Future Computing Platforms Challenges and Opportunities Onur Mutlu omutlu@gmail.com https://people.inf.ethz.ch/omutlu 10 November 2021 EdukCircle Intl. Conv. on Engineering & Computer Technology Carnegie Mellon ### Current Research Mission ### Computer architecture, HW/SW, systems, bioinformatics, security ### **Build fundamentally better architectures** ### Four Key Current Directions Fundamentally Secure/Reliable/Safe Architectures - Fundamentally Energy-Efficient Architectures - Memory-centric (Data-centric) Architectures Fundamentally Low-Latency and Predictable Architectures Architectures for AI/ML, Genomics, Medicine, Health ### The Transformation Hierarchy Computer Architecture (expanded view) Computer Architecture (narrow view) ### Axiom To achieve the highest energy efficiency and performance: ### we must take the expanded view of computer architecture Co-design across the hierarchy: Algorithms to devices Specialize as much as possible within the design goals ### Current Research Mission & Major Topics ### **Build fundamentally better architectures** Broad research spanning apps, systems, logic with architecture at the center - Data-centric arch. for low energy & high perf. - Proc. in Mem/DRAM, NVM, unified mem/storage - Low-latency & predictable architectures - Low-latency, low-energy yet low-cost memory - QoS-aware and predictable memory systems - Fundamentally secure/reliable/safe arch. - Tolerating all bit flips; patchable HW; secure mem - Architectures for ML/AI/Genomics/Health/Med - Algorithm/arch./logic co-design; full heterogeneity - Data-driven and data-aware architectures - ML/AI-driven architectural controllers and design - Expressive memory and expressive systems ### Onur Mutlu's SAFARI Research Group Computer architecture, HW/SW, systems, bioinformatics, security, memory https://safari.ethz.ch/safari-newsletter-april-2020/ Think BIG, Aim HIGH! SAFARI https://safari.ethz.ch ### SAFARI Newsletter January 2021 Edition https://safari.ethz.ch/safari-newsletter-january-2021/ Newsletter January 2021 Think Big, Aim High, and Have a Wonderful 2021! Dear SAFARI friends, ### Research & Teaching: Some Overview Talks #### https://www.youtube.com/onurmutlulectures - Future Computing Architectures - https://www.youtube.com/watch?v=kqiZISOcGFM&list=PL5Q2soXY2Zi8D 5MGV6EnXEJHnV2YFBJI&index=1 - Enabling In-Memory Computation - https://www.youtube.com/watch?v=njX 14584Jw&list=PL5Q2soXY2Zi8D 5MGV6EnXEJHnV2YFBJl&index=16 - Accelerating Genome Analysis - https://www.youtube.com/watch?v=r7sn41lH-4A&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=41 - Rethinking Memory System Design - https://www.youtube.com/watch?v=F7xZLNMIY1E&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=3 - Intelligent Architectures for Intelligent Machines - https://www.youtube.com/watch?v=c6_LgzuNdkw&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=25 - The Story of RowHammer - https://www.youtube.com/watch?v=sqd7PHQQ1AI&list=PL5Q2soXY2Zi8D 5MGV6EnXEJHnV2YFBJl&index=39 ### A Talk on Impactful Research & Teaching ### An Interview on Computing Futures ### Referenced Papers, Talks, Artifacts All are available at https://people.inf.ethz.ch/omutlu/projects.htm http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en https://www.youtube.com/onurmutlulectures https://github.com/CMU-SAFARI/ # Future Computing Platforms Challenges and Opportunities # Why Do We Do Computing? ### Answer ## To Solve Problems # To Gain Insight # To Enable a Better Life & Future # How Does a Computer Solve Problems? # Orchestrating Electrons In today's dominant technologies # How Do Problems Get Solved by Electrons? ### The Transformation Hierarchy Computer Architecture (expanded view) Computer Architecture (narrow view) ### Computer Architecture - is the science and art of designing computing platforms (hardware, interface, system SW, and programming model) - to achieve a set of design goals - E.g., highest performance on earth on workloads X, Y, Z - E.g., longest battery life at a form factor that fits in your pocket with cost < \$\$\$ CHF - E.g., best average performance across all known workloads at the best performance/cost ratio - **...** - □ Designing a supercomputer is different from designing a smartphone → But, many fundamental principles are similar Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu "Accelerating Genome Analysis: A Primer on an Ongoing Journey" IEEE Micro, August 2020. **Figure 3.** TPU Printed Circuit Board. It can be inserted in the slot for an SATA disk in a server, but the card uses PCIe Gen3 x16. **Figure 4.** Systolic data flow of the Matrix Multiply Unit. Software has the illusion that each 256B input is read at once, and they instantly update one location of each of 256 accumulator RAMs. Jouppi et al., "In-Datacenter Performance Analysis of a Tensor Processing Unit", ISCA 2017. ### New ML applications (vs. TPU3): - Computer vision - Natural Language Processing (NLP) - Recommender system - Reinforcement learning that plays Go 250 TFLOPS per chip in 2021 vs 90 TFLOPS in TPU3 1 ExaFLOPS per board https://spectrum.ieee.org/tech-talk/computing/hardware/heres-how-googles-tpu-v4-ai-chip-stacked-up-in-training-tests - ML accelerator: 260 mm², 6 billion transistors, 600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs. - Two redundant chips for better safety. ## Cerebras's Wafer Scale Engine (2019) The largest ML accelerator chip 400,000 cores #### **Cerebras WSE** 1.2 Trillion transistors 46,225 mm² #### **Largest GPU** 21.1 Billion transistors 815 mm² **NVIDIA** TITAN V https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning? ## Cerebras's Wafer Scale Engine-2 (2021) The largest ML accelerator chip (2021) 850,000 cores #### **Cerebras WSE-2** 2.6 Trillion transistors 46,225 mm² #### **Largest GPU** 54.2 Billion transistors 826 mm² **NVIDIA** Ampere GA100 https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning ### Many (Other) AI/ML Chips - Alibaba - Amazon - Facebook - Google - Huawei - Intel - Microsoft - NVIDIA - Tesla - Many Others and Many Startups are Building Their Own Chips... - Many More to Come... 35 ## Many (Other) AI/ML Chips (2019) # Many (Other) AI/ML Chips (2021) All information contained within this infographic is gathered from the internet and periodically updated, no guarantee is given that the information provided is correct, complete, and up-to-date. #### UPMEM Processing-in-DRAM Engine (2019) - Processing in DRAM Engine - Includes standard DIMM modules, with a large number of DPU processors combined with DRAM chips. - Replaces standard DIMMs - DDR4 R-DIMM modules - 8GB+128 DPUs (16 PIM chips) - Standard 2x-nm DRAM process - Large amounts of compute & memory bandwidth #### Experimental Analysis of the UPMEM PIM Engine #### Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland IZZAT EL HAJJ, American University of Beirut, Lebanon IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain CHRISTINA GIANNOULA, ETH Zürich, Switzerland and NTUA, Greece GERALDO F. OLIVEIRA, ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a significant overhead in terms of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this *data movement bottleneck* requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as *processing-in-memory (PIM)*. Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-stacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called *DRAM Processing Units* (*DPUs*), integrated in the same chip. This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present *PrIM* (*Processing-In-Memory benchmarks*), a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra, databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we identify as memory-bound. We evaluate the performance and scaling characteristics of PrIM benchmarks on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM system, programming recommendations for software designers, and suggestions and hints for hardware and architecture designers of future PIM systems. https://arxiv.org/pdf/2105.03814.pdf #### **UPMEM Memory Modules** - E19: 8 chips DIMM (1 rank). DPUs @ 267 MHz - P21: 16 chips DIMM (2
ranks). DPUs @ 350 MHz ## 2,560-DPU Processing-in-Memory System #### Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland IZZAT EL HAJJ, American University of Beirut, Lebanon IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain CHRISTINA GIANNOULA, ETH Zürich, Switzerland and NTUA, Greece GERALDO F. OLIVEIRA, ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound for such workloads, the data movement between main memory and CPU cores imposes a significant overhead in terms of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data movement bottleneck requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as processing-in-memory (PM). Recent research explores different forms of PIM architectures, motivated by the emergence of new 3Dstacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip. This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present PIM (Processing,-bendemy) benchmarks), a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra, databases, data analytics, graph processing, which we identify as memory-bound. We evaluate the performance and scaling characteristics of PIM benchmarks on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-of-the-art CPU and CPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM systems with 460 and 25.50 DPUs provides new insights about suitability of different workloads to the PIM systems you commendations for software designers, and suggestions and hints for hardware and architecture designers of future PIM systems. #### Understanding a Modern PIM Architecture #### More on Analysis of the UPMEM PIM Engine #### More on Analysis of the UPMEM PIM Engine ### FPGA-based Processing Near Memory Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu, "FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications" IEEE Micro (IEEE MICRO), to appear, 2021. # FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications Gagandeep Singh[⋄] Mohammed Alser[⋄] Damla Senol Cali[⋈] Dionysios Diamantopoulos[▽] Juan Gómez-Luna[⋄] Henk Corporaal[⋆] Onur Mutlu^{⋄⋈} [⋄]ETH Zürich [⋈] Carnegie Mellon University *Eindhoven University of Technology [▽]IBM Research Europe #### Samsung Function-in-Memory DRAM (2021) Samsung Newsroom CORPORATE **PRODUCTS** PRESS RESOURCES VIEWS **ABOUT US** Q #### Samsung Develops Industry's First High Bandwidth Memory with Al Processing Power Korea on February 17, 2021 Audio Share (5 The new architecture will deliver over twice the system performance and reduce energy consumption by more than 70% Samsung Electronics, the world leader in advanced memory technology, today announced that it has developed the industry's first High Bandwidth Memory (HBM) integrated with artificial intelligence (AI) processing power – the HBM-PIM The new processing-in-memory (PIM) architecture brings powerful AI computing capabilities inside high-performance memory, to accelerate large-scale processing in data centers, high performance computing (HPC) systems and AI-enabled mobile applications. Kwangil Park, senior vice president of Memory Product Planning at Samsung Electronics stated, "Our groundbreaking HBM-PIM is the industry's first programmable PIM solution tailored for diverse Al-driven workloads such as HPC, training and inference. We plan to build upon this breakthrough by further collaborating with Al solution providers for even more advanced PIM-powered applications." #### Samsung Function-in-Memory DRAM (2021) #### FIMDRAM based on HBM2 [3D Chip Structure of HBM with FIMDRAM] #### **Chip Specification** 128DQ / 8CH / 16 banks / BL4 32 PCU blocks (1 FIM block/2 banks) 1.2 TFLOPS (4H) FP16 ADD / Multiply (MUL) / Multiply-Accumulate (MAC) / Multiply-and- Add (MAD) #### ISSCC 2021 / SESSION 25 / DRAM / 25.4 25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism. for Machine Learning Applications Young-Cheon Kwon', Suk Han Lee', Jaehoon Lee', Sang-Hyuk Kwon', Je Min Ryu', Jong-Pii Son', Seongil O', Hak-Soo Yu', Haesuk Lee', Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi', Hyun-Sung Shin', Jin Kim', BengSeng Phuah', HyoungMin Kim', Myeong Jun Song', Ahn Choi', Daeho Kim', SooYoung Kim', Eun-Bong Kim', David Wang', Shinhaeng Kang', Yuhwan Ro³, Seungwoo Seo³, JoonHo Song³, Jaeyoun Youn', Kyomin Sohn', Nam Sung Kim' ¹Samsung Electronics, Hwaseong, Korea ²Samsung Electronics, San Jose, CA ³Samsung Electronics, Suwon, Korea # Future of Genome Sequencing & Analysis Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu "Accelerating Genome Analysis: A Primer on an Ongoing Journey" IEEE Micro, August 2020. To achieve the highest energy efficiency and performance: #### we must take the expanded view of computer architecture Co-design across the hierarchy: Algorithms to devices Specialize as much as possible within the design goals # What Kind of a Future Do We Want? # How Reliable/Secure/Safe is This Bridge? ## Collapse of the "Galloping Gertie" ### Another View #### How Secure Are These People? Security is about preventing unforeseen consequences #### How Safe & Secure Is **This** Platform? #### Challenge and Opportunity for Future # Reliable, Secure, Safe #### Do We Want This? 57 #### Or This? **SAFARI** Source: V. Milutinovic 58 #### Challenge and Opportunity for Future # Sustainable and Energy Efficient ### Many Difficult Problems: Climate # Many Difficult Problems: Congestion # Many Difficult Problems: Intelligence ### Many Difficult Problems: Public Health #### Many Difficult Problems: Genome Analysis #### Accelerating Genome Analysis Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, and Onur Mutlu, "Accelerating Genome Analysis: A Primer on an Ongoing Journey" IEEE Micro (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020. [Slides (pptx)(pdf)] [Talk Video (1 hour 2 minutes)] # Accelerating Genome Analysis: A Primer on an Ongoing Journey #### **Mohammed Alser** ETH Zürich #### Zülal Bingöl Bilkent University #### Damla Senol Cali Carnegie Mellon University #### Jeremie Kim ETH Zurich and Carnegie Mellon University #### Saugata Ghose University of Illinois at Urbana–Champaign and Carnegie Mellon University #### Can Alkan Bilkent University #### **Onur Mutlu** ETH Zurich, Carnegie Mellon University, and Bilkent University #### GenASM Framework [MICRO 2020] Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, October 2020. [<u>Lighting Talk Video</u> (1.5 minutes)] [<u>Lightning Talk Slides (pptx) (pdf)</u>] [<u>Talk Video</u> (18 minutes)] [<u>Slides (pptx) (pdf)</u>] #### GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis Damla Senol Cali^{†™} Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[⋄] Lavanya Subramanian[‡] Jeremie S. Kim^{⋄†} Rachata Ausavarungnirun[⊙] Mohammed Alser[⋄] Juan Gomez-Luna[⋄] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{⋄†▽} † Carnegie Mellon University [™] Processor Architecture Research Lab, Intel Labs [▽] Bilkent University [⋄] ETH Zürich [‡] Facebook [⊙] King Mongkut's University of Technology North Bangkok ^{*} University of Illinois at Urbana–Champaign SAFAR # Future of Genome Sequencing & Analysis Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu "Accelerating Genome Analysis: A Primer on an Ongoing Journey" IEEE Micro, August 2020. #### More on Fast & Efficient Genome Analysis Onur Mutlu, "Accelerating Genome Analysis: A Primer on an Ongoing Journey" *Invited Lecture at <u>Technion</u>*, Virtual, 26 January 2021. [Slides (pptx) (pdf)] [Talk Video (1 hour 37 minutes, including Q&A)] [Related Invited Paper (at IEEE Micro, 2020)] #### Detailed Lectures on Genome Analysis - Computer Architecture, Fall 2020, Lecture 3a - □ Introduction to Genome Sequence Analysis (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5 -
Computer Architecture, Fall 2020, Lecture 8 - Intelligent Genome Analysis (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14 - Computer Architecture, Fall 2020, Lecture 9a - □ **GenASM: Approx. String Matching Accelerator** (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=XoLpzmN Pas&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=15 - Accelerating Genomics Project Course, Fall 2020, Lecture 1 - Accelerating Genomics (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqL gwiDRQDTyId ### Challenge and Opportunity for Future # High Performance (to solve the **toughest** & **all** problems) #### Personalized Medicine Source: Jane Ades, NHGRI 71 #### Comparative Genomics ### New Genome Sequencing Technologies ### Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017 Published: 02 April 2018 Article history ▼ Oxford Nanopore MinION Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome Assembly: Computational Analysis of the Current State, Bottlenecks and Future Directions," Briefings in Bioinformatics, 2018. [Preliminary arxiv.org version] ### Challenge and Opportunity for Future ### Personalized and Private ``` (in every aspect of life: health, medicine, spaces, devices, robotics, ...) ``` ### This Lecture is About ... Questioning what limits us in designing the best computing architectures for the future Providing directions for fundamentally better designs Advocating principled approaches ### Increasingly Demanding Applications Dream... and, they will come As applications push boundaries, computing platforms will become increasingly strained. ### Key Realization ## Modern Systems are Bottlenecked by Data Storage and Movement ### Focus is on Data Storage Systems (Memory) - Main memory is a critical component of all computing systems: server, mobile, embedded, desktop, sensor - Main memory system must scale (in size, technology, efficiency, cost, and management algorithms) to maintain performance growth and technology scaling benefits ### Focus is on Data Storage Systems (Memory) - Main memory is a critical component of all computing systems: server, mobile, embedded, desktop, sensor - Main memory system must scale (in size, technology, efficiency, cost, and management algorithms) to maintain performance growth and technology scaling benefits ### Focus is on Data Storage Systems (Memory) - Main memory is a critical component of all computing systems: server, mobile, embedded, desktop, sensor - Main memory system must scale (in size, technology, efficiency, cost, and management algorithms) to maintain performance growth and technology scaling benefits # Computing is Bottlenecked by Data ### Data is Key for AI, ML, Genomics, ... Important workloads are all data intensive They require rapid and efficient processing of large amounts of data - Data is increasing - We can generate more than we can process ### Memory Is Critical for Performance (I) ### **In-memory Databases** [Mao+, EuroSys'12; Clapp+ (Intel), IISWC'15] ### **In-Memory Data Analytics** [Clapp+ (Intel), IISWC'15; Awan+, BDCloud'15] #### **Graph/Tree Processing** [Xu+, IISWC'12; Umuroglu+, FPL'15] #### **Datacenter Workloads** [Kanev+ (Google), ISCA'15] ### Memory Is Critical for Performance (I) **In-memory Databases** **Graph/Tree Processing** ### Memory → bottleneck ### In-Memory Data Analytics [Clapp+ (Intel), IISWC'15; Awan+, BDCloud'15] #### **Datacenter Workloads** [Kanev+ (Google), ISCA' 15] ### Memory Is Critical for Performance (II) ### Chrome Google's web browser ### **TensorFlow Mobile** Google's machine learning framework Google's video codec Google's video codec ### Memory Is Critical for Performance (II) **TensorFlow Mobile** ### Memory → bottleneck VP9 VouTube Video Playback Google's video codec Google's video codec ### Genome **Analysis** Щ **Short Read** Read Alignmer Reference Genome **Read Mapping** read1: ATCGCATCC **Sequencing** read2: TATCGCATC read3: CATCCATGA read4: **CGCTTCCAT** read5: CCATGACGC reference: TTTATCGCTTCCATGACGCAG read6: **TTCCATGAC** **Variant Calling** ### Memory → bottleneck Tererence. ITTATCGCTTCCATGACGCAG read1: ATCGCATCC read2: TATCGCATC read3: CATCCATGA read4: CGCTTCCAT read5: CCATGACGC read6: TTCCATGAC **Scientific Discovery** 4 ### New Genome Sequencing Technologies ### Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017 Published: 02 April 2018 Article history ▼ Oxford Nanopore MinION Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome Assembly: Computational Analysis of the Current State, Bottlenecks and Future Directions," Briefings in Bioinformatics, 2018. [Open arxiv.org version] ### New Genome Sequencing Technologies ### Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017 Published: 02 April 2018 Article history ▼ Oxford Nanopore MinION ### Memory → bottleneck ### Memory is Critical for Energy Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks" Proceedings of the <u>23rd International Conference on Architectural Support for Programming</u> <u>Languages and Operating Systems</u> (ASPLOS), Williamsburg, VA, USA, March 2018. ### 62.7% of the total system energy is spent on data movement ### Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks Amirali Boroumand¹ Rachata Ausavarungnirun¹ Aki Kuusela³ Allan Knies³ Saugata Ghose¹ Youngsok Kim² Eric Shiu³ Rahul Thakur³ Daehyun Kim^{4,3} Parthasarathy Ranganathan³ Onur Mutlu^{5,1} ### Memory is Critical for Reliability - Data from all of Facebook's servers worldwide - Meza+, "Revisiting Memory Errors in Large-Scale Production Data Centers," DSN'15. ### Large-Scale Failure Analysis of DRAM Chips - Analysis and modeling of memory errors found in all of Facebook's server fleet - Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, "Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field" Proceedings of the 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015. [Slides (pptx) (pdf)] [DRAM Error Model] ### Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field Justin Meza Qiang Wu* Sanjeev Kumar* Onur Mutlu Carnegie Mellon University * Facebook, Inc. 94 # Modern Systems are Bottlenecked by Memory ### An "Early" Overview Paper... Onur Mutlu, "Memory Scaling: A Systems Architecture Perspective" Proceedings of the 5th International Memory Workshop (IMW), Monterey, CA, May 2013. Slides (pptx) (pdf) EETimes Reprint ### Memory Scaling: A Systems Architecture Perspective Onur Mutlu Carnegie Mellon University onur@cmu.edu http://users.ece.cmu.edu/~omutlu/ ### Four Key Issues in Future Platforms Fundamentally Secure/Reliable/Safe Architectures - Fundamentally Energy-Efficient Architectures - Memory-centric (Data-centric) Architectures Fundamentally Low-Latency and Predictable Architectures Architectures for AI/ML, Genomics, Medicine, Health ### Maslow's (Human) Hierarchy of Needs Maslow, "A Theory of Human Motivation," Psychological Review, 1943. Self-fulfillment Selfneeds Maslow, "Motivation and Personality," actualization: achieving one's Book, 1954-1970. full potential, including creative activities Esteem needs: prestige and feeling of accomplishment Psychological needs Belongingness and love needs: intimate relationships, friends Safety needs: security, safety Basic needs Physiological needs: food, water, warmth, rest We need to start with reliability, security, safety... ### How Reliable/Secure/Safe is This Bridge? ### Collapse of the "Galloping Gertie" ### How Secure Are These People? Security is about preventing unforeseen consequences We do not seem to have design principles for (guaranteeing) reliability and security ### As Memory Scales, It Becomes Unreliable - Data from all of Facebook's servers worldwide - Meza+, "Revisiting Memory Errors in Large-Scale Production Data Centers," DSN'15. ### The DRAM Scaling Problem - DRAM stores charge in a capacitor (charge-based memory) - Capacitor must be large enough for reliable sensing - Access transistor must be large enough for long data retention time As DRAM cell becomes smaller, it becomes more vulnerable ### Infrastructures to Understand Such Issues Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014) Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case (Lee et al., HPCA 2015) AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems (Qureshi et al., DSN 2015) An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms (Liu et al., ISCA 2013) The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study (Khan et al., SIGMETRICS 2014) ### Infrastructures to Understand Such Issues ### SoftMC: Open Source DRAM Infrastructure Hasan Hassan et al., "SoftMC: A Flexible and Practical
Open-Source Infrastructure for Enabling Experimental DRAM Studies," HPCA 2017. - Flexible - Easy to Use (C++ API) - Open-source github.com/CMU-SAFARI/SoftMC ### SoftMC https://github.com/CMU-SAFARI/SoftMC ### SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies ``` Hasan Hassan Nandita Vijaykumar Samira Khan Saugata Ghose Kevin Chang Gennady Pekhimenko Donghyuk Lee Gennady Pekhimenko Onur Mutlu Nandita Vijaykumar Samira Khan Saugata Ghose Kevin Chang Gennady Pekhimenko Onur Mutlu Nandita Vijaykumar Samira Khan Saugata Ghose Nandita Vijaykumar Samira Khan Saugata Ghose Nandita Vijaykumar Samira Khan Saugata Ghose Kevin Chang Gennady Pekhimenko Onur Mutlu Nandita Vijaykumar Samira Khan Saugata Ghose Nandita Vijaykumar Vija ``` ``` ¹ETH Zürich ²TOBB University of Economics & Technology ³Carnegie Mellon University ⁴University of Virginia ⁵Microsoft Research ⁶NVIDIA Research ``` #### A Curious Discovery [Kim et al., ISCA 2014] # One can predictably induce errors in most DRAM memory chips #### DRAM RowHammer ## A simple hardware failure mechanism can create a widespread system security vulnerability Forget Software—Now Hackers Are Exploiting Physics BUSINESS CULTURE DESIGN GEAR SCIENCE SHARE ANDY GREENBERG SECURITY 08.31.16 7:00 AM # FORGET SOFTWARE—NOW HACKERS ARE EXPLOITING PHYSICS #### Modern DRAM is Prone to Disturbance Errors Repeatedly reading a row enough times (before memory gets refreshed) induces disturbance errors in adjacent rows in most real DRAM chips you can buy today #### Most DRAM Modules Are Vulnerable A company **B** company **C** company Up to **1.0×10⁷** errors Up to **2.7×10**⁶ errors Up to 3.3×10^5 errors #### Recent DRAM Is More Vulnerable #### Recent DRAM Is More Vulnerable #### Recent DRAM Is More Vulnerable All modules from 2012–2013 are vulnerable ``` loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (Y) mfence jmp loop ``` ``` loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (Y) mfence jmp loop ``` ``` loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (Y) mfence jmp loop ``` ``` loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (Y) mfence jmp loop ``` #### Observed Errors in Real Systems | CPU Architecture | Errors | Access-Rate | |---------------------------|--------|-------------| | Intel Haswell (2013) | 22.9K | 12.3M/sec | | Intel Ivy Bridge (2012) | 20.7K | 11.7M/sec | | Intel Sandy Bridge (2011) | 16.1K | 11.6M/sec | | AMD Piledriver (2012) | 59 | 6.1M/sec | #### A real reliability & security issue #### One Can Take Over an Otherwise-Secure System #### Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors Abstract. Memory isolation is a key property of a reliable and secure computing system — an access to one memory address should not have unintended side effects on data stored in other addresses. However, as DRAM process technology #### Project Zero Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014) News and updates from the Project Zero team at Google Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015) Monday, March 9, 2015 Exploiting the DRAM rowhammer bug to gain kernel privileges #### RowHammer Security Attack Example - "Rowhammer" is a problem with some recent DRAM devices in which repeatedly accessing a row of memory can cause bit flips in adjacent rows (Kim et al., ISCA 2014). - Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014) - We tested a selection of laptops and found that a subset of them exhibited the problem. - We built two working privilege escalation exploits that use this effect. - Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015) - One exploit uses rowhammer-induced bit flips to gain kernel privileges on x86-64 Linux when run as an unprivileged userland process. - When run on a machine vulnerable to the rowhammer problem, the process was able to induce bit flips in page table entries (PTEs). - It was able to use this to gain write access to its own page table, and hence gain read-write access to all of physical memory. #### Security Implications #### Security Implications It's like breaking into an apartment by repeatedly slamming a neighbor's door until the vibrations open the door you were after #### More Security Implications (I) "We can gain unrestricted access to systems of website visitors." www.iaik.tugraz.at Not there yet, but ... ROOT privileges for web apps! Daniel Gruss (@lavados), Clémentine Maurice (@BloodyTangerine), December 28, 2015 — 32c3, Hamburg, Germany Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA'16) Source: https://lab.dsst.io/32c3-slides/7197.html #### More Security Implications (II) "Can gain control of a smart phone deterministically" Hammer And Root Millions of Androids Drammer: Deterministic Rowhammer Attacks on Mobile Platforms, CCS'16¹²⁶ #### More Security Implications (III) Using an integrated GPU in a mobile system to remotely escalate privilege via the WebGL interface "GRAND PWNING UNIT" — ## Drive-by Rowhammer attack uses GPU to compromise an Android phone JavaScript based GLitch pwns browsers by flipping bits inside memory chips. **DAN GOODIN - 5/3/2018, 12:00 PM** ## Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU Pietro Frigo Vrije Universiteit Amsterdam p.frigo@vu.nl Cristiano Giuffrida Vrije Universiteit Amsterdam giuffrida@cs.vu.nl Herbert Bos Vrije Universiteit Amsterdam herbertb@cs.vu.nl Kaveh Razavi Vrije Universiteit Amsterdam kaveh@cs.vu.nl #### More Security Implications (IV) Rowhammer over RDMA (I) BIZ & IT TECH SCIENCE POLICY CARS GAMING & CULTURE THROWHAMMER - ## Packets over a LAN are all it takes to trigger serious Rowhammer bit flips The bar for exploiting potentially serious DDR weakness keeps getting lower. **DAN GOODIN - 5/10/2018, 5:26 PM** #### Throwhammer: Rowhammer Attacks over the Network and Defenses Andrei Tatar VU Amsterdam Radhesh Krishnan VU Amsterdam Herbert Bos VII Amsterdam Elias Athanasopoulos University of Cyprus > Kaveh Razavi VU Amsterdam Cristiano Giuffrida VU Amsterdam #### More Security Implications (V) Rowhammer over RDMA (II) Nethammer—Exploiting DRAM Rowhammer Bug Through Network Requests ### Nethammer: Inducing Rowhammer Faults through Network Requests Moritz Lipp Graz University of Technology Daniel Gruss Graz University of Technology Misiker Tadesse Aga University of Michigan Clémentine Maurice Univ Rennes, CNRS, IRISA Lukas Lamster Graz University of Technology Michael Schwarz Graz University of Technology Lukas Raab Graz University of Technology #### More Security Implications (VI) **IEEE S&P 2020** #### RAMBleed #### RAMBleed: Reading Bits in Memory Without Accessing Them Andrew Kwong University of Michigan ankwong@umich.edu Daniel Genkin University of Michigan genkin@umich.edu Daniel Gruss Graz University of Technology daniel.gruss@iaik.tugraz.at Yuval Yarom University of Adelaide and Data61 yval@cs.adelaide.edu.au #### More Security Implications (VII) USENIX Security 2019 ### Terminal Brain Damage: Exposing the Graceless Degradation in Deep Neural Networks Under Hardware Fault Attacks Sanghyun Hong, Pietro Frigo[†], Yiğitcan Kaya, Cristiano Giuffrida[†], Tudor Dumitraș University of Maryland, College Park †Vrije Universiteit Amsterdam #### A Single Bit-flip Can Cause Terminal Brain Damage to DNNs One specific bit-flip in a DNN's representation leads to accuracy drop over 90% Our research found that a specific bit-flip in a DNN's bitwise representation can cause the accuracy loss up to 90%, and the DNN has 40-50% parameters, on average, that can lead to the accuracy drop over 10% when individually subjected to such single bitwise corruptions... **Read More** #### More Security Implications (VIII) #### USENIX Security 2020 #### DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips Fan Yao University of Central Florida fan.yao@ucf.edu Adnan Siraj Rakin Deliang Fan Arizona State University asrakin@asu.edu dfan@asu.edu #### Degrade the inference accuracy to the level of Random Guess Example: ResNet-20 for CIFAR-10, 10 output classes Before attack, Accuracy: 90.2% After attack, Accuracy: ~10% (1/10) #### More Security Implications (IX) Rowhammer on MLC NAND Flash (based on [Cai+, HPCA 2017]) **Security** ## Rowhammer RAM attack adapted to hit flash storage Project Zero's two-year-old dog learns a new trick By Richard Chirgwin 17 Aug 2017 at 04:27 17 🖵 SHARE ▼ From random block corruption to privilege escalation: A filesystem attack vector for rowhammer-like attacks Anil Kurmus Nikolas Ioannou Matthias Neugschwandtner Thomas Parnell Nikolaos Papandreou IBM Research – Zurich #### More Security Implications? #### Apple's Patch for RowHammer https://support.apple.com/en-gb/HT204934 Available for: OS X Mountain Lion v10.8.5, OS X Mavericks v10.9.5 Impact: A malicious application may induce memory corruption to escalate privileges Description: A disturbance error, also known as Rowhammer, exists with some DDR3 RAM that could have led to memory corruption. This issue was mitigated by increasing memory refresh rates. CVE-ID CVE-2015-3693 : Mark Seaborn and Thomas Dullien of Google, working from original research by Yoongu Kim et al (2014) HP, Lenovo, and other vendors released similar patches Solution Direction: Principled Designs ## Design fundamentally secure computing architectures Predict and prevent such safety issues #### Our Solution to RowHammer PARA: <u>Probabilistic Adjacent Row Activation</u> #### Key Idea – After closing a row, we activate (i.e., refresh) one of its neighbors with a low probability: p = 0.005 #### Reliability Guarantee - When p=0.005, errors in one year: 9.4×10^{-14} - By adjusting the value of p, we can vary the strength of protection against errors ####
Advantages of PARA - PARA refreshes rows infrequently - Low power - Low performance-overhead - Average slowdown: 0.20% (for 29 benchmarks) - Maximum slowdown: 0.75% - PARA is stateless - Low cost - Low complexity - PARA is an effective and low-overhead solution to prevent disturbance errors #### Requirements for PARA - If implemented in DRAM chip (done today) - Enough slack in timing and refresh parameters - Plenty of slack today: - Lee et al., "Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common Case," HPCA 2015. - Chang et al., "Understanding Latency Variation in Modern DRAM Chips," SIGMETRICS 2016. - Lee et al., "Design-Induced Latency Variation in Modern DRAM Chips," SIGMETRICS 2017. - Chang et al., "Understanding Reduced-Voltage Operation in Modern DRAM Devices," SIGMETRICS 2017. - Ghose et al., "What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed Experimental Study," SIGMETRICS 2018. - Kim et al., "Solar-DRAM: Reducing DRAM Access Latency by Exploiting the Variation in Local Bitlines," ICCD 2018. - If implemented in memory controller (done today) - Better coordination between memory controller and DRAM - Memory controller should know which rows are physically adjacent #### Probabilistic Activation in Real Life (I) #### Probabilistic Activation in Real Life (II) #### First RowHammer Analysis Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu, <u>"Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"</u> Proceedings of the <u>41st International Symposium on Computer Architecture</u> (**ISCA**), Minneapolis, MN, June 2014. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data I Locture Video (1 br 40 mins) 25 September 2020] <u>Data</u>] [<u>Lecture Video</u> (1 hr 49 mins), 25 September 2020] One of the 7 papers of 2012-2017 selected as Top Picks in Hardware and Embedded Security for IEEE TCAD (<u>link</u>). #### Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors Yoongu Kim¹ Ross Daly* Jeremie Kim¹ Chris Fallin* Ji Hye Lee¹ Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹ ¹Carnegie Mellon University ²Intel Labs SAFARI 142 #### Retrospective on RowHammer & Future Onur Mutlu, "The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser" Invited Paper in Proceedings of the <u>Design, Automation, and Test in</u> <u>Europe Conference</u> (**DATE**), Lausanne, Switzerland, March 2017. [Slides (pptx) (pdf)] ## The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser Onur Mutlu ETH Zürich onur.mutlu@inf.ethz.ch https://people.inf.ethz.ch/omutlu #### A More Recent RowHammer Retrospective Onur Mutlu and Jeremie Kim, "RowHammer: A Retrospective" <u>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems</u> (**TCAD**) Special Issue on Top Picks in Hardware and Embedded Security, 2019. [Preliminary arXiv version] [Slides from COSADE 2019 (pptx)] [Slides from VLSI-SOC 2020 (pptx) (pdf)] [Talk Video (1 hr 15 minutes, with Q&A)] #### RowHammer: A Retrospective Onur Mutlu^{§‡} Jeremie S. Kim^{‡§} §ETH Zürich [‡]Carnegie Mellon University SAFARI 144 #### RowHammer in 2020 #### RowHammer in 2020 (I) Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu, "Revisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniques" Proceedings of the <u>47th International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Valencia, Spain, June 2020. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (20 minutes)] [Lightning Talk Video (3 minutes)] ### Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques ``` Jeremie S. Kim^{\S \dagger} Minesh Patel^{\S} A. Giray Yağlıkçı^{\S} Hasan Hassan^{\S} Roknoddin Azizi^{\S} Lois Orosa^{\S} Onur Mutlu^{\S \dagger} ^{\S} ETH Zürich ^{\dagger} Carnegie Mellon University ``` #### Key Takeaways from 1580 Chips Newer DRAM chips are more vulnerable to RowHammer There are chips today whose weakest cells fail after only 4800 hammers • Chips of newer DRAM technology nodes can exhibit RowHammer bit flips 1) in **more rows** and 2) **farther away** from the victim row. Existing mitigation mechanisms are NOT effective #### RowHammer in 2020 (II) Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi, "TRRespass: Exploiting the Many Sides of Target Row Refresh" Proceedings of the <u>41st IEEE Symposium on Security and Privacy</u> (**S&P**), San Francisco, CA, USA, May 2020. [Slides (pptx) (pdf)] [Lecture Slides (pptx) (pdf)] [Talk Video (17 minutes)] [Lecture Video (59 minutes)] [Source Code] [Web Article] Best paper award. Pwnie Award 2020 for Most Innovative Research. Pwnie Awards 2020 ## TRRespass: Exploiting the Many Sides of Target Row Refresh Pietro Frigo*† Emanuele Vannacci*† Hasan Hassan§ Victor van der Veen¶ Onur Mutlu§ Cristiano Giuffrida* Herbert Bos* Kaveh Razavi* *Vrije Universiteit Amsterdam §ETH Zürich ¶Oualcomm Technologies Inc. ## RowHammer is still an open problem Security by obscurity is likely not a good solution #### RowHammer in 2020 (III) Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu, Alec Wolman, and Onur Mutlu, "Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers" Proceedings of the <u>41st IEEE Symposium on Security and</u> Privacy (**S&P**), San Francisco, CA, USA, May 2020. [Slides (pptx) (pdf)] [Talk Video (17 minutes)] ### Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers Lucian Cojocar, Jeremie Kim^{§†}, Minesh Patel[§], Lillian Tsai[‡], Stefan Saroiu, Alec Wolman, and Onur Mutlu^{§†} Microsoft Research, [§]ETH Zürich, [†]CMU, [‡]MIT 150 #### RowHammer in 2020 (IV) MICRO 2020 Submit Work ▼ Program ▼ Atte #### Session 1A: Security & Privacy I 5:00 PM CEST - 5:15 PM CEST Graphene: Strong yet Lightweight Row Hammer Protection Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham, Jung Ho Ahn, Jae W. Lee (Seoul National University) 5:15 PM CEST - 5:30 PM CEST Persist Level Parallelism: Streamlining Integrity Tree Updates for Secure Persistent Memory Alexander Freij, Shougang Yuan, Huiyang Zhou (NC State University); Yan Solihin (University of Central Florida) 5:30 PM CEST - 5:45 PM CEST PThammer: Cross-User-Kernel-Boundary **Rowhammer through Implicit Accesses** Zhi Zhang (University of New South Wales and Data61, CSIRO, Australia); Yueqiang Cheng (Baidu Security); Dongxi Liu, Surya Nepal (Data61, CSIRO, Australia); Zhi Wang (Florida State University); Yuval Yarom (University of Adelaide and Data61, CSIRO, Australia) #### RowHammer in 2020 (V) S&P Home Program Call For... Attend Workshops Session #5: Rowhammer Room 2 Session chair: Michael Franz (UC Irvine) #### RAMBleed: Reading Bits in Memory Without Accessing Them Andrew Kwong (University of Michigan), Daniel Genkin (University of Michigan), Daniel Gruss Data61) Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers Lucian Cojocar (Microsoft Research), Jeremie Kim (ETH Zurich, CMU), Minesh Patel (ETH Zu (Microsoft Research), Onur Mutlu (ETH Zurich, CMU) #### **Leveraging EM Side-Channel Information to Detect Rowhammer Attacks** Zhenkai Zhang (Texas Tech University), Zihao Zhan (Vanderbilt University), Daniel Balasubrar Peter Volgyesi (Vanderbilt University), Xenofon Koutsoukos (Vanderbilt University) #### TRRespass: Exploiting the Many Sides of Target Row Refresh Pietro Frigo (Vrije Universiteit Amsterdam, The Netherlands), Emanuele Vannacci (Vrije Universiteit (Vrije Universiteit Amsterdam), Cristiano Giuffrida (Vrije Universiteit Amsterdam), Kaveh Razavi (Vrije Universiteit Amsterdam), The Netherlands) #### RowHammer in 2020 (VI) 29[™] USENIX SECURITY SYMPOSIUM ATTEND PROGRAM PARTICIPATE **SPONSORS** **ABOUT** DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips Fan Vao University of Central Florida: Adnan Sirai Rakin and Deliang Fan Arizona State University Fan Yao, *University of Central Florida*; Adnan Siraj Rakin and Deliang Fan, *Arizona State University* AVAILABLE MEDIA 🗋 🗊 🕞 Show details > #### BlockHammer Solution in 2021 A. Giray Yaglikci, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi, Ataberk Olgun, Lois Orosa, Hasan Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha Shahroodi, Saugata Ghose, and Onur Mutlu, "BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM Rows" Proceedings of the <u>27th International Symposium on High-Performance</u> Computer Architecture (**HPCA**), Virtual, February-March 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Talk Video (22 minutes)] [Short Talk Video (7 minutes)] #### BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM Rows A. Giray Yağlıkçı¹ Minesh Patel¹ Jeremie S. Kim¹ Roknoddin Azizi¹ Ataberk Olgun¹ Lois Orosa¹ Hasan Hassan¹ Jisung Park¹ Konstantinos Kanellopoulos¹ Taha Shahroodi¹ Saugata Ghose² Onur Mutlu¹ ¹ETH Zürich ²University of Illinois at Urbana–Champaign SAFARI 154 #### Two Key RowHammer Papers at MICRO 2021 Lois Orosa, Abdullah Giray Yaglikci, Haocong Luo, Ataberk Olgun, Jisung Park, Hasan Hassan, Minesh Patel, Jeremie S. Kim, and Onur Mutlu, "A Deeper Look into RowHammer's Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses" Proceedings of the <u>54th International Symposium on Microarchitecture</u> (**MICRO**), Virtual, October 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [arXiv version] #### A Deeper Look into RowHammer's Sensitivities: Experimental Analysis of Real DRAM Chips and Implications on Future Attacks and Defenses Lois Orosa* ETH
Zürich A. Giray Yağlıkçı* ETH Zürich Haocong Luo ETH Zürich Ataberk Olgun ETH Zürich, TOBB ETÜ Jisung Park ETH Zürich Hasan Hassan ETH Zürich Minesh Patel ETH Zürich Jeremie S. Kim ETH Zürich Onur Mutlu ETH Zürich #### Two Key RowHammer Papers at MICRO 2021 Hasan Hassan, Yahya Can Tugrul, Jeremie S. Kim, Victor van der Veen, Kaveh Razavi, and Onur Mutlu, "Uncovering In-DRAM RowHammer Protection Mechanisms: A New Methodology, Custom RowHammer Patterns, and Implications" Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [arXiv version] #### **Uncovering In-DRAM RowHammer Protection Mechanisms:** A New Methodology, Custom RowHammer Patterns, and Implications Hasan Hassan[†] Yahya Can Tuğrul^{†‡} Jeremie S. Kim[†] Victor van der Veen $^{\sigma}$ Kaveh Razavi[†] Onur Mutlu[†] †ETH Zürich ‡TOBB University of Economics & Technology ^σQualcomm Technologies Inc. #### More to Come... #### Detailed Lectures on RowHammer - Computer Architecture, Fall 2020, Lecture 4b - RowHammer (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=8 - Computer Architecture, Fall 2020, Lecture 5a - RowHammer in 2020: TRRespass (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9 - Computer Architecture, Fall 2020, Lecture 5b - RowHammer in 2020: Revisiting RowHammer (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10 - Computer Architecture, Fall 2020, Lecture 5c - Secure and Reliable Memory (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=HvswnsfG3oQ&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=11 #### The Story of RowHammer Lecture ... Onur Mutlu, #### "The Story of RowHammer" Keynote Talk at <u>Secure Hardware, Architectures, and Operating Systems</u> <u>Workshop</u> (**SeHAS**), held with <u>HiPEAC 2021 Conference</u>, Virtual, 19 January 2021. [Slides (pptx) (pdf)] [Talk Video (1 hr 15 minutes, with Q&A)] #### Most Recent RowHammer Lecture #### Future of Main Memory Reliability - DRAM is becoming less reliable → more vulnerable - Due to difficulties in DRAM scaling, other problems may also appear (or they may be going unnoticed) - Some errors may already be slipping into the field - Read disturb errors (Rowhammer) - Retention errors - Read errors, write errors - **...** - These errors can also pose security vulnerabilities #### All Memory Technologies are Vulnerable - DRAM - Flash memory - Emerging Technologies - Phase Change Memory - STT-MRAM - RRAM, memristors - **...** #### How Do We Keep Memory Secure? - Understand: Methodologies for failure modeling and discovery - Modeling and prediction based on real (device) data - Architect: Principled co-architecting of system and memory - Good partitioning of duties across the stack - Design & Test: Principled design, automation, testing - High coverage and good interaction with system reliability methods #### Understand and Model with Experiments (DRAM) #### Understand and Model with Experiments (Flash) [DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE 2017, HPCA 2018, SIGMETRICS 2018] NAND Daughter Board #### Understanding Flash Memory Reliability Proceedings of the IEEE, Sept. 2017 #### Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD's reliability and lifetime. By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu #### Lecture on Flash Memory & SSDs #### Special Course on Flash Memory & SSDs #### Challenge and Opportunity for Future # Fundamentally Secure, Reliable, Safe Computing Architectures #### One Important Takeaway ## Main Memory Needs Intelligent Controllers # In-Field Patch-ability (Intelligent Memory) Can Avoid Many Failures #### Four Key Issues in Future Platforms Fundamentally Secure/Reliable/Safe Architectures - Fundamentally Energy-Efficient Architectures - Memory-centric (Data-centric) Architectures Fundamentally Low-Latency and Predictable Architectures Architectures for AI/ML, Genomics, Medicine, Health #### Maslow's (Human) Hierarchy of Needs, Revisited Maslow, "A Theory of Human Motivation," Psychological Review, 1943. Maslow, "Motivation and Personality," Book, 1954-1970. #### Do We Want This? 175 #### Or This? 176 **SAFARI** Source: V. Milutinovic #### Challenge and Opportunity for Future ### High Performance, Energy Efficient, Sustainable #### The Problem Data access is the major performance and energy bottleneck ## Our current design principles cause great energy waste (and great performance loss) ## Processing of data is performed far away from the data #### A Computing System - Three key components - Computation - Communication - Storage/memory Burks, Goldstein, von Neumann, "Preliminary discussion of the logical design of an electronic computing instrument," 1946. #### Computing System ### A Computing System - Three key components - Computation - Communication - Storage/memory Burks, Goldstein, von Neumann, "Preliminary discussion of the logical design of an electronic computing instrument," 1946. #### Computing System ### Today's Computing Systems - Are overwhelmingly processor centric - All data processed in the processor → at great system cost - Processor is heavily optimized and is considered the master - Data storage units are dumb and are largely unoptimized (except for some that are on the processor die) I expect that over the coming decade memory subsystem design will be the *only* important design issue for microprocessors. "It's the Memory, Stupid!" (Richard Sites, MPR, 1996) ### The Performance Perspective HPCA Test of Time Award (awarded in 2021). Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt, "Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors" Proceedings of the <u>9th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), pages 129-140, Anaheim, CA, February 2003. <u>Slides (pdf)</u> <u>One of the 15 computer arch. papers of 2003 selected as Top Picks by IEEE Micro.</u> #### Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors Onur Mutlu § Jared Stark † Chris Wilkerson ‡ Yale N. Patt § §ECE Department The University of Texas at Austin {onur,patt}@ece.utexas.edu †Microprocessor Research Intel Labs jared.w.stark@intel.com ‡Desktop Platforms Group Intel Corporation chris.wilkerson@intel.com ### The Performance Perspective (2015) All of Google's Data Center Workloads (2015): ### The Performance Perspective (2015) All of Google's Data Center Workloads (2015): Figure 11: Half of cycles are spent stalled on caches. ### Perils of Processor-Centric Design - Grossly-imbalanced systems - Processing done only in one place - Everything else just stores and moves data: data moves a lot - → Energy inefficient - → Low performance - → Complex - Overly complex and bloated processor (and accelerators) - To tolerate data access from memory - Complex hierarchies and mechanisms - → Energy inefficient - → Low performance - → Complex ### Perils of Processor-Centric Design Most of the system is dedicated to storing and moving data ### Three Key Systems Trends ### 1. Data access is a major bottleneck Applications are increasingly data hungry ### 2. Energy consumption is a key limiter ### 3. Data movement energy dominates compute Especially true for off-chip to on-chip movement ### Data Movement vs. Computation Energy ### Data Movement vs. Computation Energy A memory access consumes ~100-1000X the energy of a complex addition ### Data Movement vs. Computation Energy - Data movement is a major system energy bottleneck - Comprises 41% of mobile system energy during web browsing [2] - Costs ~115 times as much energy as an ADD operation [1, 2] [1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO'16) [2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC'14) ### Energy Waste in Mobile Devices Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks" Proceedings of the <u>23rd International Conference on Architectural Support for Programming</u> <u>Languages and Operating Systems</u> (ASPLOS), Williamsburg, VA, USA, March 2018. ### 62.7% of the total system energy is spent on data movement ### Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks Amirali Boroumand¹ Rachata Ausavarungnirun¹ Aki Kuusela³ Allan Knies³ Saugata Ghose¹ Youngsok Kim² Eric Shiu³ Rahul Thakur³ Daehyun Kim^{4,3} Parthasarathy Ranganathan³ Onur Mutlu^{5,1} ### We Do Not Want to Move Data! A memory access consumes ~1000X the energy of a complex addition ### We Need A Paradigm Shift To ... Enable computation with minimal data movement Compute where it makes sense (where data resides) Make computing architectures more data-centric ### Goal: Processing Inside Memory - Many questions ... How do we design the: - compute-capable memory & controllers? - processor chip and in-memory units? - software and hardware interfaces? - system software, compilers, languages? - algorithms and theoretical foundations? **Problem** Aigorithm Program/Language System Software SW/HW Interface Micro-architecture Logic Electrons ### PIM Review and Open Problems ### A Modern Primer on Processing in Memory Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan
Gómez-Luna^a, Rachata Ausavarungnirun^d SAFARI Research Group ^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" Invited Book Chapter in Emerging Computing: From Devices to Systems Looking Beyond Moore and Von Neumann, Springer, to be published in 2021. #### A Modern Primer on Processing in Memory Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d SAFARI Research Group ^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok #### Abstract Modern computing systems are overwhelmingly designed to move data to computation. This design choice goes directly against at least three key trends in computing that cause performance, scalability and energy bottlenecks: (1) data access is a key bottleneck as many important applications are increasingly data-intensive, and memory bandwidth and energy do not scale well, (2) energy consumption is a key limiter in almost all computing platforms, especially server and mobile systems, (3) data movement, especially off-chip to on-chip, is very expensive in terms of bandwidth, energy and latency, much more so than computation. These trends are especially severely-felt in the data-intensive server and energy-constrained mobile systems of today. At the same time, conventional memory technology is facing many technology scaling challenges in terms of reliability, energy, and performance. As a result, memory system architects are open to organizing memory in different ways and making it more intelligent, at the expense of higher cost. The emergence of 3D-stacked memory plus logic, the adoption of error correcting codes inside the latest DRAM chips, proliferation of different main memory standards and chips, specialized for different purposes (e.g., graphics, low-power, high bandwidth, low latency), and the necessity of designing new solutions to serious reliability and security issues, such as the RowHammer phenomenon, are an evidence of this trend. This chapter discusses recent research that aims to practically enable computation close to data, an approach we call processing-in-memory (PIM). PIM places computation mechanisms in or near where the data is stored (i.e., inside the memory chips, in the logic layer of 3D-stacked memory, or in the memory controllers), so that data movement between the computation units and memory is reduced or eliminated. While the general idea of PIM is not new, we discuss motivating trends in applications as well as memory circuits/technology that greatly exacerbate the need for enabling it in modern computing systems. We examine at least two promising new approaches to designing PIM systems to accelerate important data-intensive applications: (1) processing using memory by exploiting analog operational properties of DRAM chips to perform massively-parallel operations in memory, with low-cost changes, (2) processing near memory by exploiting 3D-stacked memory technology design to provide high memory bandwidth and low memory latency to in-memory logic. In both approaches, we describe and tackle relevant cross-layer research, design, and adoption challenges in devices, architecture, systems, and programming models. Our focus is on the development of in-memory processing designs that can be adopted in real computing platforms at low cost. We conclude by discussing work on solving key challenges to the practical adoption of PIM. Keywords: memory systems, data movement, main memory, processing-in-memory, near-data processing, computation-in-memory, processing using memory, processing near memory, 3D-stacked memory, non-volatile memory, energy efficiency, high-performance computing, computer architecture, computing paradigm, emerging technologies, memory scaling, technology scaling, dependable systems, robust systems, hardware security, system security, latency, low-latency computing | - | | |-----|-------| | Car | iteni | | | пеш | | 1 | Introduction | | | |---|---|----|--| | 2 | Major Trends Affecting Main Memory | | | | 3 | The Need for Intelligent Memory Controllers | | | | | to Enhance Memory Scaling | 6 | | | 4 | Perils of Processor-Centric Design | 9 | | | 5 | Processing-in-Memory (PIM): Technology | | | | | Enablers and Two Approaches | 12 | | | | 5.1 New Technology Enablers: 3D-Stacked | | | | | Memory and Non-Volatile Memory | 12 | | | | 5.2 Two Approaches: Processing Using | | | | | Memory (PUM) vs. Processing Near | | | | | Memory (PNM) | 13 | | | 6 | Processing Using Memory (PUM) | 14 | | | U | 6.1 RowClone | 14 | | | | 6.2 Ambit | 15 | | | | | 17 | | | | 6.3 Gather-Scatter DRAM | | | | | 6.4 In-DRAM Security Primitives | 17 | | | 7 | Processing Near Memory (PNM) | 18 | | | | 7.1 Tesseract: Coarse-Grained Application- | | | | | Level PNM Acceleration of Graph Pro- | | | | | cessing | 19 | | | | 7.2 Function-Level PNM Acceleration of | | | | | Mobile Consumer Workloads | 20 | | | | 7.3 Programmer-Transparent Function- | | | | | Level PNM Acceleration of GPU | | | | | Applications | 21 | | | | 7.4 Instruction-Level PNM Acceleration | | | | | with PIM-Enabled Instructions (PEI) | 21 | | | | 7.5 Function-Level PNM Acceleration of | | | | | Genome Analysis Workloads | 22 | | | _ | 7.6 Application-Level PNM Acceleration of | | | | L | Time Series Analysis | 23 | | | 8 | Enabling the Adoption of PIM | 24 | | | | 8.1 Programming Models and Code Genera- | | | | | tion for PIM | 24 | | | | 8.2 PIM Runtime: Scheduling and Data | | | | | Mapping | 25 | | | | 8.3 Memory Coherence | 27 | | | | 8.4 Virtual Memory Support | 27 | | | | 8.5 Data Structures for PIM | 28 | | | | 8.6 Benchmarks and Simulation Infrastruc- | | | | | tures | 29 | | | | 8.7 Real PIM Hardware Systems and Proto- | - | | | | types | 30 | | | | 8.8 Security Considerations | 30 | | | | | | | | 9 | Conclusion and Future Outlook | 31 | | #### 1. Introduction Main memory, built using the Dynamic Random Access Memory (DRAM) technology, is a major component in nearly all computing systems, including servers, cloud platforms, mobile/embedded devices, and sensor systems. Across all of these systems, the data working set sizes of modern applications are rapidly growing, while the need for fast analysis of such data is increasing. Thus, main memory is becoming an increasingly significant bottleneck across a wide variety of computing systems and applications [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Alleviating the main memory bottleneck requires the memory capacity, energy, cost, and performance to all scale in an efficient manner across technology generations. Unfortunately, it has become increasingly difficult in recent years, especially the past decade, to scale all of these dimensions [1, 2, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], and thus the main memory bottleneck has been worsening. A major reason for the main memory bottleneck is the high energy and latency cost associated with data movement. In modern computers, to perform any operation on data that resides in main memory, the processor must retrieve the data from main memory. This requires the memory controller to issue commands to a DRAM module across a relatively slow and power-hungry off-chip bus (known as the memory channel). The DRAM module sends the requested data across the memory channel, after which the data is placed in the caches and registers. The CPU can perform computation on the data once the data is in its registers. Data movement from the DRAM to the CPU incurs long latency and consumes a significant amount of energy [7, 50, 51, 52, 53, 54]. These costs are often exacerbated by the fact that much of the data brought into the caches is not reused by the CPU [52, 53, 55, 56], providing little benefit in return for the high latency and energy cost. The cost of data movement is a fundamental issue with the processor-centric nature of contemporary computer systems. The CPU is considered to be the master in the system, and computation is performed only in the processor (and accelerators). In contrast, data storage and communication units, including the main memory, are treated as unintelligent workers that are incapable of computation. As a result of this processor-centric design paradigm, data moves a lot in the system between the computation units and communication/ storage units so that computation can be done on it. With the increasingly data-centric nature of contemporary and emerging appli- # We Need to Think Differently from the Past Approaches # Processing in Memory: Two Approaches - 1. Processing using Memory - 2. Processing near Memory ### Two PIM Approaches 5.2. Two Approaches: Processing Using Memory (PUM) vs. Processing Near Memory (PNM) Many recent works take advantage of the memory technology innovations that we discuss in Section 5.1 to enable and implement PIM. We find that these works generally take one of two approaches, which are categorized in Table 1: (1) processing using memory or (2) processing near memory. We briefly describe each approach here. Sections 6 and 7 will provide example approaches and more detail for both. Table 1: Summary of enabling technologies for the two approaches to PIM used by recent works. Adapted from [309]. | Approach | Enabling Technologies | |-------------------------|-----------------------------------| | Processing Using Memory | SRAM | | | DRAM | | | Phase-change memory (PCM) | | | Magnetic RAM (MRAM) | | | Resistive RAM (RRAM)/memristors | | Processing Near Memory | Logic layers in 3D-stacked memory | | | Silicon interposers | | | Logic in memory controllers | **Processing using memory (PUM)** exploits
the existing memory architecture and the operational principles of the memory circuitry to enable operations within main memory with minimal changes. PUM makes use Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, <u>"A Modern Primer on Processing in Memory"</u> Invited Book Chapter in <u>Emerging</u> <u>Computing: From Devices to Systems - Looking Beyond Moore and Von Neumann</u>, Springer, to be published in 2021. [<u>Tutorial Video on "Memory-Centric Computing Systems"</u> (1 hour 51 minutes)] ### Starting Simple: Data Copy and Initialization memmove & memcpy: 5% cycles in Google's datacenter [Kanev+ ISCA'15] Zero initialization (e.g., security) **Page Migration** ### Today's Systems: Bulk Data Copy 1046ns, 3.6uJ (for 4KB page copy via DMA) ### Future Systems: In-Memory Copy 1046ns, 3.6uJ → 90ns, 0.04uJ ### RowClone: In-DRAM Row Copy ### RowClone: Latency and Energy Savings Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data," MICRO 2013. ### More on RowClone Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry, "RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization" Proceedings of the <u>46th International Symposium on Microarchitecture</u> (**MICRO**), Davis, CA, December 2013. [<u>Slides (pptx) (pdf)</u>] [<u>Lightning Session Slides (pptx) (pdf)</u>] [<u>Poster (pptx) (pdf)</u>] ## RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization Vivek Seshadri Yoongu Kim Chris Fallin* Donghyuk Lee vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@c1f.net donghyuk1@cmu.edu Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo gpekhime@cs.cmu.edu yixinluo@andrew.cmu.edu Onur Mutlu Phillip B. Gibbons† Michael A. Kozuch† Todd C. Mowry onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu Carnegie Mellon University †Intel Pittsburgh ### RowClone Extensions and Follow-Up Work - Can this be improved to do faster inter-subarray copy? - Yes, see LISA [Chang et al., HPCA 2016] - Can we enable data movement at smaller granularities within a bank? - Yes, see FIGARO [Wang et al., MICRO 2020] - Can this be improved to do better inter-bank copy? - Yes, see Network-on-Memory [CAL 2020] - Can similar ideas and DRAM properties be used to perform computation on data? - Yes, see Ambit [Seshadri et al., CAL 2015, MICRO 2017] ### LISA: Increasing Connectivity in DRAM Kevin K. Chang, Prashant J. Nair, Saugata Ghose, Donghyuk Lee, Moinuddin K. Qureshi, and Onur Mutlu, "Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in DRAM" Proceedings of the <u>22nd International Symposium on High-</u> <u>Performance Computer Architecture</u> (**HPCA**), Barcelona, Spain, March 2016. [Slides (pptx) (pdf)] [Source Code] ### Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in DRAM ### FIGARO: Fine-Grained In-DRAM Copy Yaohua Wang, Lois Orosa, Xiangjun Peng, Yang Guo, Saugata Ghose, Minesh Patel, Jeremie S. Kim, Juan Gómez Luna, Mohammad Sadrosadati, Nika Mansouri Ghiasi, and Onur Mutlu, "FIGARO: Improving System Performance via Fine-Grained In-DRAM Data Relocation and Caching" Proceedings of the <u>53rd International Symposium on</u> Microarchitecture (MICRO), Virtual, October 2020. ## FIGARO: Improving System Performance via Fine-Grained In-DRAM Data Relocation and Caching Yaohua Wang* Lois Orosa[†] Xiangjun Peng[⊙]* Yang Guo* Saugata Ghose^{◇‡} Minesh Patel[†] Jeremie S. Kim[†] Juan Gómez Luna[†] Mohammad Sadrosadati[§] Nika Mansouri Ghiasi[†] Onur Mutlu^{†‡} *National University of Defense Technology † ETH Zürich $^{\odot}$ Chinese University of Hong Kong $^{\diamond}$ University of Illinois at Urbana–Champaign ‡ Carnegie Mellon University § Institute of Research in Fundamental Sciences ### Network-On-Memory: Fast Inter-Bank Copy Seyyed Hossein SeyyedAghaei Rezaei, Mehdi Modarressi, Rachata Ausavarungnirun, Mohammad Sadrosadati, Onur Mutlu, and Masoud Daneshtalab, "NoM: Network-on-Memory for Inter-Bank Data Transfer in Highly-Banked Memories" <u>IEEE Computer Architecture Letters</u> (CAL), to appear in 2020. #### NoM: Network-on-Memory for Inter-bank Data Transfer in Highly-banked Memories Seyyed Hossein SeyyedAghaei Rezaei¹ Mohammad Sadrosadati³ Mehdi Modarressi^{1,3} Rachata Ausavarungnirun² Onur Mutlu⁴ Masoud Daneshtalab⁵ ¹University of Tehran ²King Mongkut's University of Technology North Bangkok ³Institute for Research in Fundamental Sciences ⁴ETH Zürich ⁵Mälardalens University ### Mindset: Memory as an Accelerator Memory similar to a "conventional" accelerator ### In-Memory Bulk Bitwise Operations - We can also support in-DRAM AND, OR, NOT, MAJ - At low cost - Using analog computation capability of DRAM - Idea: activating multiple rows performs computation - 30-60X performance and energy improvement - Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology," MICRO 2017. - New memory technologies enable even more opportunities - Memristors, resistive RAM, phase change mem, STT-MRAM, ... - Can operate on data with minimal movement ### In-DRAM AND/OR: Triple Row Activation ### In-DRAM Acceleration of Database Queries Figure 11: Speedup offered by Ambit over baseline CPU with SIMD for BitWeaving Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology," MICRO 2017. ### More on In-DRAM Bulk AND/OR Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry, "Fast Bulk Bitwise AND and OR in DRAM" IEEE Computer Architecture Letters (CAL), April 2015. ### Fast Bulk Bitwise AND and OR in DRAM Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*, Michael A. Kozuch[†], Onur Mutlu*, Phillip B. Gibbons[†], Todd C. Mowry* *Carnegie Mellon University [†]Intel Pittsburgh ### More on Ambit Vivek Seshadri et al., "<u>Ambit: In-Memory Accelerator</u> for Bulk Bitwise Operations Using Commodity DRAM <u>Technology</u>," MICRO 2017. Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology Vivek Seshadri 1,5 Donghyuk Lee 2,5 Thomas Mullins 3,5 Hasan Hassan 4 Amirali Boroumand 5 Jeremie Kim 4,5 Michael A. Kozuch 3 Onur Mutlu 4,5 Phillip B. Gibbons 5 Todd C. Mowry 5 1 Microsoft Research India 2 NVIDIA Research 3 Intel 4 ETH Zürich 5 Carnegie Mellon University ### In-DRAM Bulk Bitwise Execution Vivek Seshadri and Onur Mutlu, "In-DRAM Bulk Bitwise Execution Engine" Invited Book Chapter in Advances in Computers, to appear in 2020. [Preliminary arXiv version] ### In-DRAM Bulk Bitwise Execution Engine Vivek Seshadri Microsoft Research India visesha@microsoft.com Onur Mutlu ETH Zürich onur.mutlu@inf.ethz.ch ### SIMDRAM Framework Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu, "SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM" Proceedings of the 26th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Virtual, March-April 2021. [2-page Extended Abstract] [Short Talk Slides (pptx) (pdf)] [Talk Slides (pptx) (pdf)] [Short Talk Video (5 mins)] [Full Talk Video (27 mins)] # SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM *Nastaran Hajinazar^{1,2} Nika Mansouri Ghiasi¹ *Geraldo F. Oliveira¹ Minesh Patel¹ Juan Gómez-Luna¹ Sven Gregorio¹ Mohammed Alser¹ Onur Mutlu¹ João Dinis Ferreira¹ Saugata Ghose³ ¹ETH Zürich ²Simon Fraser University ³University of Illinois at Urbana–Champaign # SIMDRAM Key Idea - **SIMDRAM:** An end-to-end processing-using-DRAM framework that provides the programming interface, the ISA, and the hardware support for: - Efficiently computing complex operations in DRAM - Providing the ability to implement **arbitrary** operations as required - Using an **in-DRAM massively-parallel SIMD substrate** that requires **minimal** changes to DRAM architecture ### **SIMDRAM Framework: Overview** ### More on the SIMDRAM Framework Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu, "SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM" Proceedings of the 26th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Virtual, March-April 2021. [2-page Extended Abstract] [Short Talk Slides (pptx) (pdf)] [Talk Slides (pptx) (pdf)] [Short Talk Video (5 mins)] [Full Talk Video (27 mins)] # SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM *Nastaran Hajinazar^{1,2} Nika Mansouri Ghiasi¹ *Geraldo F. Oliveira¹ Minesh Patel¹ Juan Gómez-Luna¹ Sven Gregorio¹ Mohammed Alser¹ Onur Mutlu¹ João Dinis Ferreira¹ Saugata Ghose³ ¹ETH Zürich ²Simon Fraser University ³University of Illinois at Urbana–Champaign ### In-DRAM Physical Unclonable Functions Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu, "The DRAM Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM Devices" Proceedings of the <u>24th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), Vienna, Austria, February 2018. [Lightning Talk Video] [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Full Talk Lecture Video (28 minutes)] ### The DRAM Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices Jeremie S. Kim^{†§} Minesh Patel[§] Hasan Hassan[§] Onur Mutlu^{§†} [†]Carnegie Mellon University [§]ETH Zürich ### In-DRAM True Random Number Generation Jeremie S. Kim, Minesh Patel,
Hasan Hassan, Lois Orosa, and Onur Mutlu, "D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput" Proceedings of the <u>25th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), Washington, DC, USA, February 2019. [Slides (pptx) (pdf)] [Full Talk Video (21 minutes)] [Full Talk Lecture Video (27 minutes)] Top Picks Honorable Mention by IEEE Micro. ### D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput Jeremie S. Kim^{‡§} Minesh Patel[§] Hasan Hassan[§] Lois Orosa[§] Onur Mutlu^{§‡} [‡]Carnegie Mellon University [§]ETH Zürich SAFARI 225 # Processing in Memory: Two Approaches - 1. Processing using Memory - 2. Processing near Memory ### Another Example: In-Memory Graph Processing Large graphs are everywhere (circa 2015) 36 Million Wikipedia Pages 1.4 Billion Facebook Users 300 Million Twitter Users 30 Billion Instagram Photos Scalable large-scale graph processing is challenging ## Key Bottlenecks in Graph Processing ``` for (v: graph.vertices) { for (w: v.successors) { w.next rank += weight * v.rank; 1. Frequent random memory accesses &w V w.rank w.next rank weight * v.rank w.edges W 2. Little amount of computation ``` ## Opportunity: 3D-Stacked Logic+Memory ## Tesseract System for Graph Processing Interconnected set of 3D-stacked memory+logic chips with simple cores # Tesseract System for Graph Processing # Tesseract System for Graph Processing ### Evaluated Systems # Tesseract Graph Processing Performance ## Tesseract Graph Processing Performance # Tesseract Graph Processing System Energy **SAFARI** Ahn+, "A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing" ISCA 2015. ### More on Tesseract Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, "A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing" Proceedings of the <u>42nd International Symposium on</u> <u>Computer Architecture</u> (**ISCA**), Portland, OR, June 2015. [Slides (pdf)] [Lightning Session Slides (pdf)] ### A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing Junwhan Ahn Sungpack Hong[§] Sungjoo Yoo Onur Mutlu[†] Kiyoung Choi junwhan@snu.ac.kr, sungpack.hong@oracle.com, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr Seoul National University [§]Oracle Labs [†]Carnegie Mellon University ### PIM on Mobile Devices Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks" Proceedings of the <u>23rd International Conference on Architectural</u> <u>Support for Programming Languages and Operating</u> <u>Systems</u> (**ASPLOS**), Williamsburg, VA, USA, March 2018. ### Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks Amirali Boroumand¹ Saugata Ghose¹ Youngsok Kim² Rachata Ausavarungnirun¹ Eric Shiu³ Rahul Thakur³ Daehyun Kim^{4,3} Aki Kuusela³ Allan Knies³ Parthasarathy Ranganathan³ Onur Mutlu^{5,1} # Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks ### **Amirali Boroumand** Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, Onur Mutlu ### **Consumer Devices** ### Consumer devices are everywhere! # Energy consumption is a first-class concern in consumer devices ### Four Important Workloads Chrome Google's web browser #### **TensorFlow Mobile** Google's machine learning framework Google's video codec Google's video codec ## **Energy Cost of Data Movement** Ist key observation: 62.7% of the total system energy is spent on data movement Potential solution: move computation close to data Challenge: limited area and energy budget 242 ### Using PIM to Reduce Data Movement 2nd key observation: a significant fraction of the data movement often comes from simple functions We can design lightweight logic to implement these <u>simple functions</u> in <u>memory</u> Small embedded low-power core PIM Core **Small fixed-function** accelerators Offloading to PIM logic reduces energy and improves performance, on average, by 2.3X and 2.2X ## **Workload Analysis** Chrome Google's web browser #### **TensorFlow Mobile** Google's machine learning framework Google's video codec Google's video codec ### **TensorFlow Mobile** 57.3% of the inference energy is spent on data movement 54.4% of the data movement energy comes from packing/unpacking and quantization ### More on PIM for Mobile Devices Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks" Proceedings of the <u>23rd International Conference on Architectural Support for</u> <u>Programming Languages and Operating Systems</u> (**ASPLOS**), Williamsburg, VA, USA, March 2018. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)] [Lightning Talk Video (2 minutes)] [Full Talk Video (21 minutes)] ### Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks Amirali Boroumand¹ Saugata Ghose¹ Youngsok Kim² Rachata Ausavarungnirun¹ Eric Shiu³ Rahul Thakur³ Daehyun Kim^{4,3} Aki Kuusela³ Allan Knies³ Parthasarathy Ranganathan³ Onur Mutlu^{5,1} SAFARI ### Truly Distributed GPU Processing with PIM void applyScaleFactorsKernel(uint8_T * const out, uint8_T const * const in, const double *factor, # Accelerating GPU Execution with PIM (I) Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler, "Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems" Proceedings of the <u>43rd International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Seoul, South Korea, June 2016. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] ### Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh[‡] Eiman Ebrahimi[†] Gwangsun Kim^{*} Niladrish Chatterjee[†] Mike O'Connor[†] Nandita Vijaykumar[‡] Onur Mutlu^{§‡} Stephen W. Keckler[†] [‡]Carnegie Mellon University [†]NVIDIA *KAIST [§]ETH Zürich ## Accelerating GPU Execution with PIM (II) Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das, "Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities" Proceedings of the <u>25th International Conference on Parallel</u> <u>Architectures and Compilation Techniques</u> (**PACT**), Haifa, Israel, September 2016. # Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities Ashutosh Pattnaik¹ Xulong Tang¹ Adwait Jog² Onur Kayıran³ Asit K. Mishra⁴ Mahmut T. Kandemir¹ Onur Mutlu^{5,6} Chita R. Das¹ ¹Pennsylvania State University ²College of William and Mary ³Advanced Micro Devices, Inc. ⁴Intel Labs ⁵ETH Zürich ⁶Carnegie Mellon University ### Accelerating Linked Data Structures Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, and Onur Mutlu, "Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation" Proceedings of the 34th IEEE International Conference on Computer Design (ICCD), Phoenix, AZ, USA, October 2016. # Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation Kevin Hsieh[†] Samira Khan[‡] Nandita Vijaykumar[†] Kevin K. Chang[†] Amirali Boroumand[†] Saugata Ghose[†] Onur Mutlu^{§†} [†] Carnegie Mellon University [‡] University of Virginia [§] ETH Zürich ### Accelerating Dependent Cache Misses Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt, "Accelerating Dependent Cache Misses with an Enhanced Memory Controller" Proceedings of the <u>43rd International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Seoul, South Korea, June 2016. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] ## Accelerating Dependent Cache Misses with an Enhanced Memory Controller Milad Hashemi*, Khubaib[†], Eiman Ebrahimi[‡], Onur Mutlu[§], Yale N. Patt* *The University of Texas at Austin †Apple ‡NVIDIA §ETH Zürich & Carnegie Mellon University ### Accelerating Runahead Execution Milad Hashemi, Onur Mutlu, and Yale N. Patt, "Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads" Proceedings of the 49th International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, October 2016. [Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)] # Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads Milad Hashemi*, Onur Mutlu§, Yale N. Patt* *The University of Texas at Austin §ETH Zürich # Accelerating Climate Modeling Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal, "NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling" Proceedings of the <u>30th International Conference on Field-Programmable Logic</u> <u>and Applications</u> (**FPL**), Gothenburg, Sweden, September 2020. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (23 minutes)] Nominated for the Stamatis Vassiliadis Memorial Award. # NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling Gagandeep Singh a,b,c Dionysios Diamantopoulos c Christoph Hagleitner c Juan Gómez-Luna b Sander Stuijk a Onur Mutlu b Henk Corporaal a Eindhoven University of Technology b ETH Zürich c IBM Research Europe, Zurich # Accelerating Approximate String
Matching Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, October 2020. [<u>Lighting Talk Video</u> (1.5 minutes)] [<u>Lightning Talk Slides (pptx) (pdf)</u>] [<u>Talk Video</u> (18 minutes)] [<u>Slides (pptx) (pdf)</u>] #### GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis Damla Senol Cali^{†™} Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[⋄] Lavanya Subramanian[‡] Jeremie S. Kim^{⋄†} Rachata Ausavarungnirun[⊙] Mohammed Alser[⋄] Juan Gomez-Luna[⋄] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{⋄†▽} † Carnegie Mellon University [™] Processor Architecture Research Lab, Intel Labs [▽] Bilkent University [⋄] ETH Zürich ‡ Facebook [⊙] King Mongkut's University of Technology North Bangkok ^{*} University of Illinois at Urbana–Champaign 254 #### Accelerating Time Series Analysis Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu, "NATSA: A Near-Data Processing Accelerator for Time Series Analysis" Proceedings of the 38th IEEE International Conference on Computer Design (ICCD), Virtual, October 2020. [Slides (pptx) (pdf)] [Talk Video (10 minutes)] # NATSA: A Near-Data Processing Accelerator for Time Series Analysis Ivan Fernandez § Ricardo Quislant § Christina Giannoula † Mohammed Alser ‡ Juan Gómez-Luna ‡ Eladio Gutiérrez § Oscar Plata § Onur Mutlu ‡ § University of Malaga † National Technical University of Athens ‡ ETH Zürich #### DAMOV Methodology & Workloads #### DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks GERALDO F. OLIVEIRA, ETH Zürich, Switzerland JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland LOIS OROSA, ETH Zürich, Switzerland SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA NANDITA VIJAYKUMAR, University of Toronto, Canada IVAN FERNANDEZ, University of Malaga, Spain & ETH Zürich, Switzerland MOHAMMAD SADROSADATI, Institute for Research in Fundamental Sciences (IPM), Iran & ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Data movement between the CPU and main memory is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP), where some computation is moved close to memory. Prior NDP works investigate the root causes of data movement bottlenecks using different profiling methodologies and tools. However, there is still a lack of understanding about the key metrics that can identify different data movement bottlenecks and their relation to traditional and emerging data movement mitigation mechanisms. Our goal is to methodically identify potential sources of data movement over a broad set of applications and to comprehensively compare traditional compute-centric data movement mitigation techniques (e.g., caching and prefetching) to more memory-centric techniques (e.g., NDP), thereby developing a rigorous understanding of the best techniques to mitigate each source of data movement. With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main memory. We develop the first systematic methodology to classify applications based on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a particular application. We open-source DAMOV and the complete source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV. SAFARI https://arxiv.org/pdf/2105.03725.pdf #### We Need to Revisit the Entire Stack We can get there step by step #### PIM Review and Open Problems #### A Modern Primer on Processing in Memory Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d SAFARI Research Group ^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" Invited Book Chapter in Emerging Computing: From Devices to Systems Looking Beyond Moore and Von Neumann, Springer, to be published in 2021. #### A Modern Primer on Processing in Memory Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d SAFARI Research Group ^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok #### Abstract Modern computing systems are overwhelmingly designed to move data to computation. This design choice goes directly against at least three key trends in computing that cause performance, scalability and energy bottlenecks: (1) data access is a key bottleneck as many important applications are increasingly data-intensive, and memory bandwidth and energy do not scale well, (2) energy consumption is a key limiter in almost all computing platforms, especially server and mobile systems, (3) data movement, especially off-chip to on-chip, is very expensive in terms of bandwidth, energy and latency, much more so than computation. These trends are especially severely-felt in the data-intensive server and energy-constrained mobile systems of today. At the same time, conventional memory technology is facing many technology scaling challenges in terms of reliability, energy, and performance. As a result, memory system architects are open to organizing memory in different ways and making it more intelligent, at the expense of higher cost. The emergence of 3D-stacked memory plus logic, the adoption of error correcting codes inside the latest DRAM chips, proliferation of different main memory standards and chips, specialized for different purposes (e.g., graphics, low-power, high bandwidth, low latency), and the necessity of designing new solutions to serious reliability and security issues, such as the RowHammer phenomenon, are an evidence of this trend. This chapter discusses recent research that aims to practically enable computation close to data, an approach we call processing-in-memory (PIM). PIM places computation mechanisms in or near where the data is stored (i.e., inside the memory chips, in the logic layer of 3D-stacked memory, or in the memory controllers), so that data movement between the computation units and memory is reduced or eliminated. While the general idea of PIM is not new, we discuss motivating trends in applications as well as memory circuits/technology that greatly exacerbate the need for enabling it in modern computing systems. We examine at least two promising new approaches to designing PIM systems to accelerate important data-intensive applications: (1) processing using memory by exploiting analog operational properties of DRAM chips to perform massively-parallel operations in memory, with low-cost changes, (2) processing near memory by exploiting 3D-stacked memory technology design to provide high memory bandwidth and low memory latency to in-memory logic. In both approaches, we describe and tackle relevant cross-layer research, design, and adoption challenges in devices, architecture, systems, and programming models. Our focus is on the development of in-memory processing designs that can be adopted in real computing platforms at low cost. We conclude by discussing work on solving key challenges to the practical adoption of PIM. Keywords: memory systems, data movement, main memory, processing-in-memory, near-data processing, computation-in-memory, processing using memory, processing near memory, 3D-stacked memory, non-volatile memory, energy efficiency, high-performance computing, computer architecture, computing paradigm, emerging technologies, memory scaling, technology scaling, dependable systems, robust systems, hardware security, system security, latency, low-latency computing | - | | |-----|-------| | Car | iteni | | | пеш | | 1 | Introduction | | | | | |---|---|----|--|--|--| | 2 | Major Trends Affecting Main Memory | | | | | | 3 | The Need for Intelligent Memory Controllers | | | | | | | to Enhance Memory Scaling | 6 | | | | | 4 | Perils of Processor-Centric Design | 9 | | | | | 5 | Processing-in-Memory (PIM): Technology | | | | | | | Enablers and Two Approaches | 12 | | | | | | 5.1 New Technology Enablers: 3D-Stacked | | | | | | | Memory and Non-Volatile Memory | 12 | | | | | | 5.2 Two Approaches: Processing Using | | | | | | | Memory (PUM) vs. Processing Near | | | | | | | Memory (PNM) | 13 | | | | | 6 | Processing Using Memory (PUM) | 14 | | | | | U | 6.1 RowClone | 14 | | | | | | 6.2 Ambit | 15 | | | |
| | | 17 | | | | | | 6.3 Gather-Scatter DRAM | | | | | | | 6.4 In-DRAM Security Primitives | 17 | | | | | 7 | Processing Near Memory (PNM) | 18 | | | | | | 7.1 Tesseract: Coarse-Grained Application- | | | | | | | Level PNM Acceleration of Graph Pro- | | | | | | | cessing | 19 | | | | | | 7.2 Function-Level PNM Acceleration of | | | | | | | Mobile Consumer Workloads | 20 | | | | | | 7.3 Programmer-Transparent Function- | | | | | | | Level PNM Acceleration of GPU | | | | | | | Applications | 21 | | | | | | 7.4 Instruction-Level PNM Acceleration | | | | | | | with PIM-Enabled Instructions (PEI) | 21 | | | | | | 7.5 Function-Level PNM Acceleration of | | | | | | | Genome Analysis Workloads | 22 | | | | | _ | 7.6 Application-Level PNM Acceleration of | | | | | | L | Time Series Analysis | 23 | | | | | 8 | Enabling the Adoption of PIM | 24 | | | | | | 8.1 Programming Models and Code Genera- | | | | | | | tion for PIM | 24 | | | | | | 8.2 PIM Runtime: Scheduling and Data | | | | | | | Mapping | 25 | | | | | | 8.3 Memory Coherence | 27 | | | | | | 8.4 Virtual Memory Support | 27 | | | | | | 8.5 Data Structures for PIM | 28 | | | | | | 8.6 Benchmarks and Simulation Infrastruc- | | | | | | | tures | 29 | | | | | | 8.7 Real PIM Hardware Systems and Proto- | - | | | | | | types | 30 | | | | | | 8.8 Security Considerations | 30 | | | | | | | | | | | | 9 | Conclusion and Future Outlook | 31 | | | | #### 1. Introduction Main memory, built using the Dynamic Random Access Memory (DRAM) technology, is a major component in nearly all computing systems, including servers, cloud platforms, mobile/embedded devices, and sensor systems. Across all of these systems, the data working set sizes of modern applications are rapidly growing, while the need for fast analysis of such data is increasing. Thus, main memory is becoming an increasingly significant bottleneck across a wide variety of computing systems and applications [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Alleviating the main memory bottleneck requires the memory capacity, energy, cost, and performance to all scale in an efficient manner across technology generations. Unfortunately, it has become increasingly difficult in recent years, especially the past decade, to scale all of these dimensions [1, 2, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], and thus the main memory bottleneck has been worsening. A major reason for the main memory bottleneck is the high energy and latency cost associated with data movement. In modern computers, to perform any operation on data that resides in main memory, the processor must retrieve the data from main memory. This requires the memory controller to issue commands to a DRAM module across a relatively slow and power-hungry off-chip bus (known as the memory channel). The DRAM module sends the requested data across the memory channel, after which the data is placed in the caches and registers. The CPU can perform computation on the data once the data is in its registers. Data movement from the DRAM to the CPU incurs long latency and consumes a significant amount of energy [7, 50, 51, 52, 53, 54]. These costs are often exacerbated by the fact that much of the data brought into the caches is not reused by the CPU [52, 53, 55, 56], providing little benefit in return for the high latency and energy cost. The cost of data movement is a fundamental issue with the processor-centric nature of contemporary computer systems. The CPU is considered to be the master in the system, and computation is performed only in the processor (and accelerators). In contrast, data storage and communication units, including the main memory, are treated as unintelligent workers that are incapable of computation. As a result of this processor-centric design paradigm, data moves a lot in the system between the computation units and communication/ storage units so that computation can be done on it. With the increasingly data-centric nature of contemporary and emerging appli- # PIM Review and Open Problems (II) #### A Workload and Programming Ease Driven Perspective of Processing-in-Memory Saugata Ghose[†] Amirali Boroumand[†] Jeremie S. Kim[†]§ Juan Gómez-Luna[§] Onur Mutlu^{§†} †Carnegie Mellon University §ETH Zürich Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu, "Processing-in-Memory: A Workload-Driven Perspective" Invited Article in IBM Journal of Research & Development, Special Issue on Hardware for Artificial Intelligence, to appear in November 2019. [Preliminary arXiv version] #### UPMEM Processing-in-DRAM Engine (2019) - Processing in DRAM Engine - Includes standard DIMM modules, with a large number of DPU processors combined with DRAM chips. - Replaces standard DIMMs - DDR4 R-DIMM modules - 8GB+128 DPUs (16 PIM chips) - Standard 2x-nm DRAM process - Large amounts of compute & memory bandwidth ### **UPMEM Memory Modules** - E19: 8 chips DIMM (1 rank). DPUs @ 267 MHz - P21: 16 chips DIMM (2 ranks). DPUs @ 350 MHz # 2,560-DPU Processing-in-Memory System #### Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland IZZAT EL HAJJ, American University of Beirut, Lebanon IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain CHRISTINA GIANNOULA, ETH Zürich, Switzerland and NTUA, Greece GERALDO F. OLIVEIRA, ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound. For such workloads, the data novement between main memory and CPU cores imposes a significant overhead in terns of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data movement bottleneck requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as processing—in-memory (PM). Recent research explores different forms of PIM architectures, motivated by the emergence of new 3Dstacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip. This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present PIM (Processing,-bendemy) benchmarks), a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra, databases, data analytics, graph processing, which we identify as memory-bound. We evaluate the performance and scaling characteristics of PIM benchmarks on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-of-the-art CPU and CPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM systems with 460 and 25.50 DPUs provides new insights about suitability of different workloads to the PIM systems you commendations for software designers, and suggestions and hints for hardware and architecture designers of future PIM systems. #### More on the UPMEM PIM System #### Experimental Analysis of the UPMEM PIM Engine #### Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland IZZAT EL HAJJ, American University of Beirut, Lebanon IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain CHRISTINA GIANNOULA, ETH Zürich, Switzerland and NTUA, Greece GERALDO F. OLIVEIRA, ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a significant overhead in terms of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this *data movement bottleneck* requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as *processing-in-memory (PIM)*. Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-stacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called *DRAM Processing Units* (*DPUs*), integrated in the same chip. This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the
UPMEM-based PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present *PrIM* (*Processing-In-Memory benchmarks*), a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra, databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we identify as memory-bound. We evaluate the performance and scaling characteristics of PrIM benchmarks on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM system, programming recommendations for software designers, and suggestions and hints for hardware and architecture designers of future PIM systems. https://arxiv.org/pdf/2105.03814.pdf # **PrIM Benchmarks: Application Domains** | Domain | Benchmark | Short name | |---------------------------|-------------------------------|------------| | Dance linear algebra | Vector Addition | VA | | Dense linear algebra | Matrix-Vector Multiply | GEMV | | Sparse linear algebra | Sparse Matrix-Vector Multiply | SpMV | | Databasas | Select | SEL | | Databases | Unique | UNI | | Data analytica | Binary Search | BS | | Data analytics | Time Series Analysis | TS | | Graph processing | Breadth-First Search | BFS | | Neural networks | Multilayer Perceptron | MLP | | Bioinformatics | Needleman-Wunsch | NW | | lung of a pure species of | Image histogram (short) | HST-S | | Image processing | Image histogram (large) | HST-L | | | Reduction | RED | | Devellel maioritives | Prefix sum (scan-scan-add) | SCAN-SSA | | Parallel primitives | Prefix sum (reduce-scan-scan) | SCAN-RSS | | | Matrix transposition | TRNS | #### PrIM Benchmarks are Open Source - All microbenchmarks, benchmarks, and scripts - https://github.com/CMU-SAFARI/prim-benchmarks #### **Understanding a Modern PIM Architecture** # Understanding a Modern Processing-in-Memory Architecture: Benchmarking and Experimental Characterization ``` Juan Gómez-Luna¹ Izzat El Hajj² Ivan Fernandez^{1,3} Christina Giannoula^{1,4} Geraldo F. Oliveira¹ Onur Mutlu¹ ``` ¹ETH Zürich ²American University of Beirut ³University of Malaga ⁴National Technical University of Athens https://arxiv.org/pdf/2105.03814.pdf https://github.com/CMU-SAFARI/prim-benchmarks #### Understanding a Modern PIM Architecture #### More on Analysis of the UPMEM PIM Engine #### More on Analysis of the UPMEM PIM Engine # FPGA-based Processing Near Memory Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu, "FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications" IEEE Micro (IEEE MICRO), to appear, 2021. # FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications Gagandeep Singh[⋄] Mohammed Alser[⋄] Damla Senol Cali[⋈] Dionysios Diamantopoulos[▽] Juan Gómez-Luna[⋄] Henk Corporaal[⋆] Onur Mutlu^{⋄⋈} [⋄]ETH Zürich [⋈] Carnegie Mellon University *Eindhoven University of Technology [▽]IBM Research Europe #### DAMOV Analysis Methodology & Workloads #### DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks GERALDO F. OLIVEIRA, ETH Zürich, Switzerland JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland LOIS OROSA, ETH Zürich, Switzerland SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA NANDITA VIJAYKUMAR, University of Toronto, Canada IVAN FERNANDEZ, University of Malaga, Spain & ETH Zürich, Switzerland MOHAMMAD SADROSADATI, Institute for Research in Fundamental Sciences (IPM), Iran & ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Data movement between the CPU and main memory is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP), where some computation is moved close to memory. Prior NDP works investigate the root causes of data movement bottlenecks using different profiling methodologies and tools. However, there is still a lack of understanding about the key metrics that can identify different data movement bottlenecks and their relation to traditional and emerging data movement mitigation mechanisms. Our goal is to methodically identify potential sources of data movement over a broad set of applications and to comprehensively compare traditional compute-centric data movement mitigation techniques (e.g., caching and prefetching) to more memory-centric techniques (e.g., NDP), thereby developing a rigorous understanding of the best techniques to mitigate each source of data movement. With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main memory. We develop the first systematic methodology to classify applications based on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a particular application. We open-source DAMOV and the complete source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV. SAFARI https://arxiv.org/pdf/2105.03725.pdf #### **Step 1: Application Profiling** - We analyze 345 applications from distinct domains: - Graph Processing - Deep Neural Networks - Physics - High-Performance Computing - Genomics - Machine Learning - Databases - Data Reorganization - Image Processing - Map-Reduce - Benchmarking - Linear Algebra #### DAMOV is Open Source We open-source our benchmark suite and our toolchain #### DAMOV is Open Source We open-source our benchmark suite and our toolchain #### **Get DAMOV at:** #### https://github.com/CMU-SAFARI/DAMOV #### More on DAMOV Analysis Methodology & Workloads #### More on DAMOV Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita Vijaykumar, Ivan fernandez, Mohammad Sadrosadati, and Onur Mutlu, "DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks" Preprint in <u>arXiv</u>, 8 May 2021. [arXiv preprint] [DAMOV Suite and Simulator Source Code] [SAFARI Live Seminar Video (2 hrs 40 mins)] ONUR MUTLU, ETH Zürich, Switzerland [Short Talk Video (21 minutes)] # DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks GERALDO F. OLIVEIRA, ETH Zürich, Switzerland JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland LOIS OROSA, ETH Zürich, Switzerland SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA NANDITA VIJAYKUMAR, University of Toronto, Canada IVAN FERNANDEZ, University of Malaga, Spain & ETH Zürich, Switzerland MOHAMMAD SADROSADATI, ETH Zürich, Switzerland # Samsung Function-in-Memory DRAM (2021) Samsung Newsroom CORPORATE **PRODUCTS** PRESS RESOURCES VIEWS **ABOUT US** #### Samsung Develops Industry's First High Bandwidth Memory with Al Processing Power Korea on February 17, 2021 Audio Share (5 The new architecture will deliver over twice the system performance and reduce energy consumption by more than 70% Samsung Electronics, the world leader in advanced memory technology, today announced that it has developed the industry's first High Bandwidth Memory (HBM) integrated with artificial intelligence (AI) processing power — the HBM-PIM The new processing-in-memory (PIM) architecture brings powerful AI computing capabilities inside high-performance memory, to accelerate large-scale processing in data centers, high performance computing (HPC) systems and AI-enabled mobile applications. Kwangil Park, senior vice president of Memory Product Planning at Samsung Electronics stated, "Our groundbreaking HBM-PIM is the industry's first programmable PIM solution tailored for diverse Al-driven workloads such as HPC, training and inference. We plan to build upon this breakthrough by further collaborating with Al solution providers for even more advanced PIM-powered applications." #### Samsung Function-in-Memory DRAM (2021) #### FIMDRAM based on HBM2 [3D Chip Structure of HBM with FIMDRAM] #### **Chip Specification** 128DQ / 8CH / 16 banks / BL4 32 PCU blocks (1 FIM block/2 banks) 1.2 TFLOPS (4H) FP16 ADD / Multiply (MUL) / Multiply-Accumulate (MAC) / Multiply-and- Add (MAD) #### ISSCC 2021 / SESSION 25 / DRAM / 25.4 25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism. for Machine Learning Applications Young-Cheon Kwon', Suk Han Lee', Jaehoon Lee', Sang-Hyuk Kwon', Je Min Ryu', Jong-Pii Son', Seongil O', Hak-Soo Yu', Haesuk Lee', Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi', Hyun-Sung Shin', Jin Kim', BengSeng Phuah', HyoungMin Kim', Myeong Jun Song', Ahn Choi', Daeho Kim', SooYoung Kim', Eun-Bong Kim', David Wang', Shinhaeng Kang', Yuhwan Ro³, Seungwoo Seo³, JoonHo Song³, Jaeyoun Youn', Kyomin Sohn', Nam Sung Kim' ¹Samsung Electronics, Hwaseong, Korea ²Samsung Electronics, San Jose, CA ³Samsung Electronics, Suwon, Korea ### Samsung Function-in-Memory DRAM (2021) #### **Chip Implementation** -
Mixed design methodology to implement FIMDRAM - Full-custom + Digital RTL [Digital RTL design for PCU block] #### ISSCC 2021 / SESSION 25 / DRAM / 25.4 25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications Young-Cheon Kwon', Suk Han Let', Jaehoon Let', Sang-Hvuk Kwon', Je Min Ryu', Jong-Pil Son', Seongil O', Hak-Soo Yu', Haesuk Lee', Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi', Hyun-Sung Shin', Jin Kim', BengSeng Phuah', HyoungMin Kim', Hyeng Juan Song', Ahn Choi', Jeacho Kim', Soo'Oung Kim', Eun-Bong Kim', David Wang', Shinhaeng Kang', Yuhwan Ro', Seungwoo Seo', JoonHo Song', Jaeyoun Youn', Kyomin Sohn', Man Sung Kim' | Cell array
for bank0 | Cell array
for bank4 | Cell array
for bank0 | Cell array
for bank4 | Pseudo | Pseudo | |---|--|---|--|--------------|-----------| | PCU block
for bank0 & 1 | PCU block
for bank4 & 5 | PCU block
for bank0 & 1 | PCU block
for bank4 & 5 | channel-0 | channel-1 | | Cell array
for bank1
Cell array
for bank2 | Cell array
for bank5
Cell array
for bank6 | Cell array
for bank1
Cell array
for bank2 | Cell array
for bank5
Cell array
for bank6 | | | | PCU block
for bank2 & 3 | PCU block
for bank6 & 7 | PCU block
for bank2 & 3 | PCU block
for bank6 & 7 | | | | Cell array
for bank3 | Cell array
for bank7 | Cell array
for bank3 | Cell array
for bank7 | | | | | | TSV & | Peri C | ontrol Block | | | Cell array
for bank11 | Cell array
for bank15 | Cell array
for bank11 | Cell array
for bank15 | | | | PCU block
for bank10 & 11 | PCU block
for bank14 & 15 | PCU block
for bank10 & 11 | PCU block
for bank14 & 15 | | | | Cell array
for bank10
Cell array
for bank9 | Cell array
for bank14
Cell array
for bank13 | Cell array
for bank10
Cell array
for bank9 | Cell array
for bank14
Cell array
for bank13 | | | | PCU block
for bank8 & 9 | PCU block
for bank12 & 13 | PCU block
for bank8 & 9 | PCU block
for bank12 & 13 | Pseudo | Pseudo | | Cell array
for bank8 | Cell array
for bank12 | Cell array
for bank8 | Cell array
for bank12 | channel-0 | channel-1 | #### Detailed Lectures on PIM (I) - Computer Architecture, Fall 2020, Lecture 6 - Computation in Memory (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=oGcZAGwfEUE&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=12 - Computer Architecture, Fall 2020, Lecture 7 - Near-Data Processing (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=j2GIigqn1Qw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=13 - Computer Architecture, Fall 2020, Lecture 11a - Memory Controllers (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=TeG773OgiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=20 - Computer Architecture, Fall 2020, Lecture 12d - Real Processing-in-DRAM with UPMEM (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=25 #### Detailed Lectures on PIM (II) - Computer Architecture, Fall 2020, Lecture 15 - Emerging Memory Technologies (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=AlE1rD9G_YU&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=28 - Computer Architecture, Fall 2020, Lecture 16a - Opportunities & Challenges of Emerging Memory Technologies (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=pmLszWGmMGQ&list=PL5Q2soXY2Zi9xidyIgBx Uz7xRPS-wisBN&index=29 - Computer Architecture, Fall 2020, Guest Lecture - In-Memory Computing: Memory Devices & Applications (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=wNmqQHiEZNk&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=41 #### A Tutorial on PIM Onur Mutlu, "Memory-Centric Computing Systems" Invited Tutorial at <u>66th International Electron Devices</u> Meeting (IEDM), Virtual, 12 December 2020. [Slides (pptx) (pdf)] [Executive Summary Slides (pptx) (pdf)] [Tutorial Video (1 hour 51 minutes)] [Executive Summary Video (2 minutes)] [Abstract and Bio] [Related Keynote Paper from VLSI-DAT 2020] [Related Review Paper on Processing in Memory] https://www.youtube.com/watch?v=H3sEaINPBOE 1,641 views • Dec 23, 2020 ♣ SHARE =+ SAVE • ANALYTICS EDIT VIDEO # Computing Architectures with Minimal Data Movement # Challenge and Opportunity for Future Fundamentally **Energy-Efficient** (Data-Centric) Computing Architectures # Challenge and Opportunity for Future Fundamentally High-Performance (Data-Centric) Computing Architectures # Four Key Issues in Future Platforms Fundamentally Secure/Reliable/Safe Architectures - Fundamentally Energy-Efficient Architectures - Memory-centric (Data-centric) Architectures Fundamentally Low-Latency and Predictable Architectures Architectures for AI/ML, Genomics, Medicine, Health # Concluding Remarks # A Quote from A Famous Architect "architecture [...] based upon principle, and not upon precedent" # Precedent-Based Design "architecture [...] based upon principle, and not upon precedent" # Principled Design "architecture [...] based upon principle, and not upon precedent" 294 # Another Example: Precedent-Based Design # Principled Design # Another Principled Design # Another Principled Design # Principle Applied to Another Structure 300 Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0, SOURCE: https://www.dezeen.gom/2016/20/29/396;tinggo-yellating/engo-yellating/engo-gellating/engo-yellating/e # Overarching Principles for Computing? # Fundamentally Better Architectures # **Data-centric** **Data-driven** **Data-aware** # A Blueprint for Fundamentally Better Architectures Onur Mutlu, "Intelligent Architectures for Intelligent Computing Systems" Invited Paper in Proceedings of the <u>Design, Automation, and Test in</u> <u>Europe Conference</u> (**DATE**), Virtual, February 2021. [Slides (pptx) (pdf)] [IEDM Tutorial Slides (pptx) (pdf)] [Short DATE Talk Video (11 minutes)] [Longer IEDM Tutorial Video (1 hr 51 minutes)] ## Intelligent Architectures for Intelligent Computing Systems Onur Mutlu ETH Zurich omutlu@gmail.com # We Need to Exploit Good Principles - Data-centric design - All components intelligent - Good cross-layer communication, expressive interfaces - Better-than-worst-case design - Heterogeneity - Flexibility, adaptability # Open minds # Concluding Remarks - It is time to design principled computing architectures to achieve the highest security, performance, and efficiency - Discover design principles for fundamentally secure and reliable computer architectures - Design complete systems to be balanced and energy-efficient, i.e., data-centric (or memory-centric) and low-latency - Enable new platforms for genomics, medicine, health, AI/ML - This can - Lead to orders-of-magnitude improvements - Enable new applications & computing platforms - Enable better understanding of nature 305 # The Future is Very Bright - Regardless of challenges - in underlying technology and overlying problems/requirements ### We Need to Think and Act Across the Stack We can get there step by step # PIM Review and Open Problems # A Modern Primer on Processing in Memory Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d SAFARI Research Group ^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" Invited Book Chapter in <u>Emerging Computing: From Devices to Systems -</u> Looking Beyond Moore and Von Neumann, Springer, to be published in 2021. ### A Modern Primer on Processing in Memory Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d SAFARI Research Group ^aETH Zürich ^bCarnegie Mellon University ^cUniversity
of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok ### Abstract Modern computing systems are overwhelmingly designed to move data to computation. This design choice goes directly against at least three key trends in computing that cause performance, scalability and energy bottlenecks: (1) data access is a key bottleneck as many important applications are increasingly data-intensive, and memory bandwidth and energy do not scale well, (2) energy consumption is a key limiter in almost all computing platforms, especially server and mobile systems, (3) data movement, especially off-chip to on-chip, is very expensive in terms of bandwidth, energy and latency, much more so than computation. These trends are especially severely-felt in the data-intensive server and energy-constrained mobile systems of today. At the same time, conventional memory technology is facing many technology scaling challenges in terms of reliability, energy, and performance. As a result, memory system architects are open to organizing memory in different ways and making it more intelligent, at the expense of higher cost. The emergence of 3D-stacked memory plus logic, the adoption of error correcting codes inside the latest DRAM chips, proliferation of different main memory standards and chips, specialized for different purposes (e.g., graphics, low-power, high bandwidth, low latency), and the necessity of designing new solutions to serious reliability and security issues, such as the RowHammer phenomenon, are an evidence of this trend. This chapter discusses recent research that aims to practically enable computation close to data, an approach we call processing-in-memory (PIM). PIM places computation mechanisms in or near where the data is stored (i.e., inside the memory chips, in the logic layer of 3D-stacked memory, or in the memory controllers), so that data movement between the computation units and memory is reduced or eliminated. While the general idea of PIM is not new, we discuss motivating trends in applications as well as memory circuits/technology that greatly exacerbate the need for enabling it in modern computing systems. We examine at least two promising new approaches to designing PIM systems to accelerate important data-intensive applications: (1) processing using memory by exploiting analog operational properties of DRAM chips to perform massively-parallel operations in memory, with low-cost changes, (2) processing near memory by exploiting 3D-stacked memory technology design to provide high memory bandwidth and low memory latency to in-memory logic. In both approaches, we describe and tackle relevant cross-layer research, design, and adoption challenges in devices, architecture, systems, and programming models. Our focus is on the development of in-memory processing designs that can be adopted in real computing platforms at low cost. We conclude by discussing work on solving key challenges to the practical adoption of PIM. Keywords: memory systems, data movement, main memory, processing-in-memory, near-data processing, computation-in-memory, processing using memory, processing near memory, 3D-stacked memory, non-volatile memory, energy efficiency, high-performance computing, computer architecture, computing paradigm, emerging technologies, memory scaling, technology scaling, dependable systems, robust systems, hardware security, system security, latency, low-latency computing | - | | |-----|-------| | Car | iteni | | | пеш | | 1 | Introduction | 2 | |---|---|----| | 2 | Major Trends Affecting Main Memory | 4 | | 3 | The Need for Intelligent Memory Controllers | | | | to Enhance Memory Scaling | 6 | | 4 | Perils of Processor-Centric Design | 9 | | 5 | Processing-in-Memory (PIM): Technology | | | | Enablers and Two Approaches | 12 | | | 5.1 New Technology Enablers: 3D-Stacked | | | | Memory and Non-Volatile Memory | 12 | | | 5.2 Two Approaches: Processing Using | | | | Memory (PUM) vs. Processing Near | | | | Memory (PNM) | 13 | | 6 | Processing Using Memory (PUM) | 14 | | U | 6.1 RowClone | 14 | | | 6.2 Ambit | 15 | | | | 17 | | | 6.3 Gather-Scatter DRAM | | | | 6.4 In-DRAM Security Primitives | 17 | | 7 | Processing Near Memory (PNM) | 18 | | | 7.1 Tesseract: Coarse-Grained Application- | | | | Level PNM Acceleration of Graph Pro- | | | | cessing | 19 | | | 7.2 Function-Level PNM Acceleration of | | | | Mobile Consumer Workloads | 20 | | | 7.3 Programmer-Transparent Function- | | | | Level PNM Acceleration of GPU | | | | Applications | 21 | | | 7.4 Instruction-Level PNM Acceleration | | | | with PIM-Enabled Instructions (PEI) | 21 | | | 7.5 Function-Level PNM Acceleration of | | | | Genome Analysis Workloads | 22 | | _ | 7.6 Application-Level PNM Acceleration of | | | L | Time Series Analysis | 23 | | 8 | Enabling the Adoption of PIM | 24 | | | 8.1 Programming Models and Code Genera- | | | | tion for PIM | 24 | | | 8.2 PIM Runtime: Scheduling and Data | | | | Mapping | 25 | | | 8.3 Memory Coherence | 27 | | | 8.4 Virtual Memory Support | 27 | | | 8.5 Data Structures for PIM | 28 | | | 8.6 Benchmarks and Simulation Infrastruc- | | | | tures | 29 | | | 8.7 Real PIM Hardware Systems and Proto- | - | | | types | 30 | | | 8.8 Security Considerations | 30 | | | | | | 9 | Conclusion and Future Outlook | 31 | ### 1. Introduction Main memory, built using the Dynamic Random Access Memory (DRAM) technology, is a major component in nearly all computing systems, including servers, cloud platforms, mobile/embedded devices, and sensor systems. Across all of these systems, the data working set sizes of modern applications are rapidly growing, while the need for fast analysis of such data is increasing. Thus, main memory is becoming an increasingly significant bottleneck across a wide variety of computing systems and applications [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Alleviating the main memory bottleneck requires the memory capacity, energy, cost, and performance to all scale in an efficient manner across technology generations. Unfortunately, it has become increasingly difficult in recent years, especially the past decade, to scale all of these dimensions [1, 2, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], and thus the main memory bottleneck has been worsening. A major reason for the main memory bottleneck is the high energy and latency cost associated with data movement. In modern computers, to perform any operation on data that resides in main memory, the processor must retrieve the data from main memory. This requires the memory controller to issue commands to a DRAM module across a relatively slow and power-hungry off-chip bus (known as the memory channel). The DRAM module sends the requested data across the memory channel, after which the data is placed in the caches and registers. The CPU can perform computation on the data once the data is in its registers. Data movement from the DRAM to the CPU incurs long latency and consumes a significant amount of energy [7, 50, 51, 52, 53, 54]. These costs are often exacerbated by the fact that much of the data brought into the caches is not reused by the CPU [52, 53, 55, 56], providing little benefit in return for the high latency and energy cost. The cost of data movement is a fundamental issue with the processor-centric nature of contemporary computer systems. The CPU is considered to be the master in the system, and computation is performed only in the processor (and accelerators). In contrast, data storage and communication units, including the main memory, are treated as unintelligent workers that are incapable of computation. As a result of this processor-centric design paradigm, data moves a lot in the system between the computation units and communication/ storage units so that computation can be done on it. With the increasingly data-centric nature of contemporary and emerging appli- # PIM Review and Open Problems (II) ### A Workload and Programming Ease Driven Perspective of Processing-in-Memory Saugata Ghose[†] Amirali Boroumand[†] Jeremie S. Kim[†]§ Juan Gómez-Luna[§] Onur Mutlu^{§†} †Carnegie Mellon University §ETH Zürich Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu, "Processing-in-Memory: A Workload-Driven Perspective" Invited Article in IBM Journal of Research & Development, Special Issue on Hardware for Artificial Intelligence, to appear in November 2019. [Preliminary arXiv version] # A Tutorial on Memory-Centric Systems Onur Mutlu, "Memory-Centric Computing Systems" Invited Tutorial at <u>66th International Electron Devices</u> Meeting (IEDM), Virtual, 12 December 2020. [Slides (pptx) (pdf)] [Executive Summary Slides (pptx) (pdf)] [Tutorial Video (1 hour 51 minutes)] [Executive Summary Video (2 minutes)] [Abstract and Bio] [Related Keynote Paper from VLSI-DAT 2020] [Related Review Paper on Processing in Memory] https://www.youtube.com/watch?v=H3sEaINPBOE IEDM 2020 Tutorial: Memory-Centric Computing Systems, Onur Mutlu, 12 December 2020 Onur Mutlu Lectures 15.2K subscribers Speaker: Professor Onur Mutlu (https://people.inf.ethz.ch/omutlu/) Date: December 12, 2020 Abstract and Bio: https://ieee-iedm.org/wp-content/uplo... ANALYTICS EDIT VIDEO # Funding Acknowledgments - Alibaba, AMD, ASML, Google, Facebook, Hi-Silicon, HP Labs, Huawei, IBM, Intel, Microsoft, Nvidia, Oracle, Qualcomm, Rambus, Samsung, Seagate, VMware - NSF - NIH - GSRC - SRC - CyLab # Acknowledgments ### My current and past students and postdocs Rachata Ausavarungnirun, Abhishek Bhowmick, Amirali Boroumand, Rui Cai, Yu Cai, Kevin Chang, Saugata Ghose, Kevin Hsieh, Tyler Huberty, Ben Jaiyen, Samira Khan, Jeremie Kim, Yoongu Kim, Yang Li, Jamie Liu, Lavanya Subramanian, Donghyuk Lee, Yixin Luo, Justin Meza, Gennady Pekhimenko, Vivek Seshadri, Lavanya Subramanian, Nandita Vijaykumar, HanBin
Yoon, Jishen Zhao, ... ### My collaborators Can Alkan, Chita Das, Phil Gibbons, Sriram Govindan, Norm Jouppi, Mahmut Kandemir, Mike Kozuch, Konrad Lai, Ken Mai, Todd Mowry, Yale Patt, Moinuddin Qureshi, Partha Ranganathan, Bikash Sharma, Kushagra Vaid, Chris Wilkerson, ... # Acknowledgments Think BIG, Aim HIGH! https://safari.ethz.ch # Onur Mutlu's SAFARI Research Group Computer architecture, HW/SW, systems, bioinformatics, security, memory https://safari.ethz.ch/safari-newsletter-january-2021/ Think BIG, Aim HIGH! SAFARI https://safari.ethz.ch # SAFARI Newsletter April 2020 Edition https://safari.ethz.ch/safari-newsletter-april-2020/ View in your browser Think Big, Aim High Dear SAFARI friends, # SAFARI Newsletter January 2021 Edition https://safari.ethz.ch/safari-newsletter-january-2021/ Newsletter January 2021 Think Big, Aim High, and Have a Wonderful 2021! Dear SAFARI friends, # Future Computing Platforms Challenges and Opportunities Onur Mutlu omutlu@gmail.com https://people.inf.ethz.ch/omutlu 10 November 2021 EdukCircle Intl. Conv. on Engineering & Computer Technology Carnegie Mellon # Four Key Issues in Future Platforms Fundamentally Secure/Reliable/Safe Architectures - Fundamentally Energy-Efficient Architectures - Memory-centric (Data-centric) Architectures Fundamentally Low-Latency and Predictable Architectures Architectures for AI/ML, Genomics, Medicine, Health # Low Latency Communication is Critical # Maslow's Hierarchy of Needs, A Third Time Maslow, "A Theory of Human Motivation," Psychological Review, 1943. Maslow, "Motivation and Personality," Book, 1954-1970. # Challenge and Opportunity for Future # Fundamentally Low-Latency Computing Architectures # Main Memory Latency Lags Behind Memory latency remains almost constant # The Memory Latency Problem - High memory latency is a significant limiter of system performance and energy-efficiency - It is becoming increasingly so with higher memory contention in multi-core and heterogeneous architectures - Exacerbating the bandwidth need - Exacerbating the QoS problem - It increases processor design complexity due to the mechanisms incorporated to tolerate memory latency ## Retrospective: Conventional Latency Tolerance Techniques - Caching [initially by Wilkes, 1965] - Widely used, simple, effective, but inefficient, passive - Not all applications/phases exhibit temporal or spatial locality - Prefetching [initially in IRM 360/91 1967] # None of These Fundamentally Reduce Memory Latency ongoing research effort - Out-of-order execution [initially by Tomasulo, 1967] - Tolerates cache misses that cannot be prefetched - Requires extensive hardware resources for tolerating long latencies # Truly Reducing Memory Latency # Why the Long Memory Latency? - Reason 1: Design of DRAM Micro-architecture - Goal: Maximize capacity/area, not minimize latency - Reason 2: "One size fits all" approach to latency specification - Same latency parameters for all temperatures - Same latency parameters for all DRAM chips - Same latency parameters for all parts of a DRAM chip - Same latency parameters for all supply voltage levels - Same latency parameters for all application data - **...** # Tackling the Fixed Latency Mindset - Reliable operation latency is actually very heterogeneous - Across temperatures, chips, parts of a chip, voltage levels, ... - Idea: Dynamically find out and use the lowest latency one can reliably access a memory location with - Adaptive-Latency DRAM [HPCA 2015] - Flexible-Latency DRAM [SIGMETRICS 2016] - Design-Induced Variation-Aware DRAM [SIGMETRICS 2017] - Voltron [SIGMETRICS 2017] - DRAM Latency PUF [HPCA 2018] - DRAM Latency True Random Number Generator [HPCA 2019] - **-** ... - We would like to find sources of latency heterogeneity and exploit them to minimize latency # Latency Variation in Memory Chips Heterogeneous manufacturing & operating conditions → latency variation in timing parameters # Why is Latency High? - DRAM latency: Delay as specified in DRAM standards - Doesn't reflect true DRAM device latency - Imperfect manufacturing process → latency variation - High standard latency chosen to increase yield # What Causes the Long Memory Latency? ### Conservative timing margins! - DRAM timing parameters are set to cover the worst case - Worst-case temperatures - 85 degrees vs. common-case - to enable a wide range of operating conditions - Worst-case devices - DRAM cell with smallest charge across any acceptable device - to tolerate process variation at acceptable yield - This leads to large timing margins for the common case # Understanding and Exploiting Variation in DRAM Latency # DRAM Characterization Infrastructure # Adaptive-Latency DRAM - Key idea - Optimize DRAM timing parameters online - Two components - DRAM manufacturer provides multiple sets of reliable DRAM timing parameters at different temperatures for each DIMM - System monitors DRAM temperature & uses appropriate DRAM timing parameters # Latency Reduction Summary of 115 DIMMs - Latency reduction for read & write (55°C) - Read Latency: 32.7% - Write Latency: 55.1% - Latency reduction for each timing parameter (55°C) - Sensing: 17.3% - Restore: 37.3% (read), 54.8% (write) - *Precharge:* **35.2%** # AL-DRAM: Real System Evaluation System 2Ah-08h - CPU: AMD 4386 (8 Cores, 3.1GHz, 8MB LLC) # D18F2x200_dct[0]_mp[1:0] DDR3 DRAM Timing 0 Reset: 0F05_0505h. See 2.9.3 [DCT Configuration Registers]. Bits Description 31:30 Reserved. 29:24 Tras: row active strobe. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Specifies the minimum time in memory clock cycles from an activate command to a precharge command, both to the same chip select bank. Bits Description 07h-00h Reserved 3Fh-2Bh Reserved 23:21 Reserved. Trp: row precharge time. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Specifies the minimum time in memory clock cycles from a precharge command to an activate command or auto refresh command, both to the same bank. <Tras> clocks # **AL-DRAM: Single-Core Evaluation** AL-DRAM improves single-core performance on a real system # AL-DRAM: Multi-Core Evaluation AL-DRAM provides higher performance on multi-programmed & multi-threaded workloads # Reducing Latency Also Reduces Energy - AL-DRAM reduces DRAM power consumption by 5.8% - Major reason: reduction in row activation time # More on Adaptive-Latency DRAM Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan, Vivek Seshadri, Kevin Chang, and Onur Mutlu, "Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case" Proceedings of the <u>21st International Symposium on High-</u> <u>Performance Computer Architecture</u> (**HPCA**), Bay Area, CA, February 2015. [Slides (pptx) (pdf)] [Full data sets] ### Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case Donghyuk Lee Yoongu Kim Gennady Pekhimenko Samira Khan Vivek Seshadri Kevin Chang Onur Mutlu Carnegie Mellon University 342 # CLR-DRAM: Capacity-Latency Reconfigurability Haocong Luo, Taha Shahroodi, Hasan Hassan, Minesh Patel, A. Giray Yaglikci, Lois Orosa, Jisung Park, and Onur Mutlu, "CLR-DRAM: A Low-Cost DRAM Architecture Enabling **Dynamic Capacity-Latency Trade-Off**" Proceedings of the <u>47th International Symposium on Computer</u> Architecture (ISCA), Valencia, Spain, June 2020. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (20 minutes)] [Lightning Talk Video (3 minutes)] ## CLR-DRAM: A Low-Cost DRAM Architecture **Enabling Dynamic Capacity-Latency Trade-Off** Taha Shahroodi[§] Hasan Hassan[§] Haocong Luo§† Minesh Patel§ A. Giray Yağlıkçı[§] Lois Orosa[§] Jisung Park[§] Onur Mutlu[§] §ETH Zürich †ShanghaiTech University # Analysis of Latency Variation in DRAM Chips Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh, Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and Onur Mutlu, "Understanding Latency Variation in Modern DRAM Chips: **Experimental Characterization, Analysis, and Optimization** Proceedings of the <u>ACM International Conference on Measurement and</u> Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins, France, June 2016. [Slides (pptx) (pdf)] Source Code # **Understanding Latency Variation in Modern DRAM Chips: Experimental Characterization, Analysis, and Optimization** Kevin K. Chang¹ Abhijith Kashyap¹ Hasan Hassan^{1,2} Saugata Ghose¹ Kevin Hsieh¹ Donghyuk Lee¹ Tianshi Li^{1,3} Gennady Pekhimenko¹ Samira Khan⁴ Onur Mutlu^{5,1} ¹Carnegie Mellon University ²TOBB ETÜ ³Peking University ⁴University of Virginia ⁵ETH Zürich SAFARI # Design-Induced Latency Variation in DRAM Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose, Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and Onur Mutlu, "Design-Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms" Proceedings of the ACM International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, USA, June 2017. # Design-Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms Donghyuk Lee, NVIDIA and Carnegie Mellon University Samira Khan, University of Virginia Lavanya Subramanian, Saugata Ghose, Rachata Ausavarungnirun, Carnegie Mellon University Gennady Pekhimenko, Vivek Seshadri, Microsoft Research Onur Mutlu, ETH Zürich and Carnegie Mellon University # Solar-DRAM: Putting It Together Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu, "Solar-DRAM: Reducing DRAM Access Latency by Exploiting the Variation in Local Bitlines" Proceedings of the 36th IEEE International Conference on Computer Design (ICCD), Orlando, FL, USA, October 2018. [Slides (pptx) (pdf)] [Talk Video (16 minutes)] # Solar-DRAM: Reducing DRAM Access Latency by Exploiting the Variation in Local Bitlines Jeremie S. Kim^{‡§} Minesh Patel[§] Hasan Hassan[§] Onur Mutlu^{§‡} [‡]Carnegie Mellon University [§]ETH Zürich 346 # Challenge and Opportunity for Future #
Fundamentally Low-Latency Computing Architectures # D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput <u>Jeremie S. Kim</u> Minesh Patel Hasan Hassan Lois Orosa Onur Mutlu SAFARI Carnegie Mellon # DRAM Latency Characterization of 282 LPDDR4 DRAM Devices Latency failures come from accessing DRAM with reduced timing parameters. # Key Observations: - 1. A cell's **latency failure** probability is determined by **random process variation** - 2. Some cells fail **randomly** # **D-RaNGe Key Idea** with reduced t_{RCD} SAFARI 350/4 # **D-RaNGe Key Idea** High % chance to fail with reduced t_{RCD} Low % chance to fail with reduced t_{RCD} We refer to cells that fail randomly when accessed with a reduced t_{RCD} as RNG cells Fails randomly with reduced t_{RCI} # Our D-RaNGe Evaluation - We generate random values by repeatedly accessing RNG cells and aggregating the data read - The random data satisfies the NIST statistical test suite for randomness - The D-RaNGE generates random numbers - **Throughput**: 717.4 Mb/s - **Latency**: 64 bits in <1us - **Power**: 4.4 nJ/bit # DRAM Latency True Random Number Generator Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu, "D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput" Proceedings of the <u>25th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), Washington, DC, USA, February 2019. [Slides (pptx) (pdf)] [Full Talk Video (21 minutes)] [Full Talk Lecture Video (27 minutes)] Top Picks Honorable Mention by IEEE Micro. # D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput Jeremie S. Kim^{‡§} Minesh Patel[§] Hasan Hassan[§] Lois Orosa[§] Onur Mutlu^{§‡} [‡]Carnegie Mellon University [§]ETH Zürich SAFARI 353 # DRAM Latency Physical Unclonable Functions Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu, "The DRAM Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM Devices" Proceedings of the <u>24th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), Vienna, Austria, February 2018. [Lightning Talk Video] [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Full Talk Lecture Video (28 minutes)] ### The DRAM Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices Jeremie S. Kim^{†§} Minesh Patel[§] Hasan Hassan[§] Onur Mutlu^{§†} [†]Carnegie Mellon University [§]ETH Zürich # Lectures on Low-Latency Memory - Computer Architecture, Fall 2020, Lecture 10 - Low-Latency Memory (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=vQd1YgOH1Mw&list=PL5Q2soXY2Zi9xidyIgBx Uz7xRPS-wisBN&index=19 - Computer Architecture, Fall 2020, Lecture 12b - Capacity-Latency Reconfigurable DRAM (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=DUtPFW3jxq4&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=23 - Computer Architecture, Fall 2019, Lecture 11a - DRAM Latency PUF (ETH Zürich, Fall 2019) - https://www.youtube.com/watch?v=7gqnrTZpjxE&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=15 - Computer Architecture, Fall 2019, Lecture 11b - DRAM True Random Number Generator (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16 # A Tutorial on Low-Latency Memory https://www.youtube.com/onurmutlulectures # Challenge and Opportunity for Future # Fundamentally Low-Latency Computing Architectures # Four Key Issues in Future Platforms Fundamentally Secure/Reliable/Safe Architectures - Fundamentally Energy-Efficient Architectures - Memory-centric (Data-centric) Architectures Fundamentally Low-Latency and Predictable Architectures Architectures for AI/ML, Genomics, Medicine, Health # Intel Optane Persistent Memory (2019) - Non-volatile main memory - Based on 3D-XPoint Technology # PCM as Main Memory: Idea in 2009 Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger, "Architecting Phase Change Memory as a Scalable DRAM Alternative" Proceedings of the <u>36th International Symposium on Computer</u> Architecture (**ISCA**), pages 2-13, Austin, TX, June 2009. <u>Slides</u> (pdf) # Architecting Phase Change Memory as a Scalable DRAM Alternative Benjamin C. Lee† Engin Ipek† Onur Mutlu‡ Doug Burger† †Computer Architecture Group Microsoft Research Redmond, WA {blee, ipek, dburger}@microsoft.com ‡Computer Architecture Laboratory Carnegie Mellon University Pittsburgh, PA onur@cmu.edu ### PCM as Main Memory: Idea in 2009 Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek, Onur Mutlu, and Doug Burger, "Phase Change Technology and the Future of Main Memory" IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1, pages 60-70, January/February 2010. # PHASE-CHANGE TECHNOLOGY AND THE FUTURE OF MAIN MEMORY # Cerebras's Wafer Scale Engine (2019) The largest ML accelerator chip 400,000 cores #### **Cerebras WSE** 1.2 Trillion transistors 46,225 mm² #### **Largest GPU** 21.1 Billion transistors 815 mm² **NVIDIA** TITAN V https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/ # Cerebras's Wafer Scale Engine-2 (2021) The largest ML accelerator chip (2021) 850,000 cores #### **Cerebras WSE-2** 2.6 Trillion transistors 46,225 mm² ### **Largest GPU** 54.2 Billion transistors 826 mm² **NVIDIA** Ampere GA100 https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning ### UPMEM Processing-in-DRAM Engine (2019) - Processing in DRAM Engine - Includes standard DIMM modules, with a large number of DPU processors combined with DRAM chips. - Replaces standard DIMMs - DDR4 R-DIMM modules - 8GB+128 DPUs (16 PIM chips) - Standard 2x-nm DRAM process - Large amounts of compute & memory bandwidth ### Experimental Analysis of the UPMEM PIM Engine ### Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland IZZAT EL HAJJ, American University of Beirut, Lebanon IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain CHRISTINA GIANNOULA, ETH Zürich, Switzerland and NTUA, Greece GERALDO F. OLIVEIRA, ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a significant overhead in terms of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this *data movement bottleneck* requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as *processing-in-memory (PIM)*. Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-stacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called *DRAM Processing Units* (*DPUs*), integrated in the same chip. This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present *PrIM* (*Processing-In-Memory benchmarks*), a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra, databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we identify as memory-bound. We evaluate the performance and scaling characteristics of PrIM benchmarks on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM system, programming recommendations for software designers, and suggestions and hints for hardware and architecture designers of future PIM systems. https://arxiv.org/pdf/2105.03814.pdf Samsung Newsroom CORPORATE **PRODUCTS** PRESS RESOURCES VIEWS **ABOUT US** Q ### Samsung Develops Industry's First High Bandwidth Memory with AI Processing Power Korea on February 17, 2021 Audio Share (5 The new architecture will deliver over twice the system performance and reduce energy consumption by more than 70% Samsung Electronics, the world leader in advanced memory technology, today announced that it has developed the industry's first High Bandwidth Memory (HBM) integrated with artificial intelligence (AI) processing power — the HBM-PIM The new processing-in-memory (PIM) architecture brings powerful AI computing capabilities inside high-performance memory, to accelerate large-scale processing in data centers, high performance computing (HPC) systems and AI-enabled mobile applications. Kwangil Park, senior vice president of Memory Product
Planning at Samsung Electronics stated, "Our groundbreaking HBM-PIM is the industry's first programmable PIM solution tailored for diverse Al-driven workloads such as HPC, training and inference. We plan to build upon this breakthrough by further collaborating with Al solution providers for even more advanced PIM-powered applications." #### FIMDRAM based on HBM2 [3D Chip Structure of HBM with FIMDRAM] #### **Chip Specification** 128DQ / 8CH / 16 banks / BL4 32 PCU blocks (1 FIM block/2 banks) 1.2 TFLOPS (4H) FP16 ADD / Multiply (MUL) / Multiply-Accumulate (MAC) / Multiply-and- Add (MAD) #### ISSCC 2021 / SESSION 25 / DRAM / 25.4 25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications Young-Cheon Kwon¹, Suk Han Lee¹, Jaehoon Lee¹, Sang-Hyuk Kwon¹, Je Min Ryu1, Jong-Pil Son1, Seongil O1, Hak-Soo Yu1, Haesuk Lee1, Soo Young Kim¹, Youngmin Cho¹, Jin Guk Kim¹, Jongyoon Choi¹, Hyun-Sung Shin¹, Jin Kim¹, BengSeng Phuah¹, HyoungMin Kim¹, Myeong Jun Song¹, Ahn Choi¹, Daeho Kim¹, SooYoung Kim¹, Eun-Bong Kim¹, David Wang², Shinhaeng Kang¹, Yuhwan Ro³, Seungwoo Seo³, JoonHo Song³, Jaeyoun Youn1, Kyomin Sohn1, Nam Sung Kim1 ¹Samsung Electronics, Hwaseong, Korea ²Samsung Electronics, San Jose, CA 3Samsung Electronics, Suwon, Korea ### **Programmable Computing Unit** - Configuration of PCU block - Interface unit to control data flow - Execution unit to perform operations - Register group - 32 entries of CRF for instruction memory - 16 GRF for weight and accumulation - 16 SRF to store constants for MAC operations #### [Block diagram of PCU in FIMDRAM] #### ISSCC 2021 / SESSION 25 / DRAM / 25.4 25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications Young-Cheon Kwon', Suk Han Ler', Jaehoon Ler', Sang-Hruk Kwon', Je Min Ryu', Jong-Pil Son', Seongil O', Hak-Soo Yu', Haesuk Lee', Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi', Hyun-Sung Shin', Jin Kim', BengSeng Phuah', HyoungMin Kim', Hyeong Jun Song', Aln Choi', Deach Kim', Soo'Oung Kim', Eun-Bong Kim', David Wang', Shinhaeng Kang', Yuhwan Ro', Seungwoo Seo', JoonHo Song', Jaeyoun Youn', Kyomin Sonh', Man Sung Kim' #### [Available instruction list for FIM operation] | Туре | CMD | Description | |-------------------|------|-----------------------------| | Floating
Point | ADD | FP16 addition | | | MUL | FP16 multiplication | | | MAC | FP16 multiply-accumulate | | | MAD | FP16 multiply and add | | Data Path | MOVE | Load or store data | | | FILL | Copy data from bank to GRFs | | Control Path | NOP | Do nothing | | | JUMP | Jump instruction | | | EXIT | Exit instruction | #### ISSCC 2021 / SESSION 25 / DRAM / 25.4 25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications Young-Cheon Kwon', Suk Han Let', Jaehoon Let', Sang-Hyuk Kwon', Ja Min Ryu', Jong-Pi Son', Seongli O', Hak Soo Yu', Hesauk Let', Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi', Hyun-Sung Shin', Jin Kim', BengSeng Phuah', HyoungMin Kim', Hyeong Jun Song', Alm Choi', Daeho Kim', Soo Young Kim', Eun-Bong Kim', David Wang', Shinhaend Kang', Yuhwan Ro', Seungwoo Seo', JoonHo Song', Jaeyoun Youn', Kyomin Sohn', Man Sung Kim' ### **Chip Implementation** - Mixed design methodology to implement FIMDRAM - Full-custom + Digital RTL [Digital RTL design for PCU block] #### ISSCC 2021 / SESSION 25 / DRAM / 25.4 25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications Young-Cheon Kwon', Suk Han Lee', Jaehoon Lee', Sang-Hyuk Kwon', Jee Min Ryu', Jong-Pil Son', Seongil O', Hak-Soo Yu', Haesuk Lee', Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi', Hyun-Sung Shin', Jin Kim', BengSeng Phuah', HyoungMin Kim', Hywang Shin', Jin Kim', BengSeng Phuah', HyoungMin Kim', Sun', Mang', Ann Choi', Daehok Kim', Soo'young Kim', Eun-Bong Kim', David Wang', Shinhaeng Kang', Yuhwan Ro', Seungwoo Seo', JoonHo Song', Jaeyoun Youn', Kyomin Sohn', Man Sung Kim' # More on Processing in Memory (I) Vivek Seshadri et al., "<u>Ambit: In-Memory Accelerator</u> for Bulk Bitwise Operations Using Commodity DRAM <u>Technology</u>," MICRO 2017. Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology ``` Vivek Seshadri^{1,5} Donghyuk Lee^{2,5} Thomas Mullins^{3,5} Hasan Hassan^4 Amirali Boroumand^5 Jeremie Kim^{4,5} Michael A. Kozuch^3 Onur Mutlu^{4,5} Phillip B. Gibbons^5 Todd C. Mowry^5 ``` 1 Microsoft Research India 2 NVIDIA Research 3 Intel 4 ETH Zürich 5 Carnegie Mellon University ### More on Processing in Memory (II) Vivek Seshadri and Onur Mutlu, "In-DRAM Bulk Bitwise Execution Engine" Invited Book Chapter in Advances in Computers, to appear in 2020. [Preliminary arXiv version] ### In-DRAM Bulk Bitwise Execution Engine Vivek Seshadri Microsoft Research India visesha@microsoft.com Onur Mutlu ETH Zürich onur.mutlu@inf.ethz.ch ## More on Processing in Memory (III) Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu, "SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM" Proceedings of the 26th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Virtual, March-April 2021. [2-page Extended Abstract] [Short Talk Slides (pptx) (pdf)] [Talk Slides (pptx) (pdf)] [Short Talk Video (5 mins)] [Full Talk Video (27 mins)] # SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM *Nastaran Hajinazar^{1,2} Nika Mansouri Ghiasi¹ *Geraldo F. Oliveira¹ Minesh Patel¹ Juan Gómez-Luna¹ Sven Gregorio¹ Mohammed Alser¹ Onur Mutlu¹ João Dinis Ferreira¹ Saugata Ghose³ ¹ETH Zürich ²Simon Fraser University ³University of Illinois at Urbana-Champaign # More on Processing in Memory (IV) Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, "A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing" Proceedings of the <u>42nd International Symposium on</u> <u>Computer Architecture</u> (**ISCA**), Portland, OR, June 2015. [Slides (pdf)] [Lightning Session Slides (pdf)] ### A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing Junwhan Ahn Sungpack Hong[§] Sungjoo Yoo Onur Mutlu[†] Kiyoung Choi junwhan@snu.ac.kr, sungpack.hong@oracle.com, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr Seoul National University [§]Oracle Labs [†]Carnegie Mellon University ## More on Processing in Memory (V) Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks" Proceedings of the <u>23rd International Conference on Architectural</u> <u>Support for Programming Languages and Operating</u> <u>Systems</u> (**ASPLOS**), Williamsburg, VA, USA, March 2018. ### Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks Amirali Boroumand¹ Saugata Ghose¹ Youngsok Kim² Rachata Ausavarungnirun¹ Eric Shiu³ Rahul Thakur³ Daehyun Kim^{4,3} Aki Kuusela³ Allan Knies³ Parthasarathy Ranganathan³ Onur Mutlu^{5,1} # More on Processing in Memory (VI) Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, "PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture" Proceedings of the <u>42nd International Symposium on</u> Computer Architecture (ISCA), Portland, OR, June 2015. [Slides (pdf)] [Lightning Session Slides (pdf)] ### PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture Junwhan Ahn Sungjoo Yoo Onur Mutlu[†] Kiyoung Choi junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr Seoul National University [†]Carnegie Mellon University SAFARI # TESLA Full Self-Driving Computer (2019) - ML accelerator: 260 mm², 6 billion transistors, 600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs. - Two redundant chips for better safety. ### Google TPU Generation I (~2016) **Figure 3.** TPU Printed Circuit Board. It can be inserted in the slot for an SATA disk in a server, but the card uses PCIe Gen3 x16. **Figure 4.** Systolic data flow of the Matrix Multiply Unit. Software has the illusion that each 256B input is read at once, and they instantly update one location of each of 256 accumulator RAMs. Jouppi et al., "In-Datacenter Performance Analysis of a Tensor Processing Unit", ISCA 2017. ## Google TPU Generation II (2017) https://www.nextplatform.com/2017/05/17/first-depth-look-googles-new-second-generation-tpu/ 4 TPU chips vs 1 chip in TPU1 High Bandwidth Memory vs DDR3 Floating point operations vs FP16 45 TFLOPS per chip vs 23 TOPS Designed for training and inference vs only inference ### Google TPU Generation III TPU v2 - 4 chips, 2 cores per chip TPU v3 - 4 chips, 2 cores per chip 32GB HBM per chip vs 16GB HBM in TPU2 4 Matrix Units per chip 90 TFLOPS per chip vs 2 Matrix Units in TPU2 vs 45 TFLOPS in TPU2 ## An Example Modern Systolic Array: TPU (II) As reading a large SRAM uses much more power than arithmetic, the matrix unit uses systolic execution to save energy by reducing reads and writes of the Unified Buffer [Kun80][Ram91][Ovt15b]. Figure 4 shows that data flows in from the left, and the weights are loaded from the top. A given 256-element multiply-accumulate operation moves through the matrix as a diagonal wavefront. The weights are preloaded, and take effect with the advancing wave alongside the first data of a new block. Control and data are pipelined to give the illusion that the 256 inputs are read at once, and that they instantly update one location of each of 256 accumulators. From
a correctness perspective, software is unaware of the systolic nature of the matrix unit, but for performance, it does worry about the latency of the unit. Jouppi et al., "In-Datacenter Performance Analysis of a Tensor Processing Unit", ISCA 2017. ### An Example Modern Systolic Array: TPU (III) **Figure 1.** TPU Block Diagram. The main computation part is the yellow Matrix Multiply unit in the upper right hand corner. Its inputs are the blue Weight FIFO and the blue Unified Buffer (UB) and its output is the blue Accumulators (Acc). The yellow Activation Unit performs the nonlinear functions on the Acc, which go to the UB. # Many (Other) AI/ML Chips - Alibaba - Amazon - Facebook - Google - Huawei - Intel - Microsoft - NVIDIA - Tesla - Many Others and Many Startups... - Many More to Come... # Many (Other) AI/ML Chips ### Lectures on Systolic Arrays & ML/AI Acceleration - Digital Design and Computer Architecture, Spring 2021, Lecture 19 - VLIW, Systolic Arrays, DAE (ETH Zürich, Spring 2021) - https://www.youtube.com/watch?v=UtLy4Yagdys&list=PL5Q2soXY2Zi_uej3aY39YB 5pfW4SJ7LlN&index=21 - Computer Architecture, Fall 2020, Lecture 9b - □ **EDEN: Efficient DNN Inference** (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=HmB32OXMKMY&list=PL5Q2soXY2Zi9xidyIgBx Uz7xRPS-wisBN&index=16 - Computer Architecture, Fall 2020, Lecture 9c - SMASH: Accelerating Sparse Matrix Operations (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=78aikMbxkGc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=17 ### Lecture on Systolic Arrays & ML Acceleration # Accelerating Genome Analysis ### Our Dream (circa 2007) - An embedded device that can perform comprehensive genome analysis in real time (within a minute) - Which of these DNAs does this DNA segment match with? - What is the likely genetic disposition of this patient to this drug? - What disease/condition might this particular DNA/RNA piece associated with? **u** . . . ### What Is a Genome Made Of? ### DNA Under Electron Microscope # DNA Sequencing ### Goal: Find the complete sequence of A, C, G, T's in DNA. ### Challenge: - There is no machine that takes long DNA as an input, and gives the complete sequence as output - All sequencing machines chop DNA into pieces and identify relatively small pieces (but not how they fit together) # Untangling Yarn Balls & DNA Sequencing ### Genome Sequencers Illumina HiSeq2000 Pacific Biosciences RS **Ion Torrent Proton** Illumina MiSeq Complete Genomics Oxford Nanopore MinION Illumina NovaSeq 6000 Oxford Nanopore GridION ... and more! All produce data with different properties. Ion Torrent PGM **Read Mapping** ### 1 Sequencing **Genome Analysis** reference: TTTATCGCTTCCATGACGCAG read1: ATCGCATCC read2: TATCGCATC read3: CATCCATGA read4: CGCTTCCAT read5: CCATGACGC read6: TTCCATGAC **Variant Calling** ### Genome Sequence Alignment: Example **Read Mapping** ### **Sequencing** ### Bottlenecked in Mapping!! #### Hash Table Based Read Mappers - + Guaranteed to find all mappings → sensitive - + Can tolerate up to e errors #### nature genetics http://mrfast.sourceforge.net/ # Personalized copy number and segmental duplication maps using next-generation sequencing Can Alkan^{1,2}, Jeffrey M Kidd¹, Tomas Marques-Bonet^{1,3}, Gozde Aksay¹, Francesca Antonacci¹, Fereydoun Hormozdiari⁴, Jacob O Kitzman¹, Carl Baker¹, Maika Malig¹, Onur Mutlu⁵, S Cenk Sahinalp⁴, Richard A Gibbs⁶ & Evan E Eichler^{1,2} #### Read Mapping Execution Time Breakdown ## Filter fast before you align Minimize costly "approximate string comparisons" #### Our First Filter: Pure Software Approach - Download the source code and try for yourself - Download link to FastHASH Xin et al. BMC Genomics 2013, **14**(Suppl 1):S13 http://www.biomedcentral.com/1471-2164/14/S1/S13 #### **PROCEEDINGS** **Open Access** #### Accelerating read mapping with FastHASH Hongyi Xin¹, Donghyuk Lee¹, Farhad Hormozdiari², Samihan Yedkar¹, Onur Mutlu^{1*}, Can Alkan^{3*} From The Eleventh Asia Pacific Bioinformatics Conference (APBC 2013) Vancouver, Canada. 21-24 January 2013 #### Shifted Hamming Distance: SIMD Acceleration https://github.com/CMU-SAFARI/Shifted-Hamming-Distance Bioinformatics, 31(10), 2015, 1553-1560 doi: 10.1093/bioinformatics/btu856 Advance Access Publication Date: 10 January 2015 Original Paper Sequence analysis # Shifted Hamming distance: a fast and accurate SIMD-friendly filter to accelerate alignment verification in read mapping Hongyi Xin^{1,*}, John Greth², John Emmons², Gennady Pekhimenko¹, Carl Kingsford³, Can Alkan^{4,*} and Onur Mutlu^{2,*} Xin+, "Shifted Hamming Distance: A Fast and Accurate SIMD-friendly Filter to Accelerate Alignment Verification in Read Mapping", Bioinformatics 2015. #### GateKeeper: FPGA-Based Alignment Filtering #### GateKeeper: FPGA-Based Alignment Filtering Mohammed Alser, Hasan Hassan, Hongyi Xin, Oguz Ergin, Onur Mutlu, and Can Alkan "GateKeeper: A New Hardware Architecture for Accelerating Pre-Alignment in DNA Short Read Mapping" Bioinformatics, [published online, May 31], 2017. [Source Code] [Online link at Bioinformatics Journal] ## GateKeeper: a new hardware architecture for accelerating pre-alignment in DNA short read mapping Mohammed Alser ™, Hasan Hassan, Hongyi Xin, Oğuz Ergin, Onur Mutlu ™, Can Alkan ™ Bioinformatics, Volume 33, Issue 21, 1 November 2017, Pages 3355–3363, https://doi.org/10.1093/bioinformatics/btx342 Published: 31 May 2017 Article history ▼ **SAFARI** ## DNA Read Mapping & Filtering - Problem: Heavily bottlenecked by Data Movement - GateKeeper FPGA performance limited by DRAM bandwidth [Alser+, Bioinformatics 2017] - Ditto for SHD on SIMD [Xin+, Bioinformatics 2015] - Solution: Processing-in-memory can alleviate the bottleneck - However, we need to design mapping & filtering algorithms to fit processing-in-memory ## In-Memory DNA Sequence Analysis Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu, "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies" **BMC Genomics**, 2018. Proceedings of the <u>16th Asia Pacific Bioinformatics Conference</u> (**APBC**), Yokohama, Japan, January 2018. [Slides (pptx) (pdf)] Source Code [arxiv.org Version (pdf)] Talk Video at AACBB 2019 # GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies Jeremie S. Kim^{1,6*}, Damla Senol Cali¹, Hongyi Xin², Donghyuk Lee³, Saugata Ghose¹, Mohammed Alser⁴, Hasan Hassan⁶, Oguz Ergin⁵, Can Alkan^{4*} and Onur Mutlu^{6,1*} From The Sixteenth Asia Pacific Bioinformatics Conference 2018 Yokohama, Japan. 15-17 January 2018 ## Shouji (障子) [Alser+, Bioinformatics 2019] Mohammed Alser, Hasan Hassan, Akash Kumar, Onur Mutlu, and Can Alkan, "Shouji: A Fast and Efficient Pre-Alignment Filter for Sequence Alignment" Bioinformatics, [published online, March 28], 2019. Source Code Online link at Bioinformatics Journal Bioinformatics, 2019, 1–9 doi: 10.1093/bioinformatics/btz234 Advance Access Publication Date: 28 March 2019 Original Paper #### Sequence alignment ## Shouji: a fast and efficient pre-alignment filter for sequence alignment Mohammed Alser^{1,2,3,*}, Hasan Hassan¹, Akash Kumar², Onur Mutlu^{1,3,*} and Can Alkan^{3,*} ¹Computer Science Department, ETH Zürich, Zürich 8092, Switzerland, ²Chair for Processor Design, Center For Advancing Electronics Dresden, Institute of Computer Engineering, Technische Universität Dresden, 01062 Dresden, Germany and ³Computer Engineering Department, Bilkent University, 06800 Ankara, Turkey Associate Editor: Inanc Birol SAFARI ^{*}To whom correspondence should be addressed. #### SneakySnake [Alser+, Bioinformatics 2020] Mohammed Alser, Taha Shahroodi, Juan-Gomez Luna, Can Alkan, and Onur Mutlu, "SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for CPUs, GPUs, and FPGAs" **Bioinformatics**, to appear in 2020. [Source Code] [Online link at Bioinformatics Journal] Bioinformatics doi.10.1093/bioinformatics/xxxxxx Advance Access Publication Date: Day Month Year Manuscript Category **Subject Section** # SneakySnake: A Fast and Accurate Universal Genome Pre-Alignment Filter for CPUs, GPUs, and FPGAs Mohammed Alser ^{1,2,*}, Taha Shahroodi ¹, Juan Gómez-Luna ^{1,2}, Can Alkan ^{4,*}, and Onur Mutlu ^{1,2,3,4,*} ¹Department of Computer Science, ETH Zurich, Zurich 8006, Switzerland ²Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich 8006, Switzerland ³Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh 15213, PA, USA ⁴Department of Computer Engineering, Bilkent University, Ankara 06800, Turkey #### GenASM Framework [MICRO 2020] Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, October 2020. [<u>Lighting Talk Video</u> (1.5 minutes)] [<u>Lightning Talk Slides (pptx) (pdf)</u>] [<u>Talk Video</u> (18 minutes)] [<u>Slides (pptx) (pdf)</u>] #### GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis Damla Senol Cali^{†™} Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[⋄] Lavanya Subramanian[‡] Jeremie S. Kim^{⋄†} Rachata Ausavarungnirun[⊙] Mohammed Alser[⋄] Juan Gomez-Luna[⋄] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{⋄†▽} † Carnegie Mellon University [™] Processor Architecture Research Lab, Intel Labs [▽] Bilkent University [⋄] ETH Zürich ‡ Facebook [⊙] King Mongkut's University of Technology North
Bangkok ^{*} University of Illinois at Urbana–Champaign 408 ## Quick Note: Key Principles and Results - Two key principles: - Exploit the structure of the genome to minimize computation - Morph and exploit the structure of the underlying hardware to maximize performance and efficiency - Algorithm-architecture co-design for DNA read mapping - Speeds up read mapping by ~100-1000X - Improves accuracy of read mapping in the presence of errors ## New Genome Sequencing Technologies # Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017 Published: 02 April 2018 Article history ▼ Oxford Nanopore MinION Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome Assembly: Computational Analysis of the Current State, Bottlenecks and Future Directions," Briefings in Bioinformatics, 2018. [Preliminary arxiv.org version] #### Nanopore Genome Assembly Pipeline Figure 1. The analyzed genome assembly pipeline using nanopore sequence data, with its five steps and the associated tools for each ___step. Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome Assembly," Briefings in Bioinformatics, 2018. #### Recall Our Dream - An embedded device that can perform comprehensive genome analysis in real time (within a minute) - Still a long ways to go - Energy efficiency - Performance (latency) - Security - Huge memory bottleneck ## Future of Genome Sequencing & Analysis ## Why Do We Care? An Example from 2020 200 Oxford Nanopore sequencers have left UK for China, to support rapid, near-sample coronavirus sequencing for outbreak surveillance Fri 31st January 2020 Following extensive support of, and collaboration with, public health professionals in China, Oxford Nanopore has shipped an additional 200 MinION sequencers and related consumables to China. These will be used to support the ongoing surveillance of the current coronavirus outbreak, adding to a large number of the devices already installed in the country. Each MinION sequencer is approximately the size of a stapler, and can provide rapid sequence information about the coronavirus. 700Kg of Oxford Nanopore sequencers and consumables are on their way for use by Chinese scientists in understanding the current coronavirus outbreak. ## Sequencing of COVID-19 #### Whole genome sequencing (WGS) and sequence data analysis are important - To detect the virus from a human sample such as saliva, Bronchoalveolar fluid etc. - To understand the sources and modes of transmission of the virus - To discover the genomic characteristics of the virus, and compare with better-known viruses (e.g., 02-03 SARS epidemic) - To design and evaluate the diagnostic tests and deep-dive studies #### Two key areas of COVID-19 genomic research - To sequence the genome of the virus itself, COVID-19, in order to track the mutations in the virus. - To explore the genes of infected patients. This analysis can be used to understand why some people get more severe symptoms than others, as well as, help with the development of new treatments in the future. ## COVID-19 Nanopore Sequencing (I) From ONT (https://nanoporetech.com/covid-19/overview) ## COVID-19 Nanopore Sequencing (II) From ONT (https://nanoporetech.com/covid-19/overview) ## Future of Genome Sequencing & Analysis #### Accelerating Genome Analysis: Overview Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, and Onur Mutlu, "Accelerating Genome Analysis: A Primer on an Ongoing Journey" IEEE Micro (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020. [Slides (pptx)(pdf)] [Talk Video (1 hour 2 minutes)] # Accelerating Genome Analysis: A Primer on an Ongoing Journey #### **Mohammed Alser** ETH Zürich #### Zülal Bingöl Bilkent University #### Damla Senol Cali Carnegie Mellon University #### Jeremie Kim ETH Zurich and Carnegie Mellon University #### Saugata Ghose University of Illinois at Urbana–Champaign and Carnegie Mellon University #### Can Alkan Bilkent University #### **Onur Mutlu** ETH Zurich, Carnegie Mellon University, and Bilkent University #### More on Fast Genome Analysis ... Onur Mutlu, "Accelerating Genome Analysis: A Primer on an Ongoing Journey" Invited Lecture at <u>Technion</u>, Virtual, 26 January 2021. [Slides (pptx) (pdf)] [Talk Video (1 hour 37 minutes, including Q&A)] [Related Invited Paper (at IEEE Micro, 2020)] #### Detailed Lectures on Genome Analysis - Computer Architecture, Fall 2020, Lecture 3a - Introduction to Genome Sequence Analysis (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5 - Computer Architecture, Fall 2020, Lecture 8 - Intelligent Genome Analysis (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14 - Computer Architecture, Fall 2020, Lecture 9a - □ **GenASM: Approx. String Matching Accelerator** (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=XoLpzmN Pas&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=15 - Accelerating Genomics Project Course, Fall 2020, Lecture 1 - Accelerating Genomics (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqL gwiDRQDTyId #### Challenge and Opportunity for Future ## High Performance (to solve the **toughest** & **all** problems) #### Challenge and Opportunity for Future ## Personalized and Private (in every aspect of life: health, medicine, spaces, devices, robotics, ...) ## More on My Research & Teaching #### Brief Self Introduction #### Onur Mutlu - □ Full Professor @ ETH Zurich ITET (INFK), since September 2015 - □ Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-... - PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD - https://people.inf.ethz.ch/omutlu/ - omutlu@gmail.com (Best way to reach me) - https://people.inf.ethz.ch/omutlu/projects.htm #### Research and Teaching in: - Computer architecture, computer systems, hardware security, bioinformatics - Memory and storage systems - Hardware security, safety, predictability - Fault tolerance - Hardware/software cooperation - Architectures for bioinformatics, health, medicine - **-** ... #### Current Research Mission #### Computer architecture, HW/SW, systems, bioinformatics, security #### **Build fundamentally better architectures** #### Four Key Current Directions Fundamentally Secure/Reliable/Safe Architectures - Fundamentally Energy-Efficient Architectures - Memory-centric (Data-centric) Architectures Fundamentally Low-Latency and Predictable Architectures Architectures for AI/ML, Genomics, Medicine, Health #### The Transformation Hierarchy Computer Architecture (expanded view) Computer Architecture (narrow view) #### Axiom To achieve the highest energy efficiency and performance: #### we must take the expanded view of computer architecture Co-design across the hierarchy: Algorithms to devices Specialize as much as possible within the design goals #### Current Research Mission & Major Topics #### **Build fundamentally better architectures** Broad research spanning apps, systems, logic with architecture at the center - Data-centric arch. for low energy & high perf. - Proc. in Mem/DRAM, NVM, unified mem/storage - Low-latency & predictable architectures - Low-latency, low-energy yet low-cost memory - QoS-aware and predictable memory systems - Fundamentally secure/reliable/safe arch. - Tolerating all bit flips; patchable HW; secure mem - Architectures for ML/AI/Genomics/Health/Med - Algorithm/arch./logic co-design; full heterogeneity - Data-driven and data-aware architectures - ML/AI-driven architectural controllers and design - Expressive memory and expressive systems #### Onur Mutlu's SAFARI Research Group Computer architecture, HW/SW, systems, bioinformatics, security, memory https://safari.ethz.ch/safari-newsletter-april-2020/ Think BIG, Aim HIGH! SAFARI https://safari.ethz.ch ## SAFARI Newsletter January 2021 Edition https://safari.ethz.ch/safari-newsletter-january-2021/ Newsletter January 2021 Think Big, Aim High, and Have a Wonderful 2021! Dear SAFARI friends, # Principle: Teaching and Research Teaching drives Research Research drives Teaching 433 # Focus on Insight Encourage New Ideas ## Research & Teaching: Some Overview Talks ### https://www.youtube.com/onurmutlulectures - Future Computing Architectures - https://www.youtube.com/watch?v=kqiZISOcGFM&list=PL5Q2soXY2Zi8D 5MGV6EnXEJHnV2YFBJI&index=1 - Enabling In-Memory Computation - https://www.youtube.com/watch?v=njX 14584Jw&list=PL5Q2soXY2Zi8D 5MGV6EnXEJHnV2YFBJl&index=16 - Accelerating Genome Analysis - https://www.youtube.com/watch?v=r7sn41lH-4A&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=41 - Rethinking Memory System Design - https://www.youtube.com/watch?v=F7xZLNMIY1E&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=3 - Intelligent Architectures for Intelligent Machines - https://www.youtube.com/watch?v=c6_LgzuNdkw&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=25 - The Story of RowHammer - https://www.youtube.com/watch?v=sgd7PHQQ1AI&list=PL5Q2soXY2Zi8D 5MGV6EnXEJHnV2YFBJl&index=39 ## An Interview on Research and Education - Computing Research and Education (@ ISCA 2019) - https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2 soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz - Maurice Wilkes Award Speech (10 minutes) - https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2 soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15 # More Thoughts and Suggestions Onur Mutlu, ## "Some Reflections (on DRAM)" Award Speech for <u>ACM SIGARCH Maurice Wilkes Award</u>, at the **ISCA** Awards Ceremony, Phoenix, AZ, USA, 25 June 2019. [Slides (pptx) (pdf)] [Video of Award Acceptance
Speech (Youtube; 10 minutes) (Youku; 13 minutes)] [Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes)] (Youku; 1 hour 6 minutes) [News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"] Onur Mutlu, ## "How to Build an Impactful Research Group" 57th Design Automation Conference Early Career Workshop (DAC), Virtual, 19 July 2020. [Slides (pptx) (pdf)] ## Referenced Papers, Talks, Artifacts All are available at https://people.inf.ethz.ch/omutlu/projects.htm http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en https://www.youtube.com/onurmutlulectures https://github.com/CMU-SAFARI/ # Readings, Videos, Reference Materials ## Research & Teaching: Some Overview Talks ### https://www.youtube.com/onurmutlulectures - Future Computing Architectures - https://www.youtube.com/watch?v=kqiZISOcGFM&list=PL5Q2soXY2Zi8D 5MGV6EnXEJHnV2YFBJI&index=1 - Enabling In-Memory Computation - https://www.youtube.com/watch?v=njX 14584Jw&list=PL5Q2soXY2Zi8D 5MGV6EnXEJHnV2YFBJl&index=16 - Accelerating Genome Analysis - https://www.youtube.com/watch?v=r7sn41lH-4A&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=41 - Rethinking Memory System Design - https://www.youtube.com/watch?v=F7xZLNMIY1E&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=3 - Intelligent Architectures for Intelligent Machines - https://www.youtube.com/watch?v=c6_LgzuNdkw&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=25 - The Story of RowHammer - https://www.youtube.com/watch?v=sgd7PHQQ1AI&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=39 ## Accelerated Memory Course (~6.5 hours) ## ACACES 2018 - Memory Systems and Memory-Centric Computing Systems - Taught by Onur Mutlu July 9-13, 2018 - □ ~6.5 hours of lectures - Website for the Course including Videos, Slides, Papers - https://people.inf.ethz.ch/omutlu/acaces2018.html - https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-HXxomthrpDpMJm05P6J9x ## All Papers are at: - https://people.inf.ethz.ch/omutlu/projects.htm - Final lecture notes and readings (for all topics) ## Longer Memory Course (~18 hours) ## TU Wien 2019 - Memory Systems and Memory-Centric Computing Systems - Taught by Onur Mutlu June 12-19, 2019 - □ ~18 hours of lectures - Website for the Course including Videos, Slides, Papers - https://safari.ethz.ch/memory_systems/TUWien2019 - https://www.youtube.com/playlist?list=PL5Q2soXY2Zi_gntM55 VoMlKlw7YrXOhbl ## All Papers are at: - https://people.inf.ethz.ch/omutlu/projects.htm - Final lecture notes and readings (for all topics) ## An Interview on Research and Education - Computing Research and Education (@ ISCA 2019) - https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2 soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz - Maurice Wilkes Award Speech (10 minutes) - https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2 soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15 # More Thoughts and Suggestions Onur Mutlu, ## "Some Reflections (on DRAM)" Award Speech for <u>ACM SIGARCH Maurice Wilkes Award</u>, at the **ISCA** Awards Ceremony, Phoenix, AZ, USA, 25 June 2019. [Slides (pptx) (pdf)] [Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)] [Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes)] (Youku; 1 hour 6 minutes) [News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"] Onur Mutlu, ## "How to Build an Impactful Research Group" 57th Design Automation Conference Early Career Workshop (DAC), Virtual, 19 July 2020. [Slides (pptx) (pdf)] ## Reference Overview Paper ## A Modern Primer on Processing in Memory Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d SAFARI Research Group ^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" Invited Book Chapter in <u>Emerging Computing: From Devices to Systems -</u> Looking Beyond Moore and Von Neumann, Springer, to be published in 2021. ## Reference Overview Paper I ## Processing Data Where It Makes Sense: Enabling In-Memory Computation Onur Mutlu^{a,b}, Saugata Ghose^b, Juan Gómez-Luna^a, Rachata Ausavarungnirun^{b,c} ^aETH Zürich ^bCarnegie Mellon University ^cKing Mongkut's University of Technology North Bangkok Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "Processing Data Where It Makes Sense: Enabling In-Memory Computation Invited paper in <u>Microprocessors and Microsystems</u> (**MICPRO**), June 2019. [arXiv version] SAFARI # Reference Overview Paper II ## A Workload and Programming Ease Driven Perspective of Processing-in-Memory Saugata Ghose[†] Amirali Boroumand[†] Jeremie S. Kim[†]§ Juan Gómez-Luna[§] Onur Mutlu^{§†} †Carnegie Mellon University §ETH Zürich Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu, "Processing-in-Memory: A Workload-Driven Perspective" Invited Article in IBM Journal of Research & Development, Special Issue on Hardware for Artificial Intelligence, to appear in November 2019. [Preliminary arXiv version] ## Reference Overview Paper III ## Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, Future Research Directions SAUGATA GHOSE, KEVIN HSIEH, AMIRALI BOROUMAND, RACHATA AUSAVARUNGNIRUN Carnegie Mellon University ONUR MUTLU ETH Zürich and Carnegie Mellon University Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, Onur Mutlu, "Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, Future Research Directions" Invited Book Chapter, to appear in 2018. [Preliminary arxiv.org version] # Reference Overview Paper IV Onur Mutlu and Lavanya Subramanian, "Research Problems and Opportunities in Memory Systems" Invited Article in <u>Supercomputing Frontiers and Innovations</u> (**SUPERFRI**), 2014/2015. Research Problems and Opportunities in Memory Systems Onur Mutlu¹, Lavanya Subramanian¹ ## Reference Overview Paper V Onur Mutlu, "The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser" Invited Paper in Proceedings of the <u>Design, Automation, and Test in</u> <u>Europe Conference</u> (**DATE**), Lausanne, Switzerland, March 2017. [Slides (pptx) (pdf)] # The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser Onur Mutlu ETH Zürich onur.mutlu@inf.ethz.ch https://people.inf.ethz.ch/omutlu # Reference Overview Paper VI Onur Mutlu, "Memory Scaling: A Systems Architecture Perspective" Technical talk at <u>MemCon 2013</u> (**MEMCON**), Santa Clara, CA, August 2013. [Slides (pptx) (pdf)] [Video] [Coverage on StorageSearch] ## Memory Scaling: A Systems Architecture Perspective Onur Mutlu Carnegie Mellon University onur@cmu.edu http://users.ece.cmu.edu/~omutlu/ ## Reference Overview Paper VII Proceedings of the IEEE, Sept. 2017 # Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD's reliability and lifetime. By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu ## Reference Overview Paper VIII Onur Mutlu and Jeremie Kim, "RowHammer: A Retrospective" <u>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems</u> (**TCAD**) Special Issue on Top Picks in Hardware and Embedded Security, 2019. [Preliminary arXiv version] [Slides from COSADE 2019 (pptx)] [Slides from VLSI-SOC 2020 (pptx) (pdf)] [Talk Video (30 minutes)] # RowHammer: A Retrospective Onur Mutlu^{§‡} Jeremie S. Kim^{‡§} §ETH Zürich [‡]Carnegie Mellon University SAFARI 453 ## Related Videos and Course Materials (I) - Undergraduate Digital Design & Computer Architecture Course Lecture Videos (2020, 2019, 2018, 2017, 2015, 2014, 2013) - Undergraduate Digital Design & Computer Architecture Course Materials (2020, 2019, 2018, 2015, 2014, 2013) - Graduate Computer Architecture Course Lecture Videos (2019, 2018, 2017, 2015, 2013) - Graduate Computer Architecture Course Materials (2019, 2018, 2017, 2015, 2013) - Parallel Computer Architecture Course Materials (Lecture Videos) ## Related Videos and Course Materials (II) - Seminar in Computer Architecture Course Lecture Videos (Spring 2020, Fall 2019, Spring 2019, 2018) - Seminar in Computer Architecture Course Materials (Spring 2020, Fall 2019, Spring 2019, 2018) - Memory Systems Course Lecture Videos (Sept 2019, July 2019, June 2019, October 2018) - Memory Systems Short Course Lecture Materials (Sept 2019, July 2019, June 2019, October 2018) - ACACES Summer School Memory Systems Course Lecture Videos (2018, 2013) - ACACES Summer School Memory Systems Course Materials (2018, 2013) # Some Open Source Tools (I) - Rowhammer Program to Induce RowHammer Errors - https://github.com/CMU-SAFARI/rowhammer - Ramulator Fast and Extensible DRAM Simulator - https://github.com/CMU-SAFARI/ramulator - MemSim Simple Memory Simulator - https://github.com/CMU-SAFARI/memsim - NOCulator Flexible Network-on-Chip Simulator - https://github.com/CMU-SAFARI/NOCulator - SoftMC FPGA-Based DRAM Testing Infrastructure - https://github.com/CMU-SAFARI/SoftMC - Other open-source software from my group - https://github.com/CMU-SAFARI/ - http://www.ece.cmu.edu/~safari/tools.html # Some Open Source Tools (II) - MQSim A Fast Modern SSD Simulator - https://github.com/CMU-SAFARI/MQSim - Mosaic GPU Simulator Supporting Concurrent Applications - https://github.com/CMU-SAFARI/Mosaic - IMPICA Processing in 3D-Stacked Memory Simulator - https://github.com/CMU-SAFARI/IMPICA - SMLA Detailed 3D-Stacked Memory Simulator - https://github.com/CMU-SAFARI/SMLA - HWASim Simulator for Heterogeneous CPU-HWA Systems - https://github.com/CMU-SAFARI/HWASim - Other open-source software from my group - https://github.com/CMU-SAFARI/ -
http://www.ece.cmu.edu/~safari/tools.html ## More Open Source Tools (III) - A lot more open-source software from my group - https://github.com/CMU-SAFARI/ - http://www.ece.cmu.edu/~safari/tools.html ### ramulator-pim A fast and flexible simulation infrastructure for exploring general-purpose processing-in-memory (PIM) architectures. Ramulator-PIM combines a widely-used simulator for out-of-order and in-order processors (ZSim) with Ramulator, a DRAM simulator with memory models for DDRx, LPDDRx, GDDRx, WIOx, HBMx, and HMCx. Ramulator is described in the IEEE ... ●C++ ♀11 ☆29 ①6 ┆ 0 Updated 19 days ago ### **SMASH** SMASH is a hardware-software cooperative mechanism that enables highly-efficient indexing and storage of sparse matrices. The key idea of SMASH is to compress sparse matrices with a hierarchical bitmap compression format that can be accelerated from hardware. Described by Kanellopoulos et al. (MICRO '19) https://people.inf.ethz.ch/omutlu/pub/SMA... ●C ೪1 ☆6 ①0 ♯0 Updated on May 17 ### MQSim MQSim is a fast and accurate simulator modeling the performance of modern multi-queue (MQ) SSDs as well as traditional SATA based SSDs. MQSim faithfully models new high-bandwidth protocol implementations, steady-state SSD conditions, and the full end-to-end latency of requests in modern SSDs. It is described in detail in the FAST 2018 paper by A... ●C++ គ្ MIT ೪ 54 ☆62 ①10 រឿ 1 Updated on May 15 ### Apollo Apollo is an assembly polishing algorithm that attempts to correct the errors in an assembly. It can take multiple set of reads in a single run and polish the assemblies of genomes of any size. Described in the Bioinformatics journal paper (2020) by Firtina et al. at https://people.inf.ethz.ch/omutlu/pub/apollotechnology-independent-genome-asse... ●C++ ጭ GPL-3.0 ♀1 ☆12 ①0 앏0 Updated on May 10 ### ramulator A Fast and Extensible DRAM Simulator, with built-in support for modeling many different DRAM technologies including DDRx, LPDDRx, GDDRx, WIOx, HBMx, and various academic proposals. Described in the IEEE CAL 2015 paper by Kim et al. at http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf ### Shifted-Hamming-Distance Source code for the Shifted Hamming Distance (SHD) filtering mechanism for sequence alignment. Described in the Bioinformatics journal paper (2015) by Xin et al. at http://users.ece.cmu.edu/~omutlu/pub/shiftedhamming-distance_bioinformatics15_proofs.pdf ### **SneakySnake** The first and the only pre-alignment filtering algorithm that works on all modern high-performance computing architectures. It works efficiently and fast on CPU, FPGA, and GPU architectures and that greatly (by more than two orders of magnitude) expedites sequence alignment calculation. Described by Alser et al. (preliminary version at https://a... ### AirLift AirLift is a tool that updates mapped reads from one reference genome to another. Unlike existing tools, It accounts for regions not shared between the two reference genomes and enables remapping across all parts of the references. Described by Kim et al. (preliminary version at http://arxiv.org/abs/1912.08735) ●C ♀O ☆3 ① 0 ┆ 10 Updated on Feb 19 #### **GPGPUSim-Ramulator** The source code for GPGPUSim+Ramulator simulator. In this version, GPGPUSim uses Ramulator to simulate the DRAM. This simulator is used to produce some of the ## Referenced Papers, Talks, Artifacts All are available at https://people.inf.ethz.ch/omutlu/projects.htm http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en https://www.youtube.com/onurmutlulectures https://github.com/CMU-SAFARI/ ## An Interview on Research and Education - Computing Research and Education (@ ISCA 2019) - https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2 soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz - Maurice Wilkes Award Speech (10 minutes) - https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2 soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15 # More Thoughts and Suggestions Onur Mutlu, ## "Some Reflections (on DRAM)" Award Speech for <u>ACM SIGARCH Maurice Wilkes Award</u>, at the **ISCA** Awards Ceremony, Phoenix, AZ, USA, 25 June 2019. [Slides (pptx) (pdf)] [Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)] [Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku; 1 hour 6 minutes) [News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"] Onur Mutlu, ## "How to Build an Impactful Research Group" 57th Design Automation Conference Early Career Workshop (DAC), Virtual, 19 July 2020. [Slides (pptx) (pdf)] # End of Backup Slides