
Onur Mutlu 

omutlu@gmail.com  

https://people.inf.ethz.ch/omutlu 

March 8, 2018 

ETH HAML Seminar 

 

Accelerating Genome Analysis 
 

A Primer on an Ongoing Journey 

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu


Who Am I? 

 Onur Mutlu 
 Professor @ ETH Zurich CS, since September 2015 (officially May 2016) 

 Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-… 

 PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD 

 https://people.inf.ethz.ch/omutlu/ 

 omutlu@gmail.com (Best way to reach me) 

 Office hours: By appointment (email me) 
 

 Research and Teaching in: 

 Computer architecture, computer systems, bioinformatics 

 Memory and storage systems 

 Hardware security  

 Fault tolerance 

 Hardware/software cooperation 

 …  

 
2 

https://people.inf.ethz.ch/omutlu/
mailto:omutlu@gmail.com


Research Focus: Computer architecture, HW/SW, bioinformatics 

• Memory and storage (DRAM, flash, emerging), interconnects 

• Heterogeneous & parallel systems, GPUs, systems for data analytics 

• System/architecture interaction, new execution models, new interfaces 

• Hardware security, energy efficiency, fault tolerance, performance  

• Genome sequence analysis & assembly algorithms and architectures 

• Biologically inspired systems & system design for bio/medicine 

Graphics and Vision Processing 

Heterogeneous 

Processors and  

Accelerators 

Hybrid Main Memory 

Persistent Memory/Storage 

Broad research  
spanning apps, systems, logic 
with architecture at the center 

Current Research Focus Areas 



Four Key Current Directions 

 Fundamentally Secure/Reliable/Safe Architectures 

 

 

 Fundamentally Energy-Efficient Architectures 

 Memory-centric (Data-centric) Architectures 

 

 

 Fundamentally Low-Latency Architectures 

 

 

 Architectures for Genomics, Medicine, Health 

4 



Overview 

 System design for bioinformatics is a critical problem 

 It has large scientific, medical, societal, personal implications 

 

 This talk is about accelerating a key step in bioinformatics: 
genome sequence analysis 

 In particular, read mapping 

 

 Many bottlenecks exist in accessing and manipulating huge 
amounts of genomic data during analysis 

 

 We will cover various recent ideas to accelerate read mapping 

 My personal journey since September 2006 

 

 
5 



Agenda 

 The Problem: DNA Read Mapping 

 State-of-the-art Read Mapper Design 

 

 Algorithmic Acceleration  

 Exploiting Structure of the Genome 

 Exploiting SIMD Instructions 

 

 Hardware Acceleration 

 Specialized Architectures 

 Processing in Memory 

 

 Future Opportunities: New Sequencing Technologies 

6 



What Is a Genome Made Of? 

7 

Cell 
Nucleus 

The discovery of DNA’s double-helical structure (Watson+, 1953)  



The Central Dogma of Molecular Biology 

8 

Phenotypes  Genotypes  



9 

human chromosome #12 
from HeLa’s cell 

DNA Under Electron Microscope 



DNA Sequencing 

 Goal:  

 Find the complete sequence of A, C, G, T’s in DNA. 
 

 Challenge:  

 There is no machine that takes long DNA as an input, and gives 
the complete sequence as output 

 All sequencing machines chop DNA into pieces and identify 
relatively small pieces (but not how they fit together) 

10 



Untangling Yarn Balls & DNA Sequencing 

11 



Genome Sequencers 

… aŶd ŵore! All produce data with 
different properties. 

Roche/454 

Illumina HiSeq2000 

Ion Torrent PGM 

Ion Torrent Proton 

AB SOLiD 

Oxford Nanopore GridION 

Oxford Nanopore MinION 

Complete 

Genomics 
Illumina MiSeq 

Pacific Biosciences RS 

Illumina  

NovaSeq 

6000 



The Genomic Era 

 1990-2003: The Human Genome Project (HGP) provides a complete 
and accurate sequence of all DNA base pairs that make up the 
human genome and finds 20,000 to 25,000 human genes. 

13 

13 year-long 
$3,000,000,000 



The Genomic Era (continued) 

14 

development of high-throughput 
sequencing (HTS) technologies 

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped  

Number of Genomes 
Sequenced 

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped


High-Throughput Sequencing (HTS)  

15 

= Second Generation  
= Next Generation 
= Massively Parallel Sequencing 
= High Throughput Sequencing (HTS) 
= Sequencing by Synthesis (Illumina) 

flow 
cell 



High-Throughput Sequencing (HTS)  

16 

A 
C 
G 
C 
C 
C 
G 
T 

G 
C 
G 
T 
A 
C 
G 
T 

A 
C 
G 
T 
A 
C 
G 
C 

A 
C 
G 
T 
A 
A 
G 
A 

A 
C 
G 
T 
A 
C 
G 
T 

A 
C 
G 
T 
A 
C 
G 
A 

A 
C 
G 
T 
A 
C 
G 
T 

A 
C 
G 
T 
G 
C 
G 
G 

A 
C 
G 
T 
A 
C 
G 
T 

A 
C 
G 
G 
G 
C 
G 
C 

G 
C 
G 
T 
A 
C 
G 
C 

A 
C 
G 
T 
A 
C 
G 
T 

A 
C 
G 
T 
A 
C 
G 
T 

T 
T 
T 
T 
A 
C 
G 
T 

T 

G 

C 

A 

Glass flow cell surface 

As a workaround, HTS technologies sequence random short DNA fragments (75-300 
basepairs long) of copies of the original molecule. 

The sequencer adds the molecule “T”  
to all bases near the flow cell surface and  
observes the chemical reaction via a CMOS sensor.  
If a reaction happens then the base is “A” 



High-Throughput Sequencing 

17 

 Massively parallel sequencing technology 
 Illumina, Roche 454, Ion Torrent, SOLID… 

 

 Small DNA fragments are first amplified and then 
sequenced in parallel, leading to 
 High throughput 
 High speed 
 Low cost  
 Short reads 

 Amplification step limits the read length since too short or too long 
fragments are not amplified well. 
 

 Sequencing is done by either reading optical signals as each base is 
added, or by detecting hydrogen ions instead of light, leading to: 
 Low error rates (relatively) 
 Reads lack information about their order and which part of genome 

they are originated from 



Genome 
Analysis 

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read 

Alignment

        CCTATAATACG

C

C
A

T
A
T
A
T
A
C
G

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2 Sequencing Read Mapping 

3 4 Variant Calling Scientific Discovery 



19 

Example Question: If I give you a bunch of 
sequences, tell me where they are the same 

and where they are different. 

Multiple sequence alignment 



The Genetic Similarity Between Species 

20 

99.9% 

96% 

Human ~ Chimpanzee 

Human ~ Human 

90% 

Human ~ Cat 

80% 

Human ~ Cow 

50-60% 

Human ~ Banana 



21 

Metagenomics, genome assembly, de novo sequencing 

http://math.oregonstate.edu/~koslickd  

uncleaned de Bruijn graph 

Question 2: Given a bunch of short sequences, 
Can you identify the approximate species cluster 
for genomically unknown organisms (bacteria)? 

http://math.oregonstate.edu/~koslickd


A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read 

Alignment

        CCTATAATACG

C

C
A

T
A
T
A
T
A
C
G

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACGCCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2 Sequencing Read Mapping 

3 4 Variant Calling Scientific Discovery 

300 M 
bases/min 

Illumina HiSeq4000   

2 M 
bases/min 

on average 

(0.6%) 

Bottlenecked in Mapping!! 



The Read Mapping Bottleneck 

23 

ACGTACGTACGTACGT 

TATATATACGTACTAGTACGT 

ACGACTTTAGTACGTACGT 
TATATATACGTACTAGTACGT 

ACGTACGCCCCTACGTA 

ACGACTTTAGTACGTACGT 
TATATATACGTACTAAAGTACGT 

CCCCCCTATATATACGTACTAGTACGT 

TATATATACGTACTAGTACGT 

TATATATACGTACTAGTACGT 

ACGTTTTTAAAACGTA 

ACGACGGGGAGTACGTACGT 
TATATATACGTACTAAAGTACGT 

150X slower 

Illumina HiSeq4000   

Million  
bases/minute 300 Million  

bases/minute 2 



candidate 
alignment 
locations 

(CAL) 
4% 

Read 
Verificatio

n 
[PERCENT

AGE] 

SAM 
printing 

3% 

Read Mapping Execution Time Breakdown  



Read Mapping 

 Map many short DNA fragments (reads) to a known 
reference genome with some minor differences 
allowed 

 

 

 

25 

Reference genome 

Reads 
DNA, logically DNA, physically 

Mapping short reads to reference genome is 
challenging (billions of 50-300 base pair reads) 



Challenges in Read Mapping 
 Need to find many mappings of each read 

 A short read may map to many locations, especially with High-
Throughput DNA Sequencing technologies 

 How can we find all mappings efficiently? 

 

 Need to tolerate small variances/errors in each read 

 Each individual is different: Subject’s DNA may slightly differ from 
the reference (Mismatches, insertions, deletions) 

 How can we efficiently map each read with up to e errors present? 

 

 Need to map each read very fast (i.e., performance is important) 

 Human DNA is 3.2 billion base pairs long  Millions to billions of 
reads (State-of-the-art mappers take weeks to map a human’s DNA) 

 How can we design a much higher performance read mapper? 

26 



Read Alignment/Verification 

 Edit distance is defined as the minimum number of edits 
(i.e. insertions, deletions, or substitutions) needed to make 
the read exactly match the reference segment. 

o - - r g a n i z a t i o n 

o p e r - - - - - a t i o n 

o - - r g a n i z a t i o n 

o p e r - a - - - - t i o n 

o r g a n i z a t i o n 

t r - a n s l a t i o n 

o r g a n - i z a t i o n 

t r - a n s l - a t i o n 

o r g a n i z - a t i o n 

t r - a n - s l a t i o n 

Ref 
Read 

Ref 
Read 

Ref 
Read 

Ref 
Read 

Ref 
Read 

organization x operation organization x translation 

match 
deletion 
insertion  
mismatch 



Why Is Read Alignment Slow? 

 Quadratic-time dynamic-
programming algorithm(s) 

 

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Read Alignment

        CCTATAATACG

C

C
A

T
A
T
A
T
A
C
G

etc 

etc 
 Data dependencies limit the 

computation parallelism 

 

 Entire matrix computed even 
though strings may be 
dissimilar. 

 



Agenda 

 The Problem: DNA Read Mapping 

 State-of-the-art Read Mapper Design 

 

 Algorithmic Acceleration  

 Exploiting Structure of the Genome 

 Exploiting SIMD Instructions 

 

 Hardware Acceleration 

 Specialized Architectures 

 Processing in Memory 

 

 Future Opportunities: New Sequencing Technologies 

29 



Read Mapping Algorithms: Two Styles 

 Hash based seed-and-extend (hash table, suffix array, suffix tree) 

 Index the “k-mers” in the genome into a hash table (pre-processing) 

 When searching a read, find the location of a k-mer in the read; then 
extend through alignment 

 More sensitive, but slow 

 Requires large memory; this can be reduced with cost to run time 

 

 Burrows-Wheeler Transform & Ferragina-Manzini Index based 
aligners 

 BWT is a compression method used to compress the genome index 

 Perfect matches can be found very quickly, memory lookup costs 
increase for imperfect matches 

 Reduced sensitivity 



Hash Table Based Read Mappers 

 Key Idea 

 Preprocess the reference into a Hash Table 

 Use Hash Table to map reads 

 

31 



Hash Table-Based Mappers [Alkan+ Nature Gen’09] 

 

32 

12 324 577 940 AAAAAAAAAAAA

AAAAAAAAAAAC

AAAAAAAAAAAT

13 421 412 765 889 

......

CCCCCCCCCCCC

......

24 459 744 988 989 

......

......

TTTTTTTTTTTT 36 535 123 

NULL 

Reference genome 

k-mer or 12-mer 
(string of length k)  

Location list—where the k-mer 
 occurs in reference gnome 

Once for a reference 



Hash Table Based Read Mappers 
 Key Idea 

 Preprocess the reference into a Hash Table 

 Use Hash Table to map reads 

 

33 



 

12 

Hash Table-Based Mappers [Alkan+ Nature Gen’09] 

12 324 557 940 

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTT

CCCCCCCCCCCCTTTTTTTTTTTT

Reference 
Genome Hash Table 

(HT) 

read 
k-mers 

AAAAAAAAAAAA

CCCCCCCCCCCC

TTTTTTTTTTTT

24 459 744 988 989 

36 535 823 

…AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTTT…

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTTT

AAAAAAAAAAAA

324 

..  AAAAAAAAAAAAAACGCTTCCACCTTAATCTGGTTG..

read 

*** 

..****************************************..
Invalid 

mapping 

34 

Valid 
mapping 

✔ 
Verification/Local Alignment 



Advantages of Hash Table Based Mappers 
 + Guaranteed to find all mappings  sensitive 

 + Can tolerate up to e errors 

35 

http://mrfast.sourceforge.net/  

Alkan+, "Personalized copy number and segmental duplication  
maps using next-generation sequencing”, Nature Genetics 2009. 
 

http://mrfast.sourceforge.net/
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html
http://www.nature.com/ng/journal/vaop/ncurrent/full/ng.437.html


Problem and Goal 
 Poor performance of existing read mappers: Very slow  

 Verification/alignment takes too long to execute 

 Verification requires a memory access for reference genome + 
many base-pair-wise comparisons between the reference and 
the read (edit distance computation) 

 

 

 

 

 

 Goal: Speed up the mapper by reducing the cost of 
verification 

 

36 

0 5000 10000 15000 20000

Execution
time (s)

Verification

Other

95% 



Agenda 

 The Problem: DNA Read Mapping 

 State-of-the-art Read Mapper Design 

 

 Algorithmic Acceleration  

 Exploiting Structure of the Genome 

 Exploiting SIMD Instructions 

 

 Hardware Acceleration 

 Specialized Architectures 

 Processing in Memory 

 

 Future Opportunities: New Sequencing Technologies 

37 



Reducing the Cost of Verification 
 We observe that most verification (edit distance 

computation) calculations are unnecessary 

 1 out of 1000 potential locations passes the verification 
process 

 

 We observe that we can get rid of unnecessary verification 
calculations by 

 Detecting and rejecting early invalid mappings (filtering) 

 Reducing the number of potential mappings 

 

38 



Key Observations [Xin+, BMC Genomics 2013] 

 Observation 1 

 Adjacent k-mers in the read should also be adjacent in the 
reference genome 

 Read mapper can quickly reject mappings that do not satisfy 
this property 

 

 Observation 2 

 Some k-mers are cheaper to verify than others because they 
have shorter location lists (they occur less frequently in the 
reference genome)  

 Mapper needs to examine only e+1 k-mers’ locations to tolerate e 
errors 

 Read mapper can choose the cheapest e+1 k-mers and verify 
their locations 

 
39 



FastHASH Mechanisms [Xin+, BMC Genomics 2013] 

 

 

 Adjacency Filtering (AF): Rejects obviously invalid 
mapping locations at early stage to avoid unnecessary 
verifications 

 

 

 Cheap K-mer Selection (CKS): Reduces the absolute 
number of potential mapping locations 

 

 

40 



Adjacency Filtering (AF) 
 Goal: detect and filter out invalid mappings at early stage 

 Key Insight: For a valid mapping, adjacent k-mers in the 
read are also adjacent in the reference genome 

 

 

 

 

 

 Key Idea: search for adjacent locations in the k-mers’ 
location lists 

 If more than e k-mers fail  there must be more than e 
errors  invalid mapping 

41 

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTT read 

Reference genome 
Valid mapping Invalid mapping 



12 

Adjacency Filtering (AF) 

12 324 557 940 

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTT

CCCCCCCCCCCCTTTTTTTTTTTT

Reference 
Genome Hash Table 

(HT) 

read 

k-mers 

AAAAAAAAAAAA

CCCCCCCCCCCC

TTTTTTTTTTTT

24 459 744 988 989 

36 535 123 

…AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTTT…

AAAAAAAAAAAACCCCCCCCCCCCTTTTTTTTTTTT

AAAAAAAAAAAA

324 

24? 36? 336? 

*** 

+12 +24 

557 

569? 

940 

952? 

✗ 

42 



 

 

 Adjacency Filtering (AF): Rejects obviously invalid 
mapping locations at early stage to avoid unnecessary 
verifications 

 

 

 Cheap K-mer Selection (CKS): Reduces the absolute 
number of potential mapping locations 

 

 

43 

FastHASH Mechanisms [Xin+, BMC Genomics 2013] 



Cheap K-mer Selection (CKS) 
 Goal: Reduce the number of potential mappings 

 

 Key insight: 

 K-mers have different cost to examine: Some k-mers are 
cheaper as they have fewer locations than others (occur less 
frequently in reference genome) 

 

 Key idea:  

 Sort the k-mers based on their number of locations 

 Select the k-mers with fewest locations to verify 

44 



Cheap K-mer Selection 
 e=2 (examine 3 k-mers) 

45 

AAGCTCAATTTC CCTCCTTAATTT TCCTCTTAAGAA GGGTATGGCTAG AAGGTTGAGAGC CTTAGGCTTACC

read 

314 

1231 

4414 

9219 

4 loc. 

338 

… 

… 

… 

… 

1K loc. 

376 

… 

… 

… 

… 

2K loc. 

326 

1451 

2 loc. 

326 

1451 

2 loc. 

388 

… 

… 

… 

… 

1K loc. 

Previous work needs 
to verify: 
 
3004 locations 

FastHASH verifies only: 
 
8 locations 

Locations 

Number of Locations 

Cheapest 3 k-mers Expensive 3 k-mers 



Methodology 
 Implemented FastHASH on top of state-of-the-art mapper: mrFAST 

 New version mrFAST-2.5.0.0 over mrFAST-2.1.0.6 

 

 Tested with real read sets generated from Illumina platform 

 1M reads of a human (160 base pairs) 

 500K reads of a chimpanzee (101 base pairs) 

 500K reads of a orangutan (70 base pairs) 

 

 Tested with simulated reads generated from reference genome 

 1M simulated reads of human (180 base pairs) 

 

 Evaluation system 

 Intel Core i7 Sandy Bridge machine 

 16 GB of main memory 

46 



FastHASH Speedup 

47 

 

orangutan 

simulated  

human 

chimpanzee 19x 

With FastHASH, new mrFAST obtains up to 19x speedup 
over previous version, without losing valid mappings 



Analysis 
 Reduction of potential mappings with FastHASH 

48 

99% 
99% 

99% 99% 99% 

e=1 e=2 e=3 e=4 e=5

Number of potential mappings
Number of potential mappings with FastHASH
Number of valid mappings

Reduction of potential mappings with FastHASH

#
 o

f 
p

o
te

n
ti
a
l 
m

a
p

p
in

g
s
 (

L
o
g

1
0
 S

c
a
le

)

4
6

8
1

0
1
2

1
4

FastHASH filters out over 99% of the potential 
mappings without sacrificing any valid mappings 



FastHASH Conclusion 
 Problem: Existing read mappers perform poorly in mapping 

billions of short reads to the reference genome, in the 
presence of errors 

 

 Observation: Most of the verification calculations are 
unnecessary  filter them out 

 

 Key Idea: To reduce the cost of unnecessary verification 

 Reject invalid mappings early (Adjacency Filtering) 

 Reduce the number of possible mappings to examine (Cheap 
K-mer Selection) 

 

 Key Result: FastHASH obtains up to 19x speedup over the 
state-of-the-art mapper without losing valid mappings 

 49 



More on FastHASH 
 Download source code and try for yourself 

 Download link to FastHASH 

 

 

50 

http://mrfast.sourceforge.net/


Agenda 

 The Problem: DNA Read Mapping 

 State-of-the-art Read Mapper Design 

 

 Algorithmic Acceleration  

 Exploiting Structure of the Genome 

 Exploiting SIMD Instructions 

 

 Hardware Acceleration 

 Specialized Architectures 

 Processing in Memory 

 

 Future Opportunities: New Sequencing Technologies 

51 



An Example: Shifted Hamming Distance 
 

52 

Xin+, "Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter  
to Accelerate Alignment Verification in Read Mapping”, Bioinformatics 2015. 
 

http://bioinformatics.oxfordjournals.org/content/early/2015/01/10/bioinformatics.btu856.abstract?keytype=ref&ijkey=iQ4UOCzdu7rxIAr
http://bioinformatics.oxfordjournals.org/content/early/2015/01/10/bioinformatics.btu856.abstract?keytype=ref&ijkey=iQ4UOCzdu7rxIAr
http://bioinformatics.oxfordjournals.org/content/early/2015/01/10/bioinformatics.btu856.abstract?keytype=ref&ijkey=iQ4UOCzdu7rxIAr
http://bioinformatics.oxfordjournals.org/content/early/2015/01/10/bioinformatics.btu856.abstract?keytype=ref&ijkey=iQ4UOCzdu7rxIAr
http://bioinformatics.oxfordjournals.org/content/early/2015/01/10/bioinformatics.btu856.abstract?keytype=ref&ijkey=iQ4UOCzdu7rxIAr


Shifted Hamming Distance 
 Key observation: 

 If two strings differ by E edits, then every bp match can be 
aligned in at most 2E shifts.  

 

 Key idea: 

 Compute “Shifted Hamming Distance”: AND of 2E Hamming 
Distances of two strings, to identify invalid mappings  

 Uses bit-parallel operations that nicely map to SIMD instructions 

 

 Key result: 

 SHD is 3x faster than SeqAn (the best implementation of Gene 
Myers’ bit-vector algorithm), with only a 7% false positive rate 

 The fastest CPU-based filtering (pre-alignment) mechanism 

 
53 



Insight: Shifting a String Helps Similarity Search 

54 

I S T A N B U L 

I S T N B U L 

3 matches      5 mismatches 

To cancel the effect of 
deletion, we need to shift to 
right direction 



Insight: Shifting a String Helps Similarity Search 

55 

I S T A N B U L 

I S T N B U L 

7 matches      1 mismatches 

I S T N B U L 



Highly Parallel Matrix Computation  

56 

A C T T A G C A C T

A 1 1 0

C 0 1 1 1

T 1 0 1 0 1

A 1 0 1 0 0

G 1 0 1 1 0

A 1 0 0 1 0

A 1 1 0 1 1

C 0 1 0 1 1

T 1 1 0 1

T 1 1 0

C T A T A A T A C G

C

A

T

A

T

A

T

A

C

G

We need to compute 2E+1 

vectors, E=edit distance 

threshold 

 

dp[i][j]= 0 if X[i]=Y[j] 

          1 if X[i]≠Y[j] 
No data dependencies! 

2 Deletion Hamming masks 

2 Insertion Hamming 
masks 

Reference 

Q
u
e
ry

 



Key Idea of SHD Filtering 

57 

Generate 2E+1 
masks 

Amend random zeros:  
101  111  &  1001  1111 

AND all masks,  
ACCEPT iff number of ‘1’ ≤ Threshold 

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA

AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111011110001110110101101111111110001000001111011010010101 

0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 

0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 

0000000000000010111111111110111011001101110111011000100100111111111111100101100110010110111011101111 

0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 

0000000000001000000000100111110011111111100100011010101001101011111111111110111001111111000111101100 

0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||

AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111111110001111111101111111111110001000001111111111111111 

0000000000000011111111111111111111111111000000000000000000000000000000000000000000011000000000000000 

0000000000000010000000001111111111111111111111111111000111111111111111111111000100011111111111111110 

0000000000000011111111111111111111111111111111111000111111111111111111111111111111111111111111111111 

0000000000000111111111111111111111111111111111100011111111111111111111111111111000111111111111111110 

0000000000001000000000111111111111111111111100011111111111111111111111111111111111111111000111111100 

0000000000011111111111111111111111100011111111111111111111111111111111111111111111111111111111111000

0000000000000000000000000010000000000001000000000000000000000000000000000000000000001000000000000000

--- Masks after amendment ---

Query : 

Reference :

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

AND Mask :

 Alignment :
Needleman-Wunsch



Alignment vs. Pre-alignment (Filtering) 

58 

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G

C

A

T

A

T

A

T

A

C

G

A C T T A G C A C T

A 1 1 0

C 0 1 1 1

T 1 0 1 0 1

A 1 0 1 0 0

G 1 0 1 1 0

A 1 0 0 1 0

A 1 1 0 1 1

C 0 1 0 1 1

T 1 1 0 1

T 1 1 0

C T A T A A T A C G

C

A

T

A

T

A

T

A

C

G

              |dp[i][j-1]  // Inser. 

dp[i][j]=1+max|dp[i-1][j]  // Del. 
              |dp[i-1][j-1]// Subs. 

dp[i][j]=|0 if X[i]=Y[j] 
         |1 if X[i]≠Y[j] 

No data dependencies! Each cell depends on three 
pre-computed cells! 

• Independent vectors can be processed in parallel using 
hardware technologies 

Needleman-Wunsch                                       SHD 



New Bottleneck: Filtering (Pre-Alignment)  

    Sequencing generates many reads, each of which 
potentially mapping to many locations 

     

    Filtering (Pre-alignment) eliminates the need to verify/align 
read to invalid mapping locations 

     

    Alignment/verification (costly edit distance computation) is 
performed only on reads that pass the filter) 

 

 New bottleneck in read mapping becomes the “filtering 
(pre-alignment)” step 

 

59 



Agenda 

 The Problem: DNA Read Mapping 

 State-of-the-art Read Mapper Design 

 

 Algorithmic Acceleration  

 Exploiting Structure of the Genome 

 Exploiting SIMD Instructions 

 

 Hardware Acceleration 

 Specialized Architectures 

 Processing in Memory 

 

 Future Opportunities: New Sequencing Technologies 

60 



Location Filtering 

 Alignment is expensive 

 We need to align millions to billions of reads  

 

 

 Modern read mappers reduce the time spent on alignment 
for increased performance. Can be done in two ways: 

1. Optimize the algorithm for alignment 

2. Reduce the number of alignments necessary by filtering 
out mismatches quickly  

 

 

 Both methods are used by mappers today, but filtering has 
replaced alignment as the bottleneck [Xin+, BMC Genomics 2013] 

 

 
61 

Our goal is to accelerate read mapping  
by improving the filtering step  



Ideal Filtering Algorithm  

62 

Minimal 

False 

Accept 

Rate 

Zero False 

Reject Rate 

Maximal 

True Reject 

Rate 

Faster Than 

Mapper 

Filter out all  
incorrect mappings 

Do not filter out any  
correct mappings 



Alignment vs. Pre-alignment (Filtering) 

63 

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G

C

A

T

A

T

A

T

A

C

G

A C T T A G C A C T

A 1 1 0

C 0 1 1 1

T 1 0 1 0 1

A 1 0 1 0 0

G 1 0 1 1 0

A 1 0 0 1 0

A 1 1 0 1 1

C 0 1 0 1 1

T 1 1 0 1

T 1 1 0

C T A T A A T A C G

C

A

T

A

T

A

T

A

C

G

              |dp[i][j-1]  // Inser. 

dp[i][j]=1+max|dp[i-1][j]  // Del. 
              |dp[i-1][j-1]// Subs. 

dp[i][j]=|0 if X[i]=Y[j] 
         |1 if X[i]≠Y[j] 

No data dependencies! Each cell depends on three 
pre-computed cells! 

• Independent vectors can be processed in parallel using 
hardware technologies 

Needleman-Wunsch                                   GateKeeper 



64 

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G

C

C

A

T

A

T

A

T

A

C

G

High throughput DNA 

sequencing (HTS) technologies 

Read Pre-Alignment Filtering 

Fast & Low False Positive Rate
1 2

Read Alignment

Slow & Zero False Positives
3

Billions of Short Reads

Hardware Acceleratorx1012

mappings
x103

mappings

Low Speed & High Accuracy

Medium Speed, Medium Accuracy

High Speed, Low Accuracy

Our Solution: GateKeeper 

Alignment 

Filter 

st 

1 
FPGA-based 

Alignment Filter. 



GateKeeper Walkthrough 

65 

Generate 2E+1 
masks 

Amend random zeros:  
101  111  &  1001  1111 

AND all masks,  
ACCEPT iff number of ‘1’ ≤ Threshold 

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA

AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111011110001110110101101111111110001000001111011010010101 

0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 

0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 

0000000000000010111111111110111011001101110111011000100100111111111111100101100110010110111011101111 

0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 

0000000000001000000000100111110011111111100100011010101001101011111111111110111001111111000111101100 

0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||

AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111111110001111111101111111111110001000001111111111111111 

0000000000000011111111111111111111111111000000000000000000000000000000000000000000011000000000000000 

0000000000000010000000001111111111111111111111111111000111111111111111111111000100011111111111111110 

0000000000000011111111111111111111111111111111111000111111111111111111111111111111111111111111111111 

0000000000000111111111111111111111111111111111100011111111111111111111111111111000111111111111111110 

0000000000001000000000111111111111111111111100011111111111111111111111111111111111111111000111111100 

0000000000011111111111111111111111100011111111111111111111111111111111111111111111111111111111111000

0000000000000000000000000010000000000001000000000000000000000000000000000000000000001000000000000000

--- Masks after amendment ---

Query : 

Reference :

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

AND Mask :

 Alignment :
Needleman-Wunsch



AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGGA

AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111011110001110110101101111111110001000001111011010010101 

0000000000000011111111111110011111011111000000000000000000000000000000000000000000011000000000000000 

0000000000000010000000001011011100111111111111101111000111011010110111111111000100010011101101001010 

0000000000000010111111111110111011001101110111011000100100111111111111100101100110010110111011101111 

0000000000000111111111111110111110111111011101100010010011111111111110010110011000101011101110111110 

0000000000001000000000100111110011111111100100011010101001101011111111111110111001111111000111101100 

0000000000010111111111110111011001100011111111101011011111100110010111011111111011101111010111001000

AAAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCGG

|||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||||

AAAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCCGG

0000000000000000000000000010000000000001111111111110001111111101111111111110001000001111111111111111 

0000000000000011111111111111111111111111000000000000000000000000000000000000000000011000000000000000 

0000000000000010000000001111111111111111111111111111000111111111111111111111000100011111111111111110 

0000000000000011111111111111111111111111111111111000111111111111111111111111111111111111111111111111 

0000000000000111111111111111111111111111111111100011111111111111111111111111111000111111111111111110 

0000000000001000000000111111111111111111111100011111111111111111111111111111111111111111000111111100 

0000000000011111111111111111111111100011111111111111111111111111111111111111111111111111111111111000

0000000000000000000000000010000000000001000000000000000000000000000000000000000000001000000000000000

--- Masks after amendment ---

Query : 

Reference :

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

Hamming Mask : 

1-Deletion Mask :

2-Deletion Mask :

3-Deletion Mask :

1-Insertion Mask :

2-Insertion Mask :

3-Insertion Mask :

AND Mask :

 Alignment :
Needleman-Wunsch

GateKeeper Walkthrough (cont’d) 

66 

Generate 2E+1 
masks 

Amend random zeros:  
101  111  &  1001  1111 

AND all masks,  
ACCEPT iff number of ‘1’ ≤ Threshold 

• (2E+1)*(ReadLength) 5-input LUT.  

0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 0

Hamming mask

0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0
Hamming mask after amending

. . . . . . . . . .

5-input

LUT

• E right-shift registers (length=ReadLength) 
• E left-shift registers (length=ReadLength) 
• (2E+1) * (ReadLength) 2-XOR operations. 

• (2E)*(ReadLength) 2-AND 
operations. 

• (ReadLength/4) 5-input LUT. 
• 𝑙𝑜𝑔2ReadLength-bit counter. 



GateKeeper Accelerator Architecture 

 Maximum data throughput =~13.3 billion bases/sec 
 

 Can examine 8 (300 bp) or 16 (100 bp) mappings concurrently at 250 MHz 
 

 Occupies 50% (100 bp) to 91% (300 bp) of the FPGA slice LUTs and registers 

67 

Preprocessing Host (CPU)

input reads 

(.fastq)

reference 

genome (.fasta)

Read 

Encoder

read pairs 
(mrFAST 

output)

GateKeeper 

Processing 

Core #1

GateKeeper 

Processing 

Core #N. . .  .

. . .  .

Read Controller

Mapping Controller
FIFO

FIFO FIFO

FIFO

read#1 read#N

map.#Nmap.#1

map.#Nmap.#1 …

Accepted Alignments

(correct & false positives)

10...001

Alignment Filtering (FPGA) Alignment Verification 

(CPU/FPGA)
GateKeeper

PCIe

PCIe

Input stream 

of binary pairs 

GateKeeper

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

C T A T A A T A C G

C

C

A

T

A

T

A

T

A

C

G

A



GateKeeper vs. SHD 

 FPGA (Xilinx VC709) 

 Multi-core (parallel) 

 Examines a single 
mapping @ 125 MHz 

 Limited to PCIe Gen3(4x) 
transfer rate (128 bits @ 
250MHz) 

 Amending requires: 

 (2E+1) 5-input LUT.  

 Intel SIMD 

 Single-core (sequential) 

 Examines a single 
mapping @ ~2MHz 

 Limited to a read length 
of 128 bp (SSE register 
size) 

 Amending requires: 

 4(2E+1) bitwise OR. 

 4(2E+1) packed shuffle. 

 3(2E+1) shift. 

68 

GateKeeper SHD 



GateKeeper: Speed & Accuracy Results 

69 

90x-130x faster filter  
than SHD (Xin et al., 2015) and the Adjacency Filter (Xin et al., 2013) 

 

4x lower false accept rate  

than the Adjacency Filter (Xin et al., 2013) 
 

10x speedup in read mapping 
with the addition of GateKeeper to the mrFAST mapper (Alkan et al., 2009) 

 
 
 
 

Freely available online 
github.com/BilkentCompGen/GateKeeper  

https://github.com/BilkentCompGen/GateKeeper
https://github.com/BilkentCompGen/GateKeeper
https://github.com/BilkentCompGen/GateKeeper


Conclusions 

 FPGA-based pre-alignment greatly speeds up read mapping 

 10x speedup of a state-of-the-art mapper (mrFAST) 

 

 

 FPGA-based pre-alignment can be integrated with the 
sequencer 

 It can help to hide the complexity and details of the FPGA 

 Enables real-time filtering while sequencing 

 
 

70 



More on GateKeeper 

 Download and test for yourself 
https://github.com/BilkentCompGen/GateKeeper  

71 

Alser+, "GateKeeper: A New Hardware Architecture for Accelerating  
Pre-Alignment in DNA Short Read Mapping”, Bioinformatics, 2017. 
 

https://github.com/BilkentCompGen/GateKeeper
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf


Next Talk: MAGNET (AACBB 2018) 
 Key observation: the use of AND operation to check if a zero 

(match) exists in a column introduces filtering inaccuracy. 

 Key Idea: count the consecutive zeros in each mask and 
select the longest in a divide-and-conquer approach. 

 MAGNET is 17x to 105x more accurate than GateKeeper 
and SHD.  

72 

AAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAGCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCCG

AAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCC

AAAAAAAAAAAAAGAGAGAGAGATATTTAGTGTTGCAG-CACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGGAACATTGTTGGGCC

||||||||||||||||||||||||| |||||||||||| |||||||||||||||||||||||||||||||||||||||||||::|||||||||||||

AAAAAAAAAAAAAGAGAGAGAGATAGTTAGTGTTGCAGCCACTACAACACAAAAGAGGACCAACTTACGTGTCTAAAAGGGGAGACATTGTTGGGCC

0000000000000000000000001000000000000011111101111000111011010110111111111000100000111101101001010

0000000000001111111111111001111101111100000000000000000000000000000000000000000001100000000000000

0000000000001000000000101101110011111111111110111100011101101011011111111100010001001110110100101

0000000000001011111111111011101100110011011101100010010011111111111110010110011001011011101110111

0000000000011111111111111011111011111101110110001001001111111111111001011001100010101110111011111

0000000000100000000010011111001111111010010001101010100110101111111111111011100111111100011110110

0000000001011111111111011101100110001111111110101101111110011001011101111111101110111101011100100

0000000000000000000000000100000000000010000000000000000000000000000000000000000000110000000000000

12 34



Agenda 

 The Problem: DNA Read Mapping 

 State-of-the-art Read Mapper Design 

 

 Algorithmic Acceleration  

 Exploiting Structure of the Genome 

 Exploiting SIMD Instructions 

 

 Hardware Acceleration 

 Specialized Architectures 

 Processing in Memory 

 

 Future Opportunities: New Sequencing Technologies 

73 



Read Mapping & Filtering 

 Problem: Heavily bottlenecked by Data Movement 

 

 GateKeeper performance limited by DRAM bandwidth 
[Alser+, Bioinformatics 2017] 

 

 Ditto for SHD [Xin+, Bioinformatics 2015] 

 

 Solution: Processing-in-memory can alleviate the bottleneck 

 

 However, we need to design mapping & filtering algorithms 
to fit processing-in-memory 

74 



 
 
 

Filter 
 
 
 
 
 
 

894 37 1564 140 1203 

1564 

894 1203 

37 140 

Hash Tables in Read Mapping 

75 

Hash Table 

Read Sequence (100 bp) 

✔ 

Reference Genome 

37       140 
894      1203  

1564 

Aligning . . . Match! Aligning . . . Mismatch 

✘ 
✘ 
✘ 

False 
Negative 

✘ 



Read Mapping & Filtering in Memory 

 

 

We need to design  

mapping & filtering algorithms  

that fit processing-in-memory 

76 



Our Proposal: GRIM-Filter 

1. Data Structures: Bins & Bitvectors 

2. Checking a Bin 

3. Integrating GRIM-Filter into a Mapper 

77 



GRIM-Filter: Bins 

78 

 We partition the genome into large sequences (bins).  

 

 

 

 

 

… GGAAATACGTTCAGTCAGTTGGAAATACGTTTTGGGCGTTACTTCTCAGTACGTACAGTACAGTAAAAATGACAGTAAGAC … 

Bin x - 3 

Bin x - 2 

Bin x - 1 

Bin x 

1 
0 
1 
… 
1 
0 
0 
… 
1 

Bitvector 

AAAAA 
AAAAC 
AAAAT 

… 
CCCCC 
CCCCT 
CCCCG 

… 
GGGGG 

AAAAA 
exists in 
bin x 

CCCCT 
doesn’t 
exist in 
bin x 

 Represent each bin with a bitvector 
that holds the occurrence of all 
permutations of a small string (token) in 
the bin 
 

 To account for matches that straddle 
bins, we employ overlapping bins 

 A read will now always completely fall within 
a single bin 

 

 



GRIM-Filter: Bitvectors 











79 

… C     G     T     G     A     G     T     C …      

Bin x 

0 
… 
 

… 
 

… 
 

… 
 

… 

B
in

 x
 B

it
v
e

c
to

r 
AAAAA  

…  
CGTGA  

…  
TGAGT  

…  
GAGTC  

…  
GTGAG 

…  

C     G     T     G     A G     T     G     A     G T     G     A     G     T G     A     G     T     C 

1  0  

0 

0 

0  

1  

1  

1 



GRIM-Filter: Bitvectors 

80 

Storing all bitvectors  
requires Ͷ𝑛 ∗ 𝑡 bits 
in memory,  
where t = number 
of bins. 
 
 
 
For bin size ~200, 
and n = 5,  
memory footprint  
~3.8 GB  

Reference

Genome

   

’

bin2

bin3

AAAAACCCCTGCCTTGCATGTAGAAAACTTGACAGGAACTTTTTATCGCA

bin1

(a)



bin4

AAAAA 

AAAAC 

AAAAG 

AAAAT 

. 

CCCCT 

. 

. 

. 

. 

GCATG 

. 

TTGCA 

. 

TTTTT 

1 

1 

0 

0 

. 

1 

. 

. 

. 

. 

1 

. 

1 

. 

0 

0 

1 

0 

. 

1 

. 

1 

. 

1 

. 

1 

. 

. 

. 

0 

AAAAA 

AAAAC 

AAAAG 

. 

AGAAA 

. 

GAAAA 

. 

GACAG 

. 

GCATG 

. 

. 

. 

TTTTT 

       

b1 b2 

tokens 



Our Proposal: GRIM-Filter 

1. Data Structures: Bins & Bitvectors 

2. Checking a Bin 

3. Integrating GRIM-Filter into a Mapper 

81 



TTGGA GAACT AACTT ACTTG CTTGG 

INPUT: Read Sequence r 

GAACTTGGAGTCTA     CGAG ... Read bitvector for bin_num(x) 

...  

1 

+ ≥ Threshold? 

Send to 
Read Mapper 
for Sequence 

Alignment 

tokens 

Discard 

NO YES 

Sum 

GRIM-Filter: Checking a Bin 

How GRIM-Filter determines whether to discard potential 
match locations in a given bin prior to alignment 

3 

2 

4 5 

1 

0 

1 

 

0 

1 

1  

 

1 

0 

0 

. . . 

. . . 

Get tokens 

Match tokens to bitvector 

Compare 

20 



Our Proposal: GRIM-Filter 

1. Data Structures: Bins & Bitvectors 

2. Checking a Bin 

3. Integrating GRIM-Filter into a Mapper 

83 



Our Proposal: GRIM-Filter 

1. Data Structures: Bins & Bitvectors 

2. Checking a Bin 

3. Integrating GRIM-Filter into a Mapper 

84 



Integrating GRIM-Filter into a Read Mapper 

GRIM-Filter: 
Seed Location Checker 

0001010      011010  ... ... ... 

GAACTTGCGAG     GTATT  ... 
INPUT: Read Sequence 

GRIM-Filter: 
Filter Bitmask Generator 

Seed Location Filter Bitmask 

0001010      011010  ... ... ... 

020128 020131 414415 ... ... ... ... 

KEEP 

x 

DISCARD 

KEEP 

INPUT: All Potential Seed Locations 

 Read Mapper: 
 Sequence Alignment 

  Reference Segment Storage 

Edit-Distance Calculation 

reference 
segment 

@ 020131 

reference 
segment 

@ 414415 
. . . 

OUTPUT: Correct Mappings 

1 

2 

4 

3 



Key Properties of GRIM-Filter 

1. Simple Operations:  

 To check a given bin, find the sum of all bits corresponding to 
each token in the read 

 Compare against threshold to determine whether to align 

 

2. Highly Parallel: Each bin is operated on independently 
and there are many many bins 

 

3. Memory Bound: Given the frequent accesses to the large 
bitvectors, we find that GRIM-Filter is memory bound 

 

These properties together make GRIM-Filter                 
a good algorithm to be run in 3D-Stacked DRAM 

86 



3D-Stacked Memory 

 3D-Stacked DRAM architecture has extremely high 
bandwidth as well as a stacked customizable logic layer 

 Logic Layer enables Processing-in-Memory, via high-
bandwidth low-latency access to DRAM layers 

 Embed GRIM-Filter operations into DRAM logic layer and 
appropriately distribute bitvectors throughout memory 

 
87 

ficienc
fl

floading

significant

conflicts

ficienc

ficient

flo

fi

fine
figurable

fine

ficient

fine-grain
modifications

flip
flip

floading

floading

first

… ……

…

…

Lo

ficiently
paradigms–e

floading
specific
• ficient

modifications

•

ficient
•

•

•

• configurations,

cron’
AMD/Hynix’

first
filtering

ficiently filtering fil-

significantly

filter

filtered
filtering

filter
filter

filters

fix

first
fix

•

• first

’

filter benefit

• filtering
algorithm’

filter

…… ……

DRAM Layers 

Logic Layer 

TSVs 



DRAM	Layers

Logic	Layer

TSVs

Bank

Vault

3D-Stacked Memory 

 3D-Stacked DRAM architecture has extremely high 
bandwidth as well as a stacked customizable logic layer 

 Logic Layer enables Processing in Memory, offloading 
computation to this layer and alleviating the memory bus 

 Embed GRIM-Filter operations into DRAM logic layer and 
appropriately distribute bitvectors throughout memory 

 
88 

ficienc
fl

floading

significant

conflicts

ficienc

ficient

flo

fi

fine
figurable

fine

ficient

fine-grain
modifications

flip
flip

floading

floading

first

… ……

…

…

Lo

ficiently
paradigms–e

floading
specific
• ficient

modifications

•

ficient
•

•

•

• configurations,

cron’
AMD/Hynix’

first
filtering

ficiently filtering fil-

significantly

filter

filtered
filtering

filter
filter

filters

fix

first
fix

•

• first

’

filter benefit

• filtering
algorithm’

filter

…… ……

http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png 



DRAM	Layers

Logic	Layer

TSVs

Bank

Vault

3D-Stacked Memory 

 3D-stacked DRAM architecture has extremely high 
bandwidth as well as a stacked customizable logic layer 

 Logic Layer enables Processing in Memory, offloading 
computation to this layer and alleviating the memory bus 

 Embed GRIM-Filter operations into DRAM logic layer and 
appropriately distribute bitvectors throughout memory 

 
89 

ficienc
fl

floading

significant

conflicts

ficienc

ficient

flo

fi

fine
figurable

fine

ficient

fine-grain
modifications

flip
flip

floading

floading

first

… ……

…

…

Lo

ficiently
paradigms–e

floading
specific
• ficient

modifications

•

ficient
•

•

•

• configurations,

cron’
AMD/Hynix’

first
filtering

ficiently filtering fil-

significantly

filter

filtered
filtering

filter
filter

filters

fix

first
fix

•

• first

’

filter benefit

• filtering
algorithm’

filter

…… ……

http://i1-news.softpedia-static.com/images/news2/Micron-and-Samsung-Join-Force-to-Create-Next-Gen-Hybrid-Memory-2.png 

http://images.anandtech.com/doci/9266/HBMCar_678x452.jpg 



GRIM-Filter in 3D-Stacked DRAM 

 Each DRAM layer is organized as an array of banks 

 A bank is an array of cells with a row buffer to transfer data 

 

 The layout of bitvectors in a bank enables filtering many 
bins in parallel 

 90 

DRAM	Layers

Logic	Layer

TSVs

Bank

Row	Buffer

Bank

A

C

G

– TT

.	.	.

Vault

...

DRAM	Layers

Logic	Layer

TSVs

Bank

B
it
v
e
c
to
r
fo
r	
b
in
	0

B
it
v
e
c
to
r
fo
r	
b
in
	1

B
it
v
e
c
to
r
fo
r	
b
in
	2

B
it
v
e
c
to
r
fo
r	
b
in
	t
–1

Row	Buffer

Bank

Row	0:	AAAAA

Row	1:	AAAAC

Row	2:	AAAAG

.

.

.

Row	R–1:	TTTTT

.	.	.

Vault



GRIM-Filter in 3D-Stacked DRAM 

 Customized logic for accumulation and comparison  
per genome segment 

 Low area overhead, simple implementation 

 For HBM2, we use 4096 incrementer LUTs, 7-bit counters, and 
comparators in logic layer 

 91 

DRAM	Layers

Logic	Layer

TSVs

Bank

Seed	Location	Filter	Bitmask

Row	Data	Register

In
cr
.

A
cc
u
m
u
la
to
r

C
o
m
p
a
ra
to
r

P
e
r-
B
in
	

Lo
g
ic
	M

o
d
u
le

.		.		..		.		

Per-Vault

Custom	GRIM-Filter	Logic

Vault

Details are in [Kim+, BMC Genomics 2018] 



Methodology 
 Performance simulated using an in-house 3D-Stacked DRAM 

simulator 
 

 Evaluate 10 real read data sets (From the 1000 Genomes 
Project) 

 Each data set consists of 4 million reads of length 100 
 

 Evaluate two key metrics 

 Performance 

 False negative rate 
 The fraction of locations that pass the filter but result in a mismatch 

 

 Compare against a state-of-the-art filter, FastHASH [Xin+, BMC 

Genomics 2013] when using mrFAST, but GRIM-Filter can be 
used with ANY read mapper 

92 



GRIM-Filter Performance 

93 

2.1x average performance benefit 

1.8x-3.7x performance benefit across real data sets 

 

 
0

10
20
30
40
50
60
70

e = 0.05 

Sequence Alignment 
Error Tolerance (e) 

T
im

e
 (

×
1
0
0
0
 s

e
co

n
d
s)

 FastHASH filter GRIM-Filter 

Benchmarks and their Execution Times 

GRIM-Filter gets performance due to its hardware-software co-design 



GRIM-Filter False Negative Rate 

94 

6.0x average reduction in False Negative Rate 

5.6x-6.4x False Negative reduction across real data sets 

F
a

ls
e

 N
e

g
a

ti
v
e

 R
a

te
 

e = 0.05 

FastHASH filter GRIM-Filter 

0,0

0,1

0,2

0,3

0,4

0,5

0

×

Benchmarks and their False Negative Rates 

Sequence Alignment 
Error Tolerance (e) 

GRIM-Filter utilizes more information available in the read to filter 



More on GRIM-Filter 

 Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, 
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu, 
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using 
Processing-in-Memory Technologies" 
to appear in BMC Genomics, 2018.  
Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), 
Yokohama, Japan, January 2018.  
arxiv.org Version (pdf) 

95 

http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf


Agenda 

 The Problem: DNA Read Mapping 

 State-of-the-art Read Mapper Design 

 

 Algorithmic Acceleration  

 Exploiting Structure of the Genome 

 Exploiting SIMD Instructions 

 

 Hardware Acceleration 

 Specialized Architectures 

 Processing in Memory 

 

 Future Opportunities: New Sequencing Technologies 

96 



Recall: High-Throughput Sequencing 

97 

 Massively parallel sequencing technology 
 Illumina, Roche 454, Ion Torrent, SOLID… 

 

 Small DNA fragments are first amplified and then 
sequenced in parallel, leading to 
 High throughput 
 High speed 
 Low cost  
 Short reads 

 Amplification step limits the read length since too short or too long 
fragments are not amplified well. 
 

 Sequencing is done by either reading optical signals as each base is 
added, or by detecting hydrogen ions instead of light, leading to: 
 Low error rates (relatively) 
 Reads lack information about their order and which part of genome 

they are originated from 



Nanopore Sequencing Technology 

98 

 Nanopore sequencing is an emerging and a promising 
single-molecule DNA sequencing technology 
 No amplification → Less limit on read length → Longer read length 

 
 
 

 First nanopore sequencing device, MinION, made 
commercially available by Oxford Nanopore 
Technologies (ONT) in May 2014.  
 Inexpensive  
 Long read length (> 882K bp) 
 Portable: Pocket-sized 
 Produces data in real-time 
 

 



Nanopore Sequencing Technology 

99 

 Nanopore sequencing is an emerging and a promising 
single-molecule DNA sequencing technology 
 No amplification → Less limit on read length → Longer read length 

 
 
 

 First nanopore sequencing device, MinION, made 
commercially available by Oxford Nanopore 
Technologies (ONT) in May 2014.  
 Inexpensive  
 Long read length (> 882K bp) 
 Portable: Pocket-sized 
 Produces data in real-time 
 

 



Nanopore Sequencing 

100 

 Nanopore is a nano-scale hole 
 In nanopore sequencers, an ionic current passes through the nanopores 
 When the DNA strand passes through the nanopore, the sequencer 

measures the the change in current 
 This change is used to identify the bases in the strand with the help of 

different electrochemical structures of the different bases 
 
 



Advantages of Nanopore Sequencing 

101 

Nanopores:  
 
 Do not require any labeling of the DNA or nucleotide for 

detection during sequencing 
 

 Rely on the electronic or chemical structure of the different 
nucleotides for identification  
 

 Allow sequencing very long reads, and  
 

 Provide portability, low cost, and high throughput.  

 



Challenges of Nanopore Sequencing 

102 

 One major drawback: high error rates  

 

 Nanopore sequence analysis tools have a critical role to: 

 overcome high error rates  

 take better advantage of the technology  

 

 Faster tools are critically needed to:  
 Take better advantage of the real-time data production 

capability of MinION 
 Enable fast, real-time data analysis 

 

 



Nanopore Genome Assembly Pipeline 

103 
Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome  
Assembly”  to appear in Briefings in Bioinformatics, 2018. 



More on Nanopore Sequencing & Tools 

104 

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome  
Assembly: Computational Analysis of the Current State, Bottlenecks  
and Future Directions,”  to appear in Briefings in Bioinformatics, 2018. 
[Preliminary arxiv.org version] 
 
 

https://arxiv.org/pdf/1711.08774.pdf


Agenda 

 The Problem: DNA Read Mapping 

 State-of-the-art Read Mapper Design 

 

 Algorithmic Acceleration  

 Exploiting Structure of the Genome 

 Exploiting SIMD Instructions 

 

 Hardware Acceleration 

 Specialized Architectures 

 Processing in Memory 

 

 Future Opportunities: New Sequencing Technologies 

105 



Conclusion 

 System design for bioinformatics is a critical problem 

 It has large scientific, medical, societal, personal implications 

 

 This talk is about accelerating a key step in bioinformatics: 
genome sequence analysis 

 In particular, read mapping 

 

 We covered various recent ideas to accelerate read mapping 

 My personal journey since September 2006 

 

 Many future opportunities exist 

 Especially with new sequencing technologies 

 

 
106 



Acknowledgments 

 Prof. Can Alkan, Bilkent University 

 

 Many students 

 Mohammed Alser, Damla Senol Cali, Jeremie Kim 

 Hasan Hassan 

 Hongyi Xin 

 … 

 

 All papers, source code, and more are at: 

 https://people.inf.ethz.ch/omutlu/projects.htm  

107 

https://people.inf.ethz.ch/omutlu/projects.htm


Onur Mutlu 

omutlu@gmail.com  

https://people.inf.ethz.ch/omutlu 

March 8, 2018 

ETH HAML Seminar 

 

Accelerating Genome Analysis 
 

A Primer on an Ongoing Journey 

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu


High-Throughput Sequencing 

109 



Nanopore Sequencing 

110 

 Basecalling translates the raw signal output of the 
nanopore sequencer into bases (A, C, G, T) to generate 
DNA reads.  
 1) The raw current signal is divided into discrete blocks (events).  
 2) Each event is decoded into a most-likely set of bases.  

 

 Deletions are the dominant error of nanopore sequencing. 

 In the ideal case, each consecutive event should differ by one 
base. However, in practice, this is not the case because of the 
non-stable speed of the translocation. 

 Determining the correct length of the homopolymers (i.e., 
repeating stretches of one kind of base, e.g., AAAAAAA) is 
challenging. 

 



3- Highly Accurate Filtering Algorithm (cont’d) 

111 

ATATCTCTTTATTTGGGGTGAGAGTTCTGTAGATGCTATTAGGTCCACTTGGTGCAGAGCTGAGTTCAATTCCGGTATTTTTCCTTGTT

TATCCTCTTTATTTGGGGTGGAGAGTTCTGTAGATGTCTATTAGGTCCACTTGGTGCAGAGCTGAGTTCAATTCCTGGGTATCCTTGTT

11110000000000000000111110111111111101011111111011111011100111101111111111101110100000000 

00011111001100100011000000000000000011110110110111010111111111111101101010111110101010110 

11111000101010110010111111011111111110000000000000000000000000000000000000010110101111101 

11011111011001111010010001110101101101111011011011101011111111111110110101010011101101100 

00001110011001000111000111010110111111001111110111100110111101111111111111111110110101100 

11110010101011001010111110111011010101111011111111011111111111011110111111101110111110100 

01001011001111010111011111011101111101110111101111111010010001010100011101101111101100000

 Deletion           Deletion        Deletion                         Deletion 

Substitution

0

1

2

3

1

2

3

Read : 

eference :

Subs  

1-Del 

2-Del 

3-Del 

1-Ins 

2-Ins 

3-Ins 

 Check for substitutions. 

 The longest identical subsequence ≥ ሺm − Eሻ/ሺE + 1ሻ . 
 Extraction & Encapsulation (divide-and-Conquer fashion). 

Not many matches in the first mask 

38 ≥ 7ͷ/Ͷ  

MAGNET 



112 

ATATCTCTTTATTTGGGGTGAGAGTTCTGTAGATGCTATTAGGTCCACTTGGTGCAGAGCTGAGTTCAATTCCGGTATTTTTCCTTGTT

TATCCTCTTTATTTGGGGTGGAGAGTTCTGTAGATGTCTATTAGGTCCACTTGGTGCAGAGCTGAGTTCAATTCCTGGGTATCCTTGTT

11110000000000000000111110111111111101011111111011111011100111101111111111101110100000000 

00011111001100100011000000000000000011110110110111010111111111111101101010111110101010110 

11111000101010110010111111011111111110000000000000000000000000000000000000010110101111101 

11011111011001111010010001110101101101111011011011101011111111111110110101010011101101100 

00001110011001000111000111010110111111001111110111100110111101111111111111111110110101100 

11110010101011001010111110111011010101111011111111011111111111011110111111101110111110100 

01001011001111010111011111011101111101110111101111111010010001010100011101101111101100000

 Deletion           Deletion        Deletion                         Deletion 

Substitution

0

1

2

3

1

2

3

Read : 

eference :

Subs  

1-Del 

2-Del 

3-Del 

1-Ins 

2-Ins 

3-Ins 

 Check for substitutions. 

 The longest identical subsequence ≥ ሺm − Eሻ/ሺE + 1ሻ . 
 Extraction & Encapsulation (divide-and-Conquer fashion). 

Now divide the problem into two subproblems and repeat 

MAGNET 

3- Highly Accurate Filtering Algorithm (cont’d) 



113 

ATATCTCTTTATTTGGGGTGAGAGTTCTGTAGATGCTATTAGGTCCACTTGGTGCAGAGCTGAGTTCAATTCCGGTATTTTTCCTTGTT

TATCCTCTTTATTTGGGGTGGAGAGTTCTGTAGATGTCTATTAGGTCCACTTGGTGCAGAGCTGAGTTCAATTCCTGGGTATCCTTGTT

11110000000000000000111110111111111101011111111011111011100111101111111111101110100000000 

00011111001100100011000000000000000011110110110111010111111111111101101010111110101010110 

11111000101010110010111111011111111110000000000000000000000000000000000000010110101111101 

11011111011001111010010001110101101101111011011011101011111111111110110101010011101101100 

00001110011001000111000111010110111111001111110111100110111101111111111111111110110101100 

11110010101011001010111110111011010101111011111111011111111111011110111111101110111110100 

01001011001111010111011111011101111101110111101111111010010001010100011101101111101100000

 Deletion           Deletion        Deletion                         Deletion 

Substitution

0

1

2

3

1

2

3

Read : 

eference :

Subs  

1-Del 

2-Del 

3-Del 

1-Ins 

2-Ins 

3-Ins 

 Check for substitutions. 

 The longest identical subsequence ≥ ሺm − Eሻ/ሺE + 1ሻ . 
 Extraction & Encapsulation (divide-and-Conquer fashion). 

Counting the encapsulation bits reveals the number of edits 

MAGNET 

3- Highly Accurate Filtering Algorithm (cont’d) 



MAGNET Accelerator 

114 

S
h

o
rt

 R
e

a
d

s
 R

e
p

o
s

it
o

ry

. . .

FPGA Board

P
C

Ie

Host

. . .

. . .

MAGNET 

# 3

MAGNET 

# 2

MAGNET 

# 6

MAGNET 

# 5

MAGNET 

# 4

MAGNET 

# 9

MAGNET 

# 8

MAGNET 

# 7

MAGNET 

# N

MAGNET 

# N-1

MAGNET 

# N-2

Read Controller

Mapping Controller

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

FIFO

R
IF

F
A

 R
X

 E
n

g
in

e
R

IF
F

A
 T

X
 E

n
g

in
e

R
IF

F
A

 D
ri

v
e

r

BSD

3 filtering 

stages
MAGNET # 1

LME

RLEE


