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Brief Self Introduction

= Onur Mutlu
0 Full Professor @ ETH Zurich CS, since September 2015

0 Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-...

0 PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD
0 Attpsi//people.jnfcthz.ch/omutiu/

0 omutlu@amail.com (Best way to reach me)
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= Research and Teaching in:

Computer architecture, computer systems, hardware security, bioinformatics
Memory and storage systems

Hardware security, safety, predictability

Fault tolerance

Hardware/software cooperation
Architectures for bioinformatics, health, medicine
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Current Research Focus Areas

: 1s: Computer architecture, HW/SW, bioinformatics, security
flemory and storage (DRAM, tlash, emerging)] interconnects

1eterogeneous & parallel systems, GPUs, systems for data analytics
System/architecture interaction, new execution models, new interfaces

Hardware security, enerqy efficiency, fault tolerance, performance

Genome sequence analysis & assembly algorithms and architecture
systems & system design for

F

Hybrid Main Memory 0

Heterogeneous Persistent Memory/Storage

Processors and

Accelerators Broad research

spanning apps, systems, logic

AT

Graphics and Vision Processing




Four Key Directions

= Fundamentally Secure/Reliable/Safe Architectures

= Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

= Fundamentally Low-Latency Architectures

=| Architectures for Genomics, Medicine, Health

SAFARI



What Is a Genome Made Of?

The genes consist of DNA

The chromosome is

made up of genes \

Chromosome - 23 pairs  Nucleotide

Sugu Phosphale
Nucleus

Cell

SAFARI The discovery of DNA's double-helical structure (Watson+, 1953) >



DNA Sequencing

Goal:
o Find the complete sequence of A, C, G, T's in DNA.

Challenge:

o There is no machine that takes long DNA as an input, and gives
the complete sequence as output

o All sequencing machines chop DNA into pieces and identify
relatively small pieces (but not how they fit together)

SAFARI 6



Untangling Yarn Balls & DNA Sequencing

SAFARI 7



lllumina MiSeq Complete
Genomics
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Billions of Short Reads
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Genome Sequence Alignment: Example
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https://commons.wikimedia.org/w/index.php?curid=30550950

Advantages of Hash Table Based Mappers

= + Guaranteed to find a/ mappings - sensitive
= + Can tolerate up to eerrors

nature
genetlcs http://mrfast.sourceforge.nat/

Personalized copy number and segmental duplication
maps using next-generation sequencing

Can Alkan', Jeffrey M Kidd', Tomas Marques-Bonet"?, Gozde Aksay', Francesca Antonacci',
Fereydoun Hormozdiari?, Jacob O Kitzman!, Carl Baker!, Maika Malig', Onur Mutlu®, S Cenk Sahinalp*,
Richard A Gibbs® & Evan E Eichler?

Alkan+, _Bersonalized copv number and seamental duplication 1
maps using next-generation seguencing’’, Nature Genetics 2009.


http://mrfast.sourceforge.net/

Read Mapping Execution Time Breakdown

candidate alignment
locations (CAL)
4%

SAM printing
3%

Read Alignment
(Edit-distance comp

93%
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Idea

Filter fast before you align

Minimize costly
“approximate string comparisons”



Our First Filter: Pure Sottware Approach

= Download source code and try for yourself
o Download link to FastHASH

Xin et al. BMC Genomics 2013, 14(Suppl 1):S13
http//www.biomedcentral.com/1471-2164/14/51/513 BMC
Genomics

Accelerating read mapping with FastHASH

Hongyi Xin', Donghyuk Lee', Farhad Hormozdiari?, Samihan Yedkar', Onur Mutlu™, Can Alkan®

From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013)
Vancouver, Canada. 21-24 January 2013
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http://mrfast.sourceforge.net/

Shifted Hamming Distance: SIMD Acceleration

Bioinformatics, 31(10), 2015, 1553-1560
doi: 10.1093/bioinformatics/btu856

Advance Access Publication Date: 10 January 2015
Original Paper OXFORD

Sequence analysis

Shifted Hamming distance: a fast and accurate
SIMD-friendly filter to accelerate
alignment verification in read mapping

Hongyi Xin'*, John Greth?, John Emmons?, Gennady Pekhimenko’,
Carl Kingsford®, Can Alkan** and Onur Mutlu®*

-fri ilter
", Bioinformatics 2015.
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An Example Solution: GateKeeper

st

Alignment
Filter

FPGA-based
Alignment Filter.
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FPGA-Based Alignment Filtering

= Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur
Mutlu, and Can Alkan

Bloinformatics, [published online, May 31], 2017.
[Source Code]
[Online link at Bioinformati |]

GateKeeper: a new hardware architecture for accelerating
pre-alignment in DNA short read mapping

Mohammed Alser ™, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu &=, Can Alkan

Bioinformatics, Volume 33, Issue 21, 1 November 2017, Pages 3355-3363,
https://doi.org/10.1093/bioinformatics/btx342
Published: 31 May 2017 Article history v
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https://people.inf.ethz.ch/omutlu/pub/gatekeeper_FPGA-genome-prealignment-accelerator_bionformatics17.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/BilkentCompGen/GateKeeper
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx342

DNA Read Mapping & Filtering

= Problem: Heavily bottlenecked by Data Movement

= GateKeeper FPGA performance limited by DRAM bandwidth
[Alser+, Bioinformatics 2017]

= Ditto for SHD on SIMD [Xin+, Bioinformatics 2015]

= Solution: Processing-in-memory can alleviate the bottleneck

= However, we need to design mapping & filtering algorithms
to fit processing-in-memory

SAFARI 18



In-Memory DNA Sequence Analysis

= Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using

Processing-in-Memory Technologies”

LMC Genomics, 2018.

Proceedings of the 1olh Asia Pagdific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxjv.ora Version (pdf)

GRIM-Filter: Fast seed location filtering in
DNA read mapping using
processing-in-memory technologies

Jeremie S.Kim'#", Damla Senol Cali', Hongyi Xin?, Donghyuk Lee?, Saugata Ghose’,
Mohammed Alser?, Hasan Hassan®, Oguz Ergin®, Can Alkan*" and Onur Mutlu®'”

From The Sixteenth Asia Pacific Bioinformatics Conference 2018
Yokohama, Japan. 15-17 January 2018

SAFARI 19



http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf

Key Principles and Results

= Two key principles:
o Exploit the structure of the genome to minimize computation

o Morph and exploit the structure of the underlying hardware to
maximize performance and efficiency

= Algorithm-architecture co-design for DNA read mapping

o Speeds up read mapping by ~200X (sometimes more)
o Improves accuracy of read mapping in the presence of errors

Xin et al., "Accelerating Read Mapping with FastHASH,” BMC Genomics 2013.

Xin et al., “Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter to Accelerate
Alignment Verification in Read Mapping,” Bioinformatics 2015.

Alser et al., “"GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA
Short Read Mapping,” Bioinformatics 2017.

Kim et al., “"Genome Read In-Memory (GRIM) Filter,” BMC Genomics 2018.
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New Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali &, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017
Published: 02 April2018 Article history v

Oxford Nanopore MinlON

Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome
Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions,” Briefings in Bioinformatics, 2018.

rPrelim . o)
SAFARI 21



https://arxiv.org/pdf/1711.08774.pdf

Nanopore Genome Assembly Pipeline

Ra\:i::;gnal Basecalling
Tools: Metnichor, Nanonet, Scrappie, Nanocall, DeepNano
- DNA reads
4 N
Read-to-Read Overlap Finding
Tools: GraphMap, Minimap
\. J ,
Overlaps
-
Assembly <= Assembly
Tools: Canu, Miniasm
\ J
Draft assembly
s B
Read Mapping
Tools: BWA-MEM, Minimap, (GraphMap)
. J . o
Mappings of reads
Improved ! Polishing \ aganst Gealt
I < . = assembly
assembly Tools: Nanopolish, Racon
\ J

Figure 1. The analyzed genome assembly pipeline using nanopore
sequence data, with its five steps and the associated tools for each

_step. Senol Cali+, "Nanopore Sequencing Technology and Tools for Geneme
SAFARI Assembly” to appear in Briefings in Bioinformatics, 2018. 22



More on Genome Analysis: Another Talk

Accelerating Genome Analysis

A Primer on an Ongoing Journey

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

May 21, 2018
n:; HICOMB-17 Keynote Talk
Sstemse ETHo ETH:zurich

SAFARI
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Four Key Directions

= Fundamentally Secure/Reliable/Safe Architectures

=| Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

=| Fundamentally Low-Latency Architectures

= Architectures for Genomics, Medicine, Health

SAFARI 24
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The Main Memory System

Processors

Storage (SSD/HDD)
and caches

Main Memory

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,

efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

cacaot . A —
SAFARI



The Main Memory System

Main Memory Storage (SSD/HDD)

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,

efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

e
SAFARI /



The Main Memory System

Main Memory Storage (SSD/HDD)

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,

efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

<acao: . B S
SAFARI



Memory System: A Shared Resource View

Shared Memory
Shared Shared
Shared Conoy ponel
Interconnect
\
w w
= =
= =
- -
2
=
[ [
\a\ :
(=3 (=3
2 =
Conval Consel
Shared Memory

Most of the system is dedicated to storing and moving data
SAFARI




State of the Main Memory System

= Recent technology, architecture, and application trends
o lead to new requirements

o exacerbate old requirements

= DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

= Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

= We need to rethink the main memory system
o to fix DRAM issues and enable emerging technologies

o to satisfy all requirements

SAFARI 20



Major Trends Atftecting Main Memory (I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending

SAFARI 3



Major Trends Atftecting Main Memory (1I)

= Need for main memory capacity, bandwidth, QoS increasing
o Multi-core: increasing number of cores/agents

o Data-intensive applications: increasing demand/hunger for data
o Consolidation: cloud computing, GPUs, mobile, heterogeneity

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending

SAFARI 32



Example: The Memory Capacity Gap

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years

1000

o #Core Lim et al., ISCA 2009

= DRAM

100

(@]

Relative capacity
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|
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= Memory capacity per core expected to drop by 30% every two years
= Trends worse for memory banawidth per corel
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Example: Capacity, Bandwidth & Latency

-«Camdty ®R-Bandwidth @-Latency 128x
8
= 100
5
= 20X
>
o
a 10
£
2
> 1.3x
o

| e e e O O 0 __8_9
1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

Memory latency remains almost constant
SAFARI



DRAM Latency Is Critical for Performance

In-memory Databases Graph/Tree Processing

[Mao+, EuroSys’|2; [Xu+, ISWC’12; Umuroglu+, FPL' 1 5]
Clapp+ (Intel), ISWC’[5]

_y N
Spark

In-Memory Data Analytics Datacenter Workloads

[Clappt (Intel), ISWC’15; [Kanev+ (Google), ISCA’I5]
Awan+, BDCloud’| 5]

SAFARI



DRAM Latency Is Critical for Performance

In-memory Databases Graph/Tree Processing

Long memory latency — performance bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads

[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’I5]
Awan+, BDCloud’| 5]

SAFARI



Major Trends Atfecting Main Memory (I11)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

o ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,
IEEE Computer'03] >40% power in DRAM [Ware, HPCA’10][Paul, ISCA’15]

o DRAM consumes power even when not used (periodic refresh)

= DRAM technology scaling is ending

SAFARI 37



Major Trends Atfecting Main Memory (IV)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
o ITRS projects DRAM will not scale easily below X nm

o Scaling has provided many benefits:
= higher capacity (density), lower cost, lower energy

SAFARI 38



Major Trends Attecting Main Memory (V)

= DRAM scaling has already become increasingly difficult
o Increasing cell leakage current, reduced cell reliability,

increasing manufacturing difficulties [Kim+ 1SCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

o Difficult to significantly improve capacity, energy

= Emerging memory technologies are promising

SAFARI 39



Major Trends Attecting Main Memory (V)

DRAM scaling has already become increasingly difficult
o Increasing cell leakage current, reduced cell reliability,

increasing manufacturing difficulties [Kim+ 1SCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

o Difficult to significantly improve capacity, energy

Emerging memory technologies are promising

3D-Stacked DRAM higher bandwidth smaller capacity
Reduced-Latency DRAM .

(e.g., RL/TL-DRAM, FLY-RAM) lower latency higher cost
Low-Power DRAM higher latency
(e.g., LPDDR3, LPDDR4, Voltron) | lower power higher cost
Non-Volatile Memory (NVM) higher latency
(e.g.,, PCM, STTRAM, ReRAM, 3D | |arger capacity | higher dynamic power
Xpoint) lower endurance

SAFARI 40



Major Trend: Hybrid Main Memory

DRAM PCM

Ctrl

DRAM { Ctri Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “"Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

SAFARI



Foreshadowing

Main Memory Needs
Intelligent Controllers

SAFARI



Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

** Refresh
« Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance

» Leakage current of cell access transistors increasing

<+ tWR
+ Contact resistance between the cell capacitor and access transistor increasing
* On-current of the cell access transistor decreasing

+ Bit-line resistance increasing

* VRT
» Occurring more frequently with cell capacitance decreasing
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Call for Intelligent Memory Controllers

DRAM Process Scaling Challenges

*+ Refresh

« Difficult to build hioh-asnect ratio cell canacitors decreasina cell canacitance
THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM
to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng,
**John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel
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Agenda

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers
o Bottom Up: Push from Circuits and Devices

a Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory
Conclusion

SAFARI
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Maslow’s (Human) Hierarchy of Needs

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Self-fulfillment
Maslow, “Motivation and Personality,”

Book, 1954-1970.

Psychological

—= needs
Belongingness and love needs:
infimate relationships, friends

= We need to start with reliability and security...

SA FARI Source: https://www.simplypsychology.org/maslow.html 46



How Reliable/Secure/Safe is This Bridge?

SAFARI



Collapse of the “Galloping Gertie”




How Secure Are These People?

Security is about preventing unforeseen consequences

SA FA RI Source: https://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9¢7700246a0cf8acdae27abf.jpg 49



The DRAM Scaling Problem

DRAM stores charge in a capacitor (charge-based memory)
o Capacitor must be large enough for reliable sensing

o Access transistor should be large enough for low leakage and high
retention time
o Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

WL BL
ArL—\_i

SENSE

CAP

DRAM capacity, cost, ana energyypower nard to scale

SAFARI >0



As Memory Scales, It Becomes Unreliable

= Data from all of Facebook’s servers worldwide
= Meza+, "Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.
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Large-Scale Failure Analysis of DRAM Chips

= Analysis and modeling of memory errors found in all of
Facebook's server fleet

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutly,
"Revisiting Memory Errors in Large-Scale Production Data
Centers: Analysis and Modeling of New Trends from the Field"
Proceea’/ngs of the

Zath Annual JEEE/IFIP International Conference on
Depengable Svstems and Networks (DSN), Rio de Janeiro, Brazil, June

2015.
[Slides (pptx) (odf) ] [DRAM Error Model]

Revisiting Memory Errors in Large-Scale Production Data Centers:
Analysis and Modeling of New Trends from the Field
Justin Meza  Qiang Wu*  Sanjeev Kumar®  Onur Mutlu
Carnegie Mellon University * Facebook, Inc.

SAFARI 52


http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://2015.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pdf
https://www.ece.cmu.edu/~safari/tools/memerr/index.html

Infrastructures to Understand Such Issues

e

.’ M Behavior in M rn DRAM Devi

Ean Ovelt g i
GHEON 8 wﬁww&wm et al., ISCA 2013

The Ffficacy of Error Mitigation Technigues
&W Ve Exparme ot
(Khan et al., SIGMETRICS 2014)

Disturbance Errors (Kim et al., ISCA 2014)

\dontive DRAM: Qptimizing DRAM
Liming for the Common-Case (Lee et al,,
HPCA 2015)

\VATAR: A Varigble-F ion-Time (VRT
Aware Refresh for DRAM Svstems (Qureshi .
et al., DSN 2015) | Circulating Fan

SAFARI



http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf

Infrastructures to Understand Such Issues

Kim+, "Flipping Bits in Memory Without Accessing Them: An 54
SAFARI Experimental Study of DRAM Disturbance Errors,’9 ISCA 2014.



SoftMC: Open Source DRAM Infrastructure

= Hasan Hassan et al., "SoftMC: A
Source Infrastructure for

bling E - tal DRAM

les,” HPCA 2017.

= Flexible
= Easy to Use (C++ API)

= Open-source
github.comy/CMU-SAFARIL/SoftMC

SAFARI
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

SoftMC

= hitps://github.com/CMU-SAFARI/SOFIMC

SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies

1,2,3 3 4,3

Samira Khan Saugata Ghose®  Kevin Chang?
63 Oguz Ergin? Onur Mutlu!»?

Hasan Hassan Nandita Vijaykumar
Gennady Pekhimenko®® Donghyuk Lee

YETH Ziirich ~ TOBB University of Economics & Technology  *Carnegie Mellon University
4 University of Virginia  °Microsoft Research  *NVIDIA Research

SAFARI 56


https://github.com/CMU-SAFARI/SoftMC

Data Retention in Memoty [Liu et al., ISCA 2013]

= Retention Time Profile of DRAM looks like this:

04-128ms

Location dependent
1 2 8 _ 2 5 6 S Stored value pattern dependent
' I . Time dependent

SAFARI >7



A Curtous Discovery [Kim et al., ISCA 2014]

One can
predictably induce errors
iIn most DRAM memory chips

SAFARI
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DRAM RowHammer

A simple hardware failure mechanism
can create a widespread

system security vulnerability

WIGIEDR) Forget Software—Now Hackers Are Exploiting Physics

SHARE H)I{L hI SOH W/\I{h —\NOW
g:  HACKRERS ARE EXPLOITING
PHYSICS



Modern DRAM is Prone to Disturbance Errors
Wordline

Hammerr /(% Virogw
Victim Row
Row

Repeatedly reading a row enough times (before memory gets
refreshed) induces disturbance errors in adjacent rows in
most real DRAM chips you can buy today

) s N
| , (Kim et al., ISCA 2014)


http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

Most DRAM Modules Are Vulnerable

A company B company C company

Up to Up to Up to
1.0x107 2.7x10® 3.3x10°
errors errors errors

ipping Bits in Memg Accessing Them: An
Risturbance Errors, (Kim et al., ISCA 2014)



http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

Recent DRAM Is More Vulnerable

e A Modules = B Modules ¢ C Modules

100

Errors per 10° Cells
e e S T e T
= O o O O O
-} S — S} w > O

2008 2009 2010 2011 2012 2013 2014
Module Vintage
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Recent DRAM Is More Vulnerable

e A Modules = B Modules ¢ C Modules
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Recent DRAM Is More Vulnerable

e A Modules = B Modules ¢ C Modules
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All modules from 2012-2013 are vulnerable
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A Simple Program Can Induce Many Errors

L iililnl- .

RAM Module

® i -- al: oo H-nﬂ T h-.

loog:
mov (), %Teax

mov (), %ebx
clflush ()

clflush ()
mfence

Jmp loop



https://github.com/CMU-SAFARI/rowhammer

A Simple Program Can Induce Many Errors

4 llnﬂul- . :

B RAM Module

‘ u- mlu -- l NS TRS -*-ni .u --.

1. Avoid cache hits
— Flush X from cache

2. Avoid row hits to X Y
— Read Y in another row

Download from: Qifosi//github.com/CMU-SAFARI/rowhammer


https://github.com/CMU-SAFARI/rowhammer

A Simple Program Can Induce Many Errors

L ii.ilnl- .

RAM Module

.. RN T ERE “-uﬂ T h-.

loog:
mov (), %Teax

mov (), %ebx
clflush ()

clflush ()
mfence

Jmp loop



https://github.com/CMU-SAFARI/rowhammer

A Simple Program Can Induce Many Errors

L ii.ilnl- .

RAM Module

.. RN T ERE “-uﬂ T h-.

loog:
mov (), %Teax

mov (), %ebx
clflush ()

clflush ()
mfence

Jmp loop



https://github.com/CMU-SAFARI/rowhammer

A Simple Program Can Induce Many Errors

13 iiIllnl- .

RAM Module

'. ] __::'- “-dli in ii’

loog:
mov (), %Teax

mov (), %ebx
clflush ()

clflush ()
mfence

Jmp loop



https://github.com/CMU-SAFARI/rowhammer

Observed Errors 1n Real Systems

CPU Architecture Errors Access-Rate
ntel Haswell (2013) 22.9K 12.3M/sec

ntel vy Bridge (2012) 20.7K 11.7M/sec
ntel Sandy Bridge (2011) 16.1K 11.6M/sec
AMD Piledriver (2012) 59 6.1M/sec

A real reliability & security issue

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 70
DRAM Disturbance Errors,” ISCA 2014,



One Can Take Over an Otherwise-Secure System

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable
and secure computing system — an access to one memory ad-
dress should not have unintended side effects on data stored
in other addresses. However, as DRAM process technology

Project Zero  fuhxeimes sudvol DRAM Dsturbance Liors

News and updates from the Project Zero team at Google

Exploiti be DRAM | |
' Vi (Seaborn, 2015)

Exploiting the DRAM rowhammer bug to gain kernel privileges


http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

RowHammer Security Attack Example

= "Rowhammer” is a problem with some recent DRAM devices in which
repeatedly accessing a row of memory can cause bit flips in adjacent rows

(Kim et al., ISCA 2014).
2 Llipping Bits in Memory Without Accessing Them. An Experimental Study of
LRAM Disturbance Errors (Kim et al., ISCA 2014)

= We tested a selection of laptops and found that a subset of them
exhibited the problem.

= We built two working privilege escalation exploits that use this effect.
0 Exploiting the DRAM rowhammer bug to gain Kernel privileges (Seaborn+, 2015)

= One exploit uses rowhammer-induced bit flips to gain kernel privileges on
x86-64 Linux when run as an unprivileged userland process.

= When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTESs).

= It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015)


http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

Security Implications

...............

AN

U(ur !

»

-~

m(((((uuu&(((tltl}\(( il

- s 4
R By .
R

-
-
‘e

-
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It's like breaking into an apartment by :
repeatedly slamming a neighbor’s door until
the vibrations open the door you were after




More Security Implications (I)

“We can gain unrestricted access to systems of website visitors.”

Not there yet, but ...

Y OWHAMMER)S

ROQOT privileges for web apps!

Daniel Gruss (@lavados), Clémentine Maurice (@BloodyTangerine),
December 28, 2015 — 32¢3, Hamburg, Germany

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA'16)

75
Source: plpeullabudaabioliociaalideslzioz 0l


https://lab.dsst.io/32c3-slides/7197.html

More Security Implications (1I)

“Can gain control of a smart phone deterministically”

Hammer And Root

Mllllons of Androids

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16 76

Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/



More Security Implications (111)

Using an integrated GPU in a mobile system to remotely
escalate privilege via the WebGL interface

Drive-by Rowhammer attack uses GPU to
compromise an Android phone

JavaScript based GLitch pwns browsers by flipping bits inside memory chips.

Grand Pwning Unit: Accelerating Microarchitectural
Attacks with the GPU

Pietro Frigo Cristiano Giuffrida Herbert Bos Kaveh Razavi
Vrije Universiteit Vrije Universiteit Vrije Universiteit Vrije Universiteit
Amsterdam Amsterdam Amsterdam Amsterdam

p.frigo@vu.nl giuffrida@cs.vu.nl herbertb@cs.vu.nl kaveh@cs.vu.nl



More Security Implications (IV)
Rowhammer over RDMA (1)

QB TECHNICA st o o o oo

THROWHAMMER

Packets over a LAN are all it takes to
trigger serious Rowhammer bit flips

The bar for exploiting potentially serious DDR weakness keeps getting lower.

DAN GOODIN - 5/10/2018, 5:26 PM

Throwhammer: Rowhammer Attacks over the Network and Defenses

Andrei Tatar Radhesh Krishnan Elias Athanasopoulos Cristiano Giuffrida
VU Amsterdam VU Amsterdam University of Cyprus VU Amsterdam
Herbert Bos Kaveh Razavi

VU Amsterdam VU Amsterdam



More Security Implications (V)

= Rowhammer over RDMA (II)

(«&The Hacker News

Security in a serious way

Nethammer—Exploiting DRAM Rowhammer Bug Through

Network Requests

Nethammer:

Inducing Rowhammer Faults through Network Requests

Moritz Lipp
Graz University of Technology

Daniel Gruss
Graz University of Technology

Misiker Tadesse Aga
University of Michigan

Clémentine Maurice
Univ Rennes, CNRS, IRISA

Lukas Lamster
Graz University of Technology

Michael Schwarz
Graz University of Technology

Lukas Raab
Graz University of Technology

~79



More Security Implications?




Apple’s Patch for RowHammer
= hitps://support.apple.com/en-gb/HT204934

Available for: OS X Mountain Lion v10.8.5, OS X Mavericks v10.9.5
Impact: A malicious application may induce memory corruption to escalate privileges

Description: A disturbance error, also known as Rowhammer, exists with some DDR3 RAM that could

have led to memory corruption]This issue was mitigated by increasing memory refresh rates.

CVE-ID

CVE-2015-3693 : Mark Seaborn and Thomas Dullien of Google, working from original research by
Yoongu Kim et al (2014)

HP, Lenovo, and other vendors released similar patches



https://support.apple.com/en-gb/HT204934

Our Solution to RowHammer

* PARA: Probabilistic Adjacent Row Activation

* Key Idea

— After closing a row, we activate (i.e., refresh) one of
its neighbors with a low probability: p = 0.005

e Reliability Guarantee
— When p=0.005, errors in one year: 9.4x1014

— By adjusting the value of p, we can vary the strength
of protection against errors

82



More on RowHammer Analysis

= Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee Chrls Wllkerson Konrad La| and Onur Mutlu

Experimental Study of DRAM Disturbance Errors
Proceedings of the 4.1sl Intenational Svmposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Yoongu Kim' Ross Daly*  Jeremie Kim' Chris Fallin®  Ji Hye Lee'
Donghyuk Lee' Chris Wilkerson? Konrad Lai  Onur Mutlu’

'Carnegie Mellon University ’Intel Labs

SAFARI 83


https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer

Future of Memory Reliabﬂity

=  Onur Mutluy,
~The RowHammer Problem and Other Issues We Mav Face as
Memorv Becomes Denser”

Invited Paper in Proceedings of the Desjian. Automation. and Jestin
Lurope Conference (DATE), Lausanne, Switzerland, March 2017.

[Slides (ppR) (pdf)]

The RowHammer Problem
and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu
ETH Ziirich
onur.mutlu@inf.ethz.ch
https://people.inf.ethz.ch/omutlu

SAFARI [QUDs;


https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf

Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

** Refresh
« Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance

» Leakage current of cell access transistors increasing

<+ tWR
+ Contact resistance between the cell capacitor and access transistor increasing
* On-current of the cell access transistor decreasing

+ Bit-line resistance increasing

* VRT
» Occurring more frequently with cell capacitance decreasing

WL
LA - - - ..0 -
@ =4 ' o s § 4
. - - ‘ - . o
" o - ———— .3
iC 5 UL
-lai ! Ousts —o D - = s . g. °"'.’ é _.—L
08 a * -
el Plate DD | 1 3 . >
ime
Refresh tWR VRT

[TTH e G @D &

Forum




Call for Intelligent Memory Controllers

DRAM Process Scaling Challenges

*+ Refresh

« Difficult to build hioh-asnect ratio cell canacitors decreasina cell canacitance
THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM
to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng,
**John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel
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Aside: Intelligent Controller for NAND Flash

" idex-VEFPGA
(NAND Controllery.....

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014,
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017,
PIEEE 2017, HPCA 2018, SIGMETRICS 2018

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

NAND Daughter Board




Aside: Intelligent Controller for NAND Flash

Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error

characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Car, SaucaTta GHOSE, EricH F. HARATSCH, YiXIN Luo, AND ONUR MUTLU

hitps://arxiv.ore/pdf/1706,08047

38


https://arxiv.org/pdf/1706.08642

Takeaway

Main Memory Needs
Intelligent Controllers




Agenda

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers
o Bottom Up: Push from Circuits and Devices

a Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory
Conclusion
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Three Key Systems Trends

1. Data access is a major bottleneck

o Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute

o Especially true for off-chip to on-chip movement



The Need for More Memory Performance

=

—

In-memory Databases Graph/Tree Processing

[Mao+, EuroSys’|2; [Xu+, ISWC’12; Umuroglu+, FPL' 1 5]
Clapp+ (Intel), ISWC’[5]

T N
spark

In-Memory Data Analytics Datacenter Workloads

[Clappt (Intel), ISWC’15; [Kanev+ (Google), ISCA’I5]
Awan+, BDCloud’| 5]

SAFARI




Challenge and Opportunity for Future

High Performance,
Energy Efficient,
Sustainable

SAFARI



Maslow’s (Human) Hierarchy of Needs, Revisited

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Self-fulfillment
Maslow, “Motivation and Personality,” needs

Book, 1954-1970.

Psychological
needs

Belongingness and love needs:
- intimate relafionships, friends

Everlasting energy

SAFAR, Source: https://www.simplypsychology.org/maslow.html



The Problem

Data access is the major performance and energy bottleneck

Our current
design principles
cause great energy waste

(and great performance loss)

SAFARI 9>



The Problem

Processing of data
IS performed
far away from the data

SAFARI
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A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Computing E 5 Communication E a Memory/Storage
Unit Unit Unit

T
-
-
’-’-
....
".
‘..
4..
..‘
”

Memory System Storage System

T o7

Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/




A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Communication E 3\ Memoryv’~

Computing System

Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



Today’s Computing Systems

= Are overwhelmingly processor centric
= All data processed in the processor - at great system cost
= Processor is heavily optimized and is considered the master

= Data storage units are dumb and are largely unoptimized
(except for some that are on the processor die)

Computing System

Computing

Communication E a Memory/Storage
Unit

Unit Unit
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Memory System Storage System




Yet ...

= “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)

100
95
90
85
80
75
70
65
60
95
50
45
40
35
30
25
20
15
10

5
0

M Non-stall (compute) time

B Full-window stall time

Normalized Execution Time

128-entry window Data from Runahead Execution [HPCA 2003]

Mutlu+, “"Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Pertormance PersEective

=« Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
~Runahead Execution: An Alternative to Very Large Instruction

Windows for Out-of-order Processors"

Proceedings of the 2(4 International Svmposiym on High-Performance
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February
2003. Slides (pdf)

Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark 1 Chris Wilkerson 1 Yale N. Patt §

§ECE Department TMicroprocessor Research iDesktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation
{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson@intel.com

N (01


https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf

The Performance Perspective (Today)
= All of Google’s Data Center Workloads (2015):

Bl Retiring Bl Bad speculation
] Front-end bound B Back-end bound
ads E

— -
bigtable — N g
disk S S 5
flight-search —— —— =g
gmail =D -
gmail-fe =T T

indexingl = —

indexing2 i ¥

searchl
search2
search3
video

400.peribench
445.gobmk
429.mcf
471.omnetpp
433.milc

0 20 40 60 80 100 120
Pipeline slot breakdown (%)

U 1)

Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



The Performance Perspective (Today)
= All of Google’s Data Center Workloads (2015):

ads | ' 1 i Sy S s S R -
bigtable |- - — ] Ixg J= =1 -
disk |- - - -
flight-search | bo— [ ) 1=+ -
gmail |- - N
gmail-fe |- - L% -
indexingl} t— ) — -
indexing2 | - )
searchlf I 4
search2} W EA—— -
search3} L .
video |- ] 1 A - - = = 1 _

0 10 20 30 40 50 60 70 80

Cache-bound cycles (%)

Figure 11: Half of cycles are spent stalled on caches.

0 [0

Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



Perils ot Processor-Centric Design

= Grossly-imbalanced systems
o Processing done only in one place

o Everything else just stores and moves data: data moves a lot
- Energy inefficient

- Low performance

- Complex

= Overly complex and bloated processor (and accelerators)
o To tolerate data access from memory

o Complex hierarchies and mechanisms
- Energy inefficient
- Low performance

- Complex
5 (078



Perils ot Processor-Centric Design

Shared Memory
b§1hared S{w
cm cm
Shared Contro Contro
Interconnect
\

w w
= =
= )
- o |
2
=
() o
= =
: g
-

Shared Shared

Mem Mem
Contro Contro
Shared Memory

Most of the system is dedicated to storing and moving data




The Energy Perspective

Communication Dominates Arithmetic

Dally, HIPEAC 2015

256 pJ

Efficient
[ L off-chip link

256-bit access
8 kB SRAM

SAFARI



Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP * DRAM

256-bit buses

500 pJ Efficient

off-chip link
256-bit access
8 kB SRAM
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Data Movement vs. Computation Energy

= Data movement is a major system energy bottleneck

o Comprises 41% of mobile system energy during web browsing [2]
o Costs ~115 times as much energy as an ADD operation [1, 2]

Data Movement

PN

—

GEE S TR S R .
A R TR T e

[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)
[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (lISWC’14)

SAFARI 108



Energy Waste in Mobile Devices

= Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur Daehyun K|m Aki Kuusela, "Allan Knies, Parthasarathy Ranganathan and Onur Mutlu

DOAIE YWOIrKIoaC 0 ol ner pevices: v aACINd Uatad Movement botl RNCCK

Proceedings of the Zzrd Jnternalional Conrerence on Argutediural Support for 2roaraniiing
Lanauages and Operating Svstems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand’ Saugata Ghose' Youngsok Kim?
Rachata Ausavarungnirun' Eric Shiu>  Rahul Thakur®  Daehyun Kim**
Aki Kuusela®  Allan Knies®>  Parthasarathy Ranganathan®  Onur Mutlu®’
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

We Do Not Want to Move Data!

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP * DRAM

256-bit buses

500 PJ Efficient

off-chip link
256-bit access
8 kB SRAM
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We Need A Paradigm Shift To ...

= Enable computation with minimal data movement
= Compute where it makes sense (where data resides)

=« Make computing architectures more data-centric



Goal: Processing Inside Memory

Many questions ... How do we design the:

Q

Q

Q

Processor

Core

nterconnect
Results Problem

Problem
AU LU
compute-capable memory & controllers?
processor chip and in-memory units?
software and hardware interfaces?
system software and languages?
algorithms? e —isB
Electrons

Electrons



Why In-Memory Computation Today?
AR Cror

L

= Pull from Systems and Applications
o Data access is a major system and application bottleneck
o Systems are energy limited
o Data movement much more energy-hungry than computation

SAFARI 113



Agenda

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers
o Bottom Up: Push from Circuits and Devices

a Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory
Conclusion

SAFARI 114



| Processing in Memory:
Two Approaches I

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory



Approach 1: Minimally Changing DRAM

= DRAM has great capability to perform bulk data movement and
computation internally with small changes
o Can exploit internal connectivity to move data
o Can exploit analog computation capability

a ...

= Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM

o RowClone: Fact and Efficient In-DRAM Copv and Initialization of Bulk Data
(Seshadri et al., MICRO 2013)
0 LastBulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

DMWMMM@I

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)
o “Ambit: In-Memorv Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technoloay” (Seshadri et al., MICRO 2017)

SAFARI 16


http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Starting Simple: Data Copy and Initialization

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’I5]

il

00000
00000

00000

Forki ng (e_g_, secu rity) CheCkPOi nti ng

Zero initialization

g«\i g‘\i | _> Ma.n.y.more
VM Cloning  page Migration
Deduplication
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Today’s Systems: Bulk Data Copy

1) High latency

3) Cache pollution

2) High bandwidth utilization

4) Unwanted data movement

1046ns, 3.6u) (for 4KB page copy via DMA)

118



Future Systems: In-Memory Copy

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement

1046ns, 3.6u) —> 90ns, 0.04ul)

119



In-DRAM Row Copy

RowClone

Idea: Two consecutive ACTivates

4 Kbytes

Negligible HW cost

Step 1: Activate row A
Step 2: Activate row B
DRAM subarray

Transferl |

Transfer
row

8 bits

Data Bus



RowClone: Latency and Energy Savings

M Baseline M Intra-Subarray
@ Inte r-Bank M Inter-Subarray

Normalized Savings

latency Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013. 121



More on RowClone

= Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.

Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

—RowClone: Fastand Encray-Efficient In-DRAM Bulk Data Copy and
II] itii I-Iza ti g IJ nw
Proceedings of the 4614 [nlernational Symposium on Microgrchilecture

(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightnin ion
=lides (o) (DdA)] [Boster (pRRY) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin” Donghyuk Lee
vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu
Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo

rachata@cmu.edu gpekhime@cs.cmu.edu  yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbons' Michael A. Kozuch? Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu
Carnegie Mellon University fIntel Pittsburgh


http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

Memory as an Accelerator

GPU GPU
(throughput) | §(throughput)
core core

mini-CPU
core
video
core
imaging
core

GPU GPU
(throughput)§ §(throughput)
core core

Sp?cialize% n
compute-capabili
Memory Controller ﬁ\memgry y

Memory Bus

III

Memory similar to a “"conventional” accelerator



In-Memory Bulk Bitwise Operations

= We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
= At low cost
= Using analog computation capability of DRAM

o Idea: activating multiple rows performs computation

= 30-60X performance and energy improvement

o Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

= New memory technologies enable even more opportunities
o Memristors, resistive RAM, phase change mem, STT-MRAM, ...

o Can operate on data with minimal movement

N 1



In-DRAM AND/OR: Triple Row Activation
YiVpp+0

A

Final State
AB + BC + AC

dis

21

%2V

SAFARI Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015. 125



In-DRAM NOT: Dual Contact Cell

d-wordline o
dual-contact T .§
cell (DCC) | R .
n-wordline | Idea.
Feed the
gl —IA —~7 negated value
1 in the sense amplifier

bitline
Figure 5: A dual-contact

cell connected to both
ends of a sense amplifier

into a special row

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Performance: In-DRAM Bitwise Operations

Skylake B GTX 745 [ HMC 2.0 [J Ambit Il Ambit-3D

Throughput (GOps/s)
log scale

not and/or nand/nor XOr/xnor mean

Figure 9: Throughput of bitwise operations on various systems.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Energy of In-DRAM Bitwise Operations

Design not and/or nand/nor xor/xnor

DRAM & DDR3 93.7 137.9 137.9 137.9
Channel Energy ~ Ambit 1.6 3.2 4.0 5.5
(nJ/KB) () 59.5X 43.9X 35.1X 25.1X

Table 3: Energy of bitwise operations. (/) indicates energy
reduction of Ambit over the traditional DDR3-based design.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI

128



Ambit vs. DDR3: Performance and Energy

Performance Improvement m Energy Reduction
70

% 32X 35X

0 NN
30

20

; )

0

and/or nand/nor xor/xnor mean

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017. 129



Bulk Bitwise Operations in Workloads

BitWeaving
Bitmap indices (database queries)

(database indexing) /

BitFunnel

Bulk Bitwise (web search)

Set operations Operations

DNA

sequence mapping

Encryption algorithms

[1] Li and Patel, BitWeaving, SIGMOD 2013
SA FARI [2] Goodwin+, BitFunnel, SIGIR 2017



Example Data Structure: Bitmap Index

Alternative to B-tree and its variants
Efficient for performing range qgueries and joins
Many bitwise operations to perform a query

age<18 18<age<25 25<age<60 age>60

SAFARI



Pertformance: Bitmap Index on Ambit

~~ 110 — . C freeeeeeeeeeee T L,
L g 100 Baseline I Ambit  |oiiciiid b,
£ £ .t e T A W—————————— - —
b > 10 e T T T TTTTTTITTPTTTOPISIIPPTSIIITIOPIOPITION [ IOIPPPITIOR R DOPOPIOS
c o 70 L ! I
C_) — OO =g, L B,
45 o 0 DT TITTITIPRROR | | SRR | NN | NSRS B
8 -qc) gg ambossssssnssssesssssssseee N ccececsrseses oD essescecccssso BN cosssosscecce SMNscoccosssossseoliRecscosces
x wnporsososncesrensrsnneseee@  Heeecscocrvonecdd  Boeresccccocsres]l  Beeocscocencene . . - 6.6X
O 2071 [ 54X 63X | 57X L0 n

2-weeks 3-weeks 4-weeks 2-weeks 3-weeks 4-weeks
8 million users 16 million users

Figure 10: Bitmap index performance. The value above each
bar indicates the reduction in execution time due to Ambit.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Pertformance: BitWeaving on Ambit

‘'select count(*) from T where cl <= val <= c¢2’

13| Rowcount () - O1m Mlom Olm Msm |77

5

&

< 114
>, 10 +
L 0 —
T 3
U

= 6+
o 5
Q" —
3 4
.= 3 -
O 2-
|
)

12 16 20 24 28 32
Number of Bits per Column (b)

Figure 11: Speedup offered by Ambit over baseline CPU with
SIMD for BitWeaving

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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More on In-DRAM Bulk AND/OR

= Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and

Todd C. Mowry,
JELE Computer Architecture Leffers (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuch', Onur Mutlu*, Phillip B. Gibbons', Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh
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http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

More on Ambit

= Vivek Seshadri et al., “Ambit: In-Memory Accelerator

JTechnology,” MICRO 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee*” Thomas Mullins®® Hasan Hassan' Amirali Boroumand®
Jeremie Kim"®  Michael A. Kozuch® Onur Mutlu®®  Phillip B. Gibbons® Todd C. Mowry”®

'"Microsoft Research India “NVIDIA Research “Intel 'ETH Ziirich "Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI



Challenge: Intelligent Memory Device

Does memory

have to be
dumb?

SAFARI



Agenda

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers
o Bottom Up: Push from Circuits and Devices

a Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory
Conclusion

SAFARI 138



| Processing in Memory:
Two Approaches I

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory



Opportunity: 3D-Stacked Logic+Memory

vbrid Memory Cube

Other “True 3D"” technologies
under development

SAFARI 140



DRAM Landscape (circa 2015)

Segment DRAM Standards & Architectures

Commodity  DDR3 (2007) [1+4]; DDR4 (2012) [1¥]

Low-Power  LPDDR3 (2012) [ 7];: LPDDR4 (2014) [20)]

Graphics GDDRS (2009) [15]

Performance eDRAM [¥], [17]; RLDRAM3 (2011) [2Y]

WIO (2011) [16]: WIO2 (2014) [21]: MCDRAM (2015) [1°]:

3D-Stacked

HBM (2013) [19]; HMC1.0 (2013) [10]: HMCI1.1 (2014) [ 1 1]

SBA/SSA (2010) [3]; Staged Reads (2012) [#]; RAIDR (2012) [27]:
SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [27]:
Half-DRAM (2014) [19]; Row-Buffer Decoupling (2014) [ 7];

SARP (2014) [6]: AL-DRAM (2015) [ 5]

Academic

Table 1. Landscape of DRAM-based memory

Kim+, "Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.
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Two Key Questions in 3D-Stacked PIM

How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?

o what is the architecture and programming model?
o what are the mechanisms for acceleration?

What is the minimal processing-in-memory support we can
provide?

o without changing the system significantly
o while achieving significant benefits

SAFARI 142



Graph Processing

= Large graphs are everywhere (circa 2015)

= Yy ®

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages  Facebook Users Twitter Users  Instagram Photos

= Scalable large-scale graph processing is challenging

0 1 2 3 4
Speedup




Key Bottlenecks in Graph Processing

for (v: graph.vertices) {
for (w: v.successors) {

w.next_rank += weight * v.rank;

}
}

w.rank
w.next_rank

w.edges

SAFARI

1. Frequent random memory accesses

2. Little amount of computation
144



Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped

Accelerator Interface
Noncacheable, Physically Addressed)

In-Order Core

LP PF Buffer

13]]0J1U0D INVYA

Vi1 P

Message Queue

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Communications via

Remote Function Calls

Message Queue




Prefetching

LP PF Buffer

Vi1 P




Communications In Tesseract (I)

for (v: graph.vertices) {
for (w: v.successors) {
“w.next_rank += weight * v.rank;

}
}
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Communications In Tesseract (I1I)

for (v: graph.vertices) {
fpr (w: v.successors) {
“w.next_rank += weight * v.rank;

Vault #1 Vault #2
________ ——
v &w
/l ‘
T \\ \
\\
“““““ — -
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Communications In Tesseract (I1I)

for (v: graph.vertices) {
for (w: v.successors) { Non-blocking Remote Function Call

put(w.id, function() { w.next_rank += weight * v.rank; });

J Can be delayed
} until the nearest barrier
barrier();
Vault #1 Vault #2
put 1
v > &w

~a
—~
-~
\‘
o)

Oy o
—— —

SAFARI 150



Remote Function Call (Non-Blocking)

1. Send function address & args to the remote core
2. Store the incoming message to the message queue

3. Flush the message queue when it is full or a
synchronization barrier is reached

Local
Core

&func, &w, value

» NI »

Remote
Core

MQ

.

put(w.id, function() { w.next_rank += value; })

SAFARI
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Evaluated Systems

DDR3-000 : HMC-0O00 : : Tesseract
| | |
| | | : 32 ,
I I I esserac
| | |
| 1| Seie 1.1 2ers | |
| | | ¢
I I ' In-lozrier I v
| | |
| | 1 [
| | |
| | |
102.4GB/s 640GB/s 640GB/s 8TB/s

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015,



Tesseract Graph Processing Performance

>13X Performance Improvement

16
On five graph processing algorithms 13.8x
14
O 11.6x
o 10 9.0x
>
3 8
A
6
4
, +56%  125%
, mm B8

DDR3- 000 HMC-Oo0O HMC-MC Tes®ract Teseract Tesseract
LP LP- MTP

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015,



Memory Bandwidth Consumption

w
U

2.9TB/s

[N

Memory Bandwidth (TB/s)

O
&)

2.2TB/s
1.3TB/s
190GB/s 243GB/s .
80GB/s
_— 1

DDR 3-O000 HMC-O0o0 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP

o




Tesseract Graph Processing System Energy

B Memorylayers BLogiclayers B Cores
12

0.8
0.6
0.4

0.2 > 8X Energy Reduction

HMC-000 Teseract withPrefetching

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015,



More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,

and Kiyoung Choi,

n = _' - r
Proceedings of the 42nd Intermational Symposium orn

(ISCA), Portland, OR, June 2015.

Lcomputer Architecture
[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn  Sungpack Hong® Sungjoo Yoo Onur Mutlu’  Kiyoung Choi

junwhan@snu.ac kr, sungpack.hong @oracle.com, sungjoo.yoo@ gmail.com, onur@cmu.edu, kchoi@snu.ac.kr

Seoul National University $Oracle Labs fCarnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

PIM on Mobile Devices

= Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
Movement Bottlenecks'
Proceedings of the 22rd International Conference on Architectiral

2upport for Programming Languages and Operaling
Svstems (ASPLOS), Williamsburg, VA, USA, March 2018.

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand’ Saugata Ghose' Youngsok Kim?
Rachata Ausavarungnirun'  Eric Shiu>  Rahul Thakur®  Daehyun Kim*?
Aki Kuusela®  Allan Knies®  Parthasarathy Ranganathan®  Onur Mutlu™'
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Google Workloads

for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daechyun Kim,Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

SAFARI CarnegieMellon  Google

PSnmsuncg

D,

s
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Consumer Devices

Consumer devices are everywhere!

Energy consumption is
a first-class concern in consumer devices

SAFARI 159



Popular Google Consumer Workloads

e T

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube © O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI 160



Energy Cost of Data Movement

Ist key observation: 62.7% of the total system
energy is spent on data movement

Data Movement

Processing-In-Memory (PIM)

Potential solution: move computation close to data

Challenge: limited area and energy budget
SAFARI 161



Using PIM to Reduce Data Movement

2"d key observation: a significant fraction of the
data movement often comes from simple functions

We can design lightweight logic to implement

these_simple functions in memory

Small embedded Small fixed-function
low-power core accelerators

Offloading to PIM logic reduces energy and improves

performance, on average, by 55.4% and 54.2%

SAFARI 5



Google Workloads

for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim,Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

ASPLOS 2018
SAFARI Camegie Mellon  Google
@ “ﬁ;‘ ;QEITV(';RE’;IY[ m Ziirich




More on PIM for Mobile Devices

= Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur Daehyun K|m Aki Kuusela, "Allan Knies, Parthasarathy Ranganathan and Onur Mutlu

DOAIE YWOIrKIoaC 0 ol ner pevices: v aACINd Uatad Movement botl RNCCK

Proceedings of the Zzrd Jnternalional Conrerence on Argutediural Support for 2roaraniiing
Lanauages and Operating Svstems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand’ Saugata Ghose' Youngsok Kim?
Rachata Ausavarungnirun' Eric Shiu>  Rahul Thakur®  Daehyun Kim**
Aki Kuusela®  Allan Knies®>  Parthasarathy Ranganathan®  Onur Mutlu®’
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Truly Distributed GPU Processing with PIM?

__global__
void applyScaleFactorsKernel( uint8 T * const out,
uint8 T const * const in, const double *factor,
size_t const numRows, size_t const numCols
{
// Work out which pixel we are working on.
const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
const int colldx = blockIdx.y:
const int sliceldx = threadIdx.z;

thread isn't off the image

if( rowIdx >= numRows ) return;

Compute the index of my element

3D_Stacked memory gizé;tti‘irrrle‘;;id;A:’;owIdxA+ coi..i‘é);*numRows +

sliceIdx*numRows*numCols;

(memory stack) SM (Strczaming Multiprocessor)

4
L 4




Accelerating GPU Execution with PIM (I)

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,

Svstems”

Proceedings of the 43rd International Svmposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

[Slides (pptx) (pdf)]

[Lighting Session Slides (pobe) (odf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi' Gwangsun Kim®  Niladrish (.‘hallcrjcct Mike O’Connor’

Nandita \f’ijayl'mmart Onur Mutlu'# Stephen W. Keckler!
!Carnegie Mellon University NVIDIA *KAIST YETH Ziirich


https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Accelerating GPU Execution with PIM (II)

= Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, MahmutT Kandemlr Onur Mutlu, and Chita R. Das

In-Memorv Capabilitics”
Proceedings of the 2ath Intermnational Conference on Paralle/

Architectures and Compilation 7echnigues (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik®  Xulong Tang* Adwait Jog? Onur Kayiran?
Asit K. Mishra* Mahmut T. Kandemir! Onur Mutlus¢ Chita R. Das!

'Pennsylvania State University  “College of William and Mary
SAdvanced Micro Devices, Inc. “Intel Labs °ETH Zlrich °Carnegie Mellon University
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https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

Accelerating Linked Data Structures

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,

~Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms. Evaluation
Proceedings of the 24[4 JEEE Infernational Conference on Computer
Lesign (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang’ Amirali Boroumand' Saugata Ghose'  Onur Mutlu®!
TCarnegie Mellon University — *University of Virginia *ETH Ziirich
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

Accelerating Dependent Cache Misses

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependen he Mi with an Enhan

Memory Controller’
Proceedings of the 43,d International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

[Slides (pptx) (pdf) ]
[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib’, Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

* The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University
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https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

Two Key Questions in 3D-Stacked PIM

How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?

o what is the architecture and programming model?
o what are the mechanisms for acceleration?

What is the minimal processing-in-memory support we can
provide?

o without changing the system significantly
o while achieving significant benefits
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PEIL: PIM-Enabled Instructions (Ideas)

Goal: Develop mechanisms to get the most out of near-data
processing with minimal cost, minimal changes to the system, no

changes to the programming model

Key Idea 1: Expose each PIM operation as a cache-coherent,

virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block

O e.g., __pim_add(&w.next_rank, value) 2 pim.add r1, (r2)

0 No changes sequential execution/programming model

2 No changes to virtual memory

0 Minimal changes to cache coherence

0 No need for data mapping: Each PEI restricted to a single memory module

Key Idea 2: Dynamically decide where to execute a PEI (i.e., the

host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors
0 Execute each operation at the location that provides the best performance
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PEI: PIM-Enabled Instructions (Example)

for (v: graph.vertices) {
value = weight * v.rank;

for (w: v.successors) {
__pim_add(&w.next_rank, value);

pim.add rl, (r2)

} Table 1: Summary of Supported PIM Operations
} Operation R W Input Output Applications
prence 8-byte integer increment O O Obytes  Obytes AT
pfence(); 8-byte integer min O O Sbytes Obytes BFS, SP, WCC
Floating-point add O O Sbytes Obytes PR
Hash table probing O X Sbytes 9bytes HJ
Histogram bin index O X Ibyte I6bytes HG,RP
Euclidean distance O X 64bytes 4bytes SC
Dot product O X 32bytes Sbytes SVM

Executed either in memory or in the processor: dynamic decision
o Low-cost locality monitoring for a single instruction
Cache-coherent, virtually-addressed, single cache block only
Atomic between different PEIs

Not atomic with normal instructions (use pfence for ordering)
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Example (Abstract) PEI uArchitecture

Host Processor
Out-Of-Order

Core

PCU (el |

Computation Unit)

SAFARI

Mgmt Unit)] . P'M

3D-stacked Memory

DRAM
Controller

L1 Cache

L2 Cache

Last-Level
Cache

DRAM
PCU Controller

1 AA
Network

PMU (PEI

HMC Controller
vV I

Directory

DRAM
Controller

Locality
Monitor

PCU

Example PEI uArchitecture
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PEI: Initial Evaluation Results

= Initial evaluations with 10 emerging data-intensive workloads
o Large-scale graph processing

a In-memOI‘y data ana|ytICS Table 2: Baseline Simulation Configuration
o Machine learning and data mining Componest___ Coutigmmion
. . Core 16 out-of-order cores, 4 GHz, 4-issue
o Three mput sets (sma”, med|um, |arge) LI UD-Cache  Private, 32 KB, &/8-way, 64 B blocks. 16 MSHRs

L2 Cache Private, 256 KB, S-way, 64 B blocks, 16 MSHRs

for each Workload to analyze the |mpact L3 Cache Shared, 16 MB. 16-way, 64 B blocks, 64 MSHRs

. On-Chip Network  Crosshar, 2 GHz, 144-bit links
Of data |Oca||ty Main Memory 32GB, 8 HMCs, daisy-chain (830 GB/s full-duplex)
HMC 4GB, 16 vaults, 256 DRAM banks [20)
DRAM FR-FCFS, 1ICL=tRCD =RP = 13.75ns [27)
- Vertical Links 64 TSVs per vault with 2 Ghs signaling rate [23]

= Pin-based cycle-level x86-64 simulation

= Performance Improvement and Energy Reduction:
= 47% average speedup with large input data sets
= 32% speedup with small input data sets
= 25% avg. energy reduction in a single node with large input data sets
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Simpler PIM: PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
_EIM_EDahl.&d.IDSIEUQtiQDS...A.LQMLQJLQEhﬂad

’

Pfoceed/ngs of theﬂaﬂatemaaaa&maﬂwn
Computer Architecture (ISCA ), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu!  Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University fCarnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

Automatic Code and Data Mapping

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,

Svstems”

Proceedings of the 43rd International Svmposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

[Slides (pptx) (pdf)]

[Lighting Session Slides (pobe) (odf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh* Eiman Ebrahimi' Gwangsun Kim®  Niladrish (_‘hallcrjccT Mike O’Connor'

Nandita Vijaylvummrt Onur Mutlu'# Stephen W. Keckler!
!Carnegie Mellon University NVIDIA *KAIST YETH Ziirich


https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Ettficient Automatic Data Coherence Support

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,

Hongzhong Zheng, and Onur Mutlu,
JEEE Computer Architecture Lelters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel', Hasan Hassan'¥, Brandon Lucia',
Kevin Hsieh', Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f
f Carnegie Mellon University *Samsung Semiconductor, Inc. STOBB ETU *ETH Zirich
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient

(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Fundamentally
Low-Latency

(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement
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Agenda

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers
o Bottom Up: Push from Circuits and Devices

a Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory
Conclusion
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Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory
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Barriers to Adoption of PIM

1. Functionality of and applications for PIM
2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,
access/sharing control

5. Infrastructures to assess benefits and feasibility
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We Need to Revisit the Entire Stack

Problem

Program/Language
System Software
SW/HW Interface
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Key Challenge 1: Code Mapping

* Challenge 1: Which operations should be executed
in memory vs. in CPU? .

void appI?ScaleFactorsKernel( uint8 T * st out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols )
{
e // Work out which pixel we are working on.
. - . - . . — const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
const int colldx = blockIdx.y:
t int sliceldx = threadIdx.z;
hread isn't o
f( wld numRows ) return;
index of my ele t

pute the ir of my element
ize_t linearIdx = rowIdx + colIdx*numRows +
sliceIdx*numRows*numCols;

3D-stacked memory

(memory stack) SM (Strczaming Multiprocessor)

. =D
V'S |




Key Challenge 2: Data Mapping

* Challenge 2: How should data be mapped to
different 3D memory stacks?

3D-stacked memory

(memory stack) SM (Streaming Multiprocessor)
- T - LS

~ 0 N

“ Logic layer




How to Do the Code and Data Mapping?

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,

Svstems”

Proceedings of the 43rd International Svmposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.

[Slides (pptx) (pdf)]

[Lighting Session Slides (pobe) (odf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi' Gwangsun Kim®  Niladrish (.‘hallcrjcct Mike O’Connor’

Nandita \f’ijayl'mmart Onur Mutlu'# Stephen W. Keckler!
!Carnegie Mellon University NVIDIA *KAIST YETH Ziirich


https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

How to Schedule Code?

= Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, MahmutT Kandemlr Onur Mutlu, and Chita R. Das

Pfoceed/ngs of the W&mﬂaﬁd
Architectures and Compilation Jechnigues (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik®  Xulong Tang* Adwait Jog? Onur Kayiran?
Asit K. Mishra* Mahmut T. Kandemir! Onur Mutlus¢ Chita R. Das!

'Pennsylvania State University  “College of William and Mary
SAdvanced Micro Devices, Inc. “Intel Labs °ETH Zlrich °Carnegie Mellon University
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https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

Coherence for Hybrid CPU-PIM Apps

Challenge

Traditional

coherence

LazyPIM
J Ideal-PIM

uea\o

No coherence
overhead
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How to Maintain Coherence?

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,

Hongzhong Zheng, and Onur Mutlu,
JEEE Computer Architecture Lelters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel', Hasan Hassan'¥, Brandon Lucia',
Kevin Hsieh', Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f
f Carnegie Mellon University *Samsung Semiconductor, Inc. STOBB ETU *ETH Zirich
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https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

How to Support Virtual Memory?

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,

~Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms. Evaluation
Proceedings of the 24[4 JEEE Infernational Conference on Computer
Lesign (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang’ Amirali Boroumand' Saugata Ghose'  Onur Mutlu®!
TCarnegie Mellon University — *University of Virginia *ETH Ziirich
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https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

How to Design Data Structures for PIM?

= Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
Proceedings of the ZQMCALEWWAWS
and Architectures (SPAA) Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

Concurrent Data Structures for Near-Memory Computing

Zhiyu Liu Irina Calciu
Computer Science Department VMware Research Group
Brown University icalciu@vmware.com
zhiyu_liu@brown.edu
Maurice Herlihy Onur Mutlu
Computer Science Department Computer Science Department
Brown University ETH Ziirich

mph@cs.brown.edu onur.mutlu@inf.ethz.ch
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https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://spaa.acm.org/
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pdf

Simulation Infrastructures for PIM

= Ramulator extended for PIM
o Flexible and extensible DRAM simulator

o Can model many different memory standards and proposals

o Kim+, "Ramulator: A Flexible and Extensible DRAM
Simulator”, IEEE CAL 2015.

o https://github.com/CMU-SAFARI/ramulator

Ramulator: A Fast and Extensible DRAM Simulator

Yoongu Kim' Weikun Yang'?  Onur Mutlu’
ICarnegie Mellon University  ?Peking University
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An FPGA-based Test-bed for PIM?

= Hasan Hassan et al., SoftMC: A
Source Infrastructure for
bling E - tal DRAM
Studies HPCA 2017.

= Flexible
= Easy to Use (C++ API)

= Open-source
github.comy/CMU-SAFARIL/SoftMC

SAFARI
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

New Applications and Use Cases for PIM

= Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using

Processing-in-Memory Technologies”

LMC Genomics, 2018.

Proceedings of the 1olh Asia Pagdific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxjv.ora Version (pdf)

GRIM-Filter: Fast seed location filtering in
DNA read mapping using
processing-in-memory technologies

Jeremie S.Kim'#", Damla Senol Cali', Hongyi Xin?, Donghyuk Lee?, Saugata Ghose’,
Mohammed Alser?, Hasan Hassan®, Oguz Ergin®, Can Alkan*" and Onur Mutlu®'”

From The Sixteenth Asia Pacific Bioinformatics Conference 2018
Yokohama, Japan. 15-17 January 2018
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http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf

Google Workloads

for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daechyun Kim,Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

SAFARI CarnegieMellon  Google
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Open Problems: PIM Adoption

Enabling the Adoption of Processing-in-Memory:
Challenges, Mechanisms, Future Research Directions

SAUGATA GHOSE, KEVIN HSIEH, AMIRALI BOROUMAND,
RACHATA AUSAVARUNGNIRUN

Carnegie Mellon University

ONUR MUTLU
ETH Ziirich and Carnegie Mellon University

https://arxiv.ora/pdf/1802,00320,pdf
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Agenda

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers
o Bottom Up: Push from Circuits and Devices

a Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory
Conclusion
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Four Key Directions

=| Fundamentally Secure/Reliable/Safe Architecture

=| Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

=| Fundamentally Low-Latency Architectures

=| Architectures for Genomics, Medicine, Health

SAFARI
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Maslow’s Hierarchy of Needs, A Third Time

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

| 5 Self-fulfillment
Maslow, “"Motivation and Personality,” ~actualization:
Book, 1954-1970.

-
, 200
SA FA RI Source: https://www.simplypsychology.org/maslow.html



Challenge and Opportunity for Future

Fundamentally
Energy-Efficient

(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Fundamentally
Low-Latency

(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement
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A Quote from A Famous Architect

= ‘architecture [...] based upon principle, and not upon
precedent”
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Principled Design

= ‘architecture [...] based upon principle, and not upon
precedent”







The Overarching Principle

Organic architecture

From Wikipedia, the free encyclopedia

Organic architecture is a philosophy of architecture which promotes harmony
between human habitation and the natural world through design approaches so
sympathetic and well integrated with its site, that buildings, furnishings, and
surroundings become part of a unified, interrelated composition.

A well-known example of organic architecture is Fallingwater, the residence Frank Lloyd Wright
designed for the Kaufmann family in rural Pennsylvania. Wright had many choices to locate a
home on this large site, but chose to place the home directly over the waterfall and creek creating
a close, yet noisy dialog with the rushing water and the steep site. The horizontal striations of
stone masonry with daring cantilevers of colored beige concrete blend with native rock
outcroppings and the wooded environment.

e



Another Example: Precedent-Based Design
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Source: http://cookiemagik.deviantart.com/art/Train-station-207266944



Principled Design
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Another Principled Design

Source: By Martin Gémez Tagle - Lisbon, Portugal, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13764903 212
Source: http://www.arcspace.com/exhibitions/unsorted/santiago-calatrava/



Pr1nc1ple Apphed to Another Structure

m{ygg,lﬁ,ag@@mger transportatlon hub -new- york-photographs-hufton-crow/


https://commons.wikimedia.org/w/index.php?curid=31493356

The Overarching Principle

Zoomorphic architecture

From Wikipedia, the free encyclopedia

Zoomorphic architecture is the practice of using animal
forms as the inspirational basis and blueprint for architectural
design. "While animal forms have always played a role adding
some of the deepest layers of meaning in architecture, it is
now becoming evident that a new strand of biomorphism is
emerging where the meaning derives not from any specific
representation but from a more general allusion to biological
processes."l!]

Some well-known examples of Zoomorphic architecture can be found in the TWA
Flight Center building in New York City, by Eero Saarinen, or the Milwaukee Art

Museum by Santiago Calatrava, both inspired by the form of a bird’s wings.[®!
214




Overarching Principle for Computing?

Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg




Concluding Remarks

= [t is time to design principled system architectures to solve
the memory problem

= Design complete systems to be balanced, high-performance,
and energy-efficient, i.e., data-centric (or memory-centric)

= Enable computation capability inside and close to memory

= This can

o Lead to orders-of-magnitude improvements
o Enable new applications & computing platforms

o Enable better understanding of nature

D EER

e 1.



The Future of Processing in Memory 1s Bright

= Regardless of challenges
o in underlying technology and overlying problems/requirements

Problem
Can enable: Yet, we have to
- Orders of magnitude Program/Language - Think across the stack
improvements System Software

SW/HW Interface - Design enabling systems

- New applications and
computing systems
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If In Doubt, See Other Doubtful Technologies

A very “doubtful” emerging technology
o for at least two decades

INVITED

§H'H+ S Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error
characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Cai, SaucaTta GHOsE, EricH F. HARATSCH, YIXIN Luo, AND ONUR MUTLU

SAFARI hitps://arxiviore /pdf/1706,08642
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https://arxiv.org/pdf/1706.08642

For Some Open Problems, See

Enabling the Adoption of Processing-in-Memory:
Challenges, Mechanisms, Future Research Directions

SAUGATA GHOSE, KEVIN HSIEH, AMIRALI BOROUMAND,
RACHATA AUSAVARUNGNIRUN

Carnegie Mellon University

ONUR MUTLU
ETH Ziirich and Carnegie Mellon University

https://arxiv.ora/pdf/1802,00320,pdf
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For More Open Problems, See (I)

= Onur Mutlu and Lavanya Subramanian,
"R rch Problems an nities in Memory

Systems™
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2014/2015.

Research Problems and Opportunities in Memory Systéms

Onur Mutlu', Lavanya Subramanian'


https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf
http://superfri.org/superfri

For More Open Problems, See (I1)

=  Onur Mutluy,
~The RowHammer Problem and Other Issues We Mav Face as
Memorv Becomes Denser”

Invited Paper in Proceedings of the Desjian. Automation. and Jestin
Lurope Conference (DATE), Lausanne, Switzerland, March 2017.

[Slides (ppR) (pdf)]

The RowHammer Problem
and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu
ETH Ziirich
onur.mutlu@inf.ethz.ch
https://people.inf.ethz.ch/omutlu

DS, //pDeopie. INLen L/ OLNUUIU/ DUD/ TOWHATIHCET -aLCU=-OLHEr =T TET O V- 1CS _(IdlC D)


https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf

For More Open Problems, See (I11)

= Onur Mutlu,

"Memoryv Scaling: A Systems Architecture

Technical talk at MemCon 2015 (MEMCON), Santa Clara,

CA, August 2013. [Slides (pptx) (pdf)]
[Video] [Coverade on StorageSearch]

Memory Scaling: A Systems Architecture Perspective

Onur Mutlu
Carnegie Mellon University
onur@cmu.edu
http://users.ece.cmu.edu/~omutlu/

i)


https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com/
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://www.storagesearch.com/ram-new-thinking.html

For More Open Problems, See (IV)

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and
Onur Mutly,

"Error Characterization, Mitigation, and Recovery in
Flash Memory Based Solid State Drives"

to appear in Lroceedings of the JELF, 2017.

Error Characterization, Mitigation, and Recovery
in Flash Memory Based Solid State Drives

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu
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Related Videos and Course Materials (I)

" Videos (2015,.2014,.2013)
" Materials (2015, 2014, 2013)

= Graduate Computer Architecture Course Lecture
Videos (2017, 2015, 2013)

= Graduate Computer Architecture Course
Materials (2017, 2015, 2013)

. Parallel C tor Architecture C Material
(Lecture Videos)

<agaArRt
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https://www.youtube.com/playlist?list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/watch?v=zLP_X4wyHbY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgFdD9x7RsjQC4a8KQjmUkQ
https://www.youtube.com/watch?v=BJ87rZCGWU0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s14/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
http://www.ece.cmu.edu/~ece740/f15/doku.php?id=schedule
http://www.ece.cmu.edu/~ece740/f13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece742/f12/doku.php?id=lectures
https://www.youtube.com/playlist?feature=edit_ok&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4

Related Videos and Course Materials (1I)

) | iital Circus | C Architedt
.cg.u:s.e.Le.cn_m_eMid_sgs_(ZQlB,.zn:lJ)

= Freshman Digital Circuits and Computer Architecture
Course Materials (2018)

= Memory Systems Short Course Materials
(Lecture Video on Main Memory and DRAM Basics)

<agpa: -
SAFARI


https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi_QedyPWtRmFUJ2F8DdYP7l
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
https://www.youtube.com/watch?v=ZLCy3pG7Rc0

|Processing Data Where It Makes Sense

in Modern Computing Systems:

Enabling In-Memory Computation I

Onur Mutlu
omutlu@amail,.com
https://people.inf.ethz.ch/omutiu
24 June 2018

ﬁ Design Automation Summer School @ DAC 2018
ETHzurich

Systems @ ETH zuric Cal'negie MellOIl
SAFARI
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https://people.inf.ethz.ch/omutlu

Some Open Source Tools

= Rowhammer
o hitpsi//github.com/CMU-SAFAR]/rowhammer
= Ramulator — Fast and Extensible DRAM Simulator
o https://github.com/CMU-SAFARI/ramulator
= MemSim
o hitpsi//aithub.com/CMU-OAFARL/memSim
= NOCulator
o httpsi//github.com/CMU-SAEART/NOCuIator
= DRAM Error Model
o httpl//www.ece.cmu.edu/~safari/tools/memerr/index.html

= Other open-source software from my group
o hitpsi//github.com/CMU-SAEARI/

o http//www.ece.cmu.edu/~safari/tools. html
%
SAFARI /


https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/memsim
https://github.com/CMU-SAFARI/NOCulator
http://www.ece.cmu.edu/~safari/tools/memerr/index.html
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html

Referenced Papers

= All are available at

<agpa: A aa--—-—§ — — — s s
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http://users.ece.cmu.edu/~omutlu/projects.htm
http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en
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Communications In Tesseract (I)

for (v: graph.vertices) {
for (w: v.successors) {
“w.next_rank += weight * v.rank;

}
}

SAFARI 232



Communications In Tesseract (I1I)

for (v: graph.vertices) {
fpr (w: v.successors) {
“w.next_rank += weight * v.rank;

Vault #1 Vault #2
________ ——
v &w
/l ‘
T \\ \
\\
“““““ — -
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Communications In Tesseract (I1I)

for (v: graph.vertices) {
for (w: v.successors) { Non-blocking Remote Function Call

put(w.id, function() { w.next_rank += weight * v.rank; });

J Can be delayed
} until the nearest barrier
barrier();
Vault #1 Vault #2
put 1
v > &w

~a
—~
-~
\‘
o)

Oy o
—— —

SAFARI 234



Remote Function Call (Non-Blocking)

1. Send function address & args to the remote core
2. Store the incoming message to the message queue

3. Flush the message queue when it is full or a
synchronization barrier is reached

Local
Core

&func, &w, value

» NI »

Remote
Core

MQ

.

put(w.id, function() { w.next_rank += value; })

SAFARI
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Etfect of Bandwidth & Programming Model

[} HMC-MC Bandwidth (640GB/s)[L] Tesseract Bandwidth (8TB/s)
7 6.5x

Ul

Programming Model

3.0x

Speedup

2.3X

andwidth

N W B

HMC-MC HMC-MC + Teseract + Tes®eract
Pl M BW Conventiona| BW (No Prefetching)
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Main Memory [Latency LLags Behind

-«Camdty ®R-Bandwidth @-Latency 128x
8
= 100
5
= 20X
>
o
a 10
£
2
> 1.3x
o

| e e e O O 0 __8_9
1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

Memory latency remains almost constant
SAFARI



A Closer L.ook ...

50 @ Activation » Precharge A Restoration

+21% -
-27%
30

-17% 0
20 — WL i

10 - = 2 =
1999 2003 2006 2008 2011 2013 2014 2015
Year

Figure 1: DRAM latency trends over time (20, 21, 23, 51].

Latency (ns)

Chang+, “Undse fhas
Wmmmmﬂm SIGMETRICS 2016
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https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf

DRAM Latency Is Critical for Performance

In-memory Databases Graph/Tree Processing

[Mao+, EuroSys’|2; [Xu+, ISWC’12; Umuroglu+, FPL' 1 5]
Clapp+ (Intel), ISWC’[5]

_y N
Spark

In-Memory Data Analytics Datacenter Workloads

[Clappt (Intel), ISWC’15; [Kanev+ (Google), ISCA’I5]
Awan+, BDCloud’| 5]

SAFARI



DRAM Latency Is Critical for Performance

In-memory Databases Graph/Tree Processing

Long memory latency — performance bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads

[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’I5]
Awan+, BDCloud’| 5]

SAFARI



Why the Long Latency?

= Design of DRAM uArchitecture

o Goal: Maximize capacity/area, not minimize latency

= "'One size fits all” approach to latency specification
o Same latency parameters for all temperatures

o Same latency parameters for all DRAM chips (e.g., rows)
o Same latency parameters for all parts of a DRAM chip

o Same latency parameters for all supply voltage levels
o Same latency parameters for all application data

SAFARI 242



Latency Variation in Memory Chips

Heterogeneous manufacturing & operating conditions —
latency variation in timing parameters

DRAM A DRAM B DRAM C

DRAM Latency

Slow cells

Low High

SAFARI 243



DRAM Characterization Infrastructure

Kim+, “Flipping Bits in Memory Without Accessing Them: An 244
SAFARI Experimental Study of DRAM Disturbance Errors,'9 ISCA 2014.



DRAM Characterization Infrastructure

= Hasan Hassan et al., SoftMC: A
Source Infrastructure for
bling E - tal DRAM
Studies, HPCA 2017.

= Flexible
= Easy to Use (C++ API)

= Open-source
github.comy/CMU-SAFARIL/SoftMC

SAFARI

Host
Machine

{ -r,emp' >
NControllen
TR e

o
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https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

SoftMC: Open Source DRAM Infrastructure

= hitps://github.com/CMU-SAFARI/SOFIMC

SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies

1,2,3 3 4,3

Samira Khan Saugata Ghose® Kevin Chang®
63 Oguz Ergin? Onur Mutlu!»?

Hasan Hassan Nandita Vijaykumar
Gennady Pekhimenko®® Donghyuk Lee

YETH Ziirich ~ TOBB University of Economics & Technology  *Carnegie Mellon University
4 University of Virginia  °Microsoft Research  *NVIDIA Research
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https://github.com/CMU-SAFARI/SoftMC

Tackling the Fixed Latency Mindset

Reliable operation latency is actually very heterogeneous
o Across temperatures, chips, parts of a chip, voltage levels, ...

Idea: Dynamically find out and use the lowest latency one
can reliably access a memory location with
o Adaptive-Latency DRAM [HPCA 2015]

o Flexible-Latency DRAM [SIGMETRICS 2016]
o Design-Induced Variation-Aware DRAM [SIGMETRICS 2017]

- Voltron [SIGMETRICS 2017]

D EEn

We would like to find sources of latency heterogeneity and
exploit them to minimize latency

SAFARI el



Adaptive-Latency DRAM

* Key idea
— Optimize DRAM timing parameters online

* Jwo components
— DRAM manufacturer provides multiple sets of

at different
temperatures tor each DIMM

— System monitors& uses
appropriate DRAM Timing parameters

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 248

SAFARI
2015.



Latency Reduction Summary of 115 DIMMs

e [atency reduction for read & write (55°C)
— Read Latency: 32.7%

— Write Latency: 55.1%

* Latency reduction for each timing
parameter (55°C)
—Sensing: 17.3%
— Restore: 37.3% (read), 54.8% (write)
— Precharge: 35.2%

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA
2015.



AL-DRAM: Real System Evaluation

System
— CPU: AMD 4386 ( 8 Cores, 3.1GHz, S8MB LLC)

D18F2x200 dct[0] mp[1:0] DDR3 DRAM Timing 0
Reset: 0F05_0505h. See 2.9.3 [DCT Configuration Registers].

Bits

Description

31:30

Reserved.

29:24

Tras: row active strobe. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Specifies
the minimum time in memory clock cycles from an activate command to a precharge command. both

to the same chip select bank.
Bits Description
07h-00h Reserved
2Ah-08h <Tras> clocks
3Fh-2Bh Reserved

Reserved.

Trp: row precharge time. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Speci-
fies the minimum time in memory clock cycles from a precharge command to an activate command or
auto refresh command. both to the same bank.




AL-DRAM: Single-Core Evaluation

4 Average
S 25% m— o e
£ 509 m Single Core mprovemen
g 0 IS IS IS S S S S B E— S e E—
e 15% I S N I I I ] L}
Q 0
£ = e e > )
Q 0 149
§ O% 4 70
> O O > - %, Q Q O
3 3 2 = 2 5 E g 8 g Z 2 O
< o - T & © 89 w cC c X
Q U3 £ £ =
- LA
e ™M
- —
qV)

AL-DRAM improves single-core performance

on a real system
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AL-DRAM: Multi-Core Evaluation

Average

Improvement

I ﬁO%_ |
10.4%

Performance Improvement

2.900
(Up]

x ot 2 S E gz & | g9
_E _Q Q: ._.2
@) b © S oo Cc C
z 3 g 9
VI R

-

@)

-

all-35-workload

AL-DRAM provides higher performance on

multi-programmed & multi-threaded workloads
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Reducing Latency Also Reduces Energy

= AL-DRAM reduces DRAM power consumption by 5.8%

= Major reason: reduction in row activation time

SAFARI 253



More on Adaptive-Latency DRAM

Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,
Vivek Seshadri, Kevin Chang, and Onur Mutlu,

~Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case”

Proceedings of the 21st International Svmposium on High-
Leformance Computer Architecture (HPCA), Bay Area, CA,

February 2015.
[Slides (pptx) (pdf)] [Eull data sets]

Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case

Donghyuk Lee  Yoongu Kim  Gennady Pekhimenko
Samira Khan  Vivek Seshadri ~ Kevin Chang  Onur Mutlu
Carnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pdf
http://www.ece.cmu.edu/~safari/tools/aldram-hpca2015-fulldata.html

Heterogeneous Latency within A Chip
- |\

0o |2 19,5042/ 7°
9 17.6
g 115 13.30
- m Baseline (DDR3)
£ | m FLY-DRAM D |)
= 105 u FLY-DRAM (D2)
8 m FLY-DRAM D3)
[ m UpperBound
£ 095
®)
Z 09
40 Workloads
Chang+, " : i jation i |

lon",” SIGMETRICS 2016.
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https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
https://people.inf.ethz.ch/omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf

Analysis of Latency Variation in DRAM Chips

= Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh,
Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and

Onur Mutluy,

Proceedings of the ACM Inlernational Conference on [Measurenment and

(SIGMETRICS), Antibes Juan-Les-Pins,
France, June 2016.

[Slides (pptx) (pdf)]
[Source Code]

Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization

Kevin K. Chang' Abhijith Kashyap' Hasan Hassan'*?
Saugata Ghose' Kevin Hsieh' Donghyuk Lee' Tianshi Li'*
Gennady Pekhimenko' Samira Khan* Onur Mutlu®”

'Carnegie Mellon University *TOBB ETU “Peking University *University of Virginia *ETH Zrich
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https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
http://www.sigmetrics.org/sigmetrics2016/
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pdf
https://github.com/CMU-SAFARI/DRAM-Latency-Variation-Study

What Is Design-Induced Variation?
fast slowl

across column inherently slow

dista nce fro.m
wordline driver

dCross row

distance from
sense amplifier

SISALIP SUI|PJOM

1Se)

Inherently fast

sense amplifiers
Systematic variation in cell access times

caused by the physical organization of DRAM
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DIVA Online Profiling

Design-Induced-Variation-Aware

inherently slow

J9AIIP SUI|PIOM

sense amplifier

Profile only slow regions to determine min. latency
- Dynamic & low cost latency optimization

SAFARI 258



DIVA Online Profiling

Design-Induced-Variation-Aware

slow cells inherently slow
process design-induced
variation variation

localized error

$

online profiling

random error

$

error-correcting
code

sense amplifier

Combine error-correcting codes & online profiling
-2 Reliably reduce DRAM latency
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DIVA-DRAM Reduces Latency

S50% pem o= o= s s - - - = 50% e o - o - - - o= =
39.4%3g 79, 11-3%40.3%

il

40% -_— - 35.1%‘34.6%‘36.6%35_8%' 40%

30%

20%

10%

Latency Reduction

0%
55°C 85°C|55°C 85°C55°C 85°C

+ Shuffling + Shuffling

DIVA-DRAM reduces latency more aggressively

and uses ECC to correct random slow cells
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Design-Induced Latency Vartation in DRAM

= Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose,
Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and

Proceedings of the ACM Inlernational Conference on Measurenment and
(SIGMETRICS), Urbana-Champaign, IL,

USA, June 2017.

Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms

Donghyuk Lee, NVIDIA and Carnegie Mellon University

Samira Khan, University of Virginia

Lavanya Subramanian, Saugata Ghose, Rachata Ausavarungnirun, Carnegie Mellon University
Gennady Pekhimenko, Vivek Seshadri, Microsoft Research

Onur Mutlu, ETH Ziirich and Carnegie Mellon University

SAFARI
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https://people.inf.ethz.ch/omutlu/pub/DIVA-low-latency-DRAM_sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/

Voltron: Exploiting the
Voltage-Latency-Reliability
Relationshi




Executive Summary

* DRAM (memory) power is significant in today’s systems
— Existing low-voltage DRAM reduces voltage conservatively

* Gaal: Understand and exploit the reliability and latency behavior of
real DRAM chips under aggressive reduced-voltage operation

< . o) ons.

— Huge voltage margin -- Errors occur beyond some voltage

— Errors exhibit spatial locality
— Higher operation latency mitigates voltage-induced errors

Yoltron: A new DRAM energy reduction mechanism
— Reduce DRAM voltage without introducing errors
— Use a regression model to select voltage that does not degrade
performance beyond a chosen target = 7.3% system energy reduction

263
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Analysis of Latency-Voltage in DRAM Chips

= Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan

Hassan andQnuLl\_/lu;tu,l

Proceedings of the ACM [nternatjonal Conference on Measyrement and

Mogeling of Computer Svstems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Understanding Reduced-Voltage Operation in Modern DRAM Chips:
Characterization, Analysis, and Mechanisms

Kevin K. Chang'  Abdullah Giray Yaghk¢i' Saugata Ghose'  Aditya Agrawal! Niladrish Chatterjeel
Abhijith KashyapJf Donghyuk Lee! Mike O’Connor** Hasan Hassan® Onur Mutlu®’

TCarnegie Mellon University INVIDIA *The University of Texas at Austin SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/

And, What If ...

= ... we can sacrifice reliability of some data to access it with
even lower latency?
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The DRAM Latency PUF:

Quickly Evaluating Physical Unclonable Functions

by Exploiting the Latency-Reliability Tradeoft
in Modern Commodity DRAM Devices

Jeremie S. Kim Minesh Patel

Hasan Hassan Onur Mutlu

mgs SAFARI

Systems ® ETH ziio»

ETH i Carnegie Mellon




Motivation

* A PUF is function that generates a signature
unique to a given device

* Used in a Challenge-Response Protocol

- Each device generates a unique PUF response
depending the inputs

- A trusted server authenticates a device if it
generates the expected PUF response

SAFARI 267/8



DRAM Latency Characterization of
223 LPDDR4 DRAM Devices

* Latency failures come from accessing
DRAM with reduced timing parameters.

* Key Observations:

1. A cell's latency failure probability is
determined by random process variation

2. Latency failure patterns are repeatable and
unique to a device

SAFARI 268/8



DRAM Latency PUF Key Idea

High % chance to fail Low % chance to fail
with reduced trcp with reduced trcp

o~
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DRAM Accesses and Failures

wordline
Vdd access -
transistor gz 4’
Vmin /
) Ready to Access
oo
o] Voltage Level
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- 3 duting manufacturing
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DRAM Accesses and Failures

Vdd
Vmin
) Ready to Access I
o0 I
o] Voltage Level i
S weaker cells have a ,
E higher probability td fail
o— [
= I
(aa) I
’ :
/’-
0.5 Vud I

Time
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The DRAM Latency PUF Evaluation

* We generate PUF responses using latency
errors in a region of DRAM

* The latency error patterns satisfy PUF
requirements

* The DRAM Latency PUF generates PUF
responses in 88.2ms

SAFARI 272/8



Results

Manufacturer A
Manufacturer B

104}

8KiB Segment Size DRAM Retention PUF ||

_ | Manufacturer C
— 103}
2 | DRAM Latency PUF
E e Segment P All Manufacturers
c 102? IR
S | SREEE - AEEEL . 44 ¥
f_g 101} 064MiB Segment Size T
© [ ) STV )
Lﬁ : * W """ S SRLITTY L ST L Ao @ > B A
100? ,,,,,,,,,,,,,, SRR O STy ORI
| 8KiB Segment Size
10-1? | g 1Z \ 1
56 58 60 62 o4 00 8 0

Temperature (°C)

* We are orders of magnitude faster than

prior DRAM PUFs!
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The DRAM Latency PUF:

Quickly Evaluating Physical Unclonable Functions
by Exploiting the Latency-Reliability Tradeoff
in Modern Commodity DRAM Devices

leremie S. Kimm Minesh Patel

Hasan Hassan Onur Mutlu

HPCA 2018

Systems ® ETH QR Code for the paper f SA FA R '
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DRAM Latency PUFs

= Jeremie S. Kim, Minesh Patel, Hasan Hassan, and_Qnur Mutlu,
Wﬁhﬂm&mmme
Eunctions by Exploiting the Latency-Reliability Tradeoff in

Modern DRAM Devijces”
Proceedings of the 24{1 Jnlernational Svmpasium on High-Peronmance
Computer Architecture (HPCA), Vlienna, Austria, February 2018.
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What Causes the Long Latency?
DRAM Chip
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Why is the Subarray So Slow?

Subarray Cell
cell ,
" w wordline
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sense amplifier large sense amplifier

* Long bitline
— Amortizes sense amplifier cost = Small area

— Large bitline capacitance = High latency & poweg78



Trade-Off: Area (Die Size) vs. Latency
Long Bitline Short Bitline
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Trade-Off: Area (Die Size) vs. Latency
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Approximating the Best of Both Worlds

Long Bitline J Our Proposal | Short Bitline
Small Area :m_rge(
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tline = Fast
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Approximating the Best of Both Worlds

Long Bitlir Tiered-Latency DRAM \ort Bitline
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bitline
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Commodity DRAM vs. TL-DRAM {Hpca 2013]
 DRAM Latency (tRC) - DRAM Power
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e DRAM Area Overhead

~3%: mainly due to the isolation transistors -



Trade-Off: Area (Die-Area) vs. Latency
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Leveraging Tiered-Latency DRAM

 TL-DRAM is a substrate that can be leveraged by
the hardware and/or software

* Many potential uses

. Use near segment as hardware-managed Inclusive
cache to far segment

2. Use near segment as hardware-managed exclusive

cache to far segment
3. Profile-based page mapping by operating system

285
Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.



Performance & Power Consumption
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Using near segment as a cache improves
performance and reduces power consumption

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
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Challenge and Opportunity for Future

Fundamentally
Low Latency
Computing Architectures
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| Ramulator: A Fast and Extensible

DRAM Simulator

[IEEE Comp Arch Letters’15] i
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Ramulator Motivation

= DRAM and Memory Controller landscape is changing
= Many new and upcoming standards

= Many new controller designs
= A fast and easy-to-extend simulator is very much needed

Segment DRAM Standards & Architectures

Commodity DDR3 (2007) [14]: DDR4 (2012) [ 5]

Low-Power LPDDR3 (2012) [ 7]: LPDDR4 (2014) [ 7]

Graphics GDDRS (2009) [15]

Performance eDRAM [“=], [7]: RLDRAMS3 (2011) [2Y]

WIO (2011) [16]): WIO2 (2014) [21]: MCDRAM (2015) [1°):

3D-Stacked  ypM (2013) [19]; HMCL.0 (2013) [10]; HMCL.1 (2014) [11]
SBA/SSA (2010) [35]; Staged Reads (2012) [£]: RAIDR (2012) [27];
Academic SALP (2012) [24]: TL-DRAM (2013) [26]; RowClone (2013) [57];

Half-DRAM (2014) [*“]: Row-Buffer Decoupling (2014) [ °]:
SARP (2014) [¢]: AL-DRAM (2015) [25]

SAT Table 1. Landscape of DRAM-based memory



Ramulator

= Provides out-of-the box support for many DRAM standards:

o DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

= ~2,5X faster than fastest open-source simulator
= Modular and extensible to different standards

Simulator Cycles ( 10%) Runtime (sec.) Reg/sec ( 10%) Memory
(clang -03) Random Stream Random  Stream Random Stream (MB)

Ramulator 652 411 752 249 133 402 2.1
DRAMSim2 645 413 2,030 876 49 114 1.2
USIMM 661 409 1,880 750 53 133 4.5
DrSim 647 406 18,109 12,984 6 8 1.6
NVMain 666 413 6,881 5,023 15 20  4,230.0

Table 3. Comparison of five simulators using two traces

-csreai o
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Case Study: Comparison of DRAM Standards

IPC distribution
(Normalized to DDR3)

SAFAara

Rate Timing Data-Bus BW
Standard  \rpi) (CL-RCD-RP) (Widthx Chan) R@m-Per-Chan  cp)
DDR3 1,600 11-11-11 64-bit x 1 1 11.9
DDR4 2,400 16-16-16 64-bit x 1 1 17.9
SALPt 1,600 11-11-11 64-bit x 1 1 11.9
LPDDR3 1,600 12-15-15 64-bit x 1 1 11.9
LPDDR4 2,400  22-22-22 32-bit x 2* 1 17.9
GDDRS [12] 6,000 18-18-18 64-bit x 1 1 44.7
HBM 1,000 7-7-7 128-bit x 8* 1 119.2
WIO 266 7-7-7 128-bit x 4* 1 15.9
WI02 1,066  9-10-10 128-bit x 8* 1 127.2
50 114 119 088 092 109 127 084 112
2 8 Across 22
' workloads,
I I simple CPU
10}- &2 LY e - G D - .- -EB--
E f I model
DDR4 SALP LPDDR3 LPDDR4 GDDRS HBM WIO WI02
Figure 2. Performance comparison of DRAM standards —T



Ramulator Paper and Source Code

= Yoongu Kim, Weikun Yang, and_Qnour Mutlu,
"Ramulator: A Fast an& Extensible DRAM Simulator™

JEEE Computer Architecture Letters (CAL), March 2015.

[Source Code]

= Source code is released under the liberal MI
o pttps://github.com/CMU-SAFARI/ramulator

License

<aecaet
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http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

| A Deeper Dive into
DRAM Reliability Issues I



There are Two Other Solution Directions

New Technologies: Replace or (more likely) augment DRAM
with a different technology

Problem
o Non-volatile memories —
Program/Language
Embracing Un-reliability: System Software

SW/HW Interface
Micro-architecture

Design memories with different reliability

and store data intelligently across them Y

Electrons

il

Fundamental solutions to security

require co-design across the hierarchy



Exploiting Memory Error Tolerance
with Hybrid Memory Systems

Vulnerable
data

Reliable memory

On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %

Heterogeneous-Reliability Memory [psn 2014]
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More on Heterogeneous-Reliability Memory

= Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman
Kansal, Jie L|u Badrlddme Khe55|b Kushagra Vaid, and Onur Mutlu,

D nter via H r n -Reliability Memorv"

Proceedings of the 2411 Agnyal JEEEALIR Jnlernalongl Conference on
Lependaple Svstems and Networks (DSN), Atlanta, GA, June 2014. [oummary]
[2lides (PR (2dD) ] [Covarage on ZDNCY ]

Characterizing Application Memory Error Vulnerability to
Optimize Datacenter Cost via Heterogeneous-Reliability Memory

Yixin Luo  Sriram Govindan® Bikash Sharma® Mark Santaniello® Justin Meza
Aman Kansal® Jie Liu® Badriddine Khessib® Kushagra Vaid®  Onur Mutlu

Carnegie Mellon University, yixinluo@cs.cmu.edu, {meza, onur}@cmu.edu
"Microsoft Corporation, {srgovin, bsharma, marksan, kansal, jie.liu, bkhessib, kvaid}@ microsoft.com
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http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://2014.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory_dsn14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
http://www.zdnet.com/how-good-does-memory-need-to-be-7000031853/

Root Causes of Disturbance Errors

* Cause 1: Electromagnetic coupling

— Toggling the wordline voltage briefly increases the
voltage of adjacent wordlines

— Slightly opens adjacent rows = Charge leakage
e Cause 2: Conductive bridges
* Cause 3: Hot-carrier injection

Confirmed by at least one manufacturer
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RowHammer Characterization Results

1. Most Modules Are at Risk
2. Errors vs. Vintage

3. Error = Charge Loss
4. Adjacency: Aggressor & Victim

5. Se

6. Ot
/. So

nsitivity Studies
ner Results in Paper

ution Space

ipping Bits in Memo Nithout Accessineg Them: An
Risturbance Errors, (Kim et al., ISCA 2014)


http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

4. Adjacency: Aggressor & Victim

Bl Worst A Bl WorstB B WorstC

8% 10°

1 R ] RO Rl LT
€
R e R L I atl] () bl () R LRl R L LD
&

D IDP o omm=remme sma s cma e B < T

Row-Address Difference (Victim — Aggressor)

Note: For three modules with the most errors (only first bank)

Most aggressors & victims are adjacent
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@ Access Interval (Aggressor)

o Worst A o Worst B ¢ Worst C

107 . ‘ ; _ ‘ , ‘ ‘
100 R M()re Frequent- > -L:e-s-s- Erequent- :

) ' | '
' ) | ! |

1 |

| ' ' i ' i '
' : ) ' h s i

|

S T Ve oo e e o N e - oo A .
' | ' ' | ) '
.
T T

N

|
0O 50 100 150 200 250 300 350 400 450 500
Access-Interval to Aggressor (ns)

Note: For three modules with the most errors (only first bank)

Less frequent accesses = Fewer errors
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@ Refresh Interval

o Worst A o Worst B o Worst C

More Frequgnt <—— Less Frequ/tent :

INTKN\TII\IIIYIIIYI

32 48 64 80 96 112 128
Refresh-Interval (ms)
Note: Using three modules with the most errors (only first bank)

More frequent refreshes = Fewer errors
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© Data Pattern

Solid RowStripe

111111 111111
111111 000000
111111 111111
111111

V00000
111111
000000
111111

Errors affected by data stored in other cells
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6. Other Results (in Paper)

 Victim Cells # Weak Cells (i.e., leaky cells)
— Almost no overlap between them

* Errors not strongly affected by temperature

— Default temperature: 50°C
— At 30°C and 70°C, number of errors changes <15%

* Errors are repeatable
— Across ten iterations of testing, >70% of victim cells
had errors in every iteration
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6. Other Results (in Paper) cont’d

* As many as 4 errors per cache-line
— Simple ECC (e.g., SECDED) cannot prevent all errors

* Number of cells & rows affected by aggressor

— Victims cells per aggressor: <110
— Victims rows per aggressor: <9

* Cells affected by two aggressors on either side
— Very small fraction of victim cells (<100) have an
error when either one of the aggressors is toggled
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Some Potential Solutions

Cost
Power, Performance
Cost, Power

Cost, Power, Complexity



Naive Solutions

€@ Throttle accesses to same row

— Limit access-interval: =500ns
— Limit number of accesses: <128K (=64ms/500ns)

& Refresh more frequently

— Shorten refresh-interval by ~7x

Both naive solutions introduce significant
overhead in performance and power
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Apple’s Patch for RowHammer
= hitps://support.apple.com/en-gb/HT204934

Available for: OS X Mountain Lion v10.8.5, OS X Mavericks v10.9.5
Impact: A malicious application may induce memory corruption to escalate privileges

Description: A disturbance error, also known as Rowhammer, exists with some DDR3 RAM that could

have led to memory corruption]This issue was mitigated by increasing memory refresh rates.

CVE-ID

CVE-2015-3693 : Mark Seaborn and Thomas Dullien of Google, working from original research by
Yoongu Kim et al (2014)

HP and Lenovo released similar patches



https://support.apple.com/en-gb/HT204934

Our Solution to RowHammer

* PARA: Probabilistic Adjacent Row Activation

* Key Idea

— After closing a row, we activate (i.e., refresh) one of
its neighbors with a low probability: p = 0.005

e Reliability Guarantee
— When p=0.005, errors in one year: 9.4x1014

— By adjusting the value of p, we can vary the strength
of protection against errors
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Advantages of PARA

* PARA refreshes rows infrequently

— Low power
— Low performance-overhead
* Average slowdown: 0.20% (for 29 benchmarks)

 Maximum slowdown: 0.75%

e PARA is stateless

— Low cost
— Low complexity

* PARA is an effective and low-overhead solution
to prevent disturbance errors
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Requirements for PARA

* |f implemented in DRAM chip
— Enough slack in timing parameters

- Plenty of slack today:
Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common Case,” HPCA
2015.

* Chang et al.,, “Understanding Latency Variation in Modern DRAM Chips,” SIGMETRICS 2016.

* Lee et al., “Design-induced Latency Variation in Modern DRAM Chips,” SIGMETRICS 2017.

* Chang et al., “Understanding Reduced-Voltage Operation in Modern DRAM Devices,”
SIGMETRICS 2017.

* |f implemented in memory controller
— Better coordination between memory controller and

DRAM

— Memory controller should know which rows are

hysically adjacent
pny y ad| .



More on RowHammer Analysis

= Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee Chrls Wllkerson Konrad La| and Onur Mutlu

Experimental Study of DRAM Disturbance Errors
Proceedings of the 4.1sl Intenational Svmposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Yoongu Kim' Ross Daly*  Jeremie Kim' Chris Fallin®  Ji Hye Lee'
Donghyuk Lee' Chris Wilkerson? Konrad Lai  Onur Mutlu’

'Carnegie Mellon University ’Intel Labs
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https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer

Retrospective on RowHammer & Future

=  Onur Mutluy,
~1he RowHammer Problem and Other Issues We May Face a
Memory Becomes Denser
Invited Paper in Proceedings of the Desjian. Automation. and Jestin
Lurope Conference (DATE), Lausanne, Switzerland, March 2017.

[Slides (ppR) (pdf)]

The RowHammer Problem
and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu
ETH Ziirich
onur.mutlu@inf.ethz.ch
https://people.inf.ethz.ch/omutlu

SAFARI [QUDs;


https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf

Challenge and Opportunity for Future

Fundamentally
Secure, Reliable, Safe
Computing Architectures




Future of Main Memory

= DRAM is becoming less reliable - more vulnerable

SAFARI 314



Large-Scale Failure Analysis of DRAM Chips

= Analysis and modeling of memory errors found in all of
Facebook's server fleet

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutly,
"Revisiting Memory Errors in Large-Scale Production Data
Centers: Analysis and Modeling of New Trends from the Field"
Proceea’/ngs of the

Zath Annual JEEE/IFIP International Conference on
Depengable Svstems and Networks (DSN), Rio de Janeiro, Brazil, June

2015.
[Slides (pptx) (odf) ] [DRAM Error Model]

Revisiting Memory Errors in Large-Scale Production Data Centers:
Analysis and Modeling of New Trends from the Field

Justin Meza  Qiang Wu*  Sanjeev Kumar®  Onur Mutlu

Carnegie Mellon University * Facebook, Inc.
SAFARI o


http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://2015.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pdf
https://www.ece.cmu.edu/~safari/tools/memerr/index.html

DRAM Reliability Reducing
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Aside: SSD Error Analysis in the Field

= First large-scale field study of flash memory errors

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu

Proceedings of the ACM International Conference on
Measurement and Modeling of Compuyter Svstems

(SIGMETRICS), Portland, OR, June 2015.

[Slides (PREX) (Ddf)] MMZDN&H
A Large-Scale Study of Flash Memory Failures in the Field
Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu
Carnegie Mellon University Facebook, Inc. Facebook, Inc. Carnegie Mellon University
meza@cmu.edu qwu@fb.com skumar@fb.com onur@cmu.edu
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15.pdf
http://www.sigmetrics.org/sigmetrics2015/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pdf
http://www.zdnet.com/article/facebooks-ssd-experience/

Future ot Main Memory

DRAM is becoming less reliable - more vulnerable

Due to difficulties in DRAM scaling, other problems may
also appear (or they may be going unnoticed)

Some errors may already be slipping into the field
o Read disturb errors (Rowhammer)

o | Retention errors

o Read errors, write errors

a ...

These errors can also pose security vulnerabilities
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DRAM Data Retention Time Failures

= Determining the data retention time of a cell/row is getting
more difficult

= Retention failures may already be slipping into the field

SAFARI 319



Analysis of Retention Failures [1SCA’13]

= Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris W|Ikerson anclmLMyﬂu

Proceed/ngs of the 40th International Svmposiym on computer Architectyre
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

An Experimental Study of Data Retention Behavior in
Modern DRAM Devices:
Implications for Retention Time Profiling Mechanisms

Jamie Liu Ben Jaiyen Yoongu Kim
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
5000 Forbes Ave. 5000 Forbes Ave. 5000 Forbes Ave.
Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213

jamiel@alumni.cmu.edu bjaiyen@alumni.cmu.edu yoonguk@ece.cmu.edu
Chris Wilkerson Onur Mutlu

Intel Corporation Carnegie Mellon University
2200 Mission College Blvd. 5000 Forbes Ave.
Santa Clara, CA 95054 Pittsburgh, PA 15213
chris.wilkerson@intel.com onur@cmu edu


http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf

Two Challenges to Retention Time Profiling

= Data Pattern Dependence (DPD) of retention time

= Variable Retention Time (VRT) phenomenon
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Two Challenges to Retention Time Profiling

= Challenge 1: Data Pattern Dependence (DPD)

o Retention time of a DRAM cell depends on its value and the
values of cells nearby it

o When a row is activated, all bitlines are perturbed simultaneously
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Data Pattern Dependence

= Electrical noise on the bitline affects reliable sensing of a DRAM cell
= The magnitude of this noise is affected by values of nearby cells via

o Bitline-bitline coupling - electrical coupling between adjacent bitlines

o Bitline-wordline coupling = electrical coupling between each bitline and
the activated wordline
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Data Pattern Dependence

= Electrical noise on the bitline affects reliable sensing of a DRAM cell
= The magnitude of this noise is affected by values of nearby cells via

o Bitline-bitline coupling - electrical coupling between adjacent bitlines

o Bitline-wordline coupling = electrical coupling between each bitline and
the activated wordline

= Retention time of a cell depends on data patterns stored in
nearby cells
- need to find the worst data pattern to find worst-case retention time
-> this pattern is location dependent
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Two Challenges to Retention Time Proftiling

Challenge 2: Variable Retention Time (VRT)
o Retention time of a DRAM cell changes randomly over time
a cell alternates between multiple retention time states

o Leakage current of a cell changes sporadically due to a charge
trap in the gate oxide of the DRAM cell access transistor

o When the trap becomes occupied, charge leaks more readily
from the transistor’s drain, leading to a short retention time

Called 7rap-Assisted Gate-Induced Drain Leakage
o This process appears to be a random process i :

o Worst-case retention time depends on a random p
- need to find the worst case despite this

! 325
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Modern DRAM Retention

Time Distribution
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An Example VRT Cell

: . . . . .
o W W —N /\4 - V
K |
- 5|
| A cell from E 2Gb chip family |
OO ? 4 Time (HOUFI6S) 8 1I0
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Variable Retention Time

% Many failing cells jump from 0.0
very high retention time to very low

- —0.6
© 6
GEJ -1.2 o
i= 5f ost failing cells 188
c exhibit VRT —
O —24 o
o+ 4 . c
S S
= 305
Q )
=3 | [-36.%
g Min ret time = Max ret time =1
=l Expected if no VRT | 1—4.2 5,
P O
3 a8

! A 2Gb chip family | | |-54

1 2 3 a4 5 & 7 00

Minimum Retention Time (s)
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More on DRAM Retention Analysis

= Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris W|Ikerson anclmLMyﬂu

Proceed/ngs of the 40th International Svmposiym on computer Architectyre
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

An Experimental Study of Data Retention Behavior in
Modern DRAM Devices:
Implications for Retention Time Profiling Mechanisms

Jamie Liu Ben Jaiyen Yoongu Kim
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
5000 Forbes Ave. 5000 Forbes Ave. 5000 Forbes Ave.
Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213

jamiel@alumni.cmu.edu bjaiyen@alumni.cmu.edu yoonguk@ece.cmu.edu
Chris Wilkerson Onur Mutlu

Intel Corporation Carnegie Mellon University
2200 Mission College Blvd. 5000 Forbes Ave.
Santa Clara, CA 95054 Pittsburgh, PA 15213
chris.wilkerson@intel.com onur@cmu edu


http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf

Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

** Refresh
« Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance

» Leakage current of cell access transistors increasing

<+ tWR
+ Contact resistance between the cell capacitor and access transistor increasing
* On-current of the cell access transistor decreasing

+ Bit-line resistance increasing

* VRT
» Occurring more frequently with cell capacitance decreasing
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Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

*+ Refresh

« Difficult to build hioh-asnect ratio cell canacitors decreasina cell canacitance
THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM
to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng,
**John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel
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Mitigation of Retention Issues [SIGMETRICS’14)

= Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson,
and Onur Mutlu,

Failures: A Compatrative Experimental

Proceedings of the ACM Jnlernational Conference on Measyrement and
Modeling of Compuyter Systems (SIGMETRICS), Austin, TX, June 2014. [Slides
Lo00) (od)] [Boster (op) (odf)] [Eull datg Seis]

The Efficacy of Error Mitigation Techniques for DRAM
Retention Failures: A Comparative Experimental Study

Samira Khant+ Donghyuk Lee! Yoongu Kimt
samirakhan@cmu.edu donghyuki@cmu.edu  yoongukim@cmu.edu
Alaa R. Alameldeen* Chris Wilkerson* Onur Mutlut
alaa.r.alameldeen@intel.com chris.wilkerson@intel.com onur@cmu.edu
'Carnegie Mellon University *Intel Labs
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http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://www.sigmetrics.org/sigmetrics2014/
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pdf
http://www.ece.cmu.edu/~safari/tools/dram-sigmetrics2014-fulldata.html

Handling Data-Dependent Failures [psnie]

= Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson,
and Onur Mutlu,

Failures: A Compatrative Experimental

Proceedings of the ACM Jnlernational Conference on Measyrement and
Modeling of Compuyter Systems (SIGMETRICS), Austin, TX, June 2014. [Slides
Lo00) (od)] [Boster (op) (odf)] [Eull datg Seis]

PARBOR: An Efficient System-Level Technique
to Detect Data-Dependent Failures in DRAM

Samira Khan*  Donghyuk Lee™  Onur Mutlu*"
*University of Virginia "Carnegie Mellon University *Nvidia *ETH Ziirich
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http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://www.sigmetrics.org/sigmetrics2014/
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pdf
http://www.ece.cmu.edu/~safari/tools/dram-sigmetrics2014-fulldata.html

Handling Data-Dependent Failures [car16)

= Samira Khan, Chris Wilkerson, Donghyuk Lee, Alaa R. Alameldeen, and_.Qpur

D ndent Failures in DRAM"
LELL Computer Architectyre Letlers (CAL), November 2016.

A Case for Memory Content-Based Detection and Mitigation
of Data-Dependent Failures in DRAM

Samira Khan*, Chris Wilkerson®, Donghyuk Lee?, Alaa R. Alameldeent, Onur Mutlu*?
*University of Virginia fintel Labs tCarnegie Mellon University *ETH Zdrich
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https://people.inf.ethz.ch/omutlu/pub/MEMCON-content-based-DRAM-failure-detection_ieee-cal16.pdf
http://www.computer.org/web/cal

Handling Variable Retention Time [psne1s)

= Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and
Onur Mutlu,

DRAM Systems '
Proceedings of the 43t Annual JEEE/FIP Internatjonal Conference on

Lependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.

[Slides (ppR)) (pdf)]

AVATAR: A Variable-Retention-Time (VRT) Aware
Refresh for DRAM Systems

Moinuddin K. Qureshi® Dae-Hyun Kim' Samira Khan* Prashant J. Nair' Onur Mutlu?
"Georgia Institute of Technology fCarnegie Mellon University
{moin, dhkim, pnair6}@ece.gatech.edu {samirakhan, onur}@cmu.edu
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http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://2015.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15-talk.pdf

Handling Both DPD and VRT psca17)

= Minesh Patel, Jeremie S. Kim, and Qunur Mutlu,

Proceedings of the 441 International Svmposium on Compulter Architectyre
(ISCA), Toronto, Canada, June 2017.

m First experimental analysis of (mobile) LPDDR4 chips
= Analyzes the complex tradeoff space of retention time profiling
m Key idea: enable fast and robust profiling at higher refresh intervals & temp.

The Reach Profiler (REAPER):
Enabling the Mitigation of DRAM Retention Failures
via Profiling at Aggressive Conditions

Minesh Patel®*  Jeremie S. Kim*®  Onur Mutlu®*
YETH Ziirich  *Carnegie Mellon University
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https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf
http://isca17.ece.utoronto.ca/doku.php

Summary: Memory Reliability and Security

Memory reliability is reducing

Reliability issues open up security vulnerabilities

o Very hard to defend against

Rowhammer is an example

o Its implications on system security research are tremendous & exciting

Good news: We have a lot more to do.

Understand: Solid methodologies for failure modeling and discovery
o Modeling based on real device data — small scale and large scale
Architect: Principled co-architecting of system and memory

o Good partitioning of duties across the stack

Design & Test: Principled electronic design, automation, testing

o High coverage and good interaction with system reliability methods
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If Time Permits: NAND Flash Vulnerabilities

= Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,
"Error Characterization, Mitigation, and Recovery in Flash Memory Based
Solid State Drives"

to appear in Lrocecdings or tie JELF, 2017.

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.

Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD
2012.

Cai+, “"Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE
2013.
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.

Cai+, fProgram Interferencefin MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.
NEIgTMTDOTr-CE

Cai+, z 80 Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.
Cai+,"Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.

Cai+ n MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.
Luo+ iivysieRi=immerevme=N AND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST
2015.

Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.

Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE
JSAC 2016.

Cai+, NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation
Tech . : .
Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.


http://proceedingsoftheieee.ieee.org/

Overview Paper on Flash Reliability

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and
Qnur Mutlu

"Error Characterization, Mitigation, and Recovery in
Flash Memory Based Solid State Drives"

to appear in Lroceedings of the JELF, 2017.

Error Characterization, Mitigation, and Recovery
in Flash Memory Based Solid State Drives

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu
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http://proceedingsoftheieee.ieee.org/

Challenge and Opportunity for Future

Fundamentally
Secure, Reliable, Safe
Computing Architectures



| NAND Flash Memory
Reliability and Security I



Upcoming Overview Paper

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and
Qnur Mutiu

"Error Characterization, Mitigation, and Recovery in
Flash Memory Based Solid State Drives"

to appear in Lroceedings of the JELF, 2017.

Error Characterization, Mitigation, and Recovery
in Flash Memory Based Solid State Drives

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu
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Evolution of NAND Flash Memory  FashMemory

~ 1,000,000
E QO 64 » 0.7um — 2Xnm (Cell size : ~1/2000)
= 256M » 1.5year/gen. (18 years / 12 gen.)
9 100,000 e e SLC
&
3 10,000
v CMOS scaling
© More bits per Cell
ot 1,000
t .
- ", ,.. ..
100 -
\ 250\ 160 \ 130 \ 90\ 70 \ 5X \4X \3xX \ 2X\ 2v \1X \1V \1Znm ...... 22
10 l ; - : - ' \ ) \ \ \ Nt el
‘98 ‘02 ‘06 ‘10 ‘14 ‘18

Seaung Suk Lee, “Emerging Challenges in NAND Flash Technology”, Flash Summit 2011 (Hynix)

= Flash memory is widening its range of applications
o Portable consumer devices, laptop PCs and enterprise servers
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Flash Challenges: Reliability and Endurance

NAND Flash Memory Endurance Properties

= P/E cycles

100000 \ (provided)
- N PR —__-----~

( A few thousand > Ps

---———_—’

10000 : = P/E cycles
: * SLC - (required)
i * MLC e

. Writing
1000 the full capacity

e~ of the drive

10 times per day

for 5 years
(STEC)

Program/Erase Cycles

- Lithography nm
130 90 64 51 40 32 20 18 16 14

1 00 ! ! ! | | ! ! ! ! | L ! ! ! | !
2000 2005 2010 2015

——_-----

N
E. Grochowski et al., “Future technology challenges for NAND flash and HDD products”, <~ .> 50k P/E cyc I es/
Flash Memory Summit 2012 -~ -
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NAND Flash Memory 1s Increasingly Noisy

Write QMQ Read
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Future NAND Flash-based Storage Architecture

Raw Bit
Error Rate

Processing| Ldigar

Uncorrectable
BER < 10-15

Better

Our Goals:
Build reliable error models for NAND flash memory
Design efficient reliability mechanisms based on the model
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NAND Flash Error Model

Write ey Noisﬁ\lfAND

Read

Experimentally characterize and model dominant errors

Cai et al., “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis””’, DATE 2012
Luo et al., “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory”, JSAC 2016

= Erase block

Cai et al., “Threshold voltage
distribution in MLC NAND Flash

Memory: Characterization, Analysis,
and Modeling”, DATE 2013

Cai et al., “Vulnerabilities in MLC
NAND Flash Memory Programming:

Experimental Analysis, Exploits, and
Mitigation Techniques”, HPCA 2017

SAFARI

= Program page

= Neighbor page
prog/read (c-to-c

interference)

Cai et al., “Program Interference in MLC
NAND Flash Memory: Characterization,

Modeling, and Mitigation”, ICCD 2013

Cai et al., “Neighbor-Cell Assisted Error
Correction in MLC NAND Flash

Memories”, SIGMETRICS 2014
Cai et al., “Read Disturb Errors in MLC

NAND Flash Memory: Characterization
and Mitigation”, DSN 2015

Cai et al., “Flash Correct-and-Refresh:
Retention-aware error management for

increased flash memory lifetime”, ICCD 2012
Cai et al., “Error Analysis and Retention-
Aware Error Management for NAND Flash
Memory, IT] 2013

Cai et al.,, "Data Retention in MLC NAND
Flash Memory: Characterization,
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Our Goals and Approach

= Goals:

o Understand error mechanisms and develop reliable predictive
models for MLC NAND flash memory errors

o Develop efficient error management techniques to mitigate
errors and improve flash reliability and endurance

= Approach:

o Solid experimental analyses of errors in real MLC NAND flash
memory - drive the understanding and models

o Understanding, models, and creativity - drive the new
techniques
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Experimental Testing Platform

" idex-VEFPGA
(NAND Controllery.....

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, NAND Daughter Board
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017]

SAFARI Caietal, FPGA-based Solid-State Drive prototyping platform, FCCM 2011. 349




NAND Flash Error Types

Four types of errors [Cai+, DATE 2012]

Caused by common flash operations

o Read errors
o Erase errors
o Program (interference) errors

Caused by flash cell losing charge over time

o Retention errors

Whether an error happens depends on required retention time
Especially problematic in MLC flash because threshold voltage
window to determine stored value is smaller
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Observatlons Flash Error Analys1s

+3 -year Retention Errors retent|on errors
10'L =3¢ 1-year Retention Errors
| == 3-month Retention Errors
_2: 3-week Retention Errors

10 & 3-day Retention Errors
.8 : Program Interference Errors
g 03 B 1-day Retention Errors
. Read Errors
E C -e- Erase Errors
th 10 '
L — ¥
@ o°L
‘30 :
e 10°L

10

1 1 1 1 1 1 1 1 I 1 1 l 1 1 1 1 1 1 1 1
10° 10° P/E Cycles 10° 10°

= Raw bit error rate increases exponentially with P/E cycles
= Retention errors are dominant (>99% for 1-year ret. time)
= Retention errors increase with retention time requirement

SAFARI caiet al., Error Patterns in MLC NAND Flash Memory, DATE 2012.
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More on Flash Error Analysis

= Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,

~Error Patterns in MLC NAND Flash Memory
Proceedings of the Lesian. Automation. and Test in Furope

Conference (DATE), Dresden, Germany, March 2012,_Slides
{ppt)

Error Patterns in MLC NAND Flash Memory:

Measurement, Characterization, and Analysis

Yu Cai', Erich F. Haratsch’, Onur Mutlu' and Ken Mai'
'Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA
*LSI Corporation, 1110 American Parkway NE. Allentown, PA
!{yucai. onur, kenmai} @andrew.cmu.edu, “erich.haratsch@]lsi.com
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http://users.ece.cmu.edu/~omutlu/pub/flash-error-patterns_date12.pdf
http://www.date-conference.com/
http://users.ece.cmu.edu/~omutlu/pub/cai_date12_talk.ppt

Solution to Retention Errors

= Refresh periodically

= Change the period based on P/E cycle wearout
o Refresh more often at higher P/E cycles

= Use a combination of in-place and remapping-based refresh

Flash Correct-and-Refresh: Retention-Aware Error
Management for Increased Flash Memory Lifetime

Yu Cai', Gulay Yalcin®, Onur Mutlu', Erich F. Haratsch®, Adrian Cristal’, Osman S. Unsal® and Ken Mai'
'DSSC, Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA
’Barcelona Supercomputing Center, C/Jordi Girona 29, Barcelona, Spain
*LSI Corporation, 1110 American Parkway NE, Allentown, PA
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One Issue: Read Disturb in Flash Memory

= All scaled memories are prone to read disturb errors
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NAND Flash Memory Background

Flash Memory

Flash
Controller
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Flash Cell Array

C 1 EREEETE
3

Sense Amplifiers

Block X

ense Amplitiers
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Flash Cell

Drain

Floating
Gate K
Gate

“4|

Source

&

Floating Gate Transistor
(Flash Cell)
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Flash Read

Vread 2.5V Vread = 2

Gate
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Flash Pass-Through

Vpass 5V Vpass = 5

Gate
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Read from Flash Cell Array

Vpass =5.0
Pass (5V) Page 1

Read (2.5V) Page 2

Pass (5V) Page 3

Pass (5V) Page 4

Correctvalues POy 1 71—

S'I‘Hm;‘or page 2:

Vread = 2.5

Vpass =5.0

Vpass =5.0
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Read Disturb Problem: “Weak Programming” Effect

Pass (5V) Page 1

Pass (5V) Page 2

Read (2.5V) Page 3

Pass (5V) Page 4

Repeatedly read page 3 (or any page other than page 2) 261
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Read Disturb Problem: “Weak Programming” Effect

Vpass = 5.0 V : ,
- Yo )—H-EX: . . Page 1

S

Viead= 2.5V

3.5v'2.9v 3 . Page 2
Vpass 5.0V ﬁ
WAY/ f|-3 . . Page 3

Vpass =50V
Page 4

Incorrect values

frompage2: L OO |1 O [ 1

SAFARI High pass-through voltage induces“sweak-programming” effect..,




Executive Summary FlashMemory

 SUMMIT
* Read disturb errors limit flash memory lifetime today

— Apply a high pass-through voltage (Viass) to multiple pages on a read
— Repeated application of Vpass can alter stored values in unread pages

* We characterize read disturb on real NAND flash chips
— Slightly lowering Vpass greatly reduces read disturb errors

— Some flash cells are more prone to read disturb

* Technique 1: Mitigate read disturb errors online
— Wpass Tuning dynamically finds and applies a lowered Vpass per block

— Flash memory lifetime improves by 21%

* Technique 2: Recover after failure to prevent data loss

— Read Disturb Oriented Error Recovery (RDR) selectively corrects
cells more susceptible to read disturb errors

— Reduces raw bit error rate (RBER) by up to 36%
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More on Flash Read Disturb Errors

= Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai,
and Onur Mutlu,
~Read Disturb Errors in MLC NAND Flash Memory:
;I I - I- I I]-I-“atiul]"
Proceedings of the 4514 Annua/ JELE/IFIP [nternational

LConference on Pependable Svstems and Networks (DSN), Rio de

Janeiro, Brazil, June 2015.

Read Disturb Errors in MLC NAND Flash Memory:
Characterization, Mitigation, and Recovery

Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch®, Ken Mai, Onur Mutlu
Carnegie Mellon University, *Seagate Technology
yucaicai@ gmail.com, {yixinluo, ghose, kenmai, onur}@cmu.edu

<acpArR! e
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http://users.ece.cmu.edu/~omutlu/pub/flash-read-disturb-errors_dsn15.pdf
http://2015.dsn.org/

Large-Scale Flash SSD Error Analysis

= First large-scale field study of flash memory errors

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,

~A Lardge-Scale Study of Flash Memory Errors in the Field"
Proceedings of the ACM [nternational Conference on Measurement and

Moadeling of Computer Svstems (SIGMETRICS), Portland, OR, June
2015.

[Slides (potx) (pdf)] [Coverade at ZDNet] [Coverade on The Register]
[Coverage on TechSpot] [Coverage on The Tech Report]

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu
Carnegie Mellon University Facebook, Inc. Facebook, Inc. Carnegie Mellon University
meza@cmu.edu qwu@fb.com skumar@fb.com onur@cmu.edu

<agpARl T
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15.pdf
http://www.sigmetrics.org/sigmetrics2015/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pdf
http://www.zdnet.com/article/facebooks-ssd-experience/
http://www.theregister.co.uk/2015/06/22/facebook_reveals_ssd_failure_rate_trough/
http://www.techspot.com/news/61090-researchers-publish-first-large-scale-field-ssd-reliability.html
http://techreport.com/news/28519/facebook-ssd-reliability-study-shows-early-burnouts

Another Time: NAND Flash Vulnerabilities

= Onur Mutlu,

Technical talk at flash Memory Summit 2014 (FMS), Santa Clara, CA, August
2014. Slides (oph) (pdf)

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.

Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD
2012.

Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE
2013.

Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.
Cai+,in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.
Cai+, "Neighbor-Cell"'Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.

Cai+,"Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.

Cai+ Y"Read Disturb Errors jn MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.
A PDIrov

Luo+, VAR O"NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST
2015.
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.

IleJXé'Z‘E)IEl%abling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE

Cai+, [ Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation

7 v

Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-errors_mutlu_fms14-talk.pdf
http://www.flashmemorysummit.com/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-errors_mutlu_fms14-talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-errors_mutlu_fms14-talk.pdf

Flash Memory Programming Vulnerabilities

= Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Qnur Mutlu, and Erich F.
Haratsch,

"Vulnerabilities in MLC NAND Flash Memorv Programming:

Proceedings of the 23/d Inlernational Symposium on High-Performance
Computer Architecture (HPCA) Industrial Session, Austin, TX, USA,
February 2017.

| (odf)] [Liahtning Session Slides (Dptx) (pdf)]

Vulnerabilities in MLC NAND Flash Memory Programming;:
Experimental Analysis, Exploits, and Mitigation Techniques

Yu Cai' Saugata Ghose! Yixin Luo*f Ken Mai' Onur MutluST Erich F. Haratsch?
JrCarnegie Mellon University ISeagate Technology SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17.pdf
https://hpca2017.org/
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-lightning-talk.pdf

| Other Works on Flash Memory



NAND Flash Error Model

Read

Write ey Noisﬁ\lfAND

Experimentally characterize and model dominant errors

Cai et al., “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis””’, DATE 2012
Luo et al., “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory”, JSAC 2016

" _ = Neighbor page Rad
: IIirase block prog/read (c-to-c
rogram page interference)

Cai et al., “Flash Correct-and-Refresh:

Cai et al., “Program Interference in MLC ;
Retention-aware error management for

Cai et al., “Threshold voltage

distribution in MLC NAND Flash NAND Flash Memory: Characterization, _ e
Memory: Characterization, Analysis, Modeling, and Mitigation”, ICCD 2013 increased flash memory lifetime”, ICCD 2012
and Modeling”, DATE 2013 Cai et al., “Neighbor-Cell Assisted Error Cai et al., “Error Analysis and Retention-
Correction in MLC NAND Flash Aware Error Management for NAND Flash

Cai et al., “Vulnerabilities in MLC Memories”, SIGMETRICS 2014 Memory, ITJ 2013
NAND Flash Memory Programming: Cai et al., “Read Disturb Errors in MLC i W ion i
Experimental Analvsis. Exploits. and g Cai et al.,, "Data Retention in MLC NAND

b YSIS, EXDOIS, NAND Flash Memory: Characterization Flash Memory: Characterization,

Mitigation Techniques”, HPCA 2017 TR
J a and Mitigation”, DSN 2015 Optimization and Recovery" , HPCA 2015
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Threshold Voltage Distribution

= Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Threshold Vol Distribution in MLC NAND Flash

Proceedings of the Lesign. Automation. and Jest in Furope

Conference (DATE), Grenoble, France, March 2013,_Slides
{ppt)

Threshold Voltage Distribution in MLC NAND Flash Memory:
Characterization, Analysis, and Modeling

Yu Cai', Erich F. Haratsch’, Onur Mutlu' and Ken Mai'
'DSSC, Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA
’LSI Corporation, 1110 American Parkway NE, Allentown, PA
'{yucai, onur, kenmai} @andrew.cmu.edu, “erich.haratsch@lsi.com
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-voltage-characterization_date13.pdf
http://www.date-conference.com/
http://users.ece.cmu.edu/~omutlu/pub/cai_date13_talk.ppt

Program Interterence and Vret Prediction

= Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai,

"Proaram Interference in MLC NAND Flash Memory:

:I I - I- II I I- i ] :I n]itigatiulﬂ"
Proceedings of the 21st [EEE International Conference on

Computer Pesign (ICCD), Asheville, NC, October 2013.
Slides (pptx) (pdf) Lightning Session Slides (pdf)

Program Interference in MLC NAND Flash Memory:
Characterization, Modeling, and Mitigation

Yu Cai', Onur Mutlu', Erich F. Haratsch” and Ken Mai'
1. Data Storage Systems Center. Department of Electrical and Computer Engineering. Carnegie Mellon University, Pittsburgh, PA
2. LSI Corporation, San Jose, CA
yucaicai@gmail.com. {omutlu, kenmai}@andrew.cmu.edu

e VA |
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http://users.ece.cmu.edu/~omutlu/pub/flash-programming-interference_iccd13.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/cai_iccd13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/cai_iccd13_talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/cai_iccd13_lightning-talk.pdf

Neighbor-Assisted Error Correction

= Yu Cai, Gulay Yalcin, Onur Mutlu, Eric Haratsch, Osman Unsal,
Adrian Cristal, and Ken Mai,

Flash Memories"
Proceedings of the ACM International Conference on

Measurement and Modeling of Computer Svstems

(SIGMETRICS), Austin, TX, June 2014. Slides (ppt) (pdf)

Neighbor-Cell Assisted Error Correction

for MLC NAND Flash Memories

Yu Cai', Gulay Yalcin®, Onur Mutlu', Erich F. Haratsch*,

Osman Unsal®, Adrian Cristal*®, and Ken Mai'

'Electrical and Computer Engineering Department, Caregie Mellon University
“Barcelona Supercomputing Center, Spain IIA - CSIC — Spain National Research Council  “LSI Corporation
yucaicai @gmail.com, {omutlu, kenmai} @ ece.cmu.edu, {gulay.yalcin, adrian.cristal, osman.unsal} @bsc.es

N /2]
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http://users.ece.cmu.edu/~omutlu/pub/neighbor-assisted-error-correction-in-flash_sigmetrics14.pdf
http://www.sigmetrics.org/sigmetrics2014/
http://users.ece.cmu.edu/~omutlu/pub/neighbor-assisted-error-correction-in-flash_cai_sigmetrics14-talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/neighbor-assisted-error-correction-in-flash_cai_sigmetrics14-talk.pdf

Data Retention

= Yu Gai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutluy,
Q I. - I- IBE:Q!!EI:!"
Proceedings of the 21sl Intemational Svmposium on High-Performance

Computer Architecture (HPCA), Bay Area, CA, February 2015.
[Slides (pptx) (pdf) ]

Data Retention in MLC NAND Flash Memory:
Characterization, Optimization, and Recovery

Yu Cai, Yixin Luo, Erich F. Haratsch®, Ken Mai, Onur Mutlu
Camegie Mellon University, "LSI Corporation
yucaicai@gmail.com, yixinluo@cs.cmu.edu, erich.haratsch@lsi.com, {kenmai, omutlu} @ece.cmu.edu
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_hpca15.pdf
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_yixin_hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-data-retention_yixin_hpca15-talk.pdf

SSD Error Analysis in the Field

= First large-scale field study of flash memory errors
= Justin Meza, Qiang Wu, Sanjeev Kumar, andﬂnuLMmlu

Pfoceed/ngs of the ACM International Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS), Portland, OR, June 2015.

[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The
Register] [Coverage on TechSpot] [Coverage on The Tech
Report]

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu
Carnegie Mellon University Facebook, Inc. Facebook, Inc. Carnegie Mellon University
meza@cmu.edu qwu@fb.com skumar@fb.com onur@cmu.edu

= aEanr g g T T T T T
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http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15.pdf
http://www.sigmetrics.org/sigmetrics2015/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-failures-in-the-field-at-facebook_sigmetrics15-talk.pdf
http://www.zdnet.com/article/facebooks-ssd-experience/
http://www.theregister.co.uk/2015/06/22/facebook_reveals_ssd_failure_rate_trough/
http://www.techspot.com/news/61090-researchers-publish-first-large-scale-field-ssd-reliability.html
http://techreport.com/news/28519/facebook-ssd-reliability-study-shows-early-burnouts

Flash Memory Programming Vulnerabilities

= Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Qnur Mutlu, and Erich F.
Haratsch,

"Vulnerabilities in MLC NAND Flash Memorv Programming:

Proceedings of the 23/d Inlernational Symposium on High-Performance
Computer Architecture (HPCA) Industrial Session, Austin, TX, USA,
February 2017.

| (odf)] [Liahtning Session Slides (Dptx) (pdf)]

Vulnerabilities in MLC NAND Flash Memory Programming;:
Experimental Analysis, Exploits, and Mitigation Techniques

Yu Cai' Saugata Ghose! Yixin Luo*f Ken Mai' Onur MutluST Erich F. Haratsch?
JrCarnegie Mellon University ISeagate Technology SETH Ziirich
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https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17.pdf
https://hpca2017.org/
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities_hpca17-lightning-talk.pdf

Accurate and Online Channel Modeling

= Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and.Qnour Mutlu,

for Modern MLC NAND Flash Memory"
to appear in JLLL Journal on Selected Areas /n Communications (JSAC),
2016.

Enabling Accurate and Practical
Online Flash Channel Modeling
for Modern MLC NAND Flash Memory

Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, Onur Mutlu

YT T 4
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https://people.inf.ethz.ch/omutlu/pub/online-nand-flash-memory-channel-model_jsac16.pdf
http://www.comsoc.org/jsac

| More on DRAM Refresh



Tackling Refresh: Solutions

= | Parallelize refreshes with accesses [chang+ HPCA'14]

= Eliminate unnecessary refreshes [Liu+ 1scA’12]

o Exploit device characteristics
o Exploit data and application characteristics

= Reduce refresh rate and detect+correct errors that occur
[Khan+ SIGMETRICS’14]

= Understand retention time behavior in DRAM [Liu+ 1SCA"13]
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Summary: Refresh-Access Parallelization

 DRAM refresh interferes with memory accesses
— Degrades system performance and energy efficiency
— Becomes exacerbated as DRAM density increases

* Goal: Serve memory accesses in parallel with refreshes to
reduce refresh interference on demand requests
* Qur mechanisms:
— 1. Enable more parallelization between refreshes and accesses across
different banks with new per-bank refresh scheduling algorithms

— 2. Enable serving accesses concurrently with refreshes in the same bank
by exploiting parallelism across DRAM subarrays

* Improve system performance and energy efficiency for a wide
variety of different workloads and DRAM densities
— 20.2% and 9.0% for 8-core systems using 32Gb DRAM at low cost
— Very close to the ideal scheme without refreshes

379
Chang+, “"Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.



Refresh Penalty




Existing Refresh Modes

Per-bank refresh allows accesses to other

banks while a bank is refreshing



Shortcomings of Per-Bank Refresh

* Problem 1: Refreshes to different banks are scheduled
in a strict round-robin order

— The static ordering is hardwired into DRAM chips

— Refreshes busy banks with many queued requests when
other banks are idle

* Key idea: Schedule per-bank refreshes to idle banks
opportunistically in a dynamic order

382



Our First Approach: DARP

* Dynamic Access-Refresh Parallelization (DARP)

— An improved scheduling policy for per-bank refreshes
— Exploits refresh scheduling flexibility in DDR DRAM

* Component 1: Out-of-order per-bank refresh
— Avoids poor static scheduling decisions
— Dynamically issues per-bank refreshes to idle banks

* Component 2: Write-Refresh Parallelization
— Avoids refresh interference on latency-critical reads
— Parallelizes refreshes with a batch of writes

383



Shortcomings of Per-Bank Refresh

* Problem 2: Banks that are being refreshed cannot
concurrently serve memory requests

Delayed by refresh

E Time
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Shortcomings of Per-Bank Refresh

* Problem 2: Refreshing banks cannot concurrently serve
memory requests

* Key idea: Exploit subarrays within a bank to parallelize
refreshes and accesses across subarrays

RD
== ______________88lime

" Subarral Refiesh _ jme a
B
|

Parallelize

Subarray 1
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Methodology

|
>
g?:
.
Q ©
Q
= S

8-core
processor

L2 S 5123/core E_E

* 100 workloads: SPEC CPU2006, STREAM, TPC-C/H, random access

* System performance metric: Weighted speedup

Memory
Controller
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Comparison Points

All-bank refresh [DDR3, LPDDR3, ...]

Per-bank refresh [LPDDR3]

Elastic refresh [Stuecheli et al., MICRO ‘10]:

— Postpones refreshes by a time delay based on the predicted

rank idle time to avoid interference on memory requests

— Proposed to schedule all-bank refreshes without exploiting

per-bank refreshes
— Cannot parallelize refreshes and accesses within a rank

Ideal (no refresh)
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System Performance

6
g— DOAIl-Bank
8 ?5 B Per-Bank
8 ©, |
N v B E lastic
S 2
3 93 B DARP
T G)
2_)0 ~ B SARP
; 1 B DS ARP
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0

8Gb 16G b 32Gb
DRAM Chip Density

2. Consistent system performance improvement across

DRAM densities (within 0.9%, 1.2%, and 3.8% of ideal)
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Energy Efficiency

Energy per Access (nl)
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Consistent reduction on energy consumption
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More Information on Refresh-Access Parallelization

= Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris
Wilkerson, Yoongu Kim, and Onur Mutlu,

Proceedings of the 20(4 Infermnational Svmposium on High-Perfonmance
Computer Architecture (HPCA), Orlando, FL, February 2014.
[Summary] [Slides (pptx) (pdf)]

Reducing Performance Impact of DRAM Refresh
by Parallelizing Refreshes with Accesses

Kevin Kai-Wei Chang Donghyuk Lee Zeshan Chishti¥
Alaa R. Alameldeent Chris Wilkerson® Yoongu Kim  Onur Mutlu

Carnegie Mellon University Intel Labs
SAFARI %0



http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14.pdf
http://hpca20.ece.ufl.edu/
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_hpca14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-access-refresh-parallelization_chang_hpca14-talk.pdf

Tackling Refresh: Solutions

= Parallelize refreshes with accesses [chang+ HPCA'14]

=| Eliminate unnecessary refreshes [Liu+ 1scA’12]
o Exploit device characteristics

o Exploit data and application characteristics

= Reduce refresh rate and detect+correct errors that occur
[Khan+ SIGMETRICS’14]

= Understand retention time behavior in DRAM [Liu+ 1SCA"13]
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Most Refreshes Are Unnecessary

= Retention Time Profile of DRAM looks like this:

04-128ms

128-2560ms

. 7]



RAIDR: Eliminating Unnecessary Refreshes
64-128ms

1.25KB storage in controller for 32GB DRAM memo

128-256ms

Can reduce refreshes by ~75%
- reduces energy consumption and improves performance

SAFARI/I Liuetal, "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 393



RAIDR: Baseline Design

Refresh control is in DRAM in today’s auto-refresh systems

RAIDR can be implemented in either the controller or DRAM




RAIDR in Memory Controller: Option 1

Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands

issued for per-row refresh (all accounted for in evaluations)




RAIDR in DRAM Chip: Option 2

Overhead of RAIDR in DRAM chip:
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)




RAIDR: Results and Takeaways
= System: 32GB DRAM, 8-core; SPEC, TPC-C, TPC-H workloads

= RAIDR hardware cost: 1.25 kB (2 Bloom filters)
= Refresh reduction: 74.6%

= Dynamic DRAM energy reduction: 16%

= Idle DRAM power reduction: 20%

= Performance improvement: 9%

= Benefits increase as DRAM scales in density
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DRAM Device Capacity Scaling: Performance
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RAIDR performance benefits increase with DRAM chip capacity

SAFARI Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 398



DRAM Device Capacity Scaling: Energy
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RAIDR energy benefits increase with DRAM chip capacity

SAFARI Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 399



1. Profiling: Profile retention time of all rows Blo s >
Refresh interval (s

RAIDR: Eliminating Unnecessary Retreshes

Observation: Most DRAM rows can be refreshed much less often
without losing data [Kim+, EDL'09][Liu+ ISCA'13] Z ot

&
10

oba

) 1o
10

10t
"
1o

Key idea: Refresh rows containing weak cells
= 10"
more frequently, other rows less frequently :w= = oemoEe o

Number of cells in 32 GB DRAM

2. Binning: Store rows into bins by retention time in memory controller

Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)
3. Refreshing: Memory controller refreshes rows in different bins at

different rates

Results: 8-core, 32GB, SPEC, TPC-C, TPC-H
O 74.6% refresh reduction @ 1.25KB storage

0 ~16%/20% DRAM dynamic/idle power reduction
0 ~9% performance improvement
0 Benefits increase with DRAM capacity
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Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



More on RAIDR

= Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,
"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 29(/1 International Symposium o

Computer Architecture (ISCA), Portland, OR, June 2012.
Slides (pdf)

RAIDR: Retention-Aware Intelligent DRAM Refresh

Jamie Liu  Ben Jaiyen Richard Veras  Onur Mutlu
Carnegie Mellon University
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http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf

Tackling Refresh: Solutions

= Parallelize refreshes with accesses [chang+ HPCA'14]

= Eliminate unnecessary refreshes [Liu+ 1scA’12]

o Exploit device characteristics
o Exploit data and application characteristics

= Reduce refresh rate and detect+correct errors that occur
[Khan+ SIGMETRICS’14]

=] Understand retention time behavior in DRAM [Liu+ 1SCA"13]
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Motivation: Understanding Retention

= Past works require accurate and reliable measurement of
retention time of each DRAM row

o To maintain data integrity while reducing refreshes

= Assumption: worst-case retention time of each row can be
determined and stays the same at a given temperature

o Some works propose writing all 1's and 0’s to a row, and
measuring the time before data corruption

= Question:
o Can we reliably and accurately determine retention times of all
DRAM rows?

SAFARI 403



Two Challenges to Retention Time Profiling

= Data Pattern Dependence (DPD) of retention time

= Variable Retention Time (VRT) phenomenon

SAFARI 404



An Example VRT Cell

: . . . . .
o W W —N /\4 - V
K |
- 5|
| A cell from E 2Gb chip family |
OO ? 4 Time (HOUFI6S) 8 1I0
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VRT: Implications on Profiling Mechanisms

= Problem 1: There does not seem to be a way of
determining if a cell exhibits VRT without actually observing

a cell exhibiting VRT
o VRT is @ memoryless random process [Kim+ JJAP 2010]

= Problem 2: VRT complicates retention time profiling by
DRAM manufacturers

o Exposure to very high temperatures can induce VRT in cells that
were not previously susceptible
—> can happen during soldering of DRAM chips

- manufacturer’s retention time profile may not be accurate

= One option for future work: Use ECC to continuously profile
DRAM online while aggressively reducing refresh rate
o Need to keep ECC overhead in check
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More on DRAM Retention Analysis

= Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris W|Ikerson anclmLMyﬂu

Proceed/ngs of the 40th International Svmposiym on computer Architectyre
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

An Experimental Study of Data Retention Behavior in
Modern DRAM Devices:
Implications for Retention Time Profiling Mechanisms

Jamie Liu Ben Jaiyen Yoongu Kim
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
5000 Forbes Ave. 5000 Forbes Ave. 5000 Forbes Ave.
Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213

jamiel@alumni.cmu.edu bjaiyen@alumni.cmu.edu yoonguk@ece.cmu.edu
Chris Wilkerson Onur Mutlu

Intel Corporation Carnegie Mellon University
2200 Mission College Blvd. 5000 Forbes Ave.
Santa Clara, CA 95054 Pittsburgh, PA 15213
chris.wilkerson@intel.com onur@cmu edu


http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf

Tackling Refresh: Solutions

= Parallelize refreshes with accesses [chang+ HPCA'14]

= Eliminate unnecessary refreshes [Liu+ 1scA’12]

o Exploit device characteristics
o Exploit data and application characteristics

=] Reduce refresh rate and detect+correct errors that occur
[Khan+ SIGMETRICS'14]

= Understand retention time behavior in DRAM [Liu+ 1SCA"13]
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Towards an Online Profiling System

Key Observations:
* Testing alone cannot detect all possible failures

* Combination of ECC and other mitigation
techniques is much more effective

— But degrades performance

* Testing can help to reduce the ECC strength
— Even when starting with a higher strength ECC

Khan+, “"The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative
Experimental Study,” SIGMETRICS 2014.



Towards an Online Profiling System
Initially Protect DRAM Periodically Test
with Strong ECC 1 Parts of DRAM y)

- Te

=\Te

Test
‘ Mitigate errors and
reduce ECC 3

Run tests periodically after a short interval
at smaller regions of memory




More on Online Protiling of DRAM

= Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson,
and Onur Mutlu,

Failures: A Compatrative Experimental

Proceedings of the ACM Jnlernational Conference on Measyrement and
Modeling of Compuyter Systems (SIGMETRICS), Austin, TX, June 2014. [Slides
Lo00) (od)] [Boster (op) (odf)] [Eull datg Seis]

The Efficacy of Error Mitigation Techniques for DRAM
Retention Failures: A Comparative Experimental Study

Samira Khant+ Donghyuk Lee! Yoongu Kimt
samirakhan@cmu.edu donghyuki@cmu.edu  yoongukim@cmu.edu
Alaa R. Alameldeen* Chris Wilkerson* Onur Mutlut
alaa.r.alameldeen@intel.com chris.wilkerson@intel.com onur@cmu.edu
'Carnegie Mellon University *Intel Labs
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http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://www.sigmetrics.org/sigmetrics2014/
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pdf
http://www.ece.cmu.edu/~safari/tools/dram-sigmetrics2014-fulldata.html

| How Do We Make RAIDR Work 1n the
Presence of the VRT Phenomenon? I



Making RAIDR Work w/ Online Profiling & ECC

= Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and
Onur Mutlu,

DRAM Systems '
Proceedings of the 43t Annual JEEE/FIP Internatjonal Conference on

Lependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.

[Slides (ppR)) (pdf)]

AVATAR: A Variable-Retention-Time (VRT) Aware
Refresh for DRAM Systems

Moinuddin K. Qureshi® Dae-Hyun Kim' Samira Khan* Prashant J. Nair' Onur Mutlu?
"Georgia Institute of Technology fCarnegie Mellon University
{moin, dhkim, pnair6}@ece.gatech.edu {samirakhan, onur}@cmu.edu
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http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://2015.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15-talk.pdf

AVATAR

Insight: Avoid retention failures =» Upgrade row on ECC error
Observation: Rate of VRT >> Rate of soft error (50x-2500x)

Scrub DRAM Rows Ref. Rate Table
(15 min)
ECC A ﬂ
ECC ’ C
ECC D 0 Row protected from
S [T O]
Ece = n retention failures
ECC ' G ’
ECC H

||

AVATAR mitigates VRT by increasing refresh rate on error



RESULTS: REFRESH SAVINGS

O 1 2 3 4 5 6 7 8 9 10 11 12
Number of Months Since Testing

AVATAR reduces refresh by 60%-70%, similar to multi rate
refresh but with VRT tolerance



SPEEDUP

m AVATAR (1yr) m NoRefresh

AVATAR gets 2/3" the performance of NoRefresh. More
gains at higher capacity nodes



ENERGY DELAY PRODUCT

B AVAT AR (1yr)

Energy Delay Product

8Gb 16 Gb 32Gb 64Gb

AVATAR reduces EDP,
Significant reduction at higher capacity nodes



Making RAIDR Work w/ Online Profiling & ECC

= Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and
Onur Mutlu,

DRAM Systems '
Proceedings of the 43t Annual JEEE/FIP Internatjonal Conference on

Lependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.

[Slides (ppR)) (pdf)]

AVATAR: A Variable-Retention-Time (VRT) Aware
Refresh for DRAM Systems

Moinuddin K. Qureshi® Dae-Hyun Kim' Samira Khan* Prashant J. Nair' Onur Mutlu?
"Georgia Institute of Technology fCarnegie Mellon University
{moin, dhkim, pnair6}@ece.gatech.edu {samirakhan, onur}@cmu.edu
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DRAM Refresh: Summary and Conclusions

= DRAM refresh is a critical challenge
o in scaling DRAM technology efficiently to higher capacities

= Discussed several promising solution directions
o Parallelize refreshes with accesses [Chang+ HPCA'14]

o Eliminate unnecessary refreshes [Liu+ ISCA'12]

o Reduce refresh rate and detect+correct errors that occur [Khan+
SIGMETRICS'14]

= Examined properties of retention time behavior [Liu+ 1scA’13]
o Enable realistic VRT-Aware refresh techniques [Qureshi+ DSN'15]

= Many avenues for overcoming DRAM refresh challenges
o Handling DPD/VRT phenomena

o Enabling online retention time profiling and error mitigation
o Exploiting application behavior
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Consumer Devices

Consumer devices are everywhere!

Energy consumption is
a first-class concern in consumer devices
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Popular Google Consumer Workloads

e T

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube © O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec
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Energy Cost of Data Movement

Ist key observation: 62.7% of the
total system energy is spent on data movement

Data Movement

mo <-><J->

Compute
Unit

Processing-in-Memory (PIM)

Potential solution: move computation close to data

Challenge: limited area and energy budget
SAFARI 424



Using PIM to Reduce Data Movement

2"d key observation: a significant fraction of
data movement often comes from simple functions

We can design lightweight logic to
implement these_simple functions in memory

Small embedded Small fixed-function
low-power core accelerators

Offloading to PIM logic reduces energy by 55.4%

and improves performance by 54.27% on average

SAFARI 5



Goals

1 Understand the data movement related
bottlenecks in modern consumer workloads

2 Analyze opportunities to mitigate data movement
by using processing-in-memory (PIM)

3 Design PIM logic that can maximize energy
efficiency given the limited area and energy
budget in consumer devices
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Outline

 Introduction

* Background

* Analysis Methodology
* Workload Analysis

* Evaluation

* Conclusion
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Potential Solution to Address Data Movement

* Processing-in-Memory (PIM)

— A potential solution to reduce data movement
— ldea: move computation close to data

v~ Reduces data movement
v~ Exploits large in-memory bandwidth
v~ Exploits shorter access latency to memory

* Enabled by recent advances in 3D-stacked memory

Through-Silicon Via

CPU /
4—/ b /2

------ » Logic
Layer

SAFARI 8




Outline

* Introduction
* Background

* Analysis Methodology
* Workload Analysis

e Evaluation
e Conclusion
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Workload Analysis Methodology
 Workload Characterization G .? VP@

— Chromebook with an
Intel Celeron SoC and 2GB of DRAM

— Extensively use performance counters within SoC

* Energy Model

— Sum of the energy consumption within the CPU,
all caches, off-chip interconnects, and DRAM
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PIM Logic Implementation

' < 'Va -

Customized embedded Small fixed-function
general-purpose core accelerators

No aggressive ILP techniques Multiple copies of customized
256-bit SIMD unit in-memory logic unit

SAFARI 11



Workload Analysis

e

‘F

Chrome TensorFlow
Google’s web browser Google’s machine learning
framework
. © O YouTube © O YouTube
Video Playback Video Capture
Google’s video codec Google’s video Codec
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Workload Analysis

6

Chrome
Google’s web browser
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How Chrome Renders a Web Page

;|

HTML

HTML Parser
Rasteriza- .
g tion y
CSS

CSS

SAFARI 14



Loading and Layouting Painting
I

Parsing l
I [ |
| assembles all layers
| into a final screen image
HTML
bl Parser : : VN
Render L ¢ Rasteriza- Composi-
| Tree ayout | tion ting
css | ! N
CSS Parser | s | \
l

I o
"V’

paints those objects
calculates the

and generates the bitmaps
visual elements and

position of each gbject




Browser Analysis

* To satisfy user experience, the browser must
provide:

— Fast loading of webpages
— Smooth scrolling of webpages
— Quick switching between browser tabs

* We focus on two important user interactions:

) Page Scrolling
2) Tab Switching

— Both include page loading

SAFARI
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rasterization uses color blitters

to convert the basic primitives

into bitmaps
‘ my Color

Blitting
Rasteriza- Composi-
Layout tion ting

to minimize cache misses

during compositing, the_graphics driver

reorganizes the bitmaps




Scrolling Energy Analysis

B ColorBliting @Other
hy ""i
N T

Google Gmail Google Word- Twitter Ani-
Docs Calendar Press mation

B Texture Tiling

100%
80%
6 0%
4 0%
20%

0%

Fraction of
Total Energy

41.9% of page scrolling energy is spent on
texture tiling and color blitting
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Scrolling a Google Docs Web Page
B Texture Tiling @ Color Blitting &) Other
77% of total energy

consumption goes to
data movement

CPU L1 LLC Inter- Mem DRAM
connect Ctrl

0 Data Movement B Compute

(o)
A significant portion of “ % 0%
total data movement comes from ¢ E) 30%
°je [ J [ ] o
texture tiling and color blitting 54 20%
® 8 10%
o
oy
p?®" Color
lling  Blitting

37.7% of total syst
S of total system energy 20



Can we use PIM to mitigate the data movement cost

for texture tiling and color blitting?



Can We Use PIM for Texture Tiling?

CIIJU PII_VI

CPU Memory

Rasterizaton 5

I P =
: data mavement Invoke
Compositing :

idle

Texture Tiling

Texture tiling is a good candidate for
PIM execution



Can We Implement Texture Tiling in PIM Logic?

Linear Bitmap Texture Tiled Texture
—= Loy
Requires simple primitives: memcopy, bitwise
operations, and simple arithmetic operations

9.4% of the area 7.1% of the area
available for PIM logic available for PIM logic

PIM core and PIM accelerator are feasible to

implement in-memory Texture Tiling
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Color Blitting Analysis

Generates a large amount of data movement

Accounts for 19.1% of the total system energy during scrolling

Color blitting is a good candidate
for PIM execution

Requires low-cost operations:
Memset, simple arithmetic, and shift operations

It is feasible to implement color blitting
in PIM core and PIM accelerator

SAFARI 24



Scrolling Wrap Up

Texture tiling and color blitting account for
a significant portion (41.9%) of energy consumption

37.7% of total system energy goes to
data movement generated by these functions

1 Both functions can benefit significantly
from PIM execution

2 Both functions are feasible to implement
as PIM logic

SAFARI 25
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What Happens During Tab Switching?

* Chrome employs a multi-process architecture

| Chrome Process c l

[ — [ ——
(J‘ (: (:
|'§:§':|€:§'I |£}:
I, 1) I

Tab | Tab 2 Tab N
Process Process Process

* Main operations during tab switching:

— Context switch
— Load the new page

SAFARI 27



Memory Consumption

* Primary concerns during tab switching:

— How fast a new tab loads and becomes interactive
— Memory consumption

Chrome uses compression to
reduce each tab’s memory footprint

¢ ——
1 &

D s

Co ivecthbab

DleanTppessision
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Data Movement Study

* To study data movement during tab switching,
we emulate a user switching through 50 tabs

We make two key observations:

1 Compression and decompression
contribute tol 8. 1% of the total system energy

19.6 GB of data moves between
2 CPU and ZRAM

SAFARI
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Can We Use PIM to Mitigate the Cost?
CPU Only time CPU + PIM

Swap out N pages

Memory

e
- data movement

PIM core and PIM accelerator are feasible to

No off-chlp data
movement

Other tasks -

compression

implement in-memory compression/decompression
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Tab Switching Wrap Up

A large amount of data movement happens
during tab switching as Chrome attempts to
compress and decompress tabs

Both functions can benefit from PIM execution

and can be implemented as PIM logic

SAFARI 31



Workload Analysis

e

‘F

Chrome TensorFlow
Google’s web browser Google’s machine learning
framework
. © O YouTube © O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec
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Workload Analysis

f
TensorFlow
Google’s machine learning

framework

VP9 VP9

@ O YouTube © © YouTube
Vldeo Playback Video Capture

’ - o
Google’s video codec Google’s video codec
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TensorFlow Mobile

[ [ | [ \
r/ { ,’ "A;' O ° °
Inferepce '1C -+ - 91 Prediction
| RO A0k 8
b o i o & |
\:“: — “— — O/

57.3% of the inference energy is spent on

data movement
v

54.4% of the data movement energy comes from

Racking/unpacking and_guantization

SAFARI
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Packing

Matrix

Packed Matrix
ﬁ ackin ﬂ

Reorders elements of matrices to minimize
cache misses during matrix multiplication

\{ \{

Up to 40% of the Packing’s data movement
inference energy and 3 1% of accounts for up to
inference execution time 35.3% of the inference energy

A simple data reorganization process
that requires simple arithmetic
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Quantization

floating point
g P Quantization

Converts 32:-bit floating point to_8-bit integers to improve
inference execution time and_energy consumption

\ \{

mteger

Up to 16.8% of the Majority of quantization
inference energy energy comes from
and 16.1% of data movement

inference execution time

A simple data conversion operation that requires
shift, addition, and multiplication operations

SAFARI 36



Based on our analysis, we conclude that:
* Both functions are good candidates for PIM execution

* |t is feasible to implement them in PIM logic




Video Playback and Capture

VP9

Compressed == Captured Comp ressed

® i Dis Iay V|deo

& video VP9 VP9 wdei &
Decoder ,— Encoder

Majority of energy is spent on data movement

Majority of data movement comes from
simple functions in decoding and encoding pipelines
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Outline

* Introduction

* Background

* Analysis Methodology
* Workload Analysis

* Evaluation

* Conclusion
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Evaluation Methodology

* System Configuration (gem5 Simulator)

— So0C: 4 O00 cores, 8-wide issue, 64 kB L1 cache,
2MB L2 cache

— PIM Core: | core per vault, | -wide issue, 4-wide SIMD,
32kB L1 cache

— 3D-Stacked Memory: 2GB cube, |16 vaults per cube
* Internal Bandwidth: 256 GB/S
 Off-Chip Channel Bandwidth:32 GB/s

— Baseline Memory: LPDDR3, 2GB, FR-FCFS scheduler

* We study each target in isolation and emulate each
separately and run them in our simulator
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Normalized Energy

OCPU-Only @PIM-Core gPIM-Acc

Normalized Energy

Sub-Axd Debbckrg Mdion

771.7% and 82.6% of energy reduction for texture tiling
and packing comes from eliminating data movement

core and r accelierator reauces

energy consumption on average by 49.1% and 55.4%
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Normalized Runtime

Normalized Runtime

B CPU-Only g PIMCoreg PIM-Acc

1.0
0.8
0.6
0.4
0.2
0.0
Texture Color Comp- Decanp- | Sub RAxel Deblokirg  Motion [JTersorFbw
Tilng Blitting resion resion [nterpolaon Flte Estimation
Video Playback TensorFlow

Chrome Browser ;
and Capture Mobile

Offloading these kernels to PIM core and PIM accelerator
improves performance on average by 44.6% and 54.2%
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Conclusion

* Energy consumption is a major challenge in consumer devices
* We conduct an in-depth analysis of popular Google
consumer workloads

— 62.7% of the total system energy is spent on data movement
— Most of the data movement comes from_simple functions that

consist of simple operations

° We use PIM to reduce data movement cost

— We design lightweight logic to implement
simple operations in DRAM

— Reduces total energy by 55.4% on average
— Reduces execution time by 54.2% on average
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