001100101110111111110111¢1111010111001C

00000000000000000000000010000000000001000000000000000000000000000000000000000000011000000000000C

AAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCC

Frrreerrreerrreerrreerrr cerreerrreer reerrreerrrrerrrrerrrrerrrrer e e e e e e e e et e e e
AAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCC
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Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory

Future Opportunities: New Sequencing Technologies

SAFARI
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Read Mapping & Filtering

= Problem: Heavily bottlenecked by Data Movement

= GateKeeper performance limited by DRAM bandwidth
[Alser+, Bioinformatics 2017]

= Ditto for SHD [Xin+, Bioinformatics 2015]
= Solution: Processing-in-memory can alleviate the bottleneck

= However, we need to design mapping & filtering algorithms
to fit processing-in-memory
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Hash Tables in Read Mapping

Read Sequence (100 bp)

—— X

Alleihilg... Rlegnaigh. Fralse
Negative
Filter

37 140 x
894 1203 §§ x
1564 x

*
.
.....
---------------------------------------------------

SAFARI B



Read Mapping & Filtering in Memory

We need to design
mapping & filtering algorithms
that fit processing-in-memory
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Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI
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GRIM-Filter: Bins

= We partition the genome into large sequences (bins).
Bnx-23 Bin x - 1

»ss GGAAATACGTTCAGTCAGTTGGAAATACGTTTTGGGCGTTACTTCTCAGTACGTACAGTACAGTAAAAATGACAGTAAGAC ...

—_— I —_
Binx -2 Bin x
o Represent each bin with a bitvector Bitvector ‘
that holds the occurrence of all AAAAA |1 AAAAA
permutations of a small string (token) in AAAAC | 0 | existsin
the bin AAAAT 1 bin x
cceee | 1
Q T_o account for matches tr_\at st_raddle cccet (Bl cocer
bins, we employ overlapping bins CCCCG doesn't
= A read will now always completely fall within o | | existin
a single bin GGGGG | 1 bin x
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GRIM-Filter: Bitvectors

Bin x Bitvector
_|
)]
>
@
— :
[ — [— [ —

Q)
_|
)]
. B
N ) B
[ —)
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GRIM-Filter: Bitvectors

bing
AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA mm

Reference
Genome

Storing all bitvectors
requires 4™ x t bits

by by in memory,
CAAAAA | 1 AAAAA | O where t = number
AAAAC | 1 AAAAC | 1 :
of bins.
AAAAG | 0 AAAAG | O
AAAAT | O . :
: : AGAAA | 1
CCCCT | 1 . :
: : GAAAA | 1 ..
tokens { . _ _ _ . o o For bin size ~200,
GACAG | 1 and n =5,
: : . : memory footprint
GCATG | 1 GCATG | 1 ~3.8 GB
TTGCA | 1
LTTTTT |0 TTTTT | 0

SAFARI o



Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI
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GRIM-Filter: Checking a Bin

How GRIM-Filter determines whether to discard potential
match locations in a given bin prior to alignment

INPUT: Read Sequence r
GAACTTGGAGTCTA .- CGAG

o Get tokens

—_— e e e e e e e e o >
~
~
-~
~
____________________
S >
-~
~
\\
-~
\\ \\
-~ ~
~ ~
\\ S \\
~ ~
~ S < \A
| | ~ S
~ \\
\\ \\
n ~ ~b
~
~
tokens \ " S
~
~
~
~
~
~
A

o Match tokens to bitvector

e Read bitvector for bin_num(x)

v

1

- O

= Threshold?

: NV \ES

Discard Send to
Read Mapper
for Sequence

Allgnment

e Sum e Compare
+

S —

o o

SAFARI
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Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI
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Our Proposal: GRIM-Filter

1. Data Structures: Bins & Bitvectors
2. Checking a Bin

3. Integrating GRIM-Filter into a Mapper

SAFARI i



Integrating GRIM-Filter into a Read Mapper

INPUT: All Potential Seed Locations

INPUT: Read Sequence +++ (020128 ). 020131 )ee( 414415 ) e
GAACTTGCGAG » s« GTATT 9 - s

’0 ) S KEEP " KEEP
GRIM_FiIter: l.lOOO10_OIIIO1_O1OIII
Filter Bitmask Generator D—’SCARDl
. J X
210001010 422011010 44 OReference Segment Storage
Seed Location Filter Bitmask reference reference
segment segment
@ 020]3] @ 41 4415
O Read Mapper: Edit-Distance Calculation
Sequence Alignment

v

SAFARI OUTPUT: Correct Mappings



Key Properties of GRIM-Filter

Simple Operations:

o To check a given bin, find the sum of all bits corresponding to
each token in the read

o Compare against threshold to determine whether to align

Highly Parallel: Each bin is operated on independently
and there are many many bins

Memory Bound: Given the frequent accesses to the large
bitvectors, we find that GRIM-Filter is memory bound

These properties together make GRIM-Filter
a good algorithm to be run in 3D-Stacked DRAM

SAFARI 5



3D-Stacked Memory

DRAM Layers
A
|
!| L / | TSVs
d % ///
/
LI /
Logic Layer

3D-Stacked DRAM architecture has extremely high
bandwidth as well as a stacked customizable logic layer

o Logic Layer enables Processing-in-Memory, via high-
bandwidth low-latency access to DRAM layers

o Embed GRIM-Filter operations into DRAM logic layer and
appropriately distribute bitvectors throughout memory

SAFARI
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3D-Stacked Memory

http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png
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3D-Stacked Memory
Micron’s HMC

Micron has working demonstration
components

http://images.anandtech.com/doci/9266/HBMCar_678x452.jpg

http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png




GRIM-Filter in 3D-Stacked DRAM

o
Qv
>
~

Row@:AAAAA
Row[L:IAAAAC
Row2:AAAAG

itvector forinll

Bitvector forinD

B

Bitvector forin
]
o)
itvector forinE—1
A
\JI\
\l

B

? pumi
" RowBuffer |
owiBujfer Logiddayer

Each DRAM layer is organized as an array of banks
o A bank is an array of cells with a row buffer to transfer data

Row@R-1:EITTTTT

X -

The layout of bitvectors in a bank enables filtering many
bins in parallel

SAFARI
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GRIM-Filter in 3D-Stacked DRAM

Per-Vault
CustomBEGRIM-Filterfdlogic

SeediocationFFilterBitmask
Bank -« DRAMELayers . ( §-‘§“
/L/ / & g e
s S S8 |34 g
pZ pumt gl o HI
i Q9| L«
/// .."" ,Vt71ult g :
~ o~ / - <
Loé Fayer < RowiDataRegister

Customized logic for accumulation and comparison
per genome segment

o Low area overhead, simple implementation

o For HBM2, we use 4096 incrementer LUTSs, 7-bit counters, and
comparators in logic layer

SAFARI Details are in [Kim+, BMC Genomics 2018] o1



Methodology

Performance simulated using an in-house 3D-Stacked DRAM
simulator

Evaluate 10 real read data sets (From the 1000 Genomes
Project)
o Each data set consists of 4 million reads of length 100

Evaluate two key metrics
o Performance

o False negative rate
The fraction of locations that pass the filter but result in @ mismatch

Compare against a state-of-the-art filter, FastHASH [xin+, BMC
Genomics 20131 When using mrFAST, but GRIM-Filter can be
used with ANY read mapper
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GRIM-Filter Performance

Time (x1000 seconds)

Benchmarks and their Execution Times
[ FastHASH filter B GRIM-Filter

70
gg ] Sequence Alighment
40 - Error Tolerance (&)
30 n 1 e = 0.05
20 -
e
0
«“‘/"” /\’ﬁ° «’9 ’\’9 «“3’ /\“5b «”9’ «"9’ «”9” «’5& &

1.8x-3.7x performance benefit across real data sets
2.1x average performance benefit

GRIM-Filter gets performance due to its hardware-software co-design

SAFARI .



GRIM-Filter False Negative Rate

Benchmarks and their False Negative Rates
[ 1 FastHASH filter [ GRIM-Filter

Q
= 0,5
) ]
o444 = - - - _ _  _ |Sequence Alighment
) 0'3 Error Tolerance (¢)
> o B
E 0,2 T e - 0-05
(®)]
® 0,1 -
Z N BN BN BN BN BN BN BN BN BN |
O 0,0
N v N A N A2 N A2 N v
2 /\,-\/Q) /\’\/% /\'{/\ /\’{/\ /\'\/cb /\f\/cb /\"\/o) /\’\/o) /\”)Q /\”)Q AQ}Q’QOQ/
IE W WO N N N N O N N N NS

5.6x-6.4x False Negative reduction across real data sets
6.0x average reduction in False Negative Rate

GRIM-Filter utilizes more information available in the read to filter
SAFARI 94



More on GRIM-Filter

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies”

to appear in BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

GRIM-Filter: Fast Seed Location Filtering
in DNA Read Mapping

Using Processing-in-Memory Technologies

Jeremie S. Kim®*, Damla Senol Calil, Hongyi Xin?, Donghyuk Lee?, Saugata Ghose!,

Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan** and Onur Mutlu*®:!
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http://www.biomedcentral.com/bmcgenomics/
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https://arxiv.org/pdf/1711.01177.pdf

Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory

Future Opportunities: New Sequencing Technologies

SAFARI
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Recall: High-Throughput Sequencing

Massively parallel sequencing technology
o Illumina, Roche 454, Ion Torrent, SOLID...

Small DNA fragments are first amplified and then

sequenced in parallel, leading to
o High throughput

o High speed

o Low cost
a

Short reads
Amplification step limits the read length since too short or too long
fragments are not amplified well.

Sequencing is done by either reading optical signals as each base is

added, or by detecting hydrogen ions instead of light, leading to:

o Low error rates (relatively)

o Reads lack information about their order and which part of genome
they are originated from

SAFARI 77



Nanopore Sequencing Technology

Nanopore sequencing is an emerging and a promising

single-molecule DNA sequencing technology
o No amplification — Less limit on read length — Longer read length

First nanopore sequencing device, MinION, made
commercially available by Oxford Nanopore

Technologies (ONT) in May 2014.
o Inexpensive

o Long read length (> 882K bp)

a Portable: Pocket-sized

a Produces data in real-time

SAFARI 78



an emerging and a promising

1cing technology
read length — Longer read length

= First nanopore sequencing device, MinION, made
commercially available by Oxford Nanopore
Technologies (ONT) in May 2014.
o Inexpensive
o Long read length (> 882K bp)
o Portable: Pocket-sized
o Produces data in real-time

?®
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Nanopore Sequencing

£

= Nanopore is a hano-scale hole

= In nanopore sequencers, an ionic current passes through the nanopores

= When the DNA strand passes through the nanopore, the sequencer
measures the the change in current

= This change is used to identify the bases in the strand with the help of
different electrochemical structures of the different bases

SAFARI 100




Advantages of Nanopore Sequencing

Nanopores:

Do notrequire any labeling of the DNA or nucleotide for
detection during sequencing

Rely on the electronic or chemical structure of the different
nucleotides for identification

Allow sequencing very long reads, and

Provide portability, low cost, and high throughput.

SAFARI tot



Challenges ot Nanopore Sequencing

One major drawback: high error rates

Nanopore sequence analysis tools have a critical role to:
o overcome high error rates
o take better advantage of the technology

Faster tools are critically needed to:

o Take better advantage of the real-time data production
capability of MinION
a Enable fast, real-time data analysis

SAFARI 102



Nanopore Genome Assembly Pipeline

Raw signal
data

-
Basecalling

Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano

I

J \\

Read-to-Read Overlap Finding
Tools: GraphMap, Minimap

\

Assembly <€— Assembly

Improved
assembly

Tools: Canu, Miniasm

/

Read Mapping
Tools: BWA-MEM, Minimap, (GraphMap)

Polishing

Tools: Nanopolish, Racon

<4—

\,

J/

DNA reads

Overlaps

Draft assembly

Mappings of reads
against draft
assembly

Figure 1. The analyzed genome assembly pipeline using nanopore

sequence data, with its five steps and the associated tools for each

~ step.
SAFARI
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More on Nanopore Sequencing & Tools
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https://arxiv.org/pdf/1711.08774.pdf

Agenda

The Problem: DNA Read Mapping
o State-of-the-art Read Mapper Design

Algorithmic Acceleration
o Exploiting Structure of the Genome
o Exploiting SIMD Instructions

Hardware Acceleration
o Specialized Architectures
o Processing in Memory

Future Opportunities: New Sequencing Technologies
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Conclusion

System design for bioinformatics is a critical problem
a It has large scientific, medical, societal, personal implications

This talk is about accelerating a key step in bioinformatics:
genome sequence analysis

o In particular, read mapping

We covered various recent ideas to accelerate read mapping
o My personal journey since September 2006

Many future opportunities exist
o Especially with new sequencing technologies

SAFARI 106



Acknowledgments

= Prof. Can Alkan, Bilkent University

= Many students
o Mohammed Alser, Damla Senol Cali, Jeremie Kim
o Hasan Hassan
o Hongyi Xin
Q

= All papers, source code, and more are at:
a https://people.inf.ethz.ch/omutlu/projects.htm

SAFARI 107


https://people.inf.ethz.ch/omutlu/projects.htm

Accelerating Genome Analysis

A Primer on an Ongoing Journey

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
March 8, 2018
E; ETH HAML Seminar
Sstemnse ETHuw ETH:zurich
SAFARI



mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
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Nanopore Sequencing

Basecalling translates the raw signal output of the
nanopore sequencer into bases (A, C, G, T) to generate
DNA reads.

o 1) The raw current signal is divided into discrete blocks (events).
o 2) Each event is decoded into a most-likely set of bases.

Deletions are the dominant error of nanopore sequencing.

o In the ideal case, each consecutive event should differ by one
base. However, in practice, this is not the case because of the
non-stable speed of the translocation.

a Determining the correct length of the homopolymers (/e
repeating stretches of one kind of base, e.g., AAAAAAA) is
challenging.
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3- Highly Accurate Filtering Algorithm (conrd)

MAGNET
j Check for substitutions.

The longest identical subsequence = [(m — E)/(E + 1)].
Extraction & Encapsulation (divide-and-Conquer fashion).

Substitution
Deletion Deletion Deletion
Read : \TTTGGGGTGAGAGTTCTGTAGATGQEATTAGGTCCACTTGGTGCAGAGCTGAGTTCAATTCCG CCTTGTT

ference : \TTTGGGGTGEAGAGTTCTGTAGATGECTATTAGGTCCACTTGGTGCAGAGCTGAGTTCAATTC CCTTGTT

Subs—{%0000000001111101111111111 101111111101111101110011110111111111111110100000000
1-Del —»10010001100000000000000001411101101101110101111111111111011010101)11110101010110

2-Del —2’010110010111111011111111 Not many matches in the first mask 110101111101
3-Del-£§0011110100100011101011011 111101101101110101111111111111011010101L0011101101100

l-Ins«€%0010001110001110101101111 100111111 1111111111110110101100
2-Ins (3—0110010101111101110110101 111101111 38 = [75/4] .01111111p1110111110100
3-Ins «-1110101110111110111011111002102222C_______ _ __ _ _ ___| 0011101101111101100000
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3- Highly Accurate Filtering Algorithm (conrd)

MAGNET
\/ Check for substitutions.

\/ The longest identical subsequence = [(m — E)/(E + 1)].
\/ Extraction & Encapsulation (divide-and-Conquer fashion).

Substitution
Deletion Deletion Deletion
Read : \TTTGGGGTGAGAGTTCTGTAGATGAEATTAGGTCCACTTGGTGCAGAGCTGAGTTCAATTCCGGEE CCTTGTT

ference : \TTTGGGGTGBAGAGTTCTGTAGATGECTATTAGGTCCACTTGGTGCAGAGCTGAGTTCAATTCC CCTTGTT

SUbS-Jl000000000111110111111111 011111111011111011100111101111111111§ 110100000000
l-Del—£5i00100011000000000000000 110110110111010111111111111101101010§ 110101010110
2-Del-13010110010111111011111111 000000000000000000000000000000000000f 1110101111101
3-Del—53001111010010001110101101 111011011011101011111111111110110101y §011101101100
1-Ins«41001000111000111010110111 001111110111100110111101111111111111§ 110110101100

111011111111011111111111011110111111y 110111110100

2-Ins (2—011001010111110111011010
3-Ins «-111010111011111011101111] J1101111011111110100100010101000111018 §111101100000

SA Now divide the problem into two subproblems and repeat ’




3- Highly Accurate Filtering Algorithm (conrd)

MAGNET
‘/- Check for substitutions.

‘/- The longest identical subsequence = [(m — E)/(E + 1)].
\ﬁ Extraction & Encapsulation (divide-and-Conquer fashion).

Substitution
Deletion Deletion Deletion
Read : \TTTGGGGTGAGAGTTCTGTAGATGAEATTAGGTCCACTTGGTGCAGAGCTGAGTTCAATTCCGGEE CCTTGTT

ference : \TTTGGGGTGBAGAGTTCTGTAGATGECTATTAGGTCCACTTGGTGCAGAGCTGAGTTCAATTCC

Subs 111110111111111

1-Del

2-Del 111111011111111
3-Del 010001110101101
1-Ins 000111010110111
2-Ins € 111110111011010

3-Ins 011111011101111
SA Counting the encapsulation bits reveals the number of edits




MAGNET Accelerator
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