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The Problem

Computing
IS Bottlenecked by Data
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Data 1s Key for Al, ML, Genomics, ...

Important workloads are all data intensive

They require rapid and efficient processing of large amounts
of data

Data is increasing
o We can generate more than we can process
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Data 1s Key for Future Workloads

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’12; [Xu+, ISWC’12; Umuroglu+, FPL’15]
Clapp+ (Intel), ISWC’ 5]

et N
Spark

In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC'I5; [Kanev+ (Google), ISCA’15]
Awan+, BDCloud’15]
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Data Overwhelms Modern Machines

In-memory Databases Graph/Tree Processing

Data — performance & energy bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]
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Data is Key for Future Workloads

Z 12

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec
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Data Overwhelms Modern Machines

2

Chrome TensorFlow Mobile

Data — performance & energy bottleneck

@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec
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Data 1s Key for Future Workloads

development of high-throughput
sequencing (HTS) technologies

N I H National Human Genome
Research Institute
genol

genome.gov/sequencingcosts
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http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
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New Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali X, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017
Published: 02 April2018 Article history v

Oxford Nanopore MinION

Data — performance & energy bottleneck
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https://arxiv.org/pdf/1711.08774.pdf

Data Overwhelms Modern Machines ...

= Storage/memory capability

= Communication capability

= Computation capability

= Greatly impacts robustness, energy, performance, cost

SAFARI
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A Computing System

= Three key components
= Computation
= Communication

- Storage/ memory Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

A
Computing E 5 Communication E 5 Memory/Storage
Unit Unit Unit
\_ J e
Memory System Storage System
SAFAR 12

Image source: h'Etps://IbsitbytesZO10.wordpress.com/2013/03/29/john-von-neumann-roII-no-15/



Perils of Processor-Centric Design

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
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Memory Memory
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Shared Memory

Most of the system is dedicated to storing and moving data




Data Overwhelms Modern Machines
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Chrome TensorFlow Mobile

Data — performance & energy bottleneck

@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec
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Data Movement Overwhelms Modern Machines

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose’ Youngsok Kim?
Rachata Ausavarungnirun!  Eric Shiv>  Rahul Thakur’>  Daehyun Kim*?
Aki Kuusela®>  Allan Knies®  Parthasarathy Ranganathan®  Onur Mutlu”!
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Axiom

An Intelligent Architecture
Handles Data Well

SAFARI



How to Handle Data Well

Ensure data does not overwhelm the components

o via intelligent algorithms

o via intelligent architectures

o via whole system designs: algorithm-architecture-devices

Take advantage of vast amounts of data and metadata
o to improve architectural & system-level decisions

Understand and exploit properties of (different) data
o to improve algorithms & architectures in various metrics

SAFARI
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Corollaries: Architectures Today ...

= JArchitectures are terrible at dealing with data

o Designed to mainly store and move data vs. to compute
a They are processor-centric as opposed to data-centric

= Architectures are terrible at taking advantage of vast
amounts of data (and metadata) available to them

o Designed to make simple decisions, ignoring lots of data
o They make human-driven decisions vs. data-driven decisions

= Architectures are terrible at knowing and exploiting
different properties of application data

o Designed to treat all data as the same
o They make component-aware decisions vs. data-aware

SAFARI 18



Data-Centric (Memory-Centric)
Architectures

19




Data-Centric Architectures: Properties

Process data where it resides (where it makes sense)

o Processing in and near memory structures

Low-latency and low-energy data access
o Low latency memory
o Low energy memory

Low-cost data storage and processing
o High capacity memory at low cost: hybrid memory, compression

Intelligent data management
o Intelligent controllers handling robustness, security, cost

SAFARI 20



Processing Data
Where It Makes Sense




Why In-Memory Computation Today?

= Push from Technology
o DRAM Scaling at jeopardy
—> Controllers close to DRAM
- Industry open to new memory architectures

SAFARI
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Why In-Memory Computation Today?
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Memory Scaling Issues Were Real

= Onur Mutluy,
"Memory Scaling: A Systems Architecture
Perspective”
Proceedings of the 5th International Memory
Workshop (IMW), Monterey, CA, May 2013. Slides
(pptx) (pdf)
EETimes Reprint

Memory Scaling: A Systems Architecture Perspective

Onur Mutlu
Carnegie Mellon University
onur @cmu.edu
http://users.ece.cmu.edu/~omutlu/

https://people.inf.ethz.ch/omutlu/pub/memory-scaling _memconl3.pdf



https://people.inf.ethz.ch/omutlu/pub/memory-scaling_imw13.pdf
http://www.ewh.ieee.org/soc/eds/imw/
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_imw13_invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_imw13_invited-talk.pdf
http://www.eetimes.com/document.asp%3Fdoc_id=1280950
https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

Memory Scaling Issues Are Real

= Onur Mutlu and Jeremie Kim,
"RowHammer: A Retrospective"
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) Special Issue on Top Picks in
Haradware and Embedaed Security, 2019.
[Preliminary arXiv version]

RowHammer: A Retrospective

Onur Mutlu*  Jeremie S. Kim?*3
SETH Ziirich tCarnegie Mellon University
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https://ieeexplore.ieee.org/xpl/RecentIssue.jsp%3Fpunumber=43
https://arxiv.org/pdf/1904.09724.pdf

The Story of RowHammer

One can predictably induce bit flips in commodity DRAM chips
o >80% of the tested DRAM chips are vulnerable

First example of how a simple hardware failure mechanism
can create a widespread system security vulnerability

WRYR}HD| Forget Software—Now Hackers Are Exploiting Physics
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Recent DRAM Is More Vulnerable

Errors per 10° Cells
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One Can Take Over an Otherwise-Secure System

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable
and secure computing system — an access to one memory ad-
dress should not have unintended side effects on data stored
in other addresses. However, as DRAM process technology

Flipping Bits in Memory Without Accessing Them:

P r'oj ect Ze ro An Experimental Study of DRAM Disturbance Errors

(Kim et al., ISCA 2014)

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Exploiting the DRAM rowhammer bug to gain kernel privileges


http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

The Push from Circuits and Devices

Main Memory Needs
Intelligent Controllers

SAFARI



Why In-Memory Computation Today?

= Pull from Systems and Applications
o Data access is a major system and application bottleneck

o Systems are energy limited
o Data movement much more energy-hungry than computation

SAFARI 30



Do We Want This?

SAFARI Source: V. Milutinovic
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Or This?

SA FA Rl Source: V. Milutinovic 32



Challenge and Opportunity for Future

High Performance,
Energy Efficient,
Sustainable

SAFARI



The Problem

Data access is the major performance and energy bottleneck

Our current
design principles
cause great energy waste

(and great performance loss)

SAFARI 34



The Problem

Processing of data
IS performed
far away from the data

SAFARI
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A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System
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Unit Unit Unit

-
N
-
-
-
-
-
-
2®

T
’..‘
J'.-
“"
-.‘
‘-.
-
"‘
”

Memory System Storage System
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A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Communication

Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



Today’s Computing Systems

Are overwhelmingly processor centric
All data processed in the processor - at great system cost
Processor is heavily optimized and is considered the master

Data storage units are dumb and are largely unoptimized
(except for some that are on the processor die)

Computing System
4 )

Computing E a Communication E 3 Memory/Storage
Unit Unit Unit
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Memory System Storage System
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I expect that over the coming decade memory subsys-
i et tem design will be the only important design issue for micro-
v Processors.

=« “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)
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128-entry window Data from Runahead Execution [HPCA 2003]

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Pertormance Perspective

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February
2003. Slides (pdf)

Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark  Chris Wilkerson I Yale N. Patt §

S§ECE Department TMicroprocessor Research IDesktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation

{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson @intel.com
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https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf

The Performance Perspective (Today)

= All of Google’s Data Center Workloads (2015):

B Retiring
1 Front-end bound

B Bad speculation
=1 Back-end bound

ads -
bigtable B

SEEE I
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flight-search
gmail-fe
indexingl
— :—_j
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cearch EEE——— ﬁ=__—"__,
video —t—
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indexing2
— —

400.perlbench
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Pipeline slot breakdown (%)

Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.
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The Performance Perspective (Today)

All of Google’s Data Center Workloads (2015):

ads} ' ! e ——— - — = -
bigtable— o] pad = —1 ]
disk |- -8 i
flight-search} ———ef = - - .
gmail |- = - .
gmail-fe |- - & 1 4 .
indexingl} t—{— ) — .
indexing2} - @ 11 -
searchlf T o N i
search2 —— & - - — .
search3} W -
video | i i = = : [ - - 1 -
0 10 20 30 40 50 60 70 80
Cache-bound cycles (%)
Figure 11: Half of cycles are spent stalled on caches.
42
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Perils of Processor-Centric Design

Grossly-imbalanced systems

o Processing done only in one place

o Everything else just stores and moves data: data moves a lot
- Energy inefficient

- Low performance

- Complex

Overly complex and bloated processor (and accelerators)
o To tolerate data access from memory

o Complex hierarchies and mechanisms

- Energy inefficient

- Low performance

- Complex
43



Perils of Processor-Centric Design

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
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Shared Shared
Memory Memory
Control Control
Shared Memory

Most of the system is dedicated to storing and moving data




The Energy Perspective

Communication Dominates Arithmetic

256-bit access
8 kB SRAM

SAFARI

Dally, HIPEAC 2015

256 pJ

— M
16 nJ I- Rd/Wr

Efficient
>00pJ ] off-chip link




Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP

256-bit buses

500 PJ Efficient

off-chip link
256-bit access

8 kB SRAM




Data Movement vs. Computation Energy

= Data movement is a major system energy bottleneck
o Comprises 41% of mobile system energy during web browsing [2]
o Costs ~115 times as much energy as an ADD operation [1, 2]

Data Movement

\

—

g  EEEN I B - - .y,

[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)
[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)
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Energy Waste in Mobile Devices

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose’ Youngsok Kim?
Rachata Ausavarungnirun!  Eric Shiv>  Rahul Thakur’>  Daehyun Kim*?
Aki Kuusela®>  Allan Knies®  Parthasarathy Ranganathan®  Onur Mutlu”!
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

We Do Not Want to Move Datal

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP

256-bit buses

500 PJ Efficient

off-chip link
256-bit access

8 kB SRAM




We Need A Paradigm Shift To ...

Enable computation with minimal data movement
Compute where it makes sense (where data resides)

Make computing architectures more data-centric

50



Goal: Processing Inside Memory

Processor

Core

Results

Many questions ... How do we design the:

Q

o O O 0O

compute-capable memory & controllers?
processor chip and in-memory units?
software and hardware interfaces?
system software, compilers, languages?
algorithms and theoretical foundations?

)
Interconnect

1 Database

Graphs

| Media

Problem

Program/Language

System Software

SW/HW Interface

Micro-architecture

Logic

Electrons




Processing in Memory:

Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory




Approach 1: Minimally Changing Memory

= DRAM has great capability to perform bulk data movement and
computation internally with small changes

o Can exploit internal connectivity to move data
a Can exploit analog computation capability

Q ...

= Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM

o RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data
(Seshadri et al., MICRO 2013)

o Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

o Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

o "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology” (Seshadri et al., MICRO 2017)

SAFARI >3


http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Starting Simple: Data Copy and Initialization

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

- Zero initialization ' '

I. oo o
‘;li‘> Many more

VM Cloning  page Migration
Deduplication

SAFARI >4
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Today’s Systems: Bulk Data Copy

1) High latency
3) Cache pollution \

2) High bandwidth utilization

4) Unwanted data movement

1046ns, 3.6ul (for 4KB page copy via DMA)

55



Future Systems: In-Memory Copy

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement

1046ns, 3.6u)] =2 90ns, 0.04u)
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RowClone: In-DRAM Row Copy

Transfer
row

Transfer|
row

4 Kbytes

Idea: Two consecutive ACTivates

Negligible HW cost

Step 1: Activate row A

Step 2: Activate row B

DRAM subarray

Row Buffer (4 Kbytes)

Data Bus



RowClone: Latency and Energy Savings

M Baseline M Intra-Subarray
W Inter-Bank M Inter-Subarray

1.2

=
|

A

74x

o
(00]
|

o
>
|

Normalized Savings
o
(@)

o
N
|

Latency Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.
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More on RowClone

= Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization”
Proceedings of the 46th International Symposium on Microarchitecture

(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin™ Donghyuk Lee
vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu
Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo

rachata@cmu.edu gpekhime@cs.cmu.edu  yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbonst Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University fIntel Pittsburgh


http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

Memory as an Accelerator

Memory

Memory Controller

mini-CPU
E GPU GPU =
CPU CPU delis ¢ | (throughput) (throughput) | :
core core : core core :
video
core
: GPU GPU :
CPU CPU . _ : | (throughput) | |(throughput) | :
imaging core :
core core e core
LLC
|

Specialized
compute-capability
in memory

Memory similar to a “conventiona

Memory Bus

III

accelerator



In-Memory Bulk Bitwise Operations

We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
At low cost

Using analog computation capability of DRAM

o Idea: activating multiple rows performs computation

30-60X performance and energy improvement

o Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

New memory technologies enable even more opportunities
o Memristors, resistive RAM, phase change mem, STT-MRAM, ...
o Can operate on data with minimal movement
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In-DRAM AND/OR: Triple Row Activation

A ; l P %Vppt6

I el Final State
B v AB + BC + AC

wl/"‘

A

dis

| %\,

SAFARI Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.
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In-DRAM NOT: Dual Contact Cell

d-wordline o
dual-contact »: T 5
cell (DCC) | | i = .
n-wordline :__%I_ | Idea -
== ’ Feed the
amplifier A negated value

in the sense amplifier
into a special row

bitline
Figure 5: A dual-contact

cell connected to both
ends of a sense amplifier

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Ambit vs. DDR3: Performance and Energy

Performance Improvement B Energy Reduction
70

60
50 32X 35X

40
30
20
10 |
0

and/or nand/nor xor/xnor mean

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017. 64



Bulk Bitwise Operations in Workloads

BitWeaving

Bitmap indices (database queries)
(database indexing)

BitFunnel

Bulk Bitwise (web search)

Set operations Operations

DNA
sequence mapping
Encryption algorithms

SA FARI [1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017



Performance: Bitmap Index on Ambit

~~ 110 4 = L e T e,
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Figure 10: Bitmap index performance. The value above each
bar indicates the reduction in execution time due to Ambit.

>5.4-6.6X Performance Improvement

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Performance: BitWeaving on Ambit

‘select count(*) from T where cl <= val <= c2’

13 _ ROW count (r) _ D 1m . 2m D 4m . 8m ..................................

Speedup offered by Ambit

24
Number of Bits per Column (b)

Figure 11: Speedup offered by Ambit over baseline CPU with
SIMD for BitWeaving

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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More on Ambit

= Vivek Seshadri et al., "Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee*® Thomas Mullins®® Hasan Hassan® Amirali Boroumand®
Jeremie Kim*®> Michael A. Kozuch® Onur Mutlu®*®  Phillip B. Gibbons®> Todd C. Mowry?®

'!Microsoft Research India 2NVIDIA Research 3Intel ZETH Ziirich °Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

In-DRAM Bulk Bitwise Execution

= Vivek Seshadri and Onur Mutlu,
"In-DRAM Bulk Bitwise Execution Engine"

Invited Book Chapter in Advances in Computers, to appear
in 2020.

[Preliminary arXiv version]

In-DRAM Bulk Bitwise Execution Engine

Vivek Seshadri Onur Mutlu
Microsoft Research India ETH Zurich

visesha@microsoft.com onur .mutlu@inf.ethz.ch
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https://arxiv.org/pdf/1905.09822.pdf
https://arxiv.org/pdf/1905.09822.pdf

Sounds Good, No?

Paper summary Review from ISCA 2016

The paper proposes to extend DRAM to include bulk, bit-wise
logical
operations directly between rows within the DRAM.

Strengths
- Very clever/novel idea.

- Great potential speedup and efficiency gains.

- Probably won't ever be built. Not practical to assume DRAM
manufacturers with change DRAM in this way.
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Another Review

Another Review from ISCA 2016

Strengths

The proposed mechanisms effectively exploit the operation of
the DRAM to perform efficient bitwise operations across entire
rows of the DRAM.

Weaknesses
This requires a modification to the DRAM that will only help this

type of bitwise operation. It seems unlikely that something like
that will be adopted.

SAFARI &



Yet Another Review
Yet Another Review from ISCA 2016

Weaknesses

The core novelty of Buddy RAM is almost all circuits-related
(by exploiting sense amps). | do not find architectural

innovation even though the circuits technique benefits
architecturally by mitigating memory bandwidth and relieving
cache resources within a subarray. The only related part is the
new ISA support for bitwise operations at DRAM side and its
iInduced issue on cache coherence.
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The Reviewer Accountability Problem

AcknowleXgments

We thank the reviewers of ISCA 2016/2017, MICRO
2016/2017, and HPCA 2017 for their valuable comments. We
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We Have a Mindset Issue...

There are many other similar examples from reviews...
o For many other papers...

And, we are not even talking about JEDEC vyet...
How do we fix the mindset problem?

By doing more research, education, implementation in
alternative processing paradigms

We need to work on enabling the better future...
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Suggestion to Community

We Need to Fix the
Reviewer Accountability
Problem
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Takeaway

Main Memory Needs
Intelligent Controllers
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Takeaway

Our Community Needs
Accountable Reviewers
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RowClone & Bitwise Ops 1n Real DRAM Chips

ComputeDRAM: In-Memory Compute Using Off-the-Shelf

DRAMs
Fei Gao Georgios Tziantzioulis David Wentzlaff
feig@princeton.edu georgios.tziantzioulis@princeton.edu wentzlaf@princeton.edu
Department of Electrical Engineering Department of Electrical Engineering Department of Electrical Engineering
Princeton University Princeton University Princeton University

SAFARI https://parallel.princeton.edu/papers/micro19-gao.pdf 78



https://parallel.princeton.edu/papers/micro19-gao.pdf

Pinatubo: RowClone and Bitwise Ops in PCM

Pinatubo: A Processing-in-Memory Architecture for Bulk
Bitwise Operations in Emerging Non-volatile Memories

Shuangchen Li*; Cong Xu?, Qiaosha Zou**, Jishen Zhao?, Yu Lu*, and Yuan Xie*

University of California, Santa Barbara®, Hewlett Packard Labs?
University of California, Santa Cruz?, Qualcomm Inc.*, Huawei Technologies Inc.?
{shuangchenli, yuanxie}ece.ucsb.edu*

SAFARI https://cseweb.ucsd.edu/~jzhao/files/Pinatubo-dac2016.pdf &
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Aside: A Recommended Book

WILEY PROFESSIONAL COMPUTING

COMPUTER
SYSTEMS

ANALYSIS

Techniques for
Experimental Design,
Measurement, Simulation,
and Modeling

Raj Jain

SAFARI

THE ART OF

PERFORMANCE

Raj Jain, “The Art of
Computer Systems

Performance Analysis,”
Wiley, 1991.
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cosoN MAKER'S GAMES e

pECISION MAKER'’S GAMES

Even if the performance analy.s1s 1s correctly done and presented, it may not be
enough 10 _persuade your audlex}ce—the decision makers—to follow your rec-
ommendations. The list shown in Box 10.2 is a compilation of reasons for re-
‘ection heard at v.arfous pe:rformance analysis presentations. You can use the
Jist by presenting it lmmednate{y and pointing out that the reason for rejection
is not new anq that the analy.s1s deserves more consideration. Also, the list is
helpful in getting the competing proposals rejected!
There is no clear end of an analysis. Any analysis can be rejected simply

R}

gszed in Box 10.2. The second most common reason for rejection of an anal-
ysis and for endless debate is the workload. Since workloads are always based
on the past measurements, their applicability to the current or future environ-
ment can always be questioned. Actually workload is one of the four areas of
discussion that lead a performance presentation into an endless debate. These
«rat holes” and their relative sizes in terms of time consumed are shown in

Figure 10.26. Presenting this cartoon at the beginning of a presentation helps
to avoid these areas.

Performance Analysis Rat Holes

Raj Jain, “The Art of
Computer Systems
\\ l G | Performance Analysis,”
e

N\ Wiley, 1991.

Workload Metrics Configuration

N

FIGURE 10.26 Four issues in performance presentations that commonly lead to end-
less discussion.
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Reasons for Not Accepting the Results of gy, Analm
8

Box 10.2 :
: s more analysis.
1 ';1“5 :ﬁ a better understanding of the workload,
Zs Son roves performance only for long T/O's, packets, jop, an
3 st of the 1/0's, packets, jobs, and files are shory  *1d fig

: rformance only for short 1/0’s, packets, jo
4. It improves Pcfor the performance of short I/O’s, pack::: ;:iﬁm
ang

ho cares ,
It ne,eds too much memory/CPU/bandwidth and emotyE Ulbang,

width isn’t free. 5
6. It only saves us memory/CPU/bandwidth and memory/cp Uhbang. |

width is cheap. imi
There is no point in making the networks (similarly, CPUs/gq

faster; our CPUs/disks (any component other than the one being dl‘;

cussed) aren’t fast enough to use them.

It improves the performance by a factqr of x, put it doesn’t really

matter at the user level because everything else is so slow.

9. It is going to increase the complexity and cost.

10. Let us keep it simple stupid (and your idea is not stupid).

11. It is not simple. (Simplicity is in the eyes of the beholder.)

12. It requires too much state.

13. Nobody has ever done that before. (You have a new idea.)

14. It is not going to raise the price of our stock by even an eighth.
(Nothing ever does, except rumors.)

15. This will violate the IEEE, ANSI, CCITT, or ISO standard.

16. It may violate some future standard.

17. The standard says nothing about this and so it must not be impor-
tant.

18. Our competitors don’t do it. If it was a good idea, they would have
done it.

19. Qur competition does it this way and you don’t make money by copy-
ing others.

20. It will introduce randomness into the system and make debugging
difficult.

21. It is too deterministic; it may lead the system into a cycle.

22. It’s not interoperable,

23. This impacts hardware.

- That’s beyond today’s technology.

Raj Jain, “The Art of
Computer Systems
Performance Analysis,”
Wiley, 1991.

- Why change—it’s working OK.
\,




Suggestion to Researchers: Principle: Passion

Follow Your Passion
(Do not get derailed
by naysayers)




Suggestion to Researchers: Principle: Resilience

Be Resilient




Principle: Learning and Scholarship

Focus on
learning and scholarship

SAFARI



Principle: Learning and Scholarship

The quality of your work
defines your impact

SAFARI



Processing in Memory:

Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory




Opportunity: 3D-Stacked Logic+Memory

Hybrid Memory Cube

Logic

Other “True 3D" technologies
under development

SAFARI 88



DRAM Landscape (circa 2015)

Segment DRAM Standards & Architectures
Commodity DDR3 (2007) [14]; DDR4 (2012) [1¥]
Low-Power  LPDDR3 (2012) [17]; LPDDR4 (2014) [20]
Graphics GDDRS5 (2009) [15]

Performance eDRAM [2£], [32]; RLDRAM3 (2011) [29]

SBA/SSA (2010) [38]; Staged Reads (2012) [3]; RAIDR (2012) [27];
SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];
Half-DRAM (2014) [39]; Row-Bufter Decoupling (2014) [33];

SARP (2014) [6]; AL-DRAM (2015) [25]

Academic

Table 1. Landscape of DRAM-based memory

Kim+, "Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.
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Two Key Questions 1n 3D-Stacked PIM

=| What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?
a | By changing the entire system

o By performing simple function offloading

= What is the minimal processing-in-memory support we can
provide?
a With minimal changes to system and programming

SAFARI 20



Graph Processing

= Large graphs are everywhere (circa 2015)

oo [ L

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages = Facebook Users Twitter Users  Instagram Photos

= Scalable large-scale graph processing is challenging

Speedup

91



Key Bottlenecks in Graph Processing

for (v: graph.vertices) {
for (w: v.successors) {

w.next_rank += weight * v.rank;

1. Frequent random memory accesses

w.rank

w.next_rank

w.edges

2. Little amount of computation
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Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped

Accelerator Interface :
Noncacheable, Physically Addressed) !

~ 2 Y BRE
— T | .
q Z
Wt il 1
" ) 1 A
® A\ & ,
N, itw ] g ;
3 X
- - | : 1
Nt = Ll '
' 1
1 1 )
| NG 1 ,
1 ] ,
1 1 /
1 1 /
1 [
1 1 /
[ -
7/
/
7 /
7 7/
’

o
X
>

LI B | | /I z
| | | A
II LI B | g
1] [y T BN 1 oo LP PF Buffer =
' Crossbar Network > o
/ I S CE )
O‘w'_ | | | LI B | | \\\\ MTP
~ LI B | ‘\\\ ¢
v Message Queue NI

SAFAR/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Communications via

Remote Function Calls

Message Queue




Prefetching

LP PF Buffer

MTP




Evaluated Systems

DDR3-000 = HMC-000  HMC-MC | Tesseract

aCE B0 |
E = JE 1= B . .
I T + T = T + T I i y ¥ y y y y y ¥ L /'y X y § : 32
CaCE CaCs | , | Tesseract
i X X X / \ i / \ X X X i Cores
A 4 A 4 A 4 A 4 : vy vy \A 4 \A4 : \ 4 vy vy vy 1
: 128 128
8 OI(-)IO 8 OI?IO A “«> 2022 In-Order <> In-Order
4GHz || 4GHz 4GHz || 4GHz . o o o] o
| | B
A\ 4 A\ 4 : A 4 Y : A 4 A 4 PN P
8000 | 8000 | 8000 |8000 oo | @ 28 : :
4GHz 4GHz ! 4GHz 4GHz ! 2GHz IGH3z | - o
! AA AA AA AA i t ¢ ¢ e
v v v v \4 \ 4 \ 4 A : \ 4 \4 \4 \ 4 : PR < PR
CECs CaCs '
CaCE CaCs
| | | I \ 4 \4 \4 \4 \ 4 \4 \ 4 \4
CECs CaCs
I I I I
CECs CaCs
102.4GB/s 640GB/s 640GB/s 8TB/s

SAFAR]/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing Performance

. >13X Performance Improvement

" On five graph processing algorithms 13.8x

11.6x

12
10 9.0x

Speedup

~ o o

+56%  125%

, == [l e

DDR3-000 HMC-Oo0 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP

N

SAFAR/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Memory Bandwidth Consumption

2.9TB/s

Memory Bandwidth (TB/s)

2.2TB/s
1.3TB/s
190GB/s 243GB/s
80GB/s
— T

DDR3-000 HMC-000 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP




Tesseract Graph Processing System Energy

B Memory Layers M Logic Layers [ Cores
1.2

0.8
0.6
0.4

0.2 > 8X Energy Reduction

HMC-000 Tesseract with Prefetching

SAFARI| Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”

Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn  Sungpack Hong® Sungjoo Yoo Onur Mutlu’ Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo @ gmail.com, onur@cmu.edu, kchoi@snu.ac.kr

Seoul National University $Oracle Labs fCarnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

Two Key Questions 1n 3D-Stacked PIM

=| What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?

a By changing the entire system

o | By performing simple function offloading

= What is the minimal processing-in-memory support we can
provide?
a With minimal changes to system and programming

SAFARI tot



Another Example: PIM on Mobile Devices

= Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks
Amirali Boroumand' Saugata Ghose' Youngsok Kim?

Rachata Ausavarungnirun’  Eric Shiv>  Rahul Thakur’>  Daehyun Kim*?
Aki Kuusela®  Allan Knies>  Parthasarathy Ranganathan®  Onur Mutlu>!
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Four Important Workloads

Z 12

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI



Energy Cost of Data Movement

|5t key observation: 62.7% of the total system
energy is spent on data movement

Data Movement

Processing-In-Memory (PIM)

Potential solution: move computation close to data

Challenge: limited area and energy budget
SAFARI



Simple PIM on Mobile Workloads

2"d key observation: a significant fraction of the
data movement often comes from simple functions

We can design lightweight logic to implement
these simple functions in memory

Small embedded Small fixed-function
low-power core accelerators

Offloading to PIM logic reduces energy and
execution time, on average, by 55.4% and 54.2%

SAFARI



Normalized Energy

CPU-Only EPIM-Core OPIM-Acc

p 8

0

o 0.8

c

L

o 0.6

()

.E

= 04 -+

£

S 0.2

Z

0 -

Texture
Tiling

Color Com-
Blitting pression

Chrome Browser

pression

Decom- Packing Quantizatiori

TensorFlow

Mobile

Sub-Pixel Deblocking  Motion
Interpolation  Filter Estimation

Video Playback and
Capture

PIM core and PIM accelerator reduce
energy consumption on average by 49.1% and 55.4%
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Normalized Runtime

Normalized Runtime

=

o

o

o

o

o

CPU-Only B PIM-Core [0 PIM-Acc

0 _
8
6
4 |
2
O n I I
Texture Color Comp- Decomp- | Sub-Pixel Deblocking Motion |TensorFlow
Tiling Blitting ression ression [Interpolation Filter Estimation
Chrome Browser Video Playback TensorFlow
and Capture Mobile

Offloading these kernels to PIM core and PIM accelerator
reduces program runtime on average by 44.6% and 54.2%



Truly Distributed GPU Processing with PIM?

__global__
void applyScaleFactorsKernel( uint8_ T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols )
{
// Work out which pixel we are working on.
const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
const int colldx = blockIdx.y:
const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if( rowIdx >= numRows ) return;

// Compute the index of my element

3 D-StaCked memory size_t linearIdx = rowIdx + colIdx*numRows +

sliceIdx*numRows*numCols;

(memory stack) SM (Streaming Multiprocessor)

_______________ Logic layer

Logic layer
SM
I

Crossbar switch
[ [

Vault| .... |Vault
Ctrl Ctrl

Main GPU




Accelerating GPU Execution with PIM (I)

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim*  Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

fCarnegie Mellon University 'NVIDIA *KAIST SETH Ziirich


https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Accelerating GPU Execution with PIM (1I)

= Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik®  Xulong Tang*  Adwait Jog>  Onur Kayiran?
Asit K. Mishra* Mahmut T. Kandemir! Onur Mutlu®® Chita R. Das!

'Pennsylvania State University =~ *College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich ¢Carnegie Mellon University

SAFARI 1o


https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

SAFARI



Barriers to Adoption of PIM

1. Functionality of and applications & software for PIM

2. Ease of programming (interfaces and compiler/HW support)
3. System support: coherence & virtual memory

4. Runtime and compilation systems for adaptive scheduling,
data mapping, access/sharing control

5. Infrastructures to assess benefits and feasibility

All can be solved with change of mindset

SAFARI 12



We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step

SAFARI 3



PEI: PIM-Enabled Instructions (Ideas)

Goal: Develop mechanisms to get the most out of near-data
processing with minimal cost, minimal changes to the system, no
changes to the programming model

Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block

0 e.g., __pim_add(&w.next_rank, value) = pim.add r1, (r2)

No changes sequential execution/programming model

No changes to virtual memory

Minimal changes to cache coherence

No need for data mapping: Each PEI restricted to a single memory module

o O O O

Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors

o Execute each operation at the location that provides the best performance

SAFARI 4



PEIL: PIM-Enabled Instructions (Example)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
__pim_add(&w.next_rank, value);

pim.add r1, (r2)

} Table 1: Summary of Supported PIM Operations
} Operation R W Input Output Applications
pfe nce 8-byte integer increment O O Obytes Obytes AT
pfe nce ( ) . 8-byte integer min O O 8bytes Obytes BFS, SP, WCC
) Floating-point add O O S8bytes Obytes PR
Hash table probing O X 8bytes 9bytes HJ
Histogram bin index O X 1byte 16bytes HG, RP
Euclidean distance O X 64bytes 4bytes SC
Dot product O X 32bytes 8bytes SVM

Executed either in memory or in the processor: dynamic decision
o Low-cost locality monitoring for a single instruction

Cache-coherent, virtually-addressed, single cache block only

Atomic between different PEIs

Not atomic with normal instructions (use pfence for ordering)

SAFARI
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PEI Performance Delta: Large Data Sets

(Large Inputs, Baseline: Host-Only)
70%

, 47% Performance
60%
Improvement

50%

40%

30%

20%

10% '

0%

WCC SVM  GM

M PIM-Only @ Locality-Aware
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PEI Energy Consumption 25% Energy

Reduction
1.5 Host-OnIy
PIM-Only
Locality-Aware
1
0.5
0
Small Medium Large
W Cache B HMC Link = DRAM
[ Host-side PCU [0 Memory-side PCU [ PMU
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Simpler PIM: PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University *Carnegie Mellon University
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http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step

SAFARI o



PIM Review and Open Problems

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan Gémez-Luna?, Rachata Ausavarungnirun®®

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory

Computation”
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]
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PIM Review and Open Problems (1I)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose’  Amirali Boroumand®  Jeremie S. Kim™  Juan Gémez-Luna®  Onur Mutlu®'

"Carnegie Mellon University SETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 2019,

[Preliminary arXiv version]
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Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement
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Corollaries: Architectures Today ...

= Architectures are terrible at dealing with data
o Designed to mainly store and move data vs. to compute
a They are processor-centric as opposed to data-centric

-
o Designed to make simple decisions, ignoring lots of data
o They make human-driven decisions vs. data-driven decisions

= Architectures are terrible at knowing and exploiting
different properties of application data

o Designed to treat all data as the same
o They make component-aware decisions vs. data-aware
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Exploiting Data to Design
Intelligent Architectures




System Architecture Design Today

Human-driven
o Humans design the policies (how to do things)

Many (too) simple, short-sighted policies all over the system
No automatic data-driven policy learning

(Almost) no learning: cannot take lessons from past actions

Can we design
fundamentally intelligent architectures?
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An Intelligent Architecture

Data-driven
o Machine learns the “best” policies (how to do things)

Sophisticated, workload-driven, changing, far-sighted policies
Automatic data-driven policy learning

All controllers are intelligent data-driven agents

How do we start?
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Selt-Optimizing
Memory Controllers




Memory Controller

Resolves memory contention
by scheduling requests

- [

Controller 5

r r
Memory
Core .

How to schedule requests to maximize system performance?
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Why are Memory Controllers Ditticult to Design?

Need to obey DRAM timing constraints for correctness

o There are many (50+) timing constraints in DRAM

o tWTR: Minimum number of cycles to wait before issuing a read command after
a write command is issued

o tRC: Minimum number of cycles between the issuing of two consecutive
activate commands to the same bank

Q

Need to keep track of many resources to prevent conflicts

o Channels, banks, ranks, data bus, address bus, row buffers, ...

Neec
Neec

Neec

to handle DRAM refresh
to manage power consumption
to optimize performance & QOS (in the presence of constraints)

o Reordering is not simple
o Fairness and QoS needs complicates the scheduling problem

129



Many Memory Timing Constraints

Latency | Symbol | DRAM cyeles H Latency | Symbol | DRAM cycles |

Precharge ‘RP 11 Activate to read/write ‘RCD 11

Read column address strobe CL 11 Write column address strobe CWL 8
Additive AL 0 Activate to activate ‘RC 39

Activate to precharge ‘RAS 28 Read to precharge ‘RTP 6

Burst length ‘BL 4 Column address strobe to column address strobe | ‘CC D 4

Activate to activate (different bank) | * RRD 6 Four activate windows ‘FAW 24
Write to read ‘WTR 6 Write recovery ‘WR 12

= From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing

Table 4. DDR3 1600 DRAM timing specifications

Write-Caused Interference in Memory Systems,” HPS Technical Report,

April 2010.
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Many Memory Timing Constraints

= Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,"” ISCA 2012.

= Lee et al., "Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

Q .| Q
® & & Gi & Table 2. Timing Constraints (DDR3-1066) [43]
< &« Q < <
< tRC > | Phase Commands Name Value
——tRAS—— | < tRP—| ACT  READ
; time -
Subarray —[ 1. Activation Ore 1. Activation — 1 ACT — WRITE CRCD 15ns
| |
Peripheral & <tRCD- G ! <tRCD~> 770 time ACT — PRE tRAS 37.5ns
I/O-Circuitry . ~ READ — data tCL 15ns
«—tCL— | <tCL—> ! time 2  WRITE — data tCWL 11.25ns
Bus data >
' ! : data burst tBL 7.5ns
, 'tBLY tBL, 3 PRE— ACT tRP  15ms
<—first access latency—> | i TRC
second access latency | 1&3 ACT — ACT (tRAS+tRP) 52.5ns

Figure 5. Three Phases of DRAM Access
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Memory Controller Design Is Becoming More Ditticult

CPU CPU
GPU
y v
DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

= Heterogeneous agents: CPUs, GPUs, and HWAs
= Main memory interference between CPUs, GPUs, HWAs
= Many timing constraints for various memory types

= Many goals at the same time: performance, fairness, QoS,
energy efficiency, ...
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Reality and Dream

Reality: It difficult to design a policy that maximizes
performance, QoS, energy-efficiency, ...

o Too many things to think about
o Continuously changing workload and system behavior

Dream: Wouldn't it be nice if the DRAM controller
automatically found a good scheduling policy on its own?
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Selt-Optimizing DRAM Controllers

Problem: DRAM controllers are difficult to design

o It is difficult for human designers to design a policy that can adapt
itself very well to different workloads and different system conditions

Idea: A memory controller that adapts its scheduling policy to
workload behavior and system conditions using machine learning.

Observation: Reinforcement learning maps nicely to memory
control.

Design: Memory controller is a reinforcement learning agent

o It dynamically and continuously learns and employs the best
scheduling policy to maximize long-term performance.

Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.



Selt-Optimizing DRAM Controllers

’ ‘ ENVIRONMENT

<+— Reward r(t)
<+— State s(t)

Goal: Learn to choose actions to maximize ro + yri + y2r, + ... (0 <y < 1)

Action a(t+1) Agent

Figure 2: (a) Intelligent agent based on reinforcement learning
principles;


http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Selt-Optimizing DRAM Controllers

Dynamically adapt the memory scheduling policy via
interaction with the system at runtime

o Associate system states and actions (commands) with long term
reward values: each action at a given state leads to a learned reward

o Schedule command with highest estimated long-term reward value in
each state

o Continuously update reward values for <state, action> pairs based on
feedback from system

>| SYSTEM

Data Bus

Scheduled DRAM Utilization (t)
Command (t+1) Scheduler State

Attributes (1)
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Selt-Optimizing DRAM Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA ), pages 39-50, Beijing, China, June 2008.

State \ Actio/n\
/ / Command

Transaction Queue

o)
CFTETTTIe 3 e
C | 3| [oess )| 5
o
~ O
-~ ~ wn
-~ ~
-~ ~
. ~. <
-~ ~~ \ —
Valid {Bank | Row | Col | Data | "edue®t Rewa\rty
tate

Figure 4: High-level overview of an RL-based scheduler.
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States, Actions, Rewards

** Reward function

e +1 for scheduling
Read and Write
commands

e ( at all other
times

Goal is to maximize
long-term
data bus
utilization

** State attributes

Number of reads,
writes, and load
misses in
transaction queue

Number of pending
writes and ROB
heads waiting for
referenced row

Request’s relative
ROB order

** Actions

Activate

Write

Read - load miss
Read - store miss
Precharge - pending

Precharge - preemptive
NOP
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Performance Results

g 2%
318
Y 140
g 1.20
3 1.00
a 0.80
3 0.60
B 0.40
.% ART CG EQUAKE FFT MG OCEAN RADIX SCALPARC SWIM  G-MEAN

M In-Order MW FR-FCFS mRL M Optimistic

Figure 7: Performance comparison of in-order, FR-FCFS, RL-based, and optimistic memory controllers

Large, robust performance improvements
over many human-designed policies

BEREBREN

Speedup over
1-Channel FR-FCFS
O Bt

ART CG EQUAKE FFT MG OCEAN RADIX SCALPARC SWIM G-MEAN

M FR-FCFS - 1 Channel " RL-1 Channel M FR-FCFS -2 Channels MRL - 2 Channels

Figure 15: Performance comparison of FR-FCFS and RL-based memory controllers on systems with 6.4GB/s and 12.8GB/s peak
DRAM bandwidth
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Selt Optimizing DRAM Controllers

+ Continuous learning in the presence of changing environment

+ Reduced designer burden in finding a good scheduling policy.
Designer specifies:

1) What system variables might be useful
2) What target to optimize, but not how to optimize it

-- How to specify different objectives? (e.g., fairness, QoS, ...)
-- Hardware complexity?

-- Design mindset and flow
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More on Selt-Optimizing DRAM Controllers

= Engin Ipek, Onur Mutlu, José F. Martinez, and Rich Caruana,
"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach”
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA ), pages 39-50, Beijing, China, June 2008.

Self-Optimizing Memory Controllers: A Reinforcement Learning Approach

Engin Ipek>  Onur Mutlu?>  José F. Martinez!  Rich Caruana!

LCornell University, Ithaca, NY 14850 USA
2 Microsoft Research, Redmond, WA 98052 USA
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An Intelligent Architecture

Data-driven
o Machine learns the “best” policies (how to do things)

Sophisticated, workload-driven, changing, far-sighted policies
Automatic data-driven policy learning

All controllers are intelligent data-driven agents

We need to rethink design
(of all controllers)
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Challenge and Opportunity for Future

Self-Optimizing
(Data-Driven)
Computing Architectures

SAFARI



Corollaries: Architectures Today ...

= Architectures are terrible at dealing with data
o Designed to mainly store and move data vs. to compute
a They are processor-centric as opposed to data-centric

= Architectures are terrible at taking advantage of vast
amounts of data (and metadata) available to them

o Designed to make simple decisions, ignoring lots of data
o They make human-driven decisions vs. data-driven decisions

o Designed to treat all data as the same
o They make component-aware decisions vs. data-aware
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Data-Aware Architectures

A data-aware architecture understands what it can do with
and to each piece of data

It makes use of different properties of data to improve
performance, efficiency and other metrics

Compressibility
Approximability

Locality

Sparsity

Criticality for Computation X
Access Semantics

o o o o o o O
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One Problem: Limited Interfaces

Higher-level information is not visible to HW

(C)
./5\. g ()

é .’\ N’ Code Optimizations

~ Data Structures \1/ Z
SN
) S

Software

Access Patterns

Data Type

i
)’0

AA

&

Hardware

100011111.. Instructions
101010011.. Memory Addresses
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A Solution: More Expressive Interfaces

Performance | »_ M
Software , % ‘

Higher-level Expressive
ISA Program Mpemory
Virtual Memory YT TS “YMem”

Hardware
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Expressive (Memory) Intertaces

= Nandita Vijaykumar, Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady
Pekhimenko, Eiman Ebrahimi, Nastaran Hajinazar, Phillip B. Gibbons and Onur Mutlu,
"A Case for Richer Cross-layer Abstractions: Bridging the Semantic Gap
with Expressive Memory"
Proceedings of the 45th International Symposium on Computer Architecture (ISCA),
Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]

A Case for Richer Cross-layer Abstractions:
Bridging the Semantic Gap with Expressive Memory

Nandita Vijaykumar'® Abhilasha Jain' Diptesh MajumdarT Kevin Hsieh” Gennady Pekhimenko*
Eiman Ebrahimi® Nastaran Hajinazar™ Phillip B. Gibbons" Onur Mutlu®?

TCarnegie Mellon Universit *University of Toronto XNVIDIA
g , Yy ty
*TSimon Fraser University SETH Ziirich
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X-MeM Aids Many Optimizations

Table 1: Summary of the example memory optimizations that XMem aids.

Memory Example semantics provided by Example Benefits of XMem

optimization XMem (described in §3.3)

Cache (i) Distinguishing between data Enables: (i) applying different caching policies to different data structures or pools of data;
management structures or pools of similar data; (ii) avoiding cache thrashing by knowing the active working set size; (iii) bypassing/prioritizing

(ii) Working set size; (iii) Data reuse

data that has no/high reuse. (§5)

Page placement

(i) Distinguishing between data

Enables page placement at the data structure granularity to (i) isolate data structures that have

in DRAM structures; (ii) Access pattern; high row buffer locality and (ii) spread out concurrently-accessed irregular data structures

e.g. [23,24] (iii) Access intensity across banks and channels to improve parallelism. (§6)

Cache/memory (i) Data type: integer, float, char; Enables using a different compression algorithm for each data structure based on data type and

compression (ii) Data properties: sparse, pointer, data properties, e.g., sparse data encodings, FP-specific compression, delta-based compression

e.g., [25-32] data index for pointers [27].

Data (i) Access pattern: strided, irregular, Enables (i) highly accurate software-driven prefetching while leveraging the benefits of hard-

prefetching irregular but repeated (e.g., graphs), ware prefetching (e.g., by being memory bandwidth-aware, avoiding cache thrashing); (ii) using

e.g., [33-36] access stride; (ii) Data type: index, different prefetcher types for different data structures: e.g., stride [33], tile-based [20], pattern-
pointer based [34-37], data-based for indices/pointers [38,39], etc.

DRAM cache (i) Access intensity; (ii) Data reuse; (i) Helps avoid cache thrashing by knowing working set size [44]; (ii) Better DRAM cache

management (iii) Working set size management via reuse behavior and access intensity information.

e.g., [40-46]

Approximation (i) Distinguishing between pools of Enables (i) each memory component to track how approximable data is (at a fine granularity)

in memory similar data; (ii) Data properties: to inform approximation techniques; (ii) data placement in heterogeneous reliability memo-

e.g., [47-53] tolerance towards approximation ries [54].

Data placement: (i) Data partitioning across threads (i.e., ~ Reduces the need for profiling or data migration (i) to co-locate data with threads that access it

NUMA systems  relating data to threads that access it); and (ii) to identify Read-Only data, thereby enabling techniques such as replication.

e.g., [55,56] (ii) Read-Write properties

Data placement: (i) Read-Write properties Avoids the need for profiling/migration of data in hybrid memories to (i) effectively manage the

hybrid (Read-Only/Read-Write); (ii) Access asymmetric read-write properties in NVM (e.g., placing Read-Only data in the NVM) [16,57];

memories intensity; (iii) Data structure size; (ii) make tradeoffs between data structure "hotness" and size to allocate fast/high bandwidth

e.g., [16,57,58]

(iv) Access pattern

memory [14]; and (iii) leverage row-buffer locality in placement based on access pattern [45].

Managing
NUCA systems
e.g. [15,59]

(i) Distinguishing pools of similar data;
(ii) Access intensity; (iii) Read-Write or
Private-Shared properties

(i) Enables using different cache policies for different data pools (similar to [15]); (ii) Reduces
the need for reactive mechanisms that detect sharing and read-write characteristics to inform
cache policies.




Expressive (Memory) Interfaces for GPUs

= Nandita Vijaykumar, Eiman Ebrahimi, Kevin Hsieh, Phillip B. Gibbons and Onur Mutlu,
"The Locality Descriptor: A Holistic Cross-Layer Abstraction to Express
Data Locality in GPUs"
Proceedings of the 45th International Symposium on Computer Architecture (ISCA),
Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]

The Locality Descriptor:
A Holistic Cross-Layer Abstraction to Express Data Locality in GPUs

Nandita VijaykumarJr§ Eiman Ebrahimi* Kevin Hsieh"
Phillip B. Gibbons" ~ Onur Mutlu®"

"Carnegie Mellon University *NVIDIA SETH Ziirich
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An Example: Hybrid Memory Management

DRAM PCM

DRAM Ctrl Ctrl

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.
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An Example: Heterogeneous-Reliability Memory

= Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman
Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary]
[Slides (pptx) (pdf)] [Coverage on ZDNet]

Characterizing Application Memory Error Vulnerability to
Optimize Datacenter Cost via Heterogeneous-Reliability Memory

Yixin Luo  Sriram Govindan® Bikash Sharma® Mark Santaniello” Justin Meza
Aman Kansal® Jie Liu® Badriddine Khessib® Kushagra Vaid® Onur Mutlu

Carnegie Mellon University, yixinluo@cs.cmu.edu, {meza, onur}@cmu.edu
“Microsoft Corporation, {srgovin, bsharma, marksan, kansal, jie.liu, bkhessib, kvaid}@microsoft.com
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Exploiting Memory Error Tolerance
with Hybrid Memory Systems

Vulnerable
data

Reliable memory

On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %

Heterogeneous-Reliability Memory [psn 2014]
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Another Example: EDEN for DNNs

= Deep Neural Network evaluation is very DRAM-intensive
(especially for large networks)

1. Some data and layers in DNNs are very tolerant to errors
2. Reduce DRAM latency and voltage on such data and layers

3. While still achieving a user-specified DNN accuracy target
by making training DRAM-error-aware

Data-aware management of DRAM latency and voltage
for Deep Neural Network Inference
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Example DNN Data Type to DRAM Mapping

Mapping example of ResNet-50:

AT AT AT AT AT AT R AT AT LT 2 ‘<60'/0BER'T" Y""'."
6% |  <2% BER <
4% |
I O[T i mt e
Weights and IFMs of ResNet-50
Map more error-tolerant DNN layers
to DRAM partitions with lower voltage /latency

10% |
8% |

Maximum Tolerable
Bit Error Rate (%)

4 DRAM partitions with different error rates
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DEN: Data-Aware Efficient DNN Inference

= Skanda Koppula, Lois Orosa, A. Giray Yaglikci, Roknoddin Azizi, Taha
Shahroodi, Konstantinos Kanellopoulos, and Onur Mutlu,
"EDEN: Enabling Energy-Efficient, High-Performance Deep

Neural Network Inference Using Approximate DRAM"
Proceedings of the 52nd International Symposium on

Microarchitecture (MICRO), Columbus, OH, USA, October 20109.
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]

EDEN: Enabling Energy-Efficient, High-Performance
Deep Neural Network Inference Using Approximate DRAM

Skanda Koppula Lois Orosa A. Giray Yaglikci
Roknoddin Azizi Taha Shahroodi Konstantinos Kanellopoulos Onur Mutlu

ETH Zurich
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Challenge and Opportunity for Future

Data-Aware
(Expressive)
Computing Architectures
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Concluding Remarks




Recap: Corollaries: Architectures Today

& JArchitectures are terrible at dealing with data

o Designed to mainly store and move data vs. to compute
o They are processor-centric as opposed to data-centric

= JArchitectures are terrible at taking advantage of vast
amounts of data (and metadata) available to them
o Designed to make simple decisions, ignoring lots of data

o They make human-driven decisions vs. data-driven decisions

= JArchitectures are terrible at knowing and exploiting
' oroperties of application data

o Designed to treat all data as the same
o They make component-aware decisions vs. data-aware
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Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware

SAFARI 160



A Quote from A Famous Architect

= architecture [...] based upon principle, and not upon
precedent”
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Precedent-Based Design?

= architecture [...] based upon principle, and not upon
precedent”

-
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Principled Design

= architecture [...] based upon principle, and not upon
precedent’
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The Overarching Principle

Organic architecture

From Wikipedia, the free encyclopedia

Organic architecture is a philosophy of architecture which promotes harmony
between human habitation and the natural world through design approaches so
sympathetic and well integrated with its site, that buildings, furnishings, and
surroundings become part of a unified, interrelated composition.

A well-known example of organic architecture is Fallingwater, the residence Frank Lloyd Wright
designed for the Kaufmann family in rural Pennsylvania. Wright had many choices to locate a
home on this large site, but chose to place the home directly over the waterfall and creek creating
a close, yet noisy dialog with the rushing water and the steep site. The horizontal striations of
stone masonry with daring cantilevers of colored beige concrete blend with native rock
outcroppings and the wooded environment.
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Another Example: Precedent-Based Design

Source: http://cookiemagik.deviantart.com/art/Train-station-207266944



Principled Design

Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256
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Another Principled Design

Source: By Martin Gomez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903 168
Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/



Another Principled Design

Source: CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=172107 169



Pr1nc1ple Apphed to Another Structure



https://commons.wikimedia.org/w/index.php%3Fcurid=31493356

The Overarching Principle

Zoomorphic architecture

From Wikipedia, the free encyclopedia

Zoomorphic architecture is the practice of using animal
forms as the inspirational basis and blueprint for architectural
design. "While animal forms have always played a role adding
some of the deepest layers of meaning in architecture, it is
now becoming evident that a new strand of biomorphism is
emerging where the meaning derives not from any specific
representation but from a more general allusion to biological
processes."[!]

Some well-known examples of Zoomorphic architecture can be found in the TWA
Flight Center building in New York City, by Eero Saarinen, or the Milwaukee Art

Museum by Santiago Calatrava, both inspired by the form of a bird’s wings.!3!
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Overarching Principles for Computing?

Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg




Concluding Remarks

= It is time to design principled system architectures to solve
the data handling (i.e., memory/storage) problem

= Design complete systems to be truly balanced, high-
performance, and energy-efficient - intelligent architectures

= Data-centric, data-driven, data-aware

= This can

o Lead to orders-of-magnitude improvements

o Enable new applications & computing platforms
o Enable better understanding of nature
Q
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Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware
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We Need to Think Across the Entire Stack

SW/HW Interface

We can get there step by step
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We Need to Exploit Good Principles

= Data-centric system design

= All components intelligent

= Better cross-layer communication, better interfaces
= Better-than-worst-case design

= Heterogeneity

« Flexibility, adaptability Open minds
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PIM Review and Open Problems

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan Gémez-Luna?, Rachata Ausavarungnirun®®

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory

Computation”
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]
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https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
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PIM Review and Open Problems (1I)

A Workload and Programming Ease Driven Perspective of Processing-in-Memory
Saugata Ghose’  Amirali Boroumand®  Jeremie S. Kim™  Juan Gémez-Luna®  Onur Mutlu®'

"Carnegie Mellon University SETH Ziirich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu,
"Processing-in-Memory: A Workload-Driven Perspective"

Invited Article in IBM Journal of Research & Development, Special Issue on
Hardware for Artificial Intelligence, to appear in November 2019,

[Preliminary arXiv version]
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Accelerated Memory Course (~6.5 hours)

= ACACES 2018

o Memory Systems and Memory-Centric Computing Systems
o Taught by Onur Mutlu July 9-13, 2018
o ~6.5 hours of lectures

= Website for the Course including Videos, Slides, Papers
o https://safari.ethz.ch/memory systems/ACACES2018/

o https://www.youtube.com/playlist?list=PL5Q2s0XY2Zi-
HXxomthrpDpMImO5P6J9x

= All Papers are at:
o https://people.inf.ethz.ch/omutlu/projects.htm
o Final lecture notes and readings (for all topics)
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https://safari.ethz.ch/memory_systems/ACACES2018/
https://www.youtube.com/playlist%3Flist=PL5Q2soXY2Zi-HXxomthrpDpMJm05P6J9x
https://people.inf.ethz.ch/omutlu/projects.htm

Longer Memory Course (~18 houts)

= Tu Wien 2019

o Memory Systems and Memory-Centric Computing Systems
o Taught by Onur Mutlu June 12-19, 2019
o ~18 hours of lectures

= Website for the Course including Videos, Slides, Papers
o https://safari.ethz.ch/memory systems/TUWien2019

o https://www.youtube.com/playlist?list=PL5Q2s0XY2Zi gntM55
VoMIKIwZYrXOhbl

= All Papers are at:
o https://people.inf.ethz.ch/omutlu/projects.htm
o Final lecture notes and readings (for all topics)
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https://safari.ethz.ch/memory_systems/TUWien2019
https://www.youtube.com/playlist%3Flist=PL5Q2soXY2Zi_gntM55VoMlKlw7YrXOhbl
https://people.inf.ethz.ch/omutlu/projects.htm

Some Overview Talks

https://www.youtube.com/watch?v=kqgiZISOcGFM&list=PL5Q2s0XY2Zi8D 5MGV6EnXEJHNV2YFBJI

= Future Computing Architectures

o https://www.youtube.com/watch?v=kgiZISOcGFM&list=PL5Q2s0XY2Zi8D 5MG
V6ENXEJHNV2YFBJI&index=1

= Enabling In-Memory Computation

o https://www.youtube.com/watch?v=0HgsNbxgdzM&list=PL5Q2s0XY2Zi8D_5M
GV6ENXEJHNV2YFBJI&index=7

= Accelerating Genome Analysis

o https://www.youtube.com/watch?v=hPnSmfwu?2-
A&list=P1 5Q2s0XY2Zi8D_5MGV6EnNXEIJHNV2YFBII&index=9

= Rethinking Memory System Design

o https://www.youtube.com/watch?v=F7xZLNMIY1ER&list=PL5Q2s0XY2Zi8D 5MG
V6ENXEJHNV2YFBJI&index=3
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https://www.youtube.com/watch%3Fv=F7xZLNMIY1E&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=3

Reterence Overview Paper 1

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan Gémez-Luna?, Rachata Ausavarungnirun®®

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory

Computation”
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf 189



https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

Reterence Overview Paper 11

Enabling the Adoption of Processing-in-Memory:
Challenges, Mechanisms, Future Research Directions

SAUGATA GHOSE, KEVIN HSIEH, AMIRALI BOROUMAND,
RACHATA AUSAVARUNGNIRUN

Carnegie Mellon University

ONUR MUTLU
ETH Ziirich and Carnegie Mellon University

Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, Onur Mutlu,
"Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms,
Future Research Directions"

Invited Book Chapter, to appear in 2018.

[Preliminary arxiv.org version]

SAFARI https://arxiv.org/pdf/1802.00320.pdf 190



https://people.inf.ethz.ch/omutlu/acaces2018.html
https://arxiv.org/pdf/1802.00320.pdf
https://arxiv.org/pdf/1802.00320.pdf

Reterence Overview Paper 111

= Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory
Systems”

Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI) 2014/2015.

Research Problems and Opportunities in Memory Systéms

Onur Mutlu', Lavanya Subramanian'

https:/ /people.inf.ethz.ch/omutlu/pub/memory-systems-research superfril4.pdf



https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf
http://superfri.org/superfri
https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf

Reterence Overview Paper IV

= Onur Mutluy,
"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

The RowHammer Problem
and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu
ETH Ziirich
onur.mutlu @inf.ethz.ch
https://people.inf.ethz.ch/omutlu

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_datel?7.pdf



https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf

Reterence Overview Paper V

= Onur Mutluy,

"Memory Scaling: A Systems Architecture
Perspective”

Technical talk at MemCon 2013 (MEMCON), Santa Clara,
CA, August 2013. [Slides (pptx) (pdf)]

[Video] [Coverage on StorageSearch]

Memory Scaling: A Systems Architecture Perspective

Onur Mutlu
Carnegie Mellon University
onur @cmu.edu
http://users.ece.cmu.edu/~omutlu/

https://people.inf.ethz.ch/omutlu/pub/memory-scaling _memconl3.pdf



https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com/
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx%3Fvfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://www.storagesearch.com/ram-new-thinking.html
https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

Reterence Overview Paper VI

§H'H+ S Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error
characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Cai, Saucata GHOSE, EricH F. HARATSCH, YIXIN Luo, AND ONUR MUTLU
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https://arxiv.org/pdf/1706.08642

Reterence Overview Paper VII

= Onur Mutlu and Jeremie Kim,
"RowHammer: A Retrospective"
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) Special Issue on Top Picks in
Haradware and Embedaed Security, 2019.
[Preliminary arXiv version]

RowHammer: A Retrospective

Onur Mutlu*  Jeremie S. Kim?*3
SETH Ziirich tCarnegie Mellon University
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https://ieeexplore.ieee.org/xpl/RecentIssue.jsp%3Fpunumber=43
https://arxiv.org/pdf/1904.09724.pdf

Related Videos and Course Materials (I)

= Undergraduate Computer Architecture Course Lecture
Videos (2015, 2014, 2013)

= Undergraduate Computer Architecture Course
Materials (2015, 2014, 2013)

= Graduate Computer Architecture Course Lecture
Videos (2018, 2017, 2015, 2013)

= Graduate Computer Architecture Course
Materials (2018, 2017, 2015, 2013)

= Parallel Computer Architecture Course Materials
(Lecture Videos)
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https://www.youtube.com/playlist%3Flist=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/watch%3Fv=zLP_X4wyHbY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/playlist%3Flist=PL5PHm2jkkXmgFdD9x7RsjQC4a8KQjmUkQ
https://www.youtube.com/watch%3Fv=BJ87rZCGWU0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php%3Fid=schedule
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php%3Fid=schedule
http://www.archive.ece.cmu.edu/~ece447/s14/doku.php%3Fid=schedule
http://www.archive.ece.cmu.edu/~ece447/s13/doku.php%3Fid=schedule
https://www.youtube.com/playlist%3Flist=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/watch%3Fv=g3yH68hAaSk&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7
https://www.youtube.com/playlist%3Flist=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/playlist%3Flist=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt
https://www.youtube.com/playlist%3Flist=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D
https://safari.ethz.ch/architecture/fall2017/doku.php%3Fid=schedule
https://safari.ethz.ch/architecture/fall2018/doku.php%3Fid=schedule
https://safari.ethz.ch/architecture/fall2017/doku.php%3Fid=schedule
http://www.archive.ece.cmu.edu/~ece740/f15/doku.php%3Fid=schedule
http://www.archive.ece.cmu.edu/~ece740/f13/doku.php%3Fid=schedule
http://www.ece.cmu.edu/~ece742/f12/doku.php%3Fid=lectures
https://www.youtube.com/playlist%3Ffeature=edit_ok&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4

Related Videos and Course Materials (1)

= Freshman Digital Circuits and Computer Architecture
Course Lecture Videos (2018, 2017)

= Freshman Digital Circuits and Computer Architecture
Course Materials (2018)

= Memory Systems Short Course Materials
(Lecture Video on Main Memory and DRAM Basics)
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https://www.youtube.com/playlist%3Flist=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://www.youtube.com/playlist%3Flist=PL5Q2soXY2Zi_QedyPWtRmFUJ2F8DdYP7l
https://www.youtube.com/playlist%3Flist=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php%3Fid=schedule
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php%3Fid=schedule
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
https://www.youtube.com/watch%3Fv=ZLCy3pG7Rc0

Some Open Source Tools (I)

Rowhammer — Program to Induce RowHammer Errors
o https://github.com/CMU-SAFARI/rowhammer
Ramulator — Fast and Extensible DRAM Simulator

o https://qgithub.com/CMU-SAFARI/ramulator

MemSim — Simple Memory Simulator

o https://github.com/CMU-SAFARI/memsim

NOCulator — Flexible Network-on-Chip Simulator

o https://qgithub.com/CMU-SAFARI/NOCulator

SoftMC — FPGA-Based DRAM Testing Infrastructure

o https://github.com/CMU-SAFARI/SoftMC

Other open-source software from my group
o https://github.com/CMU-SAFARI/
o http://www.ece.cmu.edu/~safari/tools.htmi

SAFARI
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https://github.com/CMU-SAFARI/NOCulator
https://github.com/CMU-SAFARI/SoftMC
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html

Some Open Source Tools (1)

MQSim — A Fast Modern SSD Simulator

o https://qgithub.com/CMU-SAFARI/MQSim

Mosaic — GPU Simulator Supporting Concurrent Applications
o https://github.com/CMU-SAFARI/Mosaic

IMPICA — Processing in 3D-Stacked Memory Simulator

o https://github.com/CMU-SAFARI/IMPICA

SMLA — Detailed 3D-Stacked Memory Simulator

o https://qgithub.com/CMU-SAFARI/SMLA

HWASim — Simulator for Heterogeneous CPU-HWA Systems
o https://github.com/CMU-SAFARI/HWASIm

Other open-source software from my group
o https://github.com/CMU-SAFARI/
o http://www.ece.cmu.edu/~safari/tools.htmi
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https://github.com/CMU-SAFARI/IMPICA
https://github.com/CMU-SAFARI/SMLA
https://github.com/CMU-SAFARI/HWASim
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html

More Open Source Tools (111

= A lot more open-source software from my group
o https://github.com/CMU-SAFARI/
o http://www.ece.cmu.edu/~safari/tools.html

SAFARI Research Group at ETH Zurich and Carnegie Mellon

SAFARI University

Site for source code and tools distribution from SAFARI Research Group at ETH Zurich and Carnegie Mellon University.

ETH Zurich and Carnegi... http://www.ece.cmu.ed... omutlu@gmail.com
Repositories 30 People 27 [ii) Teams 1 [l Projects 0 Settings
Search repositories... Type: All » Language: All » Customize pinned repositories
. Top languages
MQSim planguag
MQSim is a fast and accurate simulator modeling the performance of ™ @C++ @C @C#  AGS Script
modern multi-queue (MQ) SSDs as well as traditional SATA based SSDs. Verilog
MQSim faithfully models new high-bandwidth protocol implementations,
steady-state SSD conditions, and the full end-to-end latency of
requests in modern SSDs. It is described in detail in the FAST 2018
paper by A... Most used topics Manage
@®c++ %14 ¥14 ssMIT  Updated 8 days ago dram reliability
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http://www.ece.cmu.edu/~safari/tools.html

Referenced Papers

= All are available at

https:/ /people.inf.ethz.ch/omutlu/projects.htm

http://scholar.google.com/citations?user=7XyGUGKAAAAI&hl=en

https://people.inf.ethz.ch/omutlu/acaces2018.html
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Some Solution Principles (So Far)

Data-centric system design & intelligence spread around
a Do not center everything around traditional computation units

Better cooperation across layers of the system
o Careful co-design of components and layers: system/arch/device
o Better, richer, more expressive and flexible interfaces

Better-than-worst-case design
o Do not optimize for the worst case
o Worst case should not determine the common case

Heterogeneity in design (specialization, asymmetry)
o Enables a more efficient design (No one size fits all)
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Low Latency Data Access
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Data-Centric Architectures: Properties

Process data where it resides (where it makes sense)
o Processing in and near memory structures

Low-latency & low-energy data access
o Low latency memory
o Low energy memory

Low-cost data storage & processing
o High capacity memory at low cost: hybrid memory, compression

Intelligent data management
o Intelligent controllers handling robustness, security, cost, scaling
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Low-Latency & Low-Energy
Data Access




Main Memory Latency Lags Behind
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Memory latency remains almost constant
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A Closer Look ...

50 @ Activation » Precharge A Restoration
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Figure 1: DRAM latency trends over time [20, 21, 23, 51].

Chang+, "Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.
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https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf

DRAM Latency Is Critical tor Performance

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’12; [Xu+, ISWC’12; Umuroglu+, FPL’15]
Clapp+ (Intel), ISWC’ 5]

et N
Spark

In-Memory Data Analytics Datacenter Workloads
[Clapp+ (Intel), ISWC'I5; [Kanev+ (Google), ISCA’15]
Awan+, BDCloud’15]
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DRAM Latency Is Critical tor Performance

In-memory Databases Graph/Tree Processing

Long memory latency — performance bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]
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New DRAM Types Increase Latency!

Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali,

and Onur Mutluy,

"Demystifying Workload—DRAM Interactions: An Experimental
Study”

Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Phoenix, AZ, USA,
June 2019.

[Preliminary arXiv Version]

[Abstract]

[Slides (pptx) (pdf)]

Demystifying Complex Workload—-DRAM Interactions:
An Experimental Study

Saugata Ghose' Tianshi Li' Nastaran Hajinazar*"
Damla Senol Cali' Onur Mutlu®®
TCarnegie Mellon University *Simon Fraser University SETH Ziirich
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http://www.sigmetrics.org/sigmetrics2019/
https://arxiv.org/pdf/1902.07609.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-abstract.pdf
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Workload-DRAM-Interaction-Analysis_sigmetrics19-talk.pdf

The Memory lLatency Problem

High memory latency is a significant limiter of system
performance and energy-efficiency

It is becoming increasingly so with higher memory
contention in multi-core and heterogeneous architectures

o Exacerbating the bandwidth need
o Exacerbating the QoS problem

It increases processor design complexity due to the
mechanisms incorporated to tolerate memory latency
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Retrospective: Conventional Latency Tolerance Techniques

Caching [initially by Wilkes, 1965]
o Widely used, simple, effective, but inefficient, passive
o Not all applications/phases exhibit temporal or spatial locality

Prefetchina [initiallv in TRM 260/01 1QA71

None of These !
Fundamentally Reduce
L Memory Latgncy )

ongoing research effort

Out-of-order execution [initially by Tomasulo, 1967]
o Tolerates cache misses that cannot be prefetched
o Requires extensive hardware resources for tolerating long latencies
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Two Major Sources of Latency Inetficiency

= Modern DRAM is not designed for low latency
o Main focus is cost-per-bit (capacity)

= Modern DRAM latency is determined by worst case
conditions and worst case devices

a Much of memory latency is unnecessary

g >

Our Goal: Reduce Memory Latency
at the Source of the Problem

N Y,
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Why is Memory Latency High?

 DRAM latency: Delay as specified in DRAM standards
— Doesn’t reflect true DRAM device latency

* Imperfect manufacturing process — latency variation

* High standard latency chosen to increase yield

DRAM A DRAM B DRAM C Standard
Manufacturing

Variation > < >

Low <€ O

High
DRAM Latency
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Adaptive-Latency DRAM

e Key idea
— Optimize DRAM timing parameters online

* Jwo components
— DRAM manufacturer provides multiple sets of

reliable DRAM timing parameters ElNsIiEgEIgl

temperatures for each DIMM

— System monitors [BRVAWRTEIIEIEINIEE & Uses

appropriate DRAM timing parameters

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 215
2015.



Infrastructures to Understand Such Issues

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An 216
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



SottMC: Open Source DRAM Infrastructure

= Hasan Hassan et al., "SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

/ ‘ \\ d N \Z; »
= Easy to Use (C++ API) S CO-I,-,etTop"er “'
= Open-source 5

github.com/CMU-SAFARI/SoftMC

= Flexible
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

SoftMC

s https://qithub.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies

1,2,3 3 4,3 3

Samira Khan Saugata Ghose® Kevin Chang?
6.3 Oguz Ergin? Onur Mutlu!3

Hasan Hassan Nandita Vijaykumar
Gennady Pekhimenko®3 Donghyuk Lee

\ETH Ziirich  >TOBB University of Economics & Technology 3Carnegie Mellon University
*University of Virginia > Microsoft Research ~ SNVIDIA Research
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https://github.com/CMU-SAFARI/SoftMC

Latency Reduction Summary of 115 DIMMs

* [atency reduction for read & write (55°C)
— Read Latency: 32.7%
— Write Latency: 55.1%

* [atency reduction for each timing
parameter (55°C)
—Sensing: 17.3%
— Restore: 37.3% (read), 54.8% (write)
— Precharge: 35.2%

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA
2015.



AL-DRAM: Real-System Performance

Average

Performance Improvement

soplex
mcf
milc

libg

lbm
gems
copy

s.cluster
gUps
iIntensive

non-intensive
all-35-workload

AL-DRAM provides high performance on

memory-intensive workloads
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Reducing Latency Also Reduces Energy

= AL-DRAM reduces DRAM power consumption

= Major reason: reduction in row activation time
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More on Adaptive-Latency DRAM

= Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,
Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA,
February 2015.
[Slides (pptx) (pdf)] [Full data sets]

Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case

Donghyuk Lee ~ Yoongu Kim  Gennady Pekhimenko
Samira Khan  Vivek Seshadri ~ Kevin Chang  Onur Mutlu

Carnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pdf
http://www.ece.cmu.edu/~safari/tools/aldram-hpca2015-fulldata.html

Tackling the Fixed Latency Mindset

Reliable operation latency is actually very heterogeneous
o Across temperatures, chips, parts of a chip, voltage levels, ...

Idea: Dynamically find out and use the lowest latency one
can reliably access a memory location with

Adaptive-Latency DRAM [HPCA 2015]

Flexible-Latency DRAM [SIGMETRICS 2016]

Design-Induced Variation-Aware DRAM [SIGMETRICS 2017]
Voltron [SIGMETRICS 2017]

DRAM Latency PUF [HPCA 2018]

DRAM Latency True Random Number Generator [HPCA 2019]

c 0o 0 o0 o o o

We would like to find sources of latency heterogeneity and
exploit them to minimize latency (or create other benefits)
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Analysis of Latency Variation in DRAM Chips

= Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh,
Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and
Onur Mutlu,

"Understanding Latency Variation in Modern DRAM Chips:

Experimental Characterization, Analysis, and Optimization”
Proceedings of the ACM International Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins,
France, June 2016.

[Slides (pptx) (pdf)]
[Source Code]

Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization

Kevin K. Chang* Abhijith Kashyap* Hasan Hassan'?
Saugata Ghose* Kevin Hsieh' Donghyuk Lee' Tianshi Li*?
Gennady Pekhimenko' Samira Khan* Onur Mutlu®!

LCarnegie Mellon University 2TOBB ETU *Peking University *University of Virginia °ETH Zirich
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https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
http://www.sigmetrics.org/sigmetrics2016/
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pdf
https://github.com/CMU-SAFARI/DRAM-Latency-Variation-Study

Design-Induced Latency Variation in DRAM

= Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose,
Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and
Onur Mutlu,

"Design-Induced Latency Variation in Modern DRAM Chips:

Characterization, Analysis, and Latency Reduction Mechanisms"”
Proceedings of the ACM International Conference on Measurement and

Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms

Donghyuk Lee, NVIDIA and Carnegie Mellon University

Samira Khan, University of Virginia

Lavanya Subramanian, Saugata Ghose, Rachata Ausavarungnirun, Carnegie Mellon University
Gennady Pekhimenko, Vivek Seshadri, Microsoft Research

Onur Mutlu, ETH Ziirich and Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/DIVA-low-latency-DRAM_sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/

Solar-DRAM: Exploiting Spatial Variation

= Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu,
"Solar-DRAM: Reducing DRAM Access Latency by Exploiting
the Variation in Local Bitlines"

Proceedings of the 36th IEEE International Conference on Computer
Design (ICCD), Orlando, FL, USA, October 2018.

Solar-DRAM: Reducing DRAM Access Latency
by Exploiting the Variation in Local Bitlines

Jeremie S. Kim?$ Minesh Patel’ Hasan Hassan® Onur Mutlu$?
iCarnegie Mellon University SETH Zirich
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https://people.inf.ethz.ch/omutlu/pub/solar-dram-for-reduced-latency-memory_iccd18.pdf
http://www.iccd-conf.com/

DRAM Latency PUFs

= Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutluy,

"The DRAM Latency PUF: Quickly Evaluating Physical Unclonable
Functions by Exploiting the Latency-Reliability Tradeoff in

Modern DRAM Devices"

Proceedings of the 24th International Symposium on High-Performance
Computer Architecture (HPCA), Vienna, Austria, February 2018.
[Lightning Talk Video]

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

The DRAM Latency PUF:

Quickly Evaluating Physical Unclonable Functions
by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices

Jeremie S. Kim1$ Minesh Patel® Hasan Hassan® Onur Mutlu$t
fCarne gie Mellon University SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf
https://hpca2018.ece.ucsb.edu/
https://www.youtube.com/watch%3Fv=Xw0laEEDmsM&feature=youtu.be
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18_lightning-talk.pdf

DRAM Latency True Random Number Generator

= Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutluy,
"D-RaNGe: Using Commodity DRAM Devices to Generate True
Random Numbers with Low Latency and High Throughput”
Proceedings of the 25th International Symposium on High-Performance
Computer Architecture (HPCA), Washington, DC, USA, February 2019.

D-RaNGe: Using Commodity DRAM Devices
to Generate True Random Numbers
with Low Latency and High Throughput

Jeremie S. Kim?$ Minesh PatelS Hasan Hassan® Lois Orosa’ Onur Mutlu$?

fCarne gie Mellon University SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf
http://hpca2019.seas.gwu.edu/

ChargeCache: Exploiting Access Patterns

= Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar, Vivek
Seshadri, Donghyuk Lee, Oguz Ergin, and Onur Mutlu,

"ChargeCache: Reducing DRAM Latency by Exploiting Row

Access Locality”
Proceedings of the 22nd International Symposium on High-

Performance Computer Architecture (HPCA), Barcelona, Spain, March
2016.

Slides (pptx) (pdf)]

[Source Code]

ChargeCache: Reducing DRAM Latency
by Exploiting Row Access Locality

Hasan Hassan*, Gennady Pekhimenko!, Nandita Vijaykumar'
Vivek Seshadrif, Donghyuk Leel, Oguz Ergin*, Onur Mutluf

"Carnegie Mellon University *TOBB University of Economics & Technology


https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/chargecache_low-latency-dram_hhassan_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp

Exploiting Subarray Level Parallelism

= Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu,
and Onur Mutlu,
"A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM"
Proceedings of the 39th International Symposium on
Computer Architecture (ISCA), Portland, OR, June
2012. Slides (pptx)

A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM

Yoongu Kim Vivek Seshadri Donghyuk Lee Jamie Liu Onur Mutlu

Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/salp-dram_isca12.pdf
http://isca2012.ittc.ku.edu/
https://people.inf.ethz.ch/omutlu/pub/kim_isca12_talk.pptx

Tiered-Latency DRAM

= Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya
Subramanian, and Onur Mutlu,
"Tiered-Latency DRAM: A Low Latency and Low Cost
DRAM Architecture”
Proceedings of the 19th International Symposium on High-
Performance Computer Architecture (HPCA), Shenzhen, China,
February 2013. Slides (pptx)

Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture

Donghyuk Lee  Yoongu Kim  Vivek Seshadri  Jamie Liu  Lavanya Subramanian =~ Onur Mutlu

Carnegie Mellon University

SAFARI 231


http://users.ece.cmu.edu/~omutlu/pub/tldram_hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/lee_hpca13_talk.pptx

LISA: Low-cost Inter-linked Subarrays

= Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee,
Moinuddin K. Qureshi, and Onur Mutluy,

"Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast

Inter-Subarray Data Movement in DRAM"
Proceedings of the 22nd International Symposium on High-

Performance Computer Architecture (HPCA), Barcelona, Spain,
March 2016.

Slides (pptx) (pdf)]

[Source Code]

Low-Cost Inter-Linked Subarrays (LISA):
Enabling Fast Inter-Subarray Data Movement in DRAM

Kevin K. ChangT, Prashant J. Nair*, Donghyuk Leel, Saugata Ghose', Moinuddin K. Qureshi*, and Onur Mutlu'
fCarnegie Mellon University — *Georgia Institute of Technology
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https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_hpca16.pdf
http://hpca22.site.ac.upc.edu/
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/lisa-dram_kevinchang_hpca16-talk.pdf
https://github.com/CMU-SAFARI/RamulatorSharp

The CROW Substrate for DRAM

= Hasan Hassan, Minesh Patel, Jeremie S. Kim, A. Giray Yaglikci,
Nandita Vijaykumar, Nika Mansourighiasi, Saugata Ghose,
and Onur Mutlu,
"CROW: A Low-Cost Substrate for Improving DRAM
Performance, Energy Efficiency, and Reliability"
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

CROW: A Low-Cost Substrate for Improving
DRAM Performance, Energy Efficiency, and Reliability

Hasan Hassan”  Minesh Patel” Jeremie S. Kim™  A. Giray Yaglikci®
Nandita Vijaykumar'S  Nika Mansouri Ghiasi’  Saugata Ghose®  Onur Mutlu'®

YETH Ziirich ~ SCarnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/CROW-DRAM-substrate-for-performance-energy-reliability_isca19.pdf
http://iscaconf.org/isca2019/

Reducing Refresh Latency

= Anup Das, Hasan Hassan, and Onur Mutlu,

"VRL-DRAM: Improving DRAM Performance via
Variable Refresh Latency”

Proceedings of the 55th Design Automation
Conference (DAC), San Francisco, CA, USA, June 2018.

VRL-DRAM: Improving DRAM Performance
via Variable Refresh Latency

Anup Das Hasan Hassan
Drexel University ETH Ziirich

Philadelphia, PA, USA Zurich, Switzerland
anup.das@drexel.edu hhasan@ethz.ch

Onur Mutlu
ETH Zurich
Zurich, Switzerland
omutlu@gmail.com
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https://people.inf.ethz.ch/omutlu/pub/VRL-DRAM_reduced-refresh-latency_dac18.pdf
https://dac.com/

Parallelizing Refreshes and Accesses

= Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris
Wilkerson, Yoongu Kim, and Onur Mutlu,
"Improving DRAM Performance by Parallelizing Refreshes with
Accesses"”
Proceedings of the 20th International Symposium on High-Performance
Computer Architecture (HPCA), Orlando, FL, February 2014.
[Summary] [Slides (pptx) (pdf)]

Reducing Performance Impact of DRAM Refresh
by Parallelizing Refreshes with Accesses

Kevin Kai-Wei Chang Donghyuk Lee Zeshan Chishtif
Alaa R. Alameldeenf Chris Wilkerson Yoongu Kim Onur Mutlu

Carnegie Mellon University {Intel Labs
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http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pdf

Eliminating Refreshes

= Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,
"RAIDR: Retention-Aware Intelligent DRAM Refresh”
Proceedings of the 39th International Symposium on

Computer Architecture (ISCA), Portland, OR, June 2012.
Slides (pdf)

RAIDR: Retention-Aware Intelligent DRAM Refresh

Jamie Liu  Ben Jaiyen Richard Veras Onur Mutlu
Carnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf

Analysis of Latency-Voltage in DRAM Chips

= Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and Onur Mutlu,

"Understanding Reduced-Voltage Operation in Modern DRAM

Devices: Experimental Characterization, Analysis, and
Mechanisms"”

Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Understanding Reduced-Voltage Operation in Modern DRAM Chips:
Characterization, Analysis, and Mechanisms

Kevin K. Chang'  Abdullah Giray Yaghke' Saugata Ghose” Aditya Agrawall Niladrish Chatterjee
Abhijith Kashyap' Donghyuk Lee! Mike O’Connor®* Hasan Hassan®  Onur Mutlu®'

TCarnegie Mellon University INVIDIA *The University of Texas at Austin SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/

VAMPIRE DRAM Power Model

Saugata Ghose, A. Giray Yaglikci, Raghav Gupta, Donghyuk Lee, Kais
Kudrolli, William X. Liu, Hasan Hassan, Kevin K. Chang, Niladrish
Chatterjee, Aditya Agrawal, Mike O'Connor, and Onur Mutlu,

"What Your DRAM Power Models Are Not Telling You: Lessons
from a Detailed Experimental Study"”

Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Irvine, CA, USA, June
2018.

[Abstract]

What Your DRAM Power Models Are Not Telling You:
Lessons from a Detailed Experimental Study

Saugata Ghose' Abdullah Giray Yaglikcr* Raghav Gupta' Donghyuk Lee®
Kais Kudrolli’ ~ William X. Liu" ~ Hasan Hassan*  Kevin K. Chang’
Niladrish Chatterjee® Aditya Agrawal® Mike O’Connor®1 Onur Mutlu**

"Carnegie Mellon University *ETH Ziirich SNVIDIA TUniversity of Texas at Austin
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http://www.sigmetrics.org/sigmetrics2018/
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-abstract.pdf

Takeaway I

We Can Reduce
Memory Latency
with Change of Mindset
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Takeaway 11

Main Memory Needs
Intelligent Controllers
to Reduce Latency
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