Memory-Centric Computing Onur Mutlu omutlu@gmail.com https://people.inf.ethz.ch/omutlu 15 June 2022 **EPFL CIS Summer School** Carnegie Mellon # Computing is Bottlenecked by Data ### Data is Key for AI, ML, Genomics, ... Important workloads are all data intensive They require rapid and efficient processing of large amounts of data - Data is increasing - We can generate more than we can process #### Data is Key for Future Workloads #### **In-memory Databases** [Mao+, EuroSys'12; Clapp+ (Intel), IISWC'15] #### **In-Memory Data Analytics** [Clapp+ (Intel), IISWC'15; Awan+, BDCloud'15] #### **Graph/Tree Processing** [Xu+, IISWC'12; Umuroglu+, FPL'15] #### **Datacenter Workloads** [Kanev+ (Google), ISCA'15] #### Data Overwhelms Modern Machines **In-memory Databases** **Graph/Tree Processing** ## Data → performance & energy bottleneck #### In-Memory Data Analytics [Clapp+ (Intel), IISWC'15; Awan+, BDCloud'15] #### **Datacenter Workloads** [Kanev+ (Google), ISCA' 15] #### Data is Key for Future Workloads Chrome Google's web browser **TensorFlow Mobile** Google's machine learning framework Google's video codec Google's video codec #### Data Overwhelms Modern Machines **TensorFlow Mobile** Data → performance & energy bottleneck VP9 VouTube Video Playback Google's video codec Google's video codec ### Data is Key for Future Workloads 1 Sequencing **Genome Analysis** ## Data → performance & energy bottleneck reau4: CGCTTCCAT read5: CCATGACGC read6: TTCCATGAC **Scientific Discovery** Variant Calling 3 4 ## New Genome Sequencing Technologies ## Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017 Published: 02 April 2018 Article history ▼ Oxford Nanopore MinION Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome Assembly: Computational Analysis of the Current State, Bottlenecks and Future Directions," Briefings in Bioinformatics, 2018. [Open arxiv.org version] ## New Genome Sequencing Technologies ## Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017 Published: 02 April 2018 Article history ▼ Oxford Nanopore MinION ### Data → performance & energy bottleneck ## One Problem with Genome Analysis Today **Special-Purpose** Machine for **Sequencing** General-Purpose Machine for Analysis FAST **SLOW** Slow and inefficient processing capability ## Accelerating Genome Analysis [IEEE MICRO 2020] Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, and Onur Mutlu, "Accelerating Genome Analysis: A Primer on an Ongoing Journey" IEEE Micro (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020. [Slides (pptx)(pdf)] [Talk Video (1 hour 2 minutes)] # Accelerating Genome Analysis: A Primer on an Ongoing Journey #### **Mohammed Alser** ETH Zürich #### Zülal Bingöl Bilkent University #### Damla Senol Cali Carnegie Mellon University #### Jeremie Kim ETH Zurich and Carnegie Mellon University #### Saugata Ghose University of Illinois at Urbana–Champaign and Carnegie Mellon University #### Can Alkan Bilkent University #### **Onur Mutlu** ETH Zurich, Carnegie Mellon University, and Bilkent University ## FPGA-based Near-Memory Analytics Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu, "FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications" IEEE MICRO), 2021. ## FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications Gagandeep Singh[⋄] Mohammed Alser[⋄] Damla Senol Cali[⋈] Dionysios Diamantopoulos[▽] Juan Gómez-Luna[⋄] Henk Corporaal[⋆] Onur Mutlu^{⋄⋈} [⋄]ETH Zürich [⋈] Carnegie Mellon University *Eindhoven University of Technology [▽]IBM Research Europe #### Near-Memory Acceleration using FPGAs #### **Near-HBM FPGA-based accelerator** Two communication technologies: CAPI2 and OCAPI Two memory technologies: DDR4 and HBM Two workloads: Weather Modeling and Genome Analysis #### Performance & Energy Greatly Improve 5-27× performance vs. a 16-core (64-thread) IBM POWER9 CPU 12-133× energy efficiency vs. a 16-core (64-thread) IBM POWER9 CPU **HBM alleviates memory bandwidth contention vs. DDR4** #### GenASM Framework [MICRO 2020] Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, October 2020. [<u>Lighting Talk Video</u> (1.5 minutes)] [<u>Lightning Talk Slides (pptx) (pdf)</u>] [<u>Talk Video</u> (18 minutes)] [<u>Slides (pptx) (pdf)</u>] #### GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis Damla Senol Cali^{†™} Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[⋄] Lavanya Subramanian[‡] Jeremie S. Kim^{⋄†} Rachata Ausavarungnirun[⊙] Mohammed Alser[⋄] Juan Gomez-Luna[⋄] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{⋄†▽} † Carnegie Mellon University [™] Processor Architecture Research Lab, Intel Labs [▽] Bilkent University [⋄] ETH Zürich ‡ Facebook [⊙] King Mongkut's University of Technology North Bangkok ^{*} University of Illinois at Urbana–Champaign 17 ## In-Storage Genome Filtering [ASPLOS 2022] Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu, "GenStore: A High-Performance and Energy-Efficient In-Storage Computing System for Genome Sequence Analysis" Proceedings of the <u>27th International Conference on Architectural Support for</u> <u>Programming Languages and Operating Systems</u> (**ASPLOS**), Virtual, February-March 2022. [Talk Slides (pptx) (pdf)] [<u>Lightning Talk Slides (pptx) (pdf)</u>] [Lightning Talk Video (90 seconds)] [Talk Video (17 minutes)] ## GenStore: A High-Performance In-Storage Processing System for Genome Sequence Analysis Nika Mansouri Ghiasi¹ Jisung Park¹ Harun Mustafa¹ Jeremie Kim¹ Ataberk Olgun¹ Arvid Gollwitzer¹ Damla Senol Cali² Can Firtina¹ Haiyu Mao¹ Nour Almadhoun Alserr¹ Rachata Ausavarungnirun³ Nandita Vijaykumar⁴ Mohammed Alser¹ Onur Mutlu¹ ¹ETH Zürich ²Bionano Genomics ³KMUTNB ⁴University of Toronto ## Accelerating Sequence-to-Graph Mapping Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi, Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, "SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping" Proceedings of the <u>49th International Symposium on Computer Architecture</u> (**ISCA**), New York, June 2022. arXiv version ## SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping Damla Senol Cali¹ Konstantinos Kanellopoulos² Joël Lindegger² Zülal Bingöl³ Gurpreet S. Kalsi⁴ Ziyi Zuo⁵ Can Firtina² Meryem Banu Cavlak² Jeremie Kim² Nika Mansouri Ghiasi² Gagandeep Singh² Juan Gómez-Luna² Nour Almadhoun Alserr² Mohammed Alser² Sreenivas Subramoney⁴ Can Alkan³ Saugata Ghose⁶ Onur Mutlu² ¹Bionano Genomics ²ETH Zürich ³Bilkent University ⁴Intel Labs ⁵Carnegie Mellon University ⁶University of Illinois Urbana-Champaign ## Future of Genome Sequencing & Analysis Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu "Accelerating Genome Analysis: A Primer on an Ongoing Journey" IEEE Micro, August 2020. ### More on Fast & Efficient Genome Analysis ... Onur Mutlu, "Accelerating Genome Analysis: A Primer on an Ongoing Journey" *Invited Lecture at <u>Technion</u>*, Virtual, 26 January 2021. [Slides (pptx) (pdf)] [Talk Video (1 hour 37 minutes, including Q&A)] [Related Invited Paper (at IEEE Micro, 2020)] **EDIT VIDEO** ## Detailed Lectures on Genome Analysis - Computer Architecture, Fall 2020, Lecture 3a - Introduction to Genome Sequence Analysis (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5 - Computer Architecture, Fall 2020, Lecture 8 - □ **Intelligent Genome Analysis** (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14 - Computer Architecture, Fall 2020, Lecture 9a - □ **GenASM: Approx. String Matching Accelerator** (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=XoLpzmN Pas&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=15 - Accelerating Genomics Project Course, Fall 2020, Lecture 1 - Accelerating Genomics (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqL gwiDRQDTyId #### Data Overwhelms Modern Machines ... Storage/memory capability Communication capability Computation capability Greatly impacts robustness, energy, performance, cost ## A Computing System - Three key components - Computation - Communication - Storage/memory Burks, Goldstein, von Neumann, "Preliminary discussion of the logical design of an electronic computing instrument," 1946. #### **Computing System** 24 ## Perils of Processor-Centric Design Most of
the system is dedicated to storing and moving data ## Deeper and Larger Cache Hierarchies **Core Count:** 8 cores/16 threads L1 Caches: 32 KB per core L2 Caches: 512 KB per core L3 Cache: 32 MB shared AMD Ryzen 5000, 2020 ### AMD's 3D Last Level Cache (2021) 34/comparing-zen-3-to-zen-2 AMD increases the L3 size of their 8-core Zen 3 processors from 32 MB to 96 MB Additional 64 MB L3 cache die stacked on top of the processor die - Connected using Through Silicon Vias (TSVs) - Total of 96 MB L3 cache ## Deeper and Larger Cache Hierarchies IBM POWER10, 2020 #### Cores: 15-16 cores, 8 threads/core L2 Caches: 2 MB per core L3 Cache: 120 MB shared #### Data Overwhelms Modern Machines **TensorFlow Mobile** Data → performance & energy bottleneck VP9 VouTube Video Playback Google's video codec Google's video codec #### Data Movement Overwhelms Modern Machines Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks" Proceedings of the <u>23rd International Conference on Architectural Support for Programming</u> <u>Languages and Operating Systems</u> (ASPLOS), Williamsburg, VA, USA, March 2018. #### 62.7% of the total system energy is spent on data movement #### Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks Amirali Boroumand¹ Rachata Ausavarungnirun¹ Aki Kuusela³ Allan Knies³ Saugata Ghose¹ Youngsok Kim² Eric Shiu³ Rahul Thakur³ Daehyun Kim^{4,3} Parthasarathy Ranganathan³ Onur Mutlu^{5,1} # An Intelligent Architecture Handles Data Well #### How to Handle Data Well - Ensure data does not overwhelm the components - via intelligent algorithms - via intelligent architectures - via whole system designs: algorithm-architecture-devices - Take advantage of vast amounts of data and metadata - to improve architectural & system-level decisions - Understand and exploit properties of (different) data - to improve algorithms & architectures in various metrics ### Corollaries: Architectures Today ... - Architectures are terrible at dealing with data - Designed to mainly store and move data vs. to compute - They are processor-centric as opposed to data-centric - Architectures are terrible at taking advantage of vast amounts of data (and metadata) available to them - Designed to make simple decisions, ignoring lots of data - They make human-driven decisions vs. data-driven - Architectures are terrible at knowing and exploiting different properties of application data - Designed to treat all data as the same - They make component-aware decisions vs. data-aware ## Fundamentally Better Architectures ## **Data-centric** **Data-driven** **Data-aware** #### We Need to Revisit the Entire Stack We can get there step by step #### Axiom To achieve the highest energy efficiency and performance: #### we must take an expanded view of computer architecture Co-design across the hierarchy: Algorithms to devices Specialize as much as possible within the design goals ## Fundamentally Better Architectures ## **Data-centric** **Data-driven** **Data-aware** ## A Blueprint for Fundamentally Better Architectures Onur Mutlu, "Intelligent Architectures for Intelligent Computing Systems" Invited Paper in Proceedings of the <u>Design, Automation, and Test in</u> <u>Europe Conference</u> (**DATE**), Virtual, February 2021. [Slides (pptx) (pdf)] [IEDM Tutorial Slides (pptx) (pdf)] [Short DATE Talk Video (11 minutes)] [Longer IEDM Tutorial Video (1 hr 51 minutes)] ### Intelligent Architectures for Intelligent Computing Systems Onur Mutlu ETH Zurich omutlu@gmail.com ## Data-Centric (Memory-Centric) Architectures ## Data-Centric Architectures: Properties - Process data where it resides (where it makes sense) - Processing in and near memory structures - Low-latency and low-energy data access - Low latency memory - Low energy memory - Low-cost data storage and processing - High capacity memory at low cost: hybrid memory, compression - Intelligent data management - Intelligent controllers handling robustness, security, cost, perf. ## Processing Data Where It Makes Sense ## Processing in/near Memory: An Old Idea Kautz, "Cellular Logic-in-Memory Arrays", IEEE TC 1969. IEEE TRANSACTIONS ON COMPUTERS, VOL. C-18, NO. 8, AUGUST 1969 ### Cellular Logic-in-Memory Arrays WILLIAM H. KAUTZ, MEMBER, IEEE Abstract—As a direct consequence of large-scale integration, many advantages in the design, fabrication, testing, and use of digital circuitry can be achieved if the circuits can be arranged in a two-dimensional iterative, or cellular, array of identical elementary networks, or cells. When a small amount of storage is included in each cell, the same array may be regarded either as a logically enhanced memory array, or as a logic array whose elementary gates and connections can be "programmed" to realize a desired logical behavior. In this paper the specific engineering features of such cellular logic-in-memory (CLIM) arrays are discussed, and one such special-purpose array, a cellular sorting array, is described in detail to illustrate how these features may be achieved in a particular design. It is shown how the cellular sorting array can be employed as a single-address, multiword memory that keeps in order all words stored within it. It can also be used as a content-addressed memory, a pushdown memory, a buffer memory, and (with a lower logical efficiency) a programmable array for the realization of arbitrary switching functions. A second version of a sorting array, operating on a different sorting principle, is also described. Index Terms—Cellular logic, large-scale integration, logic arrays logic in memory, push-down memory, sorting, switching functions. CELL EQUATIONS: $\hat{x} = \overline{w}x + wy$ $s_y = wcx, r_y = wc\overline{x}$ $\hat{z} = M(x, \overline{y}, z) = x\overline{y} + z(x + \overline{y})$ Fig. 1. Cellular sorting array I. ## Processing in/near Memory: An Old Idea Stone, "A Logic-in-Memory Computer," IEEE TC 1970. #### A Logic-in-Memory Computer HAROLD S. STONE Abstract—If, as presently projected, the cost of microelectronic arrays in the future will tend to reflect the number of pins on the array rather than the number of gates, the logic-in-memory array is an extremely attractive computer component. Such an array is essentially a microelectronic memory with some combinational logic associated with each storage element. ## Why In-Memory Computation Today? - Push from Technology - DRAM Scaling at jeopardy - → Controllers close to DRAM - → Industry open to new memory architectures ## Why In-Memory Computation Today? [Samsung 2021] [UPMEM 2019] ## Memory Scaling Issues Were Real Onur Mutlu, "Memory Scaling: A Systems Architecture Perspective" Proceedings of the 5th International Memory Workshop (IMW), Monterey, CA, May 2013. Slides (pptx) (pdf) EETimes Reprint ## Memory Scaling: A Systems Architecture Perspective Onur Mutlu Carnegie Mellon University onur@cmu.edu http://users.ece.cmu.edu/~omutlu/ ## The DRAM Scaling Problem - DRAM stores charge in a capacitor (charge-based memory) - Capacitor must be large enough for reliable sensing - Access transistor must be large enough for low leakage and high retention time - Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] DRAM capacity, cost, and energy/power hard to scale ## As Memory Scales, It Becomes Unreliable - Data from all of Facebook's servers worldwide - Meza+, "Revisiting Memory Errors in Large-Scale Production Data Centers," DSN'15. ## A Curious Phenomenon [Kim et al., ISCA 2014] # One can predictably induce errors in most DRAM memory chips Kim+, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors," ISCA 2014. ## The RowHammer Vulnerability # A simple hardware failure mechanism can create a widespread system security vulnerability Forget Software—Now Hackers Are Exploiting Physics BUSINESS CULTURE DESIGN GEAR SCIENCE SHARE ANDY GREENBERG SECURITY 08.31.16 7:00 AM # FORGET SOFTWARE—NOW HACKERS ARE EXPLOITING PHYSICS ## The RowHammer Vulnerability Repeatedly reading a row enough times (before memory gets refreshed) induces disturbance errors in adjacent rows in most real DRAM chips you can buy today ### One Can Take Over an Otherwise-Secure System ## Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors Abstract. Memory isolation is a key property of a reliable and secure computing system — an access to one memory address should not have unintended side effects on data stored in other addresses. However, as DRAM process technology ## Project Zero Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014) News and updates from the Project Zero team at Google Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015) Monday, March 9, 2015 Exploiting the DRAM rowhammer bug to gain kernel privileges ## More Security Implications (VII) USENIX Security 2019 ## Terminal Brain Damage: Exposing the Graceless Degradation in Deep Neural Networks Under Hardware Fault Attacks Sanghyun Hong, Pietro Frigo[†], Yiğitcan Kaya, Cristiano Giuffrida[†], Tudor Dumitraș University of Maryland, College Park †Vrije Universiteit Amsterdam #### A Single Bit-flip Can Cause Terminal Brain Damage to DNNs One specific bit-flip in a DNN's representation leads to accuracy drop over 90% Our research found that a specific bit-flip in a DNN's bitwise representation can cause the accuracy loss up to 90%, and the DNN has 40-50% parameters, on average, that can lead to the accuracy drop over 10% when individually subjected to such single bitwise corruptions... **Read More** ## More Security Implications (VIII) #### USENIX Security 2020 ## DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips Fan Yao
University of Central Florida fan.yao@ucf.edu Adnan Siraj Rakin Deliang Fan Arizona State University asrakin@asu.edu dfan@asu.edu #### Degrade the inference accuracy to the level of Random Guess Example: ResNet-20 for CIFAR-10, 10 output classes Before attack, Accuracy: 90.2% After attack, Accuracy: ~10% (1/10) ## The Story of RowHammer Lecture ... Onur Mutlu, #### "The Story of RowHammer" Keynote Talk at <u>Secure Hardware, Architectures, and Operating Systems</u> <u>Workshop</u> (**SeHAS**), held with <u>HiPEAC 2021 Conference</u>, Virtual, 19 January 2021. [Slides (pptx) (pdf)] [Talk Video (1 hr 15 minutes, with Q&A)] #### 10 Years of RowHammer in 20 Minutes Onur Mutlu, #### "The Story of RowHammer" **Onur Mutlu Lectures** 24.5K subscribers Invited Talk at the Workshop on Robust and Safe Software 2.0 (RSS2), held with the 27th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Virtual, 28 February 2022. [Slides (pptx) (pdf)] ## Memory Scaling Issues Are Real Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu, <u>"Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"</u> Proceedings of the <u>41st International Symposium on Computer Architecture</u> (**ISCA**), Minneapolis, MN, June 2014. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data] [Lecture Video (1 hr 49 mins), 25 September 2020] One of the 7 papers of 2012-2017 selected as Top Picks in Hardware and Embedded Security for IEEE TCAD (link). ## Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors Yoongu Kim¹ Ross Daly* Jeremie Kim¹ Chris Fallin* Ji Hye Lee¹ Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹ ¹Carnegie Mellon University ²Intel Labs SAFARI ## Memory Scaling Issues Are Real Onur Mutlu, "The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser" Invited Paper in Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Lausanne, Switzerland, March 2017. [Slides (pptx) (pdf)] ## The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser Onur Mutlu ETH Zürich onur.mutlu@inf.ethz.ch https://people.inf.ethz.ch/omutlu ## Memory Scaling Issues Are Real Onur Mutlu and Jeremie Kim, "RowHammer: A Retrospective" <u>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems</u> (**TCAD**) Special Issue on Top Picks in Hardware and Embedded Security, 2019. [Preliminary arXiv version] [Slides from COSADE 2019 (pptx)] [Slides from VLSI-SOC 2020 (pptx) (pdf)] [Talk Video (1 hr 15 minutes, with Q&A)] ## RowHammer: A Retrospective Onur Mutlu^{§‡} Jeremie S. Kim^{‡§} §ETH Zürich [‡]Carnegie Mellon University SAFARI 60 ## Hybrid Memory Enables Better Scaling ## Hardware/software manage data allocation & movement to achieve the best of multiple technologies Meza+, "Enabling Efficient and Scalable Hybrid Memories," IEEE Comp. Arch. Letters, 2012. Yoon+, "Row Buffer Locality Aware Caching Policies for Hybrid Memories," ICCD 2012 Best Paper Award. # Main Memory Needs Intelligent Controllers ## An Example Intelligent Controller A. Giray Yaglikci, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi, Ataberk Olgun, Lois Orosa, Hasan Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha Shahroodi, Saugata Ghose, and Onur Mutlu, "BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM Rows" Proceedings of the <u>27th International Symposium on High-Performance</u> <u>Computer Architecture</u> (**HPCA**), Virtual, February-March 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Talk Video (22 minutes)] [Short Talk Video (7 minutes)] ## BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM Rows A. Giray Yağlıkçı¹ Minesh Patel¹ Jeremie S. Kim¹ Roknoddin Azizi¹ Ataberk Olgun¹ Lois Orosa¹ Hasan Hassan¹ Jisung Park¹ Konstantinos Kanellopoulos¹ Taha Shahroodi¹ Saugata Ghose² Onur Mutlu¹ ¹ETH Zürich ²University of Illinois at Urbana–Champaign 63 ## Industry Is Writing Papers About It, Too #### DRAM Process Scaling Challenges #### Refresh - Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance - · Leakage current of cell access transistors increasing #### tWR - Contact resistance between the cell capacitor and access transistor increasing - · On-current of the cell access transistor decreasing - Bit-line resistance increasing #### VRT · Occurring more frequently with cell capacitance decreasing ## Call for Intelligent Memory Controllers #### **DRAM Process Scaling Challenges** #### Refresh Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance THE MEMORY FORUM 2014 ## Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng, **John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel ## Another Example Intelligent Controller Minesh Patel, Geraldo F. de Oliveira Jr., and Onur Mutlu, "HARP: Practically and Effectively Identifying Uncorrectable Errors in Memory Chips That Use On-Die Error-Correcting Codes" Proceedings of the <u>54th International Symposium on Microarchitecture</u> (**MICRO**), Virtual, October 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (20 minutes)] [Lightning Talk Video (1.5 minutes)] [HARP Source Code (Officially Artifact Evaluated with All Badges)] ## HARP: Practically and Effectively Identifying Uncorrectable Errors in Memory Chips That Use On-Die Error-Correcting Codes ## Aside: Intelligent Controller for NAND Flash [DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE 2017, HPCA 2018, SIGMETRICS 2018] NAND Daughter Board ## Intelligent Flash Controllers [PIEEE'17] Proceedings of the IEEE, Sept. 2017 ## Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD's reliability and lifetime. By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu https://arxiv.org/pdf/1706.08642 ### Emerging Memories Also Need Intelligent Controllers Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger, "Architecting Phase Change Memory as a Scalable DRAM Alternative" Proceedings of the 36th International Symposium on Computer Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides (pdf) One of the 13 computer architecture papers of 2009 selected as Top Picks by IEEE Micro. Selected as a CACM Research Highlight. 2022 Persistent Impact Prize. ### Architecting Phase Change Memory as a Scalable DRAM Alternative Benjamin C. Lee† Engin Ipek† Onur Mutlu‡ Doug Burger† †Computer Architecture Group Microsoft Research Redmond, WA {blee, ipek, dburger}@microsoft.com ‡Computer Architecture Laboratory Carnegie Mellon University Pittsburgh, PA onur@cmu.edu ## Intelligent Memory Controllers Can Avoid Many Failures & Enable Better Scaling # Main Memory Needs Intelligent Controllers ## Why In-Memory Computation Today? - Push from Technology - DRAM Scaling at jeopardy - → Controllers close to DRAM - → Industry open to new memory architectures - Pull from Systems and Applications - Data access is a major system and application bottleneck - Systems are energy limited - Data movement much more energy-hungry than computation #### Three Key Systems & Application Trends #### 1. Data access is a major bottleneck Applications are increasingly data hungry #### 2. Energy consumption is a key limiter #### 3. Data movement energy dominates compute Especially true for off-chip to on-chip movement #### Do We Want This? 74 #### Or This? 75 **SAFARI** Source: V. Milutinovic High Performance, Energy Efficient, Sustainable (All at the Same Time) #### The Problem Data access is the major performance and energy bottleneck # Our current design principles cause great energy waste (and great performance loss) # Processing of data is performed far away from the data ### A Computing System - Three key components - Computation - Communication - Storage/memory Burks, Goldstein, von Neumann, "Preliminary discussion of the logical design of an electronic computing instrument," 1946. #### Computing System ## A Computing System - Three key components - Computation - Communication - Storage/memory Burks, Goldstein, von Neumann, "Preliminary discussion of the logical design of an electronic computing instrument," 1946. #### Computing System #### Today's Computing Systems - Are overwhelmingly processor centric - All data processed in the processor → at great system cost - Processor is heavily optimized and is considered the master - Data storage units are dumb and are largely unoptimized I expect that over the coming decade memory subsystem design will be the *only* important design issue for microprocessors. "It's the Memory, Stupid!" (Richard Sites, MPR, 1996) ## The Performance Perspective HPCA Test of Time Award (awarded in 2021). Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt, "Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors" Proceedings of the <u>9th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), pages 129-140, Anaheim, CA, February 2003. <u>Slides (pdf)</u> <u>One of the 15 computer arch. papers of 2003 selected as Top Picks by IEEE Micro.</u> #### Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors Onur Mutlu § Jared Stark † Chris Wilkerson ‡ Yale N. Patt § §ECE Department The University of Texas at Austin {onur,patt}@ece.utexas.edu
†Microprocessor Research Intel Labs jared.w.stark@intel.com ‡Desktop Platforms Group Intel Corporation chris.wilkerson@intel.com #### The Performance Perspective (Today) All of Google's Data Center Workloads (2015): #### The Performance Perspective (Today) All of Google's Data Center Workloads (2015): Figure 11: Half of cycles are spent stalled on caches. #### Perils of Processor-Centric Design - Grossly-imbalanced systems - Processing done only in one place - All else just stores and moves data: data moves a lot - → Energy inefficient - → Low performance - → Complex - Overly complex and bloated processor (and accelerators) - To tolerate data access from memory - Complex hierarchies and mechanisms - → Energy inefficient - → Low performance - → Complex #### Perils of Processor-Centric Design Most of the system is dedicated to storing and moving data #### The Energy Perspective A memory access consumes ~100-1000X the energy of a complex addition A memory access consumes 6400X the energy of a simple integer addition - Data movement is a major system energy bottleneck - Comprises 41% of mobile system energy during web browsing [2] - Costs ~115 times as much energy as an ADD operation [1, 2] [1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO'16) [2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC'14) #### Energy Waste in Mobile Devices Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks" Proceedings of the <u>23rd International Conference on Architectural Support for Programming</u> <u>Languages and Operating Systems</u> (ASPLOS), Williamsburg, VA, USA, March 2018. #### 62.7% of the total system energy is spent on data movement #### Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks Amirali Boroumand¹ Rachata Ausavarungnirun¹ Aki Kuusela³ Allan Knies³ Saugata Ghose¹ Youngsok Kim² Eric Shiu³ Rahul Thakur³ Daehyun Kim^{4,3} Parthasarathy Ranganathan³ Onur Mutlu^{5,1} #### We Do Not Want to Move Data! A memory access consumes ~100-1000X the energy of a complex addition #### We Need A Paradigm Shift To ... Enable computation with minimal data movement Compute where it makes sense (where data resides) Make computing architectures more data-centric # Goal: Processing Inside Memory - Many questions ... How do we design the: - compute-capable memory & controllers? - processors & communication units? - software & hardware interfaces? - system software, compilers, languages? - algorithms & theoretical foundations? **Problem** Aigorithm Program/Language System Software SW/HW Interface Micro-architecture Logic Electrons #### PIM Review and Open Problems #### A Modern Primer on Processing in Memory Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d SAFARI Research Group ^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" Invited Book Chapter in <u>Emerging Computing: From Devices to Systems -</u> Looking Beyond Moore and Von Neumann, Springer, to be published in 2021. #### A Modern Primer on Processing in Memory Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d SAFARI Research Group ^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok #### Abstract Modern computing systems are overwhelmingly designed to move data to computation. This design choice goes directly against at least three key trends in computing that cause performance, scalability and energy bottlenecks: (1) data access is a key bottleneck as many important applications are increasingly data-intensive, and memory bandwidth and energy do not scale well, (2) energy consumption is a key limiter in almost all computing platforms, especially server and mobile systems, (3) data movement, especially off-chip to on-chip, is very expensive in terms of bandwidth, energy and latency, much more so than computation. These trends are especially severely-felt in the data-intensive server and energy-constrained mobile systems of today. At the same time, conventional memory technology is facing many technology scaling challenges in terms of reliability, energy, and performance. As a result, memory system architects are open to organizing memory in different ways and making it more intelligent, at the expense of higher cost. The emergence of 3D-stacked memory plus logic, the adoption of error correcting codes inside the latest DRAM chips, proliferation of different main memory standards and chips, specialized for different purposes (e.g., graphics, low-power, high bandwidth, low latency), and the necessity of designing new solutions to serious reliability and security issues, such as the RowHammer phenomenon, are an evidence of this trend. This chapter discusses recent research that aims to practically enable computation close to data, an approach we call processing-in-memory (PIM). PIM places computation mechanisms in or near where the data is stored (i.e., inside the memory chips, in the logic layer of 3D-stacked memory, or in the memory controllers), so that data movement between the computation units and memory is reduced or eliminated. While the general idea of PIM is not new, we discuss motivating trends in applications as well as memory circuits/technology that greatly exacerbate the need for enabling it in modern computing systems. We examine at least two promising new approaches to designing PIM systems to accelerate important data-intensive applications: (1) processing using memory by exploiting analog operational properties of DRAM chips to perform massively-parallel operations in memory, with low-cost changes, (2) processing near memory by exploiting 3D-stacked memory technology design to provide high memory bandwidth and low memory latency to in-memory logic. In both approaches, we describe and tackle relevant cross-layer research, design, and adoption challenges in devices, architecture, systems, and programming models. Our focus is on the development of in-memory processing designs that can be adopted in real computing platforms at low cost. We conclude by discussing work on solving key challenges to the practical adoption of PIM. Keywords: memory systems, data movement, main memory, processing-in-memory, near-data processing, computation-in-memory, processing using memory, processing near memory, 3D-stacked memory, non-volatile memory, energy efficiency, high-performance computing, computer architecture, computing paradigm, emerging technologies, memory scaling, technology scaling, dependable systems, robust systems, hardware security, system security, latency, low-latency computing #### Contents | 1 | Introduction | | | |---|---|----|--| | 2 | Major Trends Affecting Main Memory | | | | 3 | The Need for Intelligent Memory Controllers | | | | | to Enhance Memory Scaling | | | | 4 | Perils of Processor-Centric Design | | | | 5 | Processing-in-Memory (PIM): Technology | | | | | Enablers and Two Approaches | 12 | | | | 5.1 New Technology Enablers: 3D-Stacked | | | | L | Memory and Non-Volatile Memory | 12 | | | | 5.2 Two Approaches: Processing Using | | | | | Memory (PUM) vs. Processing Near | | | | | Memory (PNM) | 13 | | | 6 | Processing Using Memory (PUM) | 14 | | | U | 6.1 RowClone | 14 | | | | 6.2 Ambit | 15 | | | | 6.2 Ambit | 17 | | | | 6.4 In-DRAM Security Primitives | 17 | | | | 0.4 III-DRAM Security Frimuves | 1/ | | | 7 | Processing Near Memory (PNM) | 18 | | | | 7.1 Tesseract: Coarse-Grained Application- | | | | | Level PNM Acceleration of Graph Pro- | | | | Г | cessing | 19 | | | | 7.2 Function-Level PNM Acceleration of | | | | | Mobile Consumer Workloads | 20 | | | | 7.3 Programmer-Transparent Function- | | | | | Level PNM Acceleration of GPU | | | | | Applications | 21 | | | | 7.4 Instruction-Level PNM Acceleration | | | | | with PIM-Enabled Instructions (PEI) | 21 | | | | 7.5 Function-Level PNM Acceleration of | | | | | Genome Analysis Workloads | 22 | | | | 7.6 Application-Level PNM Acceleration of | - | | | L | Time Series Analysis | 23 | | | 8 | Enabling the Adoption of PIM | 24 | | | | 8.1 Programming Models and Code Genera- | | | | | tion for PIM | 24 | | | | 8.2 PIM Runtime: Scheduling and Data | | | | | Mapping | 25 | | | | 8.3 Memory Coherence | 27 | | | | 8.4 Virtual Memory Support | 27 | | | | 8.5 Data Structures for PIM | 28 | | | | 8.6 Benchmarks and Simulation Infrastruc- | | | | | tures | 29 | | | | 8.7 Real PIM Hardware Systems and Proto- | | | | | types | 30 | | | | 8.8 Security Considerations | 30 | | | | | | | | 9 | Conclusion and Future Outlook | 31 | | #### 1. Introduction Main memory, built using the Dynamic Random Access Memory (DRAM) technology, is a major component in nearly all computing systems, including servers, cloud platforms, mobile/embedded devices, and sensor systems. Across all of these systems, the data working set sizes of modern applications are rapidly growing, while the need for fast analysis of such data is increasing. Thus, main memory is becoming an increasingly significant bottleneck across a wide variety of computing systems and applications [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Alleviating the main memory bottleneck requires the memory capacity, energy, cost, and performance to all scale in an efficient manner across technology generations. Unfortunately, it has become increasingly difficult in recent years, especially the past decade, to scale all of these dimensions [1, 2, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], and thus the main memory bottleneck has been worsening. A major reason for the main memory bottleneck is the high energy and latency cost associated with data movement. In modern computers, to perform any operation on data that resides in main memory, the processor must retrieve the data from main memory. This requires the memory controller to issue commands to a DRAM module across a relatively slow and power-hungry off-chip bus (known as the memory channel). The DRAM module sends the requested data across the memory channel, after which the data is placed in the caches and registers. The CPU can perform computation on the data once the data is in its registers. Data movement from the DRAM to the CPU incurs long latency and consumes a significant amount of energy [7, 50, 51, 52, 53, 54]. These costs are often exacerbated by the fact that much of the data brought into the caches is not reused by the CPU [52, 53, 55, 56], providing little benefit in return for the high latency and energy cost. The cost of data movement is a fundamental issue with the processor-centric nature of contemporary computer systems. The CPU is considered to be the master in the system, and computation is performed only in the processor (and accelerators). In contrast, data storage and communication units, including the main memory, are treated as unintelligent workers that are incapable of computation. As a result of this processor-centric design paradigm, data moves a lot in the system between the computation units and communication/ storage units so that computation can be done on it. With the increasingly data-centric nature of contemporary and emerging appli- # We Need to Think Differently from the Past Approaches # Processing in Memory: Two Approaches - 1. Processing using Memory - 2. Processing near Memory #### Two PIM Approaches 5.2. Two Approaches: Processing Using Memory (PUM) vs. Processing Near Memory (PNM) Many recent works take advantage of the memory technology innovations that we discuss in Section 5.1 to enable and implement PIM. We find that these works generally take one of two approaches, which are categorized in Table 1: (1) processing using memory or (2) processing near memory. We briefly describe each approach here. Sections 6 and 7 will provide example approaches and more detail for both. Table 1: Summary of enabling technologies for the two approaches to PIM used by recent works. Adapted from [309]. | Approach | Enabling Technologies | |-------------------------|-----------------------------------| | | SRAM | | | DRAM | | Processing Using Memory | Phase-change memory (PCM) | | | Magnetic RAM (MRAM) | | | Resistive RAM (RRAM)/memristors | | | Logic layers in 3D-stacked memory | | Processing Near Memory | Silicon interposers | | | Logic in memory controllers | **Processing using memory (PUM)** exploits the existing memory architecture and the operational principles of the memory circuitry to enable operations within main memory with minimal changes. PUM makes use Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" Invited Book Chapter in <u>Emerging</u> <u>Computing: From Devices to Systems - Looking Beyond Moore and Von Neumann</u>, Springer, to be published in 2021. [<u>Tutorial Video on "Memory-Centric Computing Systems"</u> (1 hour 51 minutes)] #### Approach 1: Processing Using Memory - Take advantage of operational principles of memory to perform bulk data movement and computation in memory - Can exploit internal connectivity to move data - Can exploit analog computation capability - **...** - Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM - RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data (Seshadri et al., MICRO 2013) - Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015) - Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015) - "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology" (Seshadri et al., MICRO 2017) ### Starting Simple: Data Copy and Initialization memmove & memcpy: 5% cycles in Google's datacenter [Kanev+ ISCA'15] **Page Migration** # Future Systems: In-Memory Copy 1046ns, 3.6uJ → 90ns, 0.04uJ #### RowClone: In-DRAM Row Copy #### RowClone: Latency and Energy Savings Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data," MICRO 2013. #### More on RowClone Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry, "RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization" Proceedings of the <u>46th International Symposium on Microarchitecture</u> (**MICRO**), Davis, CA, December 2013. [<u>Slides (pptx) (pdf)</u>] [<u>Lightning Session Slides (pptx) (pdf)</u>] [<u>Poster (pptx) (pdf)</u>] # RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization Vivek Seshadri Yoongu Kim Chris Fallin* Donghyuk Lee vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@c1f.net donghyuk1@cmu.edu Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo rachata@cmu.edu gpekhime@cs.cmu.edu yixinluo@andrew.cmu.edu Onur Mutlu Phillip B. Gibbons† Michael A. Kozuch† Todd C. Mowry onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu Carnegie Mellon University †Intel Pittsburgh ### Real System RowClone Prototype # PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-DRAM Ataberk Olgun§† Juan Gómez Luna§ Konstantinos Kanellopoulos§ Behzad Salami§* Hasan Hassan§ Oğuz Ergin[†] Onur Mutlu§ §ETH Zürich †TOBB ETÜ *BSC https://arxiv.org/pdf/2111.00082.pdf https://github.com/cmu-safari/pidram ## Real System RowClone (& PuM) Prototype https://arxiv.org/pdf/2111.00082.pdf https://github.com/cmu-safari/pidram #### Lecture on RowClone & Processing using DRAM # Mindset: Memory as an Accelerator Memory similar to a "conventional" accelerator ## (Truly) In-Memory Computation - We can support in-DRAM AND, OR, NOT, MAJ - At low cost - Using analog computation capability of DRAM - Idea: activating multiple rows performs computation - 30-60X performance and energy improvement - Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology," MICRO 2017. - New memory technologies enable even more opportunities - Memristors, resistive RAM, phase change mem, STT-MRAM, ... - Can operate on data with minimal movement #### In-DRAM AND/OR: Triple Row Activation #### Bulk Bitwise Operations in Workloads #### In-DRAM Acceleration of Database Queries Figure 11: Speedup offered by Ambit over baseline CPU with SIMD for BitWeaving Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology," MICRO 2017. #### More on Ambit Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology" Proceedings of the <u>50th International Symposium on</u> <u>Microarchitecture</u> (**MICRO**), Boston, MA, USA, October 2017. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)] Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology Vivek Seshadri^{1,5} Donghyuk Lee^{2,5} Thomas Mullins^{3,5} Hasan Hassan⁴ Amirali Boroumand⁵ Jeremie Kim^{4,5} Michael A. Kozuch³ Onur Mutlu^{4,5} Phillip B. Gibbons⁵ Todd C. Mowry⁵ 1 Microsoft Research India 2 NVIDIA Research 3 Intel 4 ETH Zürich 5 Carnegie Mellon University #### In-DRAM Bulk Bitwise Execution Vivek Seshadri and Onur Mutlu, "In-DRAM Bulk Bitwise Execution Engine" Invited Book Chapter in Advances in Computers, to appear in 2020. [Preliminary arXiv version] #### In-DRAM Bulk Bitwise Execution Engine Vivek Seshadri Microsoft Research India visesha@microsoft.com Onur Mutlu ETH Zürich onur.mutlu@inf.ethz.ch #### SIMDRAM Framework Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu, "SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM" Proceedings of the 26th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Virtual, March-April 2021. [2-page Extended Abstract] [Short Talk Slides (pptx) (pdf)] [Talk Slides (pptx) (pdf)] [Short Talk Video (5 mins)] [Full Talk Video (27 mins)] # SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM *Nastaran Hajinazar^{1,2} Nika Mansouri Ghiasi¹ *Geraldo F. Oliveira¹ Minesh Patel¹ Juan Gómez-Luna¹ Sven Gregorio¹ Mohammed Alser¹ Onur Mutlu¹ João Dinis Ferreira¹ Saugata Ghose³ ¹ETH Zürich ²Simon Fraser University ³University of Illinois at Urbana–Champaign #### **SIMDRAM Framework: Overview** #### SAFARI # **SIMDRAM Key Results** #### Evaluated on: - 16 complex in-DRAM operations - 7 commonly-used real-world applications #### **SIMDRAM** provides: - 88× and 5.8× the throughput of a CPU and a high-end GPU, respectively, over 16 operations - 257× and 31× the energy efficiency of a CPU and a high-end GPU, respectively, over 16 operations - 21× and 2.1× the performance of a CPU an a high-end GPU, over seven real-world applications #### SAFARI #### More on SIMDRAM Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu, "SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM" Proceedings of the 26th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS), Virtual, March-April 2021. [2-page Extended Abstract] [Short Talk Slides (pptx) (pdf)] [Talk Slides (pptx) (pdf)] [Short Talk Video (5 mins)] [Full Talk Video (27 mins)] # SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM *Nastaran Hajinazar^{1,2} Nika Mansouri Ghiasi¹ *Geraldo F. Oliveira¹ Minesh Patel¹ Juan Gómez-Luna¹ Sven Gregorio¹ Mohammed Alser¹ Onur Mutlu¹ João Dinis Ferreira¹ Saugata Ghose³ ¹ETH Zürich ²Simon Fraser University ³University of Illinois at Urbana-Champaign ### In-DRAM Physical Unclonable Functions Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu, "The DRAM Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM Devices" Proceedings of the <u>24th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), Vienna, Austria, February 2018. [Lightning Talk Video] [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Full Talk Lecture Video (28 minutes)] #### The DRAM Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices Jeremie S. Kim^{†§} Minesh Patel[§] Hasan Hassan[§] Onur Mutlu^{§†} [†]Carnegie Mellon University [§]ETH Zürich #### In-DRAM True Random Number Generation Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu, "D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput" Proceedings of the <u>25th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), Washington, DC, USA, February 2019. [Slides (pptx) (pdf)] [Full Talk Video (21 minutes)] [Full Talk Lecture Video (27 minutes)] Top Picks Honorable Mention by IEEE Micro. #### D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput Jeremie S. Kim^{‡§} Minesh Patel[§] Hasan Hassan[§] Lois Orosa[§] Onur Mutlu^{§‡} [‡]Carnegie Mellon University [§]ETH Zürich SAFARI 124 #### In-DRAM True Random Number Generation Ataberk Olgun, Minesh Patel, A. Giray Yaglikci, Haocong Luo, Jeremie S. Kim, F. Nisa Bostanci, Nandita Vijaykumar, Oguz Ergin, and Onur Mutlu, "QUAC-TRNG: High-Throughput True Random Number Generation Using Quadruple Row Activation in Commodity DRAM Chips" Proceedings of the <u>48th International Symposium on Computer Architecture</u> (**ISCA**), Virtual, June 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Talk Video (25 minutes)] [SAFARI Live Seminar Video (1 hr 26 mins)] # QUAC-TRNG: High-Throughput True Random Number Generation Using Quadruple Row Activation in Commodity DRAM Chips Ataberk Olgun $^{\S \dagger}$ Minesh Patel § A. Giray Yağlıkçı § Haocong Luo § Jeremie S. Kim § F. Nisa Bostancı $^{\S \dagger}$ Nandita Vijaykumar $^{\S \odot}$ Oğuz Ergin † Onur Mutlu § § ETH Zürich † TOBB University of Economics and Technology $^{\odot}$ University of Toronto SAFARI 125 #### In-DRAM True Random Number Generation F. Nisa Bostanci, Ataberk Olgun, Lois Orosa, A. Giray Yaglikci, Jeremie S. Kim, Hasan Hassan, Oguz Ergin, and Onur Mutlu, "DR-STRaNGe: End-to-End System Design for DRAM-based True Random **Number Generators**" Proceedings of the <u>28th International Symposium on High-Performance Computer</u> Architecture (HPCA), Virtual, April 2022. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] #### DR-STRaNGe: End-to-End System Design for DRAM-based True Random Number Generators F. Nisa Bostanci†§ Jeremie S. Kim§ SAFARI Ataberk Olgun^{†§} Lois Orosa[§] A. Giray Yağlıkçı§ Onur Mutlu§ Hasan Hassan[§] Oğuz Ergin[†] §ETH Zürich †TOBB University of Economics and Technology # Processing in Memory: Two Approaches - 1. Processing using Memory - 2. Processing near Memory #### Specialization: In-Memory Graph Processing Large graphs are everywhere (circa 2015) 36 Million Wikipedia Pages 1.4 Billion Facebook Users 300 Million Twitter Users 30 Billion Instagram Photos Scalable large-scale graph processing is challenging # Key Bottlenecks in Graph Processing ``` for (v: graph.vertices) { for (w: v.successors) { w.next rank += weight * v.rank; 1. Frequent random memory accesses &w V w.rank w.next rank weight * v.rank w.edges W 2. Little amount of computation ``` # Opportunity: 3D-Stacked Logic+Memory ## Tesseract System for Graph Processing Interconnected set of 3D-stacked memory+logic chips with simple cores # Tesseract System for Graph Processing # Tesseract System for Graph Processing ## Evaluated Systems # Tesseract Graph Processing Performance # Tesseract Graph Processing System Energy **SAFARI** Ahn+, "A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing" ISCA 2015. #### More on Tesseract Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, "A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing" Proceedings of the <u>42nd International Symposium on</u> <u>Computer Architecture</u> (**ISCA**), Portland, OR, June 2015. [Slides (pdf)] [Lightning Session Slides (pdf)] #### A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing Junwhan Ahn Sungpack Hong[§] Sungjoo Yoo Onur Mutlu[†] Kiyoung Choi junwhan@snu.ac.kr, sungpack.hong@oracle.com, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr Seoul National University [§]Oracle Labs [†]Carnegie Mellon University # Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks #### **Amirali Boroumand** Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, Onur Mutlu **Carnegie Mellon** #### **Consumer Devices** #### Consumer devices are everywhere! # Energy consumption is a first-class concern in consumer devices #### Popular Consumer Workloads Chrome Google's web browser **TensorFlow Mobile** Google's machine learning framework Google's video codec Google's video codec # **Energy Cost of Data Movement** Ist key observation: 62.7% of the total system energy is spent on data movement Potential solution: move computation close to data Challenge: limited area and energy budget #### Using PIM to Reduce Data Movement 2nd key observation: a significant fraction of the data movement often comes from simple functions We can design lightweight logic to implement these <u>simple functions</u> in <u>memory</u> Small embedded low-power core PIM Core **Small fixed-function** accelerators Offloading to PIM logic reduces energy and improves performance, on average, by 2.3X and 2.2X ## **Workload Analysis** Chrome Google's web browser #### **TensorFlow Mobile** Google's machine learning framework Google's video codec Google's video codec #### **TensorFlow Mobile** 57.3% of the inference energy is spent on data movement 54.4% of the data movement energy comes from packing/unpacking and quantization #### More on PIM for Mobile Devices Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks" Proceedings of the <u>23rd International Conference on Architectural Support for</u> <u>Programming Languages and Operating Systems</u> (**ASPLOS**), Williamsburg, VA, USA, March 2018. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)] [Lightning Talk Video (2 minutes)] [Full Talk Video (21 minutes)] ## Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks Amirali Boroumand¹ Saugata Ghose¹ Youngsok Kim² Rachata Ausavarungnirun¹ Eric Shiu³ Rahul Thakur³ Daehyun Kim^{4,3} Aki Kuusela³ Allan Knies³ Parthasarathy Ranganathan³ Onur Mutlu^{5,1} SAFARI ### Truly Distributed GPU Processing with PIM void applyScaleFactorsKernel(uint8_T * const out, uint8_T const * const in, const double *factor, size t const numRows, size t const numCols) ## Accelerating GPU Execution with PIM (I) Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler, "Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems" Proceedings of the <u>43rd International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Seoul, South Korea, June 2016. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] #### Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh[‡] Eiman Ebrahimi[†] Gwangsun Kim^{*} Niladrish Chatterjee[†] Mike O'Connor[†] Nandita Vijaykumar[‡] Onur Mutlu^{§‡} Stephen W. Keckler[†] [‡]Carnegie Mellon University [†]NVIDIA *KAIST [§]ETH Zürich ## Accelerating GPU Execution with PIM (II) Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das, "Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities" Proceedings of the <u>25th International Conference on Parallel</u> <u>Architectures and Compilation Techniques</u> (**PACT**), Haifa, Israel, September 2016. # Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities Ashutosh Pattnaik¹ Xulong Tang¹ Adwait Jog² Onur Kayıran³ Asit K. Mishra⁴ Mahmut T. Kandemir¹ Onur Mutlu^{5,6} Chita R. Das¹ ¹Pennsylvania State University ²College of William and Mary ³Advanced Micro Devices, Inc. ⁴Intel Labs ⁵ETH Zürich ⁶Carnegie Mellon University ## Accelerating Linked Data Structures Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, and Onur Mutlu, "Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation" Proceedings of the 34th IEEE International Conference on Computer Design
(ICCD), Phoenix, AZ, USA, October 2016. # Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation Kevin Hsieh[†] Samira Khan[‡] Nandita Vijaykumar[†] Kevin K. Chang[†] Amirali Boroumand[†] Saugata Ghose[†] Onur Mutlu^{§†} [†] Carnegie Mellon University [‡] University of Virginia [§] ETH Zürich ## Accelerating Dependent Cache Misses Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt, "Accelerating Dependent Cache Misses with an Enhanced Memory Controller" Proceedings of the <u>43rd International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Seoul, South Korea, June 2016. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] ## Accelerating Dependent Cache Misses with an Enhanced Memory Controller Milad Hashemi*, Khubaib[†], Eiman Ebrahimi[‡], Onur Mutlu[§], Yale N. Patt* *The University of Texas at Austin †Apple ‡NVIDIA §ETH Zürich & Carnegie Mellon University ## Accelerating Runahead Execution Milad Hashemi, Onur Mutlu, and Yale N. Patt, "Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads" Proceedings of the 49th International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, October 2016. [Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)] # Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads Milad Hashemi*, Onur Mutlu§, Yale N. Patt* *The University of Texas at Austin §ETH Zürich ## Accelerating Climate Modeling Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal, "NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling" Proceedings of the <u>30th International Conference on Field-Programmable Logic</u> <u>and Applications</u> (**FPL**), Gothenburg, Sweden, September 2020. [Slides (pptx) (pdf)] [<u>Lightning Talk Slides (pptx) (pdf)</u>] [Talk Video (23 minutes)] Nominated for the Stamatis Vassiliadis Memorial Award. ## NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling Gagandeep Singh a,b,c Dionysios Diamantopoulos c Christoph Hagleitner c Juan Gómez-Luna b Sander Stuijk a Onur Mutlu b Henk Corporaal a Eindhoven University of Technology b ETH Zürich c IBM Research Europe, Zurich ## Accelerating Approximate String Matching Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, October 2020. [<u>Lighting Talk Video</u> (1.5 minutes)] [<u>Lightning Talk Slides (pptx) (pdf)</u>] [<u>Talk Video</u> (18 minutes)] [<u>Slides (pptx) (pdf)</u>] #### GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis Damla Senol Cali^{†™} Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[⋄] Lavanya Subramanian[‡] Jeremie S. Kim^{⋄†} Rachata Ausavarungnirun[⊙] Mohammed Alser[⋄] Juan Gomez-Luna[⋄] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{⋄†▽} † Carnegie Mellon University [™] Processor Architecture Research Lab, Intel Labs [▽] Bilkent University [⋄] ETH Zürich ‡ Facebook [⊙] King Mongkut's University of Technology North Bangkok ^{*} University of Illinois at Urbana–Champaign 153 ## Accelerating Sequence-to-Graph Mapping To Appear in ISCA 2022 # SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping ``` Damla Senol Cali¹ Konstantinos Kanellopoulos² Joël Lindegger² Zülal Bingöl³ Gurpreet S. Kalsi⁴ Ziyi Zuo⁵ Can Firtina² Meryem Banu Cavlak² Jeremie Kim² Nika Mansouri Ghiasi² Gagandeep Singh² Juan Gómez-Luna² Nour Almadhoun Alserr² Mohammed Alser² Sreenivas Subramoney⁴ Can Alkan³ Saugata Ghose⁶ Onur Mutlu² ``` ¹Bionano Genomics ²ETH Zürich ³Bilkent University ⁴Intel Labs ⁵Carnegie Mellon University ⁶University of Illinois Urbana-Champaign ## Accelerating Time Series Analysis Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu, "NATSA: A Near-Data Processing Accelerator for Time Series Analysis" Proceedings of the 38th IEEE International Conference on Computer Design (ICCD), Virtual, October 2020. [Slides (pptx) (pdf)] [Talk Video (10 minutes)] Source Code # NATSA: A Near-Data Processing Accelerator for Time Series Analysis Ivan Fernandez§ Ricardo Quislant§ Christina Giannoula† Mohammed Alser‡ Juan Gómez-Luna‡ Eladio Gutiérrez§ Oscar Plata§ Onur Mutlu‡ § University of Malaga †National Technical University of Athens ‡ETH Zürich ## Accelerating Graph Pattern Mining Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata Ausavarungnirun, Jakub Beránek, Konstantinos Kanellopoulos, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi, Ioana Stefan, Juan Gómez-Luna, Marcin Copik, Lukas Kapp-Schwoerer, Salvatore Di Girolamo, Nils Blach, Marek Konieczny, Onur Mutlu, and Torsten Hoefler, "SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-Memory Systems" Proceedings of the <u>54th International Symposium on Microarchitecture</u> (**MICRO**), Virtual, October 2021. [Slides (pdf)] [Talk Video (22 minutes)] [Lightning Talk Video (1.5 minutes)] [Full arXiv version] # SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-Memory Systems Maciej Besta¹, Raghavendra Kanakagiri², Grzegorz Kwasniewski¹, Rachata Ausavarungnirun³, Jakub Beránek⁴, Konstantinos Kanellopoulos¹, Kacper Janda⁵, Zur Vonarburg-Shmaria¹, Lukas Gianinazzi¹, Ioana Stefan¹, Juan Gómez-Luna¹, Marcin Copik¹, Lukas Kapp-Schwoerer¹, Salvatore Di Girolamo¹, Nils Blach¹, Marek Konieczny⁵, Onur Mutlu¹, Torsten Hoefler¹ ¹ETH Zurich, Switzerland ²IIT Tirupati, India ³King Mongkut's University of Technology North Bangkok, Thailand ⁴Technical University of Ostrava, Czech Republic ⁵AGH-UST, Poland ## Accelerating HTAP Database Systems Appears in ICDE 2022 #### Polynesia: Enabling High-Performance and Energy-Efficient Hybrid Transactional/Analytical Databases with Hardware/Software Co-Design ``` Amirali Boroumand^{\dagger} Saugata Ghose^{\diamond} Geraldo F. Oliveira^{\ddagger} Onur Mutlu^{\ddagger} ^{\dagger}Google ^{\diamond}Univ.~of~Illinois~Urbana-Champaign ^{\ddagger}ETH~Z\"urich ``` ## Accelerating Neural Network Inference Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu, "Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks" Proceedings of the 30th International Conference on Parallel Architectures and <u>Compilation Techniques</u> (**PACT**), Virtual, September 2021. [Slides (pptx) (pdf)] [Talk Video (14 minutes)] #### Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks Amirali Boroumand[†] Saugata Ghose[‡] Berkin Akin[§] Ravi Narayanaswami[§] Geraldo F. Oliveira^{*} Xiaoyu Ma[§] Eric Shiu[§] Onur Mutlu^{*†} $^\dagger C$ arnegie Mellon Univ. $^\diamond S$ tanford Univ. $^\ddagger U$ niv. of Illinois Urbana-Champaign $^\S G$ oogle $^\star ETH$ Zürich ## Google Neural Network Models for Edge Devices: **Analyzing and Mitigating Machine Learning Inference Bottlenecks** **Amirali Boroumand** Saugata Ghose **Berkin Akin** Ravi Narayanaswami Geraldo F. Oliveira Xiaoyu Ma **Eric Shiu** **Onur Mutlu** **PACT 2021** ## **Executive Summary** Context: We extensively analyze a state-of-the-art edge ML accelerator (Google Edge TPU) using 24 Google edge models Wide range of models (CNNs, LSTMs, Transducers, RCNNs) #### **Problem:** The Edge TPU accelerator suffers from three challenges: - It operates significantly below its peak throughput - It operates significantly below its <u>theoretical energy efficiency</u> - It inefficiently handles <u>memory accesses</u> ## Key Insight: These shortcomings arise from the monolithic design of the Edge TPU accelerator - The Edge TPU accelerator design does not account for layer heterogeneity #### **Key Mechanism:** A new framework called Mensa Mensa consists of heterogeneous accelerators whose dataflow and hardware are specialized for specific families of layers #### Key Results: We design a version of Mensa for Google edge ML models - Mensa improves performance and energy by 3.0X and 3.1X - Mensa reduces cost and improves area efficiency 160 ## Google Edge Neural Network Models #### We analyze inference execution using 24 edge NN models ## **Diversity Across the Models** Insight I: there is significant variation in terms of layer characteristics across the models ## **Diversity Within the Models** Insight 2: even within each model, layers exhibit significant variation in terms of layer characteristics For example, our analysis of edge CNN models shows: Variation in MAC intensity: up to 200x across layers Variation in FLOP/Byte: up to 244x across layers ## Mensa High-Level Overview #### Edge TPU Accelerator #### Mensa ## Mensa: Highly-Efficient ML Inference Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu, "Google Neural Network Models for Edge Devices: Analyzing and "Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks" Proceedings of the <u>30th International Conference on Parallel Architectures and Compilation Techniques</u> (**PACT**), Virtual, September 2021. [Slides (pptx) (pdf)] [Talk Video (14 minutes)] #### Google Neural Network Models for Edge Devices: Analyzing and Mitigating
Machine Learning Inference Bottlenecks Amirali Boroumand[†] Saugata Ghose[‡] Berkin Akin[§] Ravi Narayanaswami[§] Geraldo F. Oliveira^{*} Xiaoyu Ma[§] Eric Shiu[§] Onur Mutlu^{*†} $^\dagger C$ arnegie Mellon Univ. $^\diamond S$ tanford Univ. $^\ddagger U$ niv. of Illinois Urbana-Champaign $^\S G$ oogle $^\star ETH$ Zürich ## FPGA-based Processing Near Memory Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu, "FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications" IFFE Micro (IEEE MICRO), 2021. # FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications Gagandeep Singh[⋄] Mohammed Alser[⋄] Damla Senol Cali[⋈] Dionysios Diamantopoulos[▽] Juan Gómez-Luna[⋄] Henk Corporaal[⋆] Onur Mutlu^{⋄⋈} [⋄]ETH Zürich [⋈] Carnegie Mellon University *Eindhoven University of Technology [▽]IBM Research Europe ## Near-Memory Acceleration Using FPGAs #### Near-HBM FPGA-based accelerator Two communication technologies: CAPI2 and OCAPI Two memory technologies: DDR4 and HBM Two workloads: Weather Modeling and Genome Analysis ## Performance & Energy Greatly Improve 5-27× performance vs. a 16-core (64-thread) IBM POWER9 CPU 12-133× energy efficiency vs. a 16-core (64-thread) IBM POWER9 CPU **HBM alleviates memory bandwidth contention vs. DDR4** ### We Need to Revisit the Entire Stack We can get there step by step ## PIM Review and Open Problems ## A Modern Primer on Processing in Memory Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d SAFARI Research Group ^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" Invited Book Chapter in <u>Emerging Computing: From Devices to Systems -</u> Looking Beyond Moore and Von Neumann, Springer, to be published in 2021. ## PIM Review and Open Problems (II) #### A Workload and Programming Ease Driven Perspective of Processing-in-Memory Saugata Ghose[†] Amirali Boroumand[†] Jeremie S. Kim[†] Juan Gómez-Luna[§] Onur Mutlu^{§†} [†]Carnegie Mellon University [§]ETH Zürich Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu, "Processing-in-Memory: A Workload-Driven Perspective" Invited Article in IBM Journal of Research & Development, Special Issue on Hardware for Artificial Intelligence, to appear in November 2019. [Preliminary arXiv version] ## Eliminating the Adoption Barriers # How to Enable Adoption of Processing in Memory ## Potential Barriers to Adoption of PIM - 1. **Applications** & **software** for PIM - 2. Ease of **programming** (interfaces and compiler/HW support) - 3. **System** and **security** support: coherence, synchronization, virtual memory, isolation, communication interfaces, ... - 4. **Runtime** and **compilation** systems for adaptive scheduling, data mapping, access/sharing control, ... - 5. **Infrastructures** to assess benefits and feasibility All can be solved with change of mindset ### We Need to Revisit the Entire Stack We can get there step by step ## Adoption: Accelerating Key Applications (I) Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, and Onur Mutlu, "Accelerating Genome Analysis: A Primer on an Ongoing Journey" IEEE Micro (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020. [Slides (pptx)(pdf)] [Talk Video (1 hour 2 minutes)] # Accelerating Genome Analysis: A Primer on an Ongoing Journey #### **Mohammed Alser** ETH Zürich #### Zülal Bingöl Bilkent University #### Damla Senol Cali Carnegie Mellon University #### Jeremie Kim ETH Zurich and Carnegie Mellon University #### Saugata Ghose University of Illinois at Urbana–Champaign and Carnegie Mellon University #### Can Alkan Bilkent University #### **Onur Mutlu** ETH Zurich, Carnegie Mellon University, and Bilkent University ## Adoption: Accelerating Key Applications (II) Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu, "GenStore: A High-Performance and Energy-Efficient In-Storage Computing System for Genome Sequence Analysis" Proceedings of the <u>27th International Conference on Architectural Support for</u> <u>Programming Languages and Operating Systems</u> (**ASPLOS**), Virtual, February-March 2022. [<u>Lightning Talk Slides (pptx) (pdf)</u>] [<u>Lightning Talk Video</u> (90 seconds)] # GenStore: A High-Performance In-Storage Processing System for Genome Sequence Analysis Nika Mansouri Ghiasi¹ Jisung Park¹ Harun Mustafa¹ Jeremie Kim¹ Ataberk Olgun¹ Arvid Gollwitzer¹ Damla Senol Cali² Can Firtina¹ Haiyu Mao¹ Nour Almadhoun Alserr¹ Rachata Ausavarungnirun³ Nandita Vijaykumar⁴ Mohammed Alser¹ Onur Mutlu¹ ¹ETH Zürich ²Bionano Genomics ³KMUTNB ⁴University of Toronto ## Adoption: Accelerating Key Applications (III) Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, "A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing" Proceedings of the <u>42nd International Symposium on</u> <u>Computer Architecture</u> (**ISCA**), Portland, OR, June 2015. [Slides (pdf)] [Lightning Session Slides (pdf)] #### A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing Junwhan Ahn Sungpack Hong[§] Sungjoo Yoo Onur Mutlu[†] Kiyoung Choi junwhan@snu.ac.kr, sungpack.hong@oracle.com, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr Seoul National University [§]Oracle Labs [†]Carnegie Mellon University ## Adoption: Accelerating Key Applications (IV) Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata Ausavarungnirun, Jakub Beránek, Konstantinos Kanellopoulos, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi, Ioana Stefan, Juan Gómez-Luna, Marcin Copik, Lukas Kapp-Schwoerer, Salvatore Di Girolamo, Nils Blach, Marek Konieczny, Onur Mutlu, and Torsten Hoefler, <u>"SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-Memory Systems"</u> Proceedings of the <u>54th International Symposium on Microarchitecture</u> (**MICRO**), Virtual, October 2021. [Slides (pdf)] [Talk Video (22 minutes)] [Lightning Talk Video (1.5 minutes)] [Full arXiv version] # SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-Memory Systems Maciej Besta¹, Raghavendra Kanakagiri², Grzegorz Kwasniewski¹, Rachata Ausavarungnirun³, Jakub Beránek⁴, Konstantinos Kanellopoulos¹, Kacper Janda⁵, Zur Vonarburg-Shmaria¹, Lukas Gianinazzi¹, Ioana Stefan¹, Juan Gómez-Luna¹, Marcin Copik¹, Lukas Kapp-Schwoerer¹, Salvatore Di Girolamo¹, Nils Blach¹, Marek Konieczny⁵, Onur Mutlu¹, Torsten Hoefler¹ ¹ETH Zurich, Switzerland ²IIT Tirupati, India ³King Mongkut's University of Technology North Bangkok, Thailand ⁴Technical University of Ostrava, Czech Republic ⁵AGH-UST, Poland ## Adoption: Accelerating Key Applications (V) Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu, "Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks" Proceedings of the <u>30th International Conference on Parallel Architectures and Compilation Techniques</u> (**PACT**), Virtual, September 2021. [Slides (pptx) (pdf)] [Talk Video (14 minutes)] #### Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks Amirali Boroumand[†] Geraldo F. Oliveira[⋆] Saugata Ghose[‡] Berkin Akin[§] Ravi Narayanaswami[§] Onur Mutlu^{⋆†} $^\dagger C$ arnegie Mellon Univ. $^\diamond S$ tanford Univ. $^\ddagger U$ niv. of Illinois Urbana-Champaign $^\S G$ oogle $^\star ETH$ Zürich ## Adoption: Accelerating Key Applications (VI) Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal, "NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling" Proceedings of the <u>30th International Conference on Field-Programmable Logic</u> <u>and Applications</u> (**FPL**), Gothenburg, Sweden, September 2020. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (23 minutes)] Nominated for the Stamatis Vassiliadis Memorial Award. ## NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling Gagandeep Singh a,b,c Dionysios Diamantopoulos c Christoph Hagleitner c Juan Gómez-Luna b Sander Stuijk a Onur Mutlu b Henk Corporaal a Eindhoven University of Technology b ETH Zürich c IBM Research Europe, Zurich #### Adoption: Accelerating Key Applications (VII) Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu, "NATSA: A Near-Data Processing Accelerator for Time Series Analysis" Proceedings of the <u>38th IEEE International Conference on Computer</u> <u>Design</u> (ICCD), Virtual, October 2020. [Slides (pptx) (pdf)] [Talk Video (10 minutes)] Source Code # NATSA: A Near-Data Processing Accelerator for Time Series Analysis Ivan Fernandez § Ricardo Quislant § Christina Giannoula † Mohammed Alser ‡ Juan Gómez-Luna ‡ Eladio Gutiérrez § Oscar Plata § Onur Mutlu ‡ § University of Malaga † National Technical University of Athens ‡ ETH Zürich #### Adoption: Accelerating Key Applications (VIII) Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" Proceedings of the 53rd International Symposium on
Microarchitecture (MICRO), Virtual, October 2020. [<u>Lighting Talk Video</u> (1.5 minutes)] [<u>Lightning Talk Slides (pptx) (pdf)</u>] [<u>Talk Video</u> (18 minutes)] [<u>Slides (pptx) (pdf)</u>] #### GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis Damla Senol Cali^{†™} Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[⋄] Lavanya Subramanian[‡] Jeremie S. Kim^{⋄†} Rachata Ausavarungnirun[⊙] Mohammed Alser[⋄] Juan Gomez-Luna[⋄] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{⋄†▽} † Carnegie Mellon University [™] Processor Architecture Research Lab, Intel Labs [▽] Bilkent University [⋄] ETH Zürich ‡ Facebook [⊙] King Mongkut's University of Technology North Bangkok ^{*} University of Illinois at Urbana–Champaign 182 #### Adoption: Accelerating Key Applications (IX) To Appear in ISCA 2022 # SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping ``` Damla Senol Cali¹ Konstantinos Kanellopoulos² Joël Lindegger² Zülal Bingöl³ Gurpreet S. Kalsi⁴ Ziyi Zuo⁵ Can Firtina² Meryem Banu Cavlak² Jeremie Kim² Nika Mansouri Ghiasi² Gagandeep Singh² Juan Gómez-Luna² Nour Almadhoun Alserr² Mohammed Alser² Sreenivas Subramoney⁴ Can Alkan³ Saugata Ghose⁶ Onur Mutlu² ``` ¹Bionano Genomics ²ETH Zürich ³Bilkent University ⁴Intel Labs ⁵Carnegie Mellon University ⁶University of Illinois Urbana-Champaign #### Adoption: Accelerating Key Applications (X) Appears in ICDE 2022 #### Polynesia: Enabling High-Performance and Energy-Efficient Hybrid Transactional/Analytical Databases with Hardware/Software Co-Design Amirali Boroumand † Saugata Ghose $^{\diamond}$ Geraldo F. Oliveira ‡ Onur Mutlu ‡ $^{\dagger}Google$ $^{\diamond}Univ.~of~Illinois~Urbana-Champaign$ $^{\ddagger}ETH~Z\ddot{u}rich$ # Adoption: How to Keep It Simple? Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, "PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture" Proceedings of the <u>42nd International Symposium on</u> Computer Architecture (ISCA), Portland, OR, June 2015. [Slides (pdf)] [Lightning Session Slides (pdf)] #### PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture Junwhan Ahn Sungjoo Yoo Onur Mutlu[†] Kiyoung Choi junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr Seoul National University [†]Carnegie Mellon University SAFARI # Adoption: How to Maintain Coherence? (I) Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu, "LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory" IEEE Computer Architecture Letters (CAL), June 2016. #### LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory Amirali Boroumand[†], Saugata Ghose[†], Minesh Patel[†], Hasan Hassan[†], Brandon Lucia[†], Kevin Hsieh[†], Krishna T. Malladi^{*}, Hongzhong Zheng^{*}, and Onur Mutlu^{‡†} † Carnegie Mellon University * Samsung Semiconductor, Inc. § TOBB ETÜ [‡] ETH Zürich #### Challenge: Coherence for Hybrid CPU-PIM Apps # Adoption: How to Maintain Coherence? (II) Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu, "CoNDA: Efficient Cache Coherence Support for Near-**Data Accelerators**" Proceedings of the <u>46th International Symposium on Computer</u> Architecture (ISCA), Phoenix, AZ, USA, June 2019. #### **CoNDA: Efficient Cache Coherence Support** for Near-Data Accelerators Amirali Boroumand[†] Saugata Ghose[†] Minesh Patel* Hasan Hassan* Brandon Lucia[†] Rachata Ausavarungnirun^{†‡} Kevin Hsieh[†] Nastaran Hajinazar^{⋄†} Krishna T. Malladi[§] Hongzhong Zheng[§] Onur Mutlu^{⋆†} > [†]Carnegie Mellon University *ETH Zürich *Simon Fraser University ‡KMUTNB §Samsung Semiconductor, Inc. #### Adoption: How to Support Synchronization? Christina Giannoula, Nandita Vijaykumar, Nikela Papadopoulou, Vasileios Karakostas, Ivan Fernandez, Juan Gómez-Luna, Lois Orosa, Nectarios Koziris, Georgios Goumas, Onur Mutlu, "SynCron: Efficient Synchronization Support for Near-Data-Processing Architectures" Proceedings of the <u>27th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), Virtual, February-March 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Talk Video (21 minutes)] [Short Talk Video (7 minutes)] # SynCron: Efficient Synchronization Support for Near-Data-Processing Architectures ``` Christina Giannoula^{†‡} Nandita Vijaykumar^{*‡} Nikela Papadopoulou[†] Vasileios Karakostas[†] Ivan Fernandez^{§‡} Juan Gómez-Luna[‡] Lois Orosa[‡] Nectarios Koziris[†] Georgios Goumas[†] Onur Mutlu[‡] †National Technical University of Athens [‡]ETH Zürich *University of Toronto [§]University of Malaga ``` #### Adoption: How to Support Virtual Memory? Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, and Onur Mutlu, "Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation" Proceedings of the 34th IEEE International Conference on Computer Design (ICCD), Phoenix, AZ, USA, October 2016. # Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation Kevin Hsieh[†] Samira Khan[‡] Nandita Vijaykumar[†] Kevin K. Chang[†] Amirali Boroumand[†] Saugata Ghose[†] Onur Mutlu^{§†} [†] Carnegie Mellon University [‡] University of Virginia [§] ETH Zürich #### Eliminating the Adoption Barriers # Processing-in-Memory in the Real World ## Processing-in-Memory Landscape Today [Samsung 2021] [UPMEM 2019] #### UPMEM Processing-in-DRAM Engine (2019) - Processing in DRAM Engine - Includes standard DIMM modules, with a large number of DPU processors combined with DRAM chips. - Replaces standard DIMMs - DDR4 R-DIMM modules - 8GB+128 DPUs (16 PIM chips) - Standard 2x-nm DRAM process - Large amounts of compute & memory bandwidth #### **UPMEM Memory Modules** - E19: 8 chips DIMM (1 rank). DPUs @ 267 MHz - P21: 16 chips DIMM (2 ranks). DPUs @ 350 MHz # 2,560-DPU Processing-in-Memory System #### Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland IZZAT EL HAJJ, American University of Beirut, Lebanon IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain CHRISTINA GIANNOULA, ETH Zürich, Switzerland and NTUA, Greece GERALDO F. OLIVEIRA, ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound for such workloads, the data nowment between main memory and CPU core simpose a significant overhead in terms of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data movement bottleneck requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as processing—in-memory (PRI). Recent research explores different forms of PIM architectures, motivated by the emergence of new 3Dstacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip. This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPIMEM-based to PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present PPIM (Processing, in-Pigmory benchmarks) as a benchmark suite of 16 workfoads from different application domains (e.g., dense/sparse linear algebra, databases, data naphytics, graph processing, which we identify as memory-bound. We evaluate the performance and scaling characteristics of PIM benchmarks on the UPIMEM PIM architecture, and compare their performance and energy consumption to their state-of-the-art CPU and CPU counterparts. Our extensive evaluation conducted on two real UPIMEM-based PIM systems with 640 and 2550 PDIS provides new insights about satiability of different workloads to the PIM systems programming recommendations for software designers, and suggestions and hints for hardware and architecture designers of future PIM systems. #### More on the UPMEM PIM System #### Experimental Analysis of the UPMEM PIM Engine #### Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland IZZAT EL HAJJ, American University of Beirut, Lebanon IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain CHRISTINA GIANNOULA, ETH Zürich, Switzerland and NTUA, Greece GERALDO F. OLIVEIRA, ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a significant overhead in terms of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is
insufficient to amortize the cost of main memory access. Fundamentally addressing this *data movement bottleneck* requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as *processing-in-memory (PIM)*. Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-stacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called *DRAM Processing Units* (*DPUs*), integrated in the same chip. This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present *PrIM* (*Processing-In-Memory benchmarks*), a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra, databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we identify as memory-bound. We evaluate the performance and scaling characteristics of PrIM benchmarks on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM system, programming recommendations for software designers, and suggestions and hints for hardware and architecture designers of future PIM systems. https://arxiv.org/pdf/2105.03814.pdf ### UPMEM PIM System Summary & Analysis Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F. Oliveira, and Onur Mutlu, "Benchmarking Memory-Centric Computing Systems: Analysis of Real **Processing-in-Memory Hardware**" Invited Paper at Workshop on Computing with Unconventional *Technologies (CUT)*, Virtual, October 2021. [arXiv version] [PrIM Benchmarks Source Code] [Slides (pptx) (pdf)] [Talk Video (37 minutes)] [Lightning Talk Video (3 minutes)] #### Benchmarking Memory-Centric Computing Systems: Analysis of Real Processing-in-Memory Hardware Juan Gómez-Luna ETH Zürich Izzat El Haji American University of Beirut University of Malaga National Technical University of Athens Ivan Fernandez Christina Giannoula Geraldo F. Oliveira Onur Mutlu ETH Zürich ETH Zürich ### **PrIM Benchmarks: Application Domains** | Domain | Benchmark | Short name | |-----------------------|-------------------------------|------------| | Dense linear algebra | Vector Addition | VA | | | Matrix-Vector Multiply | GEMV | | Sparse linear algebra | Sparse Matrix-Vector Multiply | SpMV | | Databases | Select | SEL | | | Unique | UNI | | Data analytics | Binary Search | BS | | | Time Series Analysis | TS | | Graph processing | Breadth-First Search | BFS | | Neural networks | Multilayer Perceptron | MLP | | Bioinformatics | Needleman-Wunsch | NW | | Image processing | Image histogram (short) | HST-S | | | Image histogram (large) | HST-L | | Parallel primitives | Reduction | RED | | | Prefix sum (scan-scan-add) | SCAN-SSA | | | Prefix sum (reduce-scan-scan) | SCAN-RSS | | | Matrix transposition | TRNS | #### PrIM Benchmarks are Open Source - All microbenchmarks, benchmarks, and scripts - https://github.com/CMU-SAFARI/prim-benchmarks #### **Understanding a Modern PIM Architecture** ## Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System JUAN GÓMEZ-LUNA¹, IZZAT EL HAJJ², IVAN FERNANDEZ^{1,3}, CHRISTINA GIANNOULA^{1,4}, GERALDO F. OLIVEIRA¹, AND ONUR MUTLU¹ Corresponding author: Juan Gómez-Luna (e-mail: juang@ethz.ch). https://arxiv.org/pdf/2105.03814.pdf https://github.com/CMU-SAFARI/prim-benchmarks ¹ETH Zürich ²American University of Beirut ³University of Malaga ⁴National Technical University of Athens #### Understanding a Modern PIM Architecture #### More on Analysis of the UPMEM PIM Engine #### More on Analysis of the UPMEM PIM Engine #### More on PRIM Benchmarks Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F. Oliveira, and Onur Mutlu, "Benchmarking a New Paradigm: An Experimental **Analysis of a Real Processing-in-Memory Architecture**" Preprint in arXiv, 9 May 2021. [arXiv preprint] [PrIM Benchmarks Source Code] Slides (pptx) (pdf) [Long Talk Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [SAFARI Live Seminar Slides (pptx) (pdf)] [SAFARI Live Seminar Video (2 hrs 57 mins)] [Lightning Talk Video (3 minutes)] #### UPMEM PIM System Summary & Analysis Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F. Oliveira, and Onur Mutlu, "Benchmarking Memory-Centric Computing Systems: Analysis of Real **Processing-in-Memory Hardware**" Invited Paper at Workshop on Computing with Unconventional *Technologies (CUT)*, Virtual, October 2021. [arXiv version] [PrIM Benchmarks Source Code] [Slides (pptx) (pdf)] [Talk Video (37 minutes)] [Lightning Talk Video (3 minutes)] #### Benchmarking Memory-Centric Computing Systems: Analysis of Real Processing-in-Memory Hardware Juan Gómez-Luna ETH Zürich Izzat El Haji American University of Beirut University of Malaga National Technical University of Athens Ivan Fernandez Christina Giannoula Geraldo F. Oliveira Onur Mutlu ETH Zürich ETH Zürich ## FPGA-based Processing Near Memory Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu, "FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications" IFFE Micro (IEEE MICRO), to appear, 2021. # FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications Gagandeep Singh[⋄] Mohammed Alser[⋄] Damla Senol Cali[⋈] Dionysios Diamantopoulos[▽] Juan Gómez-Luna[⋄] Henk Corporaal[⋆] Onur Mutlu^{⋄⋈} [⋄]ETH Zürich [⋈] Carnegie Mellon University *Eindhoven University of Technology [▽]IBM Research Europe #### DAMOV Analysis Methodology & Workloads #### DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks GERALDO F. OLIVEIRA, ETH Zürich, Switzerland JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland LOIS OROSA, ETH Zürich, Switzerland SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA NANDITA VIJAYKUMAR, University of Toronto, Canada IVAN FERNANDEZ, University of Malaga, Spain & ETH Zürich, Switzerland MOHAMMAD SADROSADATI, Institute for Research in Fundamental Sciences (IPM), Iran & ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Data movement between the CPU and main memory is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP), where some computation is moved close to memory. Prior NDP works investigate the root causes of data movement bottlenecks using different profiling methodologies and tools. However, there is still a lack of understanding about the key metrics that can identify different data movement bottlenecks and their relation to traditional and emerging data movement mitigation mechanisms. Our goal is to methodically identify potential sources of data movement over a broad set of applications and to comprehensively compare traditional compute-centric data movement mitigation techniques (e.g., caching and prefetching) to more memory-centric techniques (e.g., NDP), thereby developing a rigorous understanding of the best techniques to mitigate each source of data movement. With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main memory. We develop the first systematic methodology to classify applications based on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a particular application. We open-source DAMOV and the complete source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV. SAFARI https://arxiv.org/pdf/2105.03725.pdf #### When to Employ Near-Data Processing? - [1] Ahn+, "A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing," ISCA, 2015 - [2] Boroumand+, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks," ASPLOS, 2018 - [3] Cali+, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis," MICRO, 2020 - [4] Kim+, "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies," BMC Genomics, 2018 - [5] Boroumand+, "Polynesia: Enabling Effective Hybrid Transactional/Analytical Databases with
Specialized Hardware/Software Co-Design," arXiv:2103.00798 [cs.AR], 2021 - [6] Fernandez+, "NATSA: A Near-Data Processing Accelerator for Time Series Analysis," ICCD, 2020 #### **Step 1: Application Profiling** - We analyze 345 applications from distinct domains: - Graph Processing - Deep Neural Networks - Physics - High-Performance Computing - Genomics - Machine Learning - Databases - Data Reorganization - Image Processing - Map-Reduce - Benchmarking - Linear Algebra #### Step 3: Memory Bottleneck Analysis #### DAMOV is Open Source We open-source our benchmark suite and our toolchain #### DAMOV is Open Source We open-source our benchmark suite and our toolchain #### **Get DAMOV at:** #### https://github.com/CMU-SAFARI/DAMOV #### More on DAMOV Analysis Methodology & Workloads #### More on DAMOV Methods & Benchmarks Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita Vijaykumar, Ivan fernandez, Mohammad Sadrosadati, and Onur Mutlu, "DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks" **IEEE Access**, 8 September 2021. Preprint in <u>arXiv</u>, 8 May 2021. [arXiv preprint] [IEEE Access version] [DAMOV Suite and Simulator Source Code] [SAFARI Live Seminar Video (2 hrs 40 mins)] [Short Talk Video (21 minutes)] # DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks GERALDO F. OLIVEIRA, ETH Zürich, Switzerland JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland LOIS OROSA, ETH Zürich, Switzerland SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA NANDITA VIJAYKUMAR, University of Toronto, Canada IVAN FERNANDEZ, University of Malaga, Spain & ETH Zürich, Switzerland MOHAMMAD SADROSADATI, ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland ### Coming Up: SpMV on Real PIM Systems Appears in SIGMETRICS 2022 # **SparseP**: Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Systems CHRISTINA GIANNOULA, ETH Zürich, Switzerland and National Technical University of Athens, Greece IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland NECTARIOS KOZIRIS, National Technical University of Athens, Greece GEORGIOS GOUMAS, National Technical University of Athens, Greece ONUR MUTLU, ETH Zürich, Switzerland https://arxiv.org/pdf/2201.05072.pdf https://github.com/CMU-SAFARI/SparseP # Coming Up: SpMV on Real PIM Systems Samsung Newsroom **CORPORATE** **PRODUCTS** PRESS RESOURCES VIEWS **ABOUT US** ### Samsung Develops Industry's First High Bandwidth Memory with AI Processing Power Korea on February 17, 2021 Share (5 The new architecture will deliver over twice the system performance and reduce energy consumption by more than 70% Samsung Electronics, the world leader in advanced memory technology, today announced that it has developed the industry's first High Bandwidth Memory (HBM) integrated with artificial intelligence (AI) processing power - the HBM-PIM The new processing-in-memory (PIM) architecture brings powerful AI computing capabilities inside highperformance memory, to accelerate large-scale processing in data centers, high performance computing (HPC) systems and Al-enabled mobile applications. Kwangil Park, senior vice president of Memory Product Planning at Samsung Electronics stated, "Our groundbreaking HBM-PIM is the industry's first programmable PIM solution tailored for diverse Al-driven workloads such as HPC, training and inference. We plan to build upon this breakthrough by further collaborating with Al solution providers for even more advanced PIM-powered applications." ### FIMDRAM based on HBM2 [3D Chip Structure of HBM with FIMDRAM] ### **Chip Specification** 128DQ / 8CH / 16 banks / BL4 32 PCU blocks (1 FIM block/2 banks) 1.2 TFLOPS (4H) FP16 ADD / Multiply (MUL) / Multiply-Accumulate (MAC) / Multiply-and- Add (MAD) ### ISSCC 2021 / SESSION 25 / DRAM / 25.4 25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications Young-Cheon Kwon1, Suk Han Lee1, Jaehoon Lee1, Sang-Hyuk Kwon1, Je Min Ryu1, Jong-Pil Son1, Seongil O1, Hak-Soo Yu1, Haesuk Lee1, Soo Young Kim¹, Youngmin Cho¹, Jin Guk Kim¹, Jongyoon Choi¹, Hyun-Sung Shin¹, Jin Kim¹, BengSeng Phuah¹, HyoungMin Kim¹. Myeong Jun Song¹, Ahn Choi¹, Daeho Kim¹, SooYoung Kim¹, Eun-Bong Kim¹, David Wang², Shinhaeng Kang¹, Yuhwan Ro³, Seungwoo Seo³, JoonHo Song³, Jaeyoun Youn1, Kyomin Sohn1, Nam Sung Kim1 ¹Samsung Electronics, Hwaseong, Korea ²Samsung Electronics, San Jose, CA 3Samsung Electronics, Suwon, Korea ### **Programmable Computing Unit** - Configuration of PCU block - Interface unit to control data flow - Execution unit to perform operations - Register group - 32 entries of CRF for instruction memory - 16 GRF for weight and accumulation - 16 SRF to store constants for MAC operations ### [Block diagram of PCU in FIMDRAM] ### ISSCC 2021 / SESSION 25 / DRAM / 25.4 25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications Young-Cheon Kwon', Suk Han Ler', Jaehoon Lee', Sang-Hruk Kwon', Je Min Ryu', Jong-Pil Son', Seongil O', Hak-Soo Yu', Haesuk Lee', Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi', Hyun-Sung Shin', Jin Kim', BengSeng Phuah', HyoungMin Kim', Hyeong Jun Song', Aln Choi', Deach Kim', Soo'Oung Kim', Eun-Bong Kim', David Wang', Shinhaeng Kang', Yuhwan Ro', Seungwoo Seo', JoonHo Song', Jaeyoun Youn', Kyomin Sonh', Man Sung Kim' ### [Available instruction list for FIM operation] | Туре | CMD | Description | | |-------------------|------|-----------------------------|--| | Floating
Point | ADD | FP16 addition | | | | MUL | FP16 multiplication | | | | MAC | FP16 multiply-accumulate | | | | MAD | FP16 multiply and add | | | Data Path | MOVE | Load or store data | | | | FILL | Copy data from bank to GRFs | | | | NOP | Do nothing | | | Control Path | JUMP | Jump instruction | | | | EXIT | Exit instruction | | ### ISSCC 2021 / SESSION 25 / DRAM / 25.4 25.4 A 20nm 6GB Function-in-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications Young-Cheon Kwon', Suk Han Let', Jaehoon Let', Sang-Hyuk Kwon', Ja Min Ryu', Jong-Pi Son', Seongil O', Hak Soo Yu', Hesay k Let', Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi', Hyun-Sung Shin', Jin Kim', BengSeng Phuah', HyoungMin Kim', Hyeong Jun Song', Alm Choi', Daeho Kim', Soo Young Kim', Eun-Bong Kim', David Wang', Shinhaend Kang', Yuhwan Ro', Seungwoo Seo', JoonHo Song', Jaeyoun Youn', Kyomin Sohn', Man Sung Kim' ### **Chip Implementation** - Mixed design methodology to implement FIMDRAM - Full-custom + Digital RTL [Digital RTL design for PCU block] ### ISSCC 2021 / SESSION 25 / DRAM / 25.4 25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications Young-Cheon Kwon', Suk Han Let', Jaehoon Let', Sang-Hvuk Kwon', Je Min Ryu', Jong-Pil Son', Seongil O', Hak-Soo Yu', Haesuk Lee', Soo Young Kim', Youngmin Cho', Jin Guk Kim', Jongyoon Choi', Hyun-Sung Shin', Jin Kim', BengSeng Phuah', HyoungMin Kim', Hyeeng Juan Song', Ahn Choi', Jeacho Kim', Soo'Oung Kim', Eun-Bong Kim', David Wang', Shinhaeng Kang', Yuhwan Ro', Seungwoo Seo', JoonHo Song', Jaeyoun Youn', Kyomin Sohn', Man Sung Kim' | Cell array
for bank0 | Cell array
for bank4 | Cell array
for bank0 | Cell array
for bank4 | Pseudo | Pseudo | |---|--|---|--|--------------|-----------| | PCU block
for bank0 & 1 | PCU block
for bank4 & 5 | PCU block
for bank0 & 1 | PCU block
for bank4 & 5 | channel-0 | channel-1 | | Cell array
for bank1
Cell array
for bank2 | Cell array
for bank5
Cell array
for bank6 | Cell array
for bank1
Cell array
for bank2 | Cell array
for bank5
Cell array
for bank6 | | | | PCU block
for bank2 & 3 | PCU block
for bank6 & 7 | PCU block
for bank2 & 3 | PCU block
for bank6 & 7 | | | | Cell array
for bank3 | Cell array
for bank7 | Cell array
for bank3 | Cell array
for bank7 | | | | | | TSV & | Peri C | ontrol Block | | | Cell array
for bank11 | Cell array
for bank15 | Cell array
for bank11 | Cell array
for bank15 | | | | PCU block
for bank10 & 11 | PCU block
for bank14 & 15 | PCU block
for bank10 & 11 | PCU block
for bank14 & 15 | | | | Cell array
for bank10
Cell array
for bank9 | Cell array
for bank14
Cell array
for bank13 | Cell array
for bank10
Cell array
for bank9 | Cell array
for bank14
Cell array
for bank13 | | | | PCU block
for bank8 & 9 | PCU block
for bank12 & 13 | PCU block
for bank8 & 9 | PCU block
for bank12 & 13 | Pseudo | Pseudo | | Cell array
for bank8 | Cell array
for bank12 | Cell array
for bank8 | Cell array
for bank12 | channel-0 | channel-1 | # Samsung AxDIMM (2021) - DDRx-PIM - DLRM recommendation system ### **AxDIMM System** ### SK Hynix Accelerator-in-Memory (2022) **SK**hynix NEWSROOM ⊕ ENG ∨ INSIGHT **SK hvnix STORY** PRESS CENTER MULTIMEDIA Search Q ### SK hynix Develops PIM, Next-Generation AI Accelerator February 16, 2022 ### Seoul, February 16, 2022 SK hynix (or "the Company", www.skhynix.com) announced on February 16 that it has developed PIM*, a nextgeneration memory chip with computing capabilities. *PIM(Processing In Memory): A next-generation technology that provides a solution for data congestion issues for AI and big data by adding computational functions to semiconductor memory It has been generally accepted that memory chips store data and CPU or GPU, like human brain,
process data. SK hynix, following its challenge to such notion and efforts to pursue innovation in the next-generation smart memory, has found a breakthrough solution with the development of the latest technology. SK hynix plans to showcase its PIM development at the world's most prestigious semiconductor conference, 2022 ISSCC*, in San Francisco at the end of this month. The company expects continued efforts for innovation of this technology to bring the memory-centric computing, in which semiconductor memory plays a central role, a step closer in Paper 11.1. SK Hynix describes an Tynm, GDDR6-based accelerator-in-memory with a command set for deep-learning operation. The to the reality in devices such as smartphones. *ISSCC: The International Solid-State Circuits Conference will be held virtually from Feb. 20 to Feb. 24 this year with a theme of "Intelligent Silicon for a Sustainable World' For the first product that adopts the PIM technology, SK hynix has developed a sample of GDDR6-AiM (Accelerator* in memory). The GDDR6-AiM adds computational functions to GDDR6* memory chips, which process data at 16Gbps. A combination of GDDR6-AiM with CPU or GPU instead of a typical DRAM makes certain computation speed 16 times faster. GDDR6-AiM is widely expected to be adopted for machine learning, high-performance computing, and big data computation and storage. 11.1 A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep-Learning Applications Seongiu Lee, SK hynix, Icheon, Korea 8Gb design achieves a peak throughput of 1TFLOPS with 1GHz MAC operations and supports major activation functions to improve ### AliBaba PIM Recommendation System (2022) Figure 29.1.7: Die micrographs of DRAM die, NE and ME. Detailed specifications of DRAM die and logic die. # 29.1 184QPS/W 64Mb/mm² 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System Dimin Niu¹, Shuangchen Li¹, Yuhao Wang¹, Wei Han¹, Zhe Zhang², Yijin Guan², Tianchan Guan³, Fei Sun¹, Fei Xue¹, Lide Duan¹, Yuanwei Fang¹, Hongzhong Zheng¹, Xiping Jiang⁴, Song Wang⁴, Fengguo Zuo⁴, Yubing Wang⁴, Bing Yu⁴, Qiwei Ren⁴, Yuan Xie¹ ### Future: Enable New Medical/Health Platforms # Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017 Published: 02 April 2018 Article history ▼ Oxford Nanopore MinION Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome Assembly: Computational Analysis of the Current State, Bottlenecks and Future Directions," Briefings in Bioinformatics, 2018. [Preliminary arxiv.org version] # Future of Genome Sequencing & Analysis Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu "Accelerating Genome Analysis: A Primer on an Ongoing Journey" IEEE Micro, August 2020. ### Detailed Lectures on PIM (I) - Computer Architecture, Fall 2020, Lecture 6 - Computation in Memory (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=oGcZAGwfEUE&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=12 - Computer Architecture, Fall 2020, Lecture 7 - Near-Data Processing (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=j2GIigqn1Qw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=13 - Computer Architecture, Fall 2020, Lecture 11a - Memory Controllers (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=TeG773OgiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=20 - Computer Architecture, Fall 2020, Lecture 12d - Real Processing-in-DRAM with UPMEM (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=25 ### Detailed Lectures on PIM (II) - Computer Architecture, Fall 2020, Lecture 15 - Emerging Memory Technologies (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=AlE1rD9G_YU&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=28 - Computer Architecture, Fall 2020, Lecture 16a - Opportunities & Challenges of Emerging Memory Technologies (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=pmLszWGmMGQ&list=PL5Q2soXY2Zi9xidyIgBx Uz7xRPS-wisBN&index=29 - Computer Architecture, Fall 2020, Guest Lecture - In-Memory Computing: Memory Devices & Applications (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=wNmqQHiEZNk&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=41 ### Latest Longer & Detailed Tutorial on PIM Onur Mutlu, "Memory-Centric Computing" Education Class at <u>Embedded Systems Week (**ESWEEK**)</u>, Virtual, 9 October 2021. [Slides (pptx) (pdf)] [Abstract (pdf)] [Talk Video (2 hours, including Q&A)] [Invited Paper at DATE 2021] ["A Modern Primer on Processing in Memory" paper] https://www.youtube.com/watch?v=N1Ac1ov1JOM Embedded Systems Week (ESWEEK) 2021 Lecture - Memory-Centric Computing - Onur Mutlu - 9 October 2021 509 views • Premiered Dec 6, 2021 □ DISLIKE SHARE SAVE https://www.youtube.com/watch?v=N1Ac1ov1JOM Fundamentally **Energy-Efficient** (Data-Centric) Computing Architectures Fundamentally High-Performance (Data-Centric) Computing Architectures # Computing Architectures with Minimal Data Movement # Unfortunately, Little or No Time for the Next Two Parts # Data-Driven (Self-Optimizing) Computing Architectures # Data-Aware (Expressive) Computing Architectures # More Info in This Longer Tutorial... Onur Mutlu, "Memory-Centric Computing Systems" Invited Tutorial at <u>66th International Electron Devices</u> Meeting (IEDM), Virtual, 12 December 2020. [Slides (pptx) (pdf)] [Executive Summary Slides (pptx) (pdf)] [Tutorial Video (1 hour 51 minutes)] [Executive Summary Video (2 minutes)] [Abstract and Bio] [Related Keynote Paper from VLSI-DAT 2020] [Related Review Paper on Processing in Memory] https://www.youtube.com/watch?v=H3sEaINPBOE IEDM 2020 Tutorial: Memory-Centric Computing Systems, Onur Mutlu, 12 December 2020 1,641 views • Dec 23, 2020 https://www.youtube.com/watch?v=H3sEaINPBOE **ANALYTICS** **EDIT VIDEO** # Concluding Remarks ### Concluding Remarks - We have to design systems to be truly balanced, highperformance, and energy-efficient → intelligent systems - Data-centric, data-driven, data-aware - Enable computation capability inside and close to memory - This can - Lead to orders-of-magnitude improvements - Enable new applications & computing platforms - Enable better understanding of nature - Future of truly memory-centric computing is bright - We need to do research & design across the computing stack # Fundamentally Better Architectures # **Data-centric** **Data-driven** **Data-aware** ### We Need to Revisit the Entire Stack We can get there step by step ### We Need to Exploit Good Principles - Data-centric system design - All components intelligent - Better (cross-layer) communication, better interfaces - Better-than-worst-case design - Heterogeneity - Flexibility, adaptability # Open minds ### A Blueprint for Fundamentally Better Architectures Onur Mutlu, "Intelligent Architectures for Intelligent Computing Systems" Invited Paper in Proceedings of the <u>Design, Automation, and Test in</u> <u>Europe Conference</u> (**DATE**), Virtual, February 2021. [Slides (pptx) (pdf)] [IEDM Tutorial Slides (pptx) (pdf)] [Short DATE Talk Video (11 minutes)] [Longer IEDM Tutorial Video (1 hr 51 minutes)] ### Intelligent Architectures for Intelligent Computing Systems Onur Mutlu ETH Zurich omutlu@gmail.com ### Funding Acknowledgments - Alibaba, AMD, ASML, Google, Facebook, Hi-Silicon, HP Labs, Huawei, IBM, Intel, Microsoft, Nvidia, Oracle, Qualcomm, Rambus, Samsung, Seagate, VMware, Xilinx - NSF - NIH - GSRC - SRC - CyLab - EFCL ### Acknowledgments Think BIG, Aim HIGH! https://safari.ethz.ch ### Onur Mutlu's SAFARI Research Group Computer architecture, HW/SW, systems, bioinformatics, security, memory https://safari.ethz.ch/safari-newsletter-january-2021/ Think BIG, Aim HIGH! SAFARI https://safari.ethz.ch ### SAFARI Newsletter December 2021 Edition https://safari.ethz.ch/safari-newsletter-december-2021/ Think Big, Aim High View in your browser December 2021 ### Referenced Papers, Talks, Artifacts All are available at https://people.inf.ethz.ch/omutlu/projects.htm https://www.youtube.com/onurmutlulectures https://github.com/CMU-SAFARI/ ### Open Source Tools: SAFARI GitHub ₩ 146 ۷ 41 **189** ### Fall 2021 Edition: https://safari.ethz.ch/architecture/fall2021/doku. php?id=schedule ### Fall 2020 Edition: https://safari.ethz.ch/architecture/fall2020/doku. php?id=schedule ### Youtube Livestream (2021): https://www.youtube.com/watch?v=4yfkM_5EFg o&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF ### Youtube Livestream (2020): https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN #### Master's level course - Taken by Bachelor's/Masters/PhD students - Cutting-edge research topics + fundamentals in Computer Architecture - 5 Simulator-based Lab Assignments - Potential research exploration - Many research readings Computer Architecture - Fall 2021 Trace: • readings • start • schedule Home Announcements #### Materials - Lectures/Schedule - Lecture Buzzwords - Readings - HWs Labs - Exams - Related Courses #### esources - Course Webpage - Computer Architecture FS20: - Digitaltechnik SS21: Course - Webpage Digitaltechnik SS21: Lecture - Videos Moodle - Moodle HotCRP - Verilog Practice Website (HDLBits) #### Lecture Video Playlist on YouTube Recorded Lecture Playlist #### Fall 2021 Lectures & Schedule | Week | k Date Livestream Lecture | | Lecture | Readings | Lab | HW | |------|---------------------------|---------------|--|------------------------|--------------|-------------| | W1 | 30.09
Thu. | You Tube Live | L1: Introduction and Basics | Required
Mentioned | Lab 1
Out | HW 0
Out | | | 01.10
Fri. |
You Tube Live | L2: Trends, Tradeoffs and Design Fundamentals (PDF) (PPT) | Required
Mentioned | | | | W2 | 07.10
Thu. | You Tube Live | L3a: Memory Systems: Challenges and Opportunities | Described
Suggested | | HW 1
Out | | | | | L3b: Course Info & Logistics | | | | | | | | L3c: Memory Performance Attacks | Described
Suggested | | | | | 08.10
Fri. | You Live | L4a: Memory Performance Attacks | Described
Suggested | Lab 2
Out | | | | | | L4b: Data Retention and Memory Refresh (PDF) (PPT) | Described
Suggested | | | | | | | L4c: RowHammer | Described
Suggested | | | https://www.youtube.com/onurmutlulectures ### DDCA (Spring 2022) ### **Spring 2022 Edition:** https://safari.ethz.ch/digitaltechnik/spring2022/do ku.php?id=schedule ### **Spring 2021 Edition:** https://safari.ethz.ch/digitaltechnik/spring2021/do ku.php?id=schedule ### Youtube Livestream (Spring 2022): https://www.youtube.com/watch?v=cpXdE3HwvK 0&list=PL5O2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6 ### **Youtube Livestream (Spring 2021):** https://www.youtube.com/watch?v=LbC0EZY8yw 4&list=PL5O2soXY2Zi uei3aY39YB5pfW4SJ7LIN #### Bachelor's course - 2nd semester at ETH Zurich - Rigorous introduction into "How Computers Work" - Digital Design/Logic - Computer Architecture - 10 FPGA Lab Assignments - Lectures/Schedule - Lecture Buzzwords - Readings - Ontional HWs - Extra Assignments - Exams Technical Docs - Computer Architecture (CMU) - SS15: Lecture Videos - Computer Architecture (CMU) SS15: Course Website - Digitaltechnik SS18: Lecture - Digitaltechnik SS18: Course - Digitaltechnik SS19: Lecture - Digitaltechnik SS19: Course - Digitaltechnik SS20: Lecture - Digitaltechnik SS20: Course Website - Moodle Moodle #### Lecture Video Playlist on YouTube Recent Changes Media Manager Siter Recorded Lecture Playlist #### Spring 2021 Lectures/Schedule | Week | Date | Livestream | Lecture | Readings | Lab | HW | |------|---------------|---------------|---|------------------------------------|-----|----| | | 25.02
Thu. | YouTube Live | L1: Introduction and Basics | Required
Suggested
Mentioned | | | | | 26.02
Fri. | You Tube Live | L2a: Tradeoffs, Metrics, Mindset | Required | | | | | | | L2b: Mysteries in Computer Architecture (PDF) | Required
Mentioned | | | | W2 | 04.03
Thu. | You Tube Live | L3a: Mysteries in Computer Architecture II | Required
Suggested | | | tps://www.youtube.com/onurmutlulectures ### Seminar in Comp Arch (Spring & Fall) ### Spring 2022 Edition: https://safari.ethz.ch/architecture_seminar/spring20 22/doku.php?id=schedule ### Fall 2021 Edition: https://safari.ethz.ch/architecture_seminar/fall2021 /doku.php?id=schedule ### Youtube Livestream (Spring 2022): https://www.youtube.com/watch?v=rS9UPk509AQ& list=PL5Q2soXY2Zi hxizriwKmFHqcoe2Q8-m0 ### Youtube Livestream (Fall 2021): https://www.youtube.com/watch?v=4TcP297mdsI& list=PL5Q2soXY2Zi 7UBNmC9B8Yr5JSwTG9yH4 ### Critical analysis course - Taken by Bachelor's/Masters/PhD students - Cutting-edge research topics + fundamentals in Computer Architecture - 20+ research papers, presentations, analyses ### PIM Course (Fall'21) #### Fall 2021 Edition: https://safari.ethz.ch/projects and semi nars/fall2021/doku.php?id=processing in memory #### Youtube Livestream: https://www.youtube.com/watch?v=9e4 Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX #### Project course - Taken by Bachelor's/Master's students - Processing-in-Memory lectures - Hands-on research exploration - Many research readings Lecture Video Playlist on YouTube Lecture Playlist #### Fall 2021 Meetings/Schedule | Week | Date | Livestream | Meeting | Learning Materials | Assignments | |------|---------------|---------------|--|--|-------------| | W1 | 05.10
Tue. | You Tube Live | M1: P&S PIM Course Presentation (PDF) (PPT) | Required Materials
Recommended
Materials | HW 0 Out | | W2 | 12.10
Tue. | You Tube Live | M2: Real-World PIM Architectures (PDF) (PDF) | | | | W3 | 19.10
Tue. | YouTube Live | M3: Real-World PIM Architectures II (PDF) (PDF) | | | | W4 | 26.10
Tue. | YouTube Live | M4: Real-World PIM Architectures III (PDF) (PDF) | | | | W5 | 02.11
Tue. | YouTube Live | M5: Real-World PIM Architectures IV (PDF) (PDF) | | | | W6 | 09.11
Tue. | You Tube Live | M6: End-to-End Framework for Processing-using-Memory (PDF) (PPT) | | | | W7 | 16.11
Tue. | You Tube Live | M7: How to Evaluate Data Movement Bottlenecks (PDF) (PPT) | | | | W8 | 23.11
Tue. | You Tube Live | M8: Programming PIM Architectures (PDF) (PDF) | | | | W9 | 30.11
Tue. | You Tube Live | M9: Benchmarking and Workload Suitability on PIM (PDF) (PDF) | | | | W10 | 07.12
Tue. | YouTube Live | M10: Bit-Serial SIMD Processing using DRAM | | | (PDF) (PPT) ### PIM Course (Current) #### Spring 2022 Edition: https://safari.ethz.ch/projects and semi nars/spring2022/doku.php?id=processing in memory #### Youtube Livestream: https://www.youtube.com/watch?v=9e4 Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX #### Project course - Taken by Bachelor's/Master's students - Processing-in-Memory lectures - Hands-on research exploration - Many research readings Recorded Lecture Playlist Spring 2022 Meetings/Schedule | Week | Date | Livestream | Meeting | Learning
Materials | Assignments | |------|---------------|--------------|--|--|-------------| | W1 | 10.03
Thu. | ₩ [iii Live | M1: P&S PIM Course
Presentation
um(PDF) im (PPT) | Required Materials
Recommended
Materials | HW 0 Out | | W2 | 15.03
Tue. | | Hands-on Project Proposals | | | | | 17.03
Thu. | ₩ Premiere | M2: Real-world PIM: UPMEM PIM | | | | W3 | 24.03
Thu. | No Live | M3: Real-world PIM: Microbenchmarking of UPMEM PIM (PDF) (PPT) | | | | W4 | 31.03
Thu. | ₩ [E] Live | M4: Real-world PIM: Samsung
HBM-PIM
ma(PDF) ma(PPT) | | | | W5 | 07.04
Thu. | ₩ [iii] Live | M5: How to Evaluate Data
Movement Bottlenecks
mp(PDF) imp(PPT) | | | | W6 | 14.04
Thu. | ™ Live | M6: Real-world PIM: SK Hynix
AiM
(PDF) iiii (PPT) | | | | W7 | 21.04
Thu. | ™ Premiere | M7: Programming PIM Architectures and (PDF) ind (PPT) | | | | W8 | 28.04
Thu. | Me Premiere | M8: Benchmarking and Workload
Suitability on PIM
(PDF) (PPT) | | | | W9 | 05.05
Thu. | ₩ Premiere | M9: Real-world PIM: Samsung AXDIMM am(PDF) im (PPT) | | | | W10 | 12.05
Thu. | | M10: Real-world PIM: Alibaba HB-
PNM
(PDF) (PPT) | | | # Memory-Centric Computing Onur Mutlu omutlu@gmail.com https://people.inf.ethz.ch/omutlu 15 June 2022 **EPFL CIS Summer School** Carnegie Mellon ### Backup Slides ### Aside: Intelligent Controller for NAND Flash [DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE 2017, HPCA 2018, SIGMETRICS 2018] NAND Daughter Board ### Intelligent Flash Controllers [PIEEE'17] Proceedings of the IEEE, Sept. 2017 ### Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD's reliability and lifetime. By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu https://arxiv.org/pdf/1706.08642 ### System Desirables - Self-managing, independent components - All components intelligent & equal partners - Easy collaboration & partitioning across all components - Fine-grained communication of data & tasks - Seamless caching & translation & protection anywhere - Execution anywhere without rewriting code Open minds Flexibility, adaptability, self-optimization ### SAFARI Research Group ### SAFARI Newsletter April 2020 Edition https://safari.ethz.ch/safari-newsletter-april-2020/ View in your browser Think Big, Aim High Dear SAFARI friends, ### SAFARI Newsletter January 2021 Edition https://safari.ethz.ch/safari-newsletter-january-2021/ Newsletter January 2021 Think Big, Aim High, and Have a Wonderful 2021! Dear SAFARI friends, ### SAFARI Newsletter December 2021 Edition https://safari.ethz.ch/safari-newsletter-december-2021/ Think Big, Aim High View in your browser December 2021 ### A Talk on Impactful Research & Teaching ### An Interview on Computing Futures ### Latest Longer & Detailed Tutorial on PIM Onur Mutlu, "Memory-Centric Computing" Education Class at <u>Embedded Systems Week (**ESWEEK**)</u>, Virtual, 9 October 2021. [Slides (pptx) (pdf)] [Abstract (pdf)] [Talk Video (2 hours, including Q&A)] [Invited Paper at DATE 2021] ["A Modern Primer on Processing in Memory" paper] https://www.youtube.com/watch?v=N1Ac1ov1JOM Embedded Systems Week (ESWEEK) 2021 Lecture - Memory-Centric Computing - Onur Mutlu - 9 October 2021 509 views • Premiered Dec 6, 2021 □ DISLIKE SHARE SAVE https://www.youtube.com/watch?v=N1Ac1ov1JOM **ANALYTICS** **EDIT VIDEO** ### Detailed Lectures on PIM (I) - Computer Architecture, Fall 2020, Lecture 6 - Computation in Memory (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=oGcZAGwfEUE&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=12 - Computer Architecture, Fall 2020, Lecture 7 - Near-Data Processing (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=j2GIigqn1Qw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=13 - Computer Architecture, Fall 2020, Lecture 11a - Memory Controllers (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=TeG773OgiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=20 - Computer Architecture, Fall 2020, Lecture 12d - Real Processing-in-DRAM with UPMEM (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=25 ### Detailed Lectures on PIM (II) - Computer Architecture, Fall
2020, Lecture 15 - Emerging Memory Technologies (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=AlE1rD9G_YU&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=28 - Computer Architecture, Fall 2020, Lecture 16a - Opportunities & Challenges of Emerging Memory Technologies (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=pmLszWGmMGQ&list=PL5Q2soXY2Zi9xidyIgBx Uz7xRPS-wisBN&index=29 - Computer Architecture, Fall 2020, Guest Lecture - In-Memory Computing: Memory Devices & Applications (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=wNmqQHiEZNk&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=41 ### Comp Arch (Current) #### Fall 2021 Edition: https://safari.ethz.ch/architecture/fall202 1/doku.php?id=schedule ### Youtube Livestream: https://www.youtube.com/watch?v=4yfk M 5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF #### Master's level course - Taken by Bachelor's/Masters/PhD students - Cutting-edge research topics + fundamentals in Computer Architecture - 5 Simulator-based Lab Assignments - Potential research exploration - Many research readings Search Q Trace: · readings · start · schedule #### Home Announcements #### Materials - Lectures/Schedule - Lecture Buzzwords - Readings - HWsLabs - Exams - Related Courses #### Recources - Computer Architecture FS20: - Computer Architecture FS20 - Lecture Videos Digitaltechnik SS21: Course - Digitaltechnik SS21: Lecture - Moodle - Moddle - Verilog Practice Website (HDLBits) #### Lecture Video Playlist on YouTube Recorded Lecture Playlist #### Fall 2021 Lectures & Schedule | vveek | Date | Date Livestream Lecture | | Readings | Lab | HVV | |-------|---------------|-------------------------|--|------------------------|--------------|-------------| | W1 | 30.09
Thu. | You Tube Live | L1: Introduction and Basics | Required
Mentioned | Lab 1
Out | HW 0
Out | | | 01.10
Fri. | You Tube Live | L2: Trends, Tradeoffs and Design Fundamentals (PDF) (PPT) | Required
Mentioned | | | | W2 | 07.10
Thu. | You Tube Live | L3a: Memory Systems: Challenges and Opportunities | Described
Suggested | | HW 1
Out | | | | | L3b: Course Info & Logistics | | | | | | | | L3c: Memory Performance Attacks | Described
Suggested | | | | | 08.10
Fri. | You to Live | L4a: Memory Performance Attacks (PDF) (PPT) | Described
Suggested | Lab 2
Out | | | | | | L4b: Data Retention and Memory Refresh (PDF) (PPT) | Described
Suggested | | | | | | | L4c: RowHammer | Described | | | ### PIM Course (Current) #### Fall 2021 Edition: https://safari.ethz.ch/projects and semi nars/fall2021/doku.php?id=processing in memory #### Youtube Livestream: https://www.youtube.com/watch?v=9e4 Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX #### Project course - Taken by Bachelor's/Master's students - Processing-in-Memory lectures - Hands-on research exploration - Many research readings Lecture Video Playlist on YouTube Lecture Playlist #### Fall 2021 Meetings/Schedule | Week | Date | Livestream | Meeting | Learning Materials | Assignments | |------|---------------|---------------|--|--|-------------| | W1 | 05.10
Tue. | You Tube Live | M1: P&S PIM Course Presentation (PDF) (PPT) | Required Materials
Recommended
Materials | HW 0 Out | | W2 | 12.10
Tue. | YouTube Live | M2: Real-World PIM Architectures (PDF) (PDF) | | | | W3 | 19.10
Tue. | YouTube Live | M3: Real-World PIM Architectures II (PDF) (PDF) | | | | W4 | 26.10
Tue. | YouTube Live | M4: Real-World PIM Architectures III (PDF) (PDF) | | | | W5 | 02.11
Tue. | You Tube Live | M5: Real-World PIM Architectures IV (PDF) (PDF) | | | | W6 | 09.11
Tue. | You Tube Live | M6: End-to-End Framework for Processing-using-Memory (PDF) (PPT) | | | | W7 | 16.11
Tue. | You Tube Live | M7: How to Evaluate Data Movement Bottlenecks (PDF) (PPT) | | | | W8 | 23.11
Tue. | You Tube Live | M8: Programming PIM Architectures (PDF) (PDF) | | | | W9 | 30.11
Tue. | You Tube Live | M9: Benchmarking and Workload
Suitability on PIM
(PDF) (PPT) | | | | W10 | 07.12
Tue. | You Tube Live | M10: Bit-Serial SIMD Processing using DRAM | | | (PDF) (PPT) HOME VIDEOS **PLAYLISTS** COMMUNITY CHANNELS ABOUT #### Popular uploads ▶ PLAY ALL Includes standard DIMM modu number of DPU processors co TTT TT 2:24:11 **Digital Design & Computer** Architecture: Lecture 1:... 49K views • 1 year ago Computer Architecture -Lecture 1: Introduction and... 36K views • 3 years ago Computer Architecture -Lecture 1: Introduction and... 31K views • 1 year ago Computer Architecture -Lecture 1: Introduction and... 30K views • 8 months ago Design of Digital Circuits -Lecture 1: Introduction and... 22K views • 2 years ago Computer Architecture -Lecture 2: Fundamentals.... 17K views • 3 years ago #### First Course in Computer Architecture & Digital Design 2021-2013 Livestream - Digital Design and Digital Design & Computer Computer Architecture - ETH... Onur Mutlu Lectures VIEW FULL PLAYLIST Architecture - ETH Zürich... Onur Mutlu Lectures VIEW FULL PLAYLIST Design of Digital Circuits - ETH Zürich - Spring 2019 Onur Mutlu Lectures VIEW FULL PLAYLIST Design of Digital Circuits - ETH Zürich - Spring 2018 Onur Mutlu Lectures VIEW FULL PLAYLIST **Digital Circuits and Computer** Architecture - ETH Zurich -... Onur Mutlu Lectures VIEW FULL PLAYLIST Spring 2015 -- Computer Architecture Lectures --... Carnegie Mellon Computer Architec... VIEW FULL PLAYLIST #### Advanced Computer Architecture Courses 2020-2012 Computer Architecture - ETH Zürich - Fall 2020 Onur Mutlu Lectures VIEW FULL PLAYLIST Computer Architecture - ETH Zürich - Fall 2019 Onur Mutlu Lectures VIEW FULL PLAYLIST Computer Architecture - ETH Zürich - Fall 2018 Onur Mutlu Lectures VIEW FULL PLAYLIST Computer Architecture - ETH Zürich - Fall 2017 Onur Mutlu Lectures VIEW FULL PLAYLIST Fall 2015 - 740 Computer Architecture Carnegie Mellon Computer Architec... VIEW FULL PLAYLIST Architecture - Carnegie Mellon Carnegie Mellon Computer Architec... VIEW FULL PLAYLIST #### Special Courses on Memory Systems Systems and Memory-Centric... Memory Technology Lectures Onur Mutlu Lectures VIEW FULL PLAYLIST Champéry Winter School 2020 - Perugia NiPS Summer School Memory Systems and Memory... 2019 Onur Mutlu Lectures VIEW FULL PLAYLIST Onur Mutlu Lectures VIEW FULL PLAYLIST Systems Onur Mutlu Lectures VIEW FULL PLAYLIST Onur Mutlu Lectures VIEW FULL PLAYLIST ACACES 2018 Lectures --Memory Systems and Memory... Onur Mutlu Lectures VIEW FULL PLAYLIST ### **Data-Driven Architectures** ### Corollaries: Architectures Today ... - Architectures are terrible at dealing with data - Designed to mainly store and move data vs. to compute - They are processor-centric as opposed to data-centric - Architectures are terrible at taking advantage of vast amounts of data (and metadata) available to them - Designed to make simple decisions, ignoring lots of data - They make human-driven decisions vs. data-driven decisions - Architectures are terrible at knowing and exploiting different properties of application data - Designed to treat all data as the same - They make component-aware decisions vs. data-aware 277 ## Exploiting Data to Design Intelligent Architectures ### System Architecture Design Today - Human-driven - Humans design the policies (how to do things) - Many (too) simple, short-sighted policies all over the system - No automatic data-driven policy learning - (Almost) no learning: cannot take lessons from past actions ## Can we design fundamentally intelligent architectures? ### An Intelligent Architecture - Data-driven - Machine learns the "best" policies (how to do things) - Sophisticated, workload-driven, changing, far-sighted policies - Automatic data-driven policy learning - All controllers are intelligent data-driven agents ### How do we start? ## Self-Optimizing Memory Controllers ### Memory Controller How to schedule requests to maximize system performance? ### Why are Memory Controllers Difficult to Design? - Need to obey DRAM timing constraints for correctness - There are many (50+) timing constraints in DRAM - tWTR: Minimum number of cycles to wait before issuing a read command after a write command is issued - tRC: Minimum number of cycles between the issuing of two consecutive activate commands to the same bank - **...** - Need to keep track of many resources to prevent conflicts - Channels, banks, ranks, data bus, address bus, row buffers, ... - Need to handle DRAM refresh - Need to manage power consumption - Need to optimize performance & QoS (in the presence of constraints) - Reordering is not simple - Fairness and QoS needs complicates the scheduling problem **...** ### Many Memory Timing Constraints | Latency | Symbol | DRAM cycles | Latency | Symbol | DRAM cycles | |---------------------------------------|----------|-------------|--|----------|-------------| | Precharge | ^{t}RP | 11 | Activate to read/write | tRCD | 11 | | Read column address strobe | CL | 11 | Write column address strobe | CWL | 8 | | Additive | AL | 0 | Activate to activate | ^{t}RC | 39 | | Activate to precharge | tRAS | 28 | Read to precharge | tRTP | 6 | | Burst length | tBL | 4 | Column address strobe to column address strobe | tCCD | 4 | | Activate to activate (different bank) | tRRD | 6 | Four activate windows | tFAW | 24 | | Write to read | tWTR | 6 | Write recovery | ^{t}WR | 12 | Table 4. DDR3 1600 DRAM timing specifications From Lee et al., "DRAM-Aware Last-Level Cache Writeback: Reducing Write-Caused Interference in Memory Systems," HPS Technical Report, April 2010. ### Many Memory Timing Constraints - Kim et al., "A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM," ISCA 2012. - Lee et al., "Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture," HPCA 2013. Figure 5.
Three Phases of DRAM Access Table 2. Timing Constraints (DDR3-1066) [43] | Phase | Commands | Name | Value | |-------|--|-------------------|-----------------| | 1 | $\begin{array}{c} ACT \to READ \\ ACT \to WRITE \end{array}$ | tRCD | 15ns | | | $ACT \to PRE$ | tRAS | 37.5ns | | 2 | $\begin{array}{c} \text{READ} \rightarrow \textit{data} \\ \text{WRITE} \rightarrow \textit{data} \end{array}$ | tCL
tCWL | 15ns
11.25ns | | | data burst | tBL | 7.5ns | | 3 | $\text{PRE} \to \text{ACT}$ | tRP | 15ns | | 1 & 3 | $ACT \to ACT$ | tRC
(tRAS+tRP) | 52.5ns | ### Memory Controller Design Is Becoming More Difficult - Heterogeneous agents: CPUs, GPUs, and HWAs - Main memory interference between CPUs, GPUs, HWAs - Many timing constraints for various memory types - Many goals at the same time: performance, fairness, QoS, energy efficiency, ... ### Reality and Dream - Reality: It difficult to design a policy that maximizes performance, QoS, energy-efficiency, ... - Too many things to think about - Continuously changing workload and system behavior Dream: Wouldn't it be nice if the DRAM controller automatically found a good scheduling policy on its own? ### Self-Optimizing DRAM Controllers - Problem: DRAM controllers are difficult to design - It is difficult for human designers to design a policy that can adapt itself very well to different workloads and different system conditions - Idea: A memory controller that adapts its scheduling policy to workload behavior and system conditions using machine learning. - Observation: Reinforcement learning maps nicely to memory control. - Design: Memory controller is a reinforcement learning agent - It dynamically and continuously learns and employs the best scheduling policy to maximize long-term performance. # Self-Optimizing DRAM Controllers Figure 2: (a) Intelligent agent based on reinforcement learning principles; # Self-Optimizing DRAM Controllers - Dynamically adapt the memory scheduling policy via interaction with the system at runtime - Associate system states and actions (commands) with long term reward values: each action at a given state leads to a learned reward - Schedule command with highest estimated long-term reward value in each state - Continuously update reward values for <state, action> pairs based on feedback from system # Self-Optimizing DRAM Controllers Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, "Self Optimizing Memory Controllers: A Reinforcement Learning Approach" Proceedings of the <u>35th International Symposium on Computer Architecture</u> (**ISCA**), pages 39-50, Beijing, China, June 2008. Figure 4: High-level overview of an RL-based scheduler. ### States, Actions, Rewards #### Reward function - +1 for scheduling Read and Write commands - 0 at all other times Goal is to maximize long-term data bus utilization #### State attributes - Number of reads, writes, and load misses in transaction queue - Number of pending writes and ROB heads waiting for referenced row - Request's relative ROB order #### Actions - Activate - Write - Read load miss - Read store miss - Precharge pending - Precharge preemptive - NOP #### Performance Results Figure 7: Performance comparison of in-order, FR-FCFS, RL-based, and optimistic memory controllers # Large, robust performance improvements over many human-designed policies Figure 15: Performance comparison of FR-FCFS and RL-based memory controllers on systems with 6.4GB/s and 12.8GB/s peak DRAM bandwidth # Self Optimizing DRAM Controllers - + Continuous learning in the presence of changing environment - + Reduced designer burden in finding a good scheduling policy. Designer specifies: - 1) What system variables might be useful - 2) What target to optimize, but not how to optimize it - -- How to specify different objectives? (e.g., fairness, QoS, ...) - -- Hardware complexity? - -- Design **mindset** and flow # More on Self-Optimizing DRAM Controllers Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, "Self Optimizing Memory Controllers: A Reinforcement Learning Approach" Proceedings of the <u>35th International Symposium on Computer Architecture</u> (**ISCA**), pages 39-50, Beijing, China, June 2008. Self-Optimizing Memory Controllers: A Reinforcement Learning Approach Engin İpek^{1,2} Onur Mutlu² José F. Martínez¹ Rich Caruana¹ ¹Cornell University, Ithaca, NY 14850 USA ² Microsoft Research, Redmond, WA 98052 USA # Self-Optimizing Memory Prefetchers Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu, "Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning" Proceedings of the <u>54th International Symposium on Microarchitecture</u> (**MICRO**), Virtual, October 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (20 minutes)] [Lightning Talk Video (1.5 minutes)] [Pythia Source Code (Officially Artifact Evaluated with All Badges)] [arXiv version] # Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning Rahul Bera¹ Konstantinos Kanellopoulos¹ Anant V. Nori² Taha Shahroodi^{3,1} Sreenivas Subramoney² Onur Mutlu¹ ¹ETH Zürich ²Processor Architecture Research Labs, Intel Labs ³TU Delft # Pythia # A Customizable Hardware Prefetching Framework **Using Online Reinforcement Learning** Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori, Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu https://github.com/CMU-SAFARI/Pythia ### **Executive Summary** - Background: Prefetchers predict addresses of future memory requests by associating memory access patterns with program context (called feature) - Problem: Three key shortcomings of prior prefetchers: - Predict mainly using a single program feature - Lack **inherent system awareness** (e.g., memory bandwidth usage) - Lack in-silicon customizability - Goal: Design a prefetching framework that: - Learns from multiple features and inherent system-level feedback - Can be customized in silicon to use different features and/or prefetching objectives - Contribution: Pythia, which formulates prefetching as reinforcement learning problem - Takes adaptive prefetch decisions using multiple features and system-level feedback - Can be customized in silicon for target workloads via simple configuration registers - Proposes a realistic and practical implementation of RL algorithm in hardware - Key Results: - Evaluated using a wide range of workloads from SPEC CPU, PARSEC, Ligra, Cloudsuite - Outperforms best prefetcher (in 1-core config.) by 3.4%, 7.7% and 17% in 1/4/bw-constrained cores - Up to 7.8% more performance over basic Pythia across Ligra workloads via simple customization # **Key Shortcomings in Prior Prefetchers** We observe three key shortcomings that significantly limit performance benefits of prior prefetchers 1 Predict mainly using a single program feature 2 Lack inherent system awareness 3 Lack in-silicon customizability ### **Our Goal** # A prefetching framework that can: - 1.Learn to prefetch using multiple features and inherent system-level feedback information - 2.Be easily customized in silicon to use different features and/or change prefetcher's objectives # **Our Proposal** # **Pythia** Formulates prefetching as a reinforcement learning problem ### **Basics of Reinforcement Learning (RL)** Algorithmic approach to learn to take an action in a given situation to maximize a numerical reward **Agent** **Environment** - Agent stores Q-values for every state-action pair - Expected return for taking an action in a state - Given a state, selects action that provides highest Q-value SAFARI # Formulating Prefetching as RL # **Pythia Overview** - Q-Value Store: Records Q-values for all state-action pairs - Evaluation Queue: A FIFO queue of recently-taken actions # Simulation Methodology - Champsim [3] trace-driven simulator - 150 single-core memory-intensive workload traces - SPEC CPU2006 and CPU2017 - PARSEC 2.1 - Ligra - Cloudsuite - Homogeneous and heterogeneous multi-core mixes - Five state-of-the-art prefetchers - SPP [Kim+, MICRO'16] - Bingo [Bakhshalipour+, HPCA'19] - MLOP [Shakerinava+, 3rd Prefetching Championship, 2019] - SPP+DSPatch [Bera+, MICRO'19] - SPP+PPF [Bhatia+, ISCA'20] # **Basic Pythia Configuration** Derived from automatic design-space exploration - State: 2 features - PC+Delta - Sequence of last-4 deltas - Actions: 16 prefetch offsets - Ranging between -6 to +32. Including 0. - Rewards: - $R_{AT} = +20$; $R_{AL} = +12$; R_{NP} -H=-2; R_{NP} -L=-4; - R_{IN} -H=-14; R_{IN} -L=-8; R_{CL} =-12 ### **Performance with Varying Core Count** # **Performance with Varying Core Count** ### Performance with Varying DRAM Bandwidth DRAM MTPS (in log scale) ### Performance with Varying DRAM Bandwidth # Pythia outperforms prior best prefetchers for a wide range of DRAM bandwidth configurations DRAM MTPS (in log scale) # Pythia's Overhead - 25.5 KB of total metadata storage per core - Only simple tables - We also model functionally-accurate Pythia with full complexity in Chisel [4] HDL # **More in the Paper** - Performance comparison with unseen traces - Pythia provides equally high performance benefits #### Comparison against multi-level prefetchers # Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning Rahul Bera¹ Konstantinos Kanellopoulos¹ Anant V. Nori² Taha Shahroodi^{3,1} Sreenivas Subramoney² Onur Mutlu¹ ¹ETH Zürich ²Processor Architecture Research Labs, Intel Labs ³TU Delft • Performance sensitivity towards directly features and hyperparameter values Detailed single-core and four-core performance # **Pythia is Open Source** ### https://github.com/CMU-SAFARI/Pythia - MICRO'21 artifact evaluated - Champsim source code + Chisel modeling code - All traces used for evaluation # Pythia # A Customizable Hardware
Prefetching Framework **Using Online Reinforcement Learning** Rahul Bera, Konstantinos Kanellopoulos, Anant V. Nori, Taha Shahroodi, Sreenivas Subramoney, Onur Mutlu https://github.com/CMU-SAFARI/Pythia # Self-Optimizing Memory Prefetchers Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu, "Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning" Proceedings of the <u>54th International Symposium on Microarchitecture</u> (**MICRO**), Virtual, October 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (20 minutes)] [Lightning Talk Video (1.5 minutes)] [Pythia Source Code (Officially Artifact Evaluated with All Badges)] [arXiv version] # Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning Rahul Bera¹ Konstantinos Kanellopoulos¹ Anant V. Nori² Taha Shahroodi^{3,1} Sreenivas Subramoney² Onur Mutlu¹ ¹ETH Zürich ²Processor Architecture Research Labs, Intel Labs ³TU Delft # Self-Optimizing Hybrid Storage Systems Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu, "Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning" Proceedings of the 49th International Symposium on Computer Architecture (ISCA), New York, June 2022. [arXiv version] # Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning Gagandeep Singh¹ Rakesh Nadig¹ Jisung Park¹ Rahul Bera¹ Nastaran Hajinazar¹ David Novo³ Juan Gómez-Luna¹ Sander Stuijk² Henk Corporaal² Onur Mutlu¹ ¹ETH Zürich ²Eindhoven University of Technology ³LIRMM, Univ. Montpellier, CNRS # Sibyl: # Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, David Novo, Juan Gómez-Luna, Onur Mutlu ### **Executive Summary** Background: Hybrid storage systems (HSSs) complement different storage technologies to extend the overall capacity and reduce the system cost with minimal effect on the application performance **Problem:** Accurately identify the performance-critical data of an application and placing it in the "best-fit" storage device. Three key shortcomings of prior data placement policies (heuristic-based and supervised learning-based) of hybrid storage systems: - Lack of adaptability - Lack of device awareness (e.g., read/write latencies of each device) - Lack of extensibility Goal: Develop a new, efficient, and high performance data-placement mechanism for hybrid storage systems that can: - Dynamically derive an adaptive data-placement strategy by continuously learning and adapting to the application and underlying device characteristics - Easily extensible to incorporate a wide range of hybrid storage configurations. Key Idea: Sibyl, an online reinforcement learning-based self-optimizing mechanism for data placement that: - Dynamically learns from past experiences and continuously adapts its policy to improve long-term performance by interacting with the hybrid storage system - Learns the asymmetry in the read/write latencies present in modern hybrid storage devices while taking into account the inherent characteristics of an application Key Results: Sibyl is evaluated on a real system with multiple device configurations - Evaluated using a wide range of workloads from MSR Cambridge and Filebench - In a performance (cost) optimized hybrid storage configuration, Sibyl provides up to 21.6% (19.9%) performance improvement compared to prior data placement policies - On a tri-hybrid storage system, Sibyl outperforms a heuristics-based policy by 23.9% -48.2% - Sibyl achieves 80% performance of an oracle policy with storage overhead of 124.4 KiB # **Hybrid Storage Systems** #### **Key Shortcomings of Prior Data Placement Techniques** We observe three key shortcomings that significantly limit performance benefits of data-placement techniques ### Lack of adaptability #### Lack of device awareness ### Lack of extensibility # Lack of Adaptability (1/2) - Prior heuristic-based techniques consider only a few characteristics (e.g., access frequency) to perform data placement - Statically tuned characteristics (based on fixed thresholds) are ineffective when used on a wide range of applications and system configurations - Supervised learning techniques need labeled data and frequent retraining to adapt to varying workloads and system conditions Prior techniques offer 41.1% lower performance compared to an Oracle policy # Lack of Adaptability (2/2) CDE shows an average performance gap of 41.1% (32.6%) to Oracle for H&M (H&L) HPS shows an average performance gap of 37.2% (55.5%) to Oracle for H&M (H&L) ### **Lack of Device Awareness** Prior data placement techniques: - do not adapt well to changes in underlying device characteristics (e.g., storage read latency) - do not consider the data migration cost between storage devices while making a data placement decision - are highly inefficient in hybrid storage systems that have devices with significantly different read/write latencies # Lack of Extensibility - Prior data placement techniques are typically designed for a hybrid storage system with only two storage devices - Significant effort is required to extend the data placement policies for more than two devices Compared to a RL-based solution, a heuristic-based policy provides 48.2% lower performance when extended from two to three devices #### **Our Goal** #### A data-placement mechanism that can - dynamically derive an adaptive dataplacement strategy by continuously learning and adapting to the application and underlying device characteristics - be easily extended to incorporate a wide range of hybrid storage configurations ## **Basics of Reinforcement Learning** - RL is a framework for decision making - An autonomous agent observes the current state of the environment - It interacts with the environment by taking actions - Agent is rewarded or penalized based on the consequences of its actions - Agent tries to maximize the cumulative reward ## **Applying RL to Data Placement** Key factors in applying RL for data placement in a hybrid storage system - RL agent needs to be aware of: - asymmetry in read/write latencies of a storage device - differences in latencies across hybrid storage devices - application access patterns - Data placement module should decide which actions to reward and penalize (credit assignment) - Low implementation overhead #### **RL State** - Feature selection is performed to select only the most correlated features that affect data placement - Divide the states into a small number of bins to reduce the state space | Feature | Description | # of bins | Encoding (bits) | |----------|---|-----------|-----------------| | $size_t$ | Size of the requested page (in pages) | 8 | 8 | | $type_t$ | Type of the current request (read/write) | 2 | 4 | | $intr_t$ | Access interval of the requested page | 64 | 8 | | cnt_t | Access count of the requested page | 64 | 8 | | cap_t | Remaining capacity in the fast storage device | 8 | 8 | | | Current placement of the requested page (fast/slow) | 2 | 4 | #### Reward - For every action at time-step t, Sibyl gets a reward from the environment at time-step t+1 - Reward acts as a feedback to the agent's past action - Request latency faithfully captures the status of the hybrid storage system - Penalty value is chosen to prevent the agent from aggressively servicing all the requests from the faster device $$R = \begin{cases} \frac{1}{L_t} & \text{if no eviction} \\ max(0, \frac{1}{L_t} - R_p) & \text{if an eviction happens} \end{cases}$$ $$R_p = \text{eviction penalty}$$ $$R_p = \text{eviction penalty}$$ ## **Overview of Sibyl** The two threads run asynchronously to prevent training delay from affecting the inference time ## **Hyper-parameter Tuning** Different hyper-parameter configurations were chosen using the design of experiments (DoE) technique | Hyper-parameter | Design Space | Chosen Value | |-----------------------------------|------------------|--------------| | Discount factor (γ) | 0-1 | 0.9 | | Learning rate (α) | $1e^{-5}-1e^{0}$ | $1e^{-4}$ | | Exploration rate (ϵ) | 0-1 | 0.001 | | Batch size | 64-256 | 128 | | Experience buffer size (e_{EB}) | 10-10000 | 1000 | ## **Evaluation Methodology** - Evaluated on a real system with different hybrid storage configurations - Hybrid storage system constitutes one contiguous logical block address space - A custom block driver was implemented to manage the I/O requests to the storage devices - We evaluate three different hybrid storage configurations - Performance-optimized (H&M) - Cost-optimized (H&L) - Tri-hybrid storage system ## **Evaluation Methodology** | | AMD D G GGGG G AKI O CO F OIL | | | |----------------------------------|--|--|--| | | AMD Ryzen 7 2700G [146], 8-cores@3.5 GHz, | | | | Host System | 8×64/32 KiB L1-I/D, 4 MiB L2, 8 MiB L3, | | | | • | 16 GiB RDIMM DDR4 2666 MHz | | | | Storage Devices | Characteristics | | | | U. Intal Ontana SSD D4800V [04] | 375 GB, PCIe 3.0 NVMe, SLC, R/W: 2.4/2 GB/s, | | | | H: Intel Optane SSD P4800X [94] | random R/W: 550000/500000 IOPS | | | | M. Intal CCD D2 C4510 [06] | 1.92 TB, SATA TLC (3D), R/W: 550/510 MB/s, | | | | M: Intel SSD D3-S4510 [96] | random R/W: 895000/21000 IOPS | | | | L. Congreta HDD CT1000DM010 [08] | 1 TB, SATA 6Gb/s 7200 RPM | | | | L: Seagate HDD ST1000DM010 [98] | Max. Sustained Transfer Rate: 210 MB/s | | | | . ADATA CIICAO CCD [00] | 960 GB, SATA 6 Gb/s, TLC, | | | | L_{SSD} : ADATA SU630 SSD [99] | Max R/W: 520/450 MB/s | | | | HSS Configurations | Fast Device Slow Device | | | | H&M
(Performance-oriented) | high-end (H) middle-end (M) | | | | H&L (Cost-oriented) | high-end (H) low-end (L) | | | | | · · · · · · · · · · · · · · · · · · · | | | ## **Evaluation Methodology** - 18 different workloads from MSR Cambridge and FileBench suites - Sibyl is compared against four baselines - Heuristic-based policies - Cold data eviction (CDE) [Matsui et. al., "Design of Hybrid SSDs With Storage Class Memory and NAND Flash Memory," IEEE 2017] - History Page Scheduler (HPS) [Meswani et.al., "Heterogeneous Memory Architectures: A HW/SW Approach for Mixing Die-stacked and Off-package Memories," HPCA, 2015] - Supervised learning-based policies - Recurrent neural network (RNN)-based technique adapted from Kleio [Doudali et.al., "Kleio: A Hybrid Memory Page Scheduler with Machine Intelligence," HPDC, 2019] - Neural network-based classifier based on Archivist [Ren et.al., "Archivist: A Machine Learning Assisted Data Placement Mechanism for Hybrid Storage Systems," ICCD, 2019] ## **Latency Improvement** | Configuration | CDE | HPS | Archivist | RNN-HSS | |---------------|-------|-------|-----------|---------| | H&M | 28.1% | 23.2% | 36.1% | 21.6% | | H&L | 19.9% | 45.9% | 68.8% | 34.1% | ## **Throughput Improvement** | Configuration | CDE | HPS | Archivist | RNN-HSS | |---------------|-------|-------|-----------|---------| | H&M | 32.6% | 21.9% | 54.2% | 22.7% | | H&L | 22.8% | 49.1% | 86.9% | 41.9% | ## **Latency in Tri-Hybrid System** Sibyl outperforms the heuristic-based data placement policy for trihybrid system by 48.2% on average across all workloads ## Latency for Unseen Workloads In H&M (H&L) configurations, Sibyl outperforms RNN-HSS and Archivist by 46.1% (54.6%) and 8.5% (44.1%) respectively ## Sensitivity to Fast Storage Capacity ## **Sensitivity to Fast Storage Capacity** Sibyl consistently provides highest performance by dynamically adapting its data-placement policy ## **Overhead Analysis** #### Performance Overhead ~10ns for every inference on the evaluated system; this is several orders of magnitude less than I/O latency of highend SSD #### Implementation Overhead 124.4 KiB of implementation overhead #### Metadata overhead - 0.1% of the total storage capacity when using a 4 KiB data placement granularity - 40-bit metadata overhead per data placement unit ## Self-Optimizing Hybrid Storage Systems Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran Hajinazar, David Novo, Juan Gomez-Luna, Sander Stuijk, Henk Corporaal, and Onur Mutlu, "Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning" Proceedings of the 49th International Symposium on Computer Architecture (ISCA), New York, June 2022. [arXiv version] ## Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning Gagandeep Singh¹ Rakesh Nadig¹ Jisung Park¹ Rahul Bera¹ Nastaran Hajinazar¹ David Novo³ Juan Gómez-Luna¹ Sander Stuijk² Henk Corporaal² Onur Mutlu¹ ¹ETH Zürich ²Eindhoven University of Technology ³LIRMM, Univ. Montpellier, CNRS ## An Intelligent Architecture - Data-driven - Machine learns the "best" policies (how to do things) - Sophisticated, workload-driven, changing, far-sighted policies - Automatic data-driven policy learning - All controllers are intelligent data-driven agents # We need to rethink design (of all controllers) ## Challenge and Opportunity for Future # Data-Driven (Self-Optimizing) Computing Architectures ## **Data-Aware Architectures** ## Corollaries: Architectures Today ... - Architectures are terrible at dealing with data - Designed to mainly store and move data vs. to compute - They are processor-centric as opposed to data-centric - Architectures are terrible at taking advantage of vast amounts of data (and metadata) available to them - Designed to make simple decisions, ignoring lots of data - They make human-driven decisions vs. data-driven decisions - Architectures are terrible at knowing and exploiting different properties of application data - Designed to treat all data as the same - They make component-aware decisions vs. data-aware #### Data-Aware Architectures - A data-aware architecture understands what it can do with and to each piece of data - It makes use of different properties of data to improve performance, efficiency and other metrics - Compressibility - Approximability - Locality - Sparsity - Criticality for Computation X - Access Semantics - **...** ## One Problem: Limited Expressiveness ### Higher-level information is not visible to HW Hardware 100011111... 101010011... Instructions Memory Addresses ## A Solution: More Expressive Interfaces **Functionality** ISA Virtual Memory Higher-level Program Semantics Expressive Memory "XMem" #### **Hardware** ## Expressive (Memory) Interfaces Nandita Vijaykumar, Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady Pekhimenko, Eiman Ebrahimi, Nastaran Hajinazar, Phillip B. Gibbons and Onur Mutlu, "A Case for Richer Cross-layer Abstractions: Bridging the Semantic Gap with Expressive Memory" Proceedings of the <u>45th International Symposium on Computer Architecture</u> (**ISCA**), Los Angeles, CA, USA, June 2018. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Lightning Talk Video] #### A Case for Richer Cross-layer Abstractions: Bridging the Semantic Gap with Expressive Memory Nandita Vijaykumar^{†§} Abhilasha Jain[†] Diptesh Majumdar[†] Kevin Hsieh[†] Gennady Pekhimenko[‡] Eiman Ebrahimi^ℵ Nastaran Hajinazar[‡] Phillip B. Gibbons[†] Onur Mutlu^{§†} #### SW provides key program information to HW # **Broader goal: Enable many cross-layer optimizations** #### **Express:** **Data structures** **Access semantics** **Data types** **Working set** Reuse **Access frequency** • • • #### **Optimizations:** **Cache Management** **Data Placement in DRAM** **Data Compression** **Approximation** **DRAM Cache Management** **NVM Management** NUCA/NUMA Optimizations #### **Benefits:** **More efficient HW:** **✓ Performance** Reduced SW burden: **✓ Programmability** **✓** Portability • • • #### Our approach: Rich cross-layer abstractions 1. Generality: Enable a wide range of cross-layer approaches - 2. Minimize programmer effort - 3. Overhead Approach: Flexibly associate specific semantic information with any data & code ## **Example: XMem** - Goal: convey data semantics to the hardware enables more intelligent management of resources. - XMem: introduces a new HW/SW abstraction, called *Atom,* for conveying data semantics ## XMem Aids/Enables Many Optimizations | Table 1: Summary of the ex | xample memory optimizations that | XMem aids. | |----------------------------|---|------------| | | , | | | Memory
optimization | Example semantics provided by XMem (described in §3.3) | Example Benefits of XMem | |---|--|--| | Cache
management | (i) Distinguishing between data
structures or pools of similar data;
(ii) Working set size; (iii) Data reuse | Enables: (i) applying different caching policies to different data structures or pools of data; (ii) avoiding cache thrashing by <i>knowing</i> the active working set size; (iii) bypassing/prioritizing data that has no/high reuse. (§5) | | Page placement
in DRAM
e.g., [23, 24] | (i) Distinguishing between data structures; (ii) Access pattern; (iii) Access intensity | Enables page placement at the <i>data structure</i> granularity to (i) isolate data structures that have high row buffer locality and (ii) spread out concurrently-accessed irregular data structures across banks and channels to improve parallelism. (§6) | | Cache/memory
compression
e.g., [25–32] | (i) Data type: integer, float, char;
(ii) Data properties: sparse, pointer,
data index | Enables using a <i>different compression algorithm</i> for each data structure based on data type and data properties, e.g., sparse data encodings, FP-specific compression, delta-based compression for pointers [27]. | | Data
prefetching
e.g., [33–36] | (i) Access pattern: strided, irregular, irregular but repeated (e.g., graphs), access stride; (ii) Data type: index, pointer | Enables (i) highly accurate software-driven prefetching while leveraging the benefits of hardware prefetching (e.g., by being memory bandwidth-aware, avoiding cache thrashing); (ii) using different prefetcher <i>types</i> for different data structures: e.g., stride [33], tile-based [20], pattern-based [34–37], data-based for indices/pointers [38,39], etc. | | DRAM cache
management
e.g., [40–46] | (i) Access intensity; (ii) Data reuse; (iii) Working set size | (i) Helps avoid cache thrashing by knowing working set size [44]; (ii) Better DRAM cache management via reuse behavior and access intensity information. | | Approximation in memory e.g., [47–53] | (i) Distinguishing between pools of similar data; (ii) Data properties: tolerance towards approximation | Enables (i) each memory component to track how approximable data is (at a fine granularity) to inform approximation techniques; (ii) data placement in heterogeneous reliability memories [54]. | | Data placement:
NUMA systems
e.g., [55, 56] | (i) Data partitioning across threads (i.e., relating data to threads that access it); (ii) Read-Write properties | Reduces the need for profiling or data migration (i) to co-locate data with threads that access it and (ii) to
identify Read-Only data, thereby enabling techniques such as replication. | | Data placement:
hybrid
memories
e.g., [16,57,58] | (i) Read-Write properties
(Read-Only/Read-Write); (ii) Access
intensity; (iii) Data structure size;
(iv) Access pattern | Avoids the need for profiling/migration of data in hybrid memories to (i) effectively manage the asymmetric read-write properties in NVM (e.g., placing Read-Only data in the NVM) [16,57]; (ii) make tradeoffs between data structure "hotness" and size to allocate fast/high bandwidth memory [14]; and (iii) leverage row-buffer locality in placement based on access pattern [45]. | | Managing
NUCA systems
e.g., [15,59] | (i) Distinguishing pools of similar data;
(ii) Access intensity; (iii) Read-Write or
Private-Shared properties | (i) Enables using different cache policies for different data pools (similar to [15]); (ii) Reduces the need for reactive mechanisms that detect sharing and read-write characteristics to inform cache policies. | ## Expressive (Memory) Interfaces Nandita Vijaykumar, Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady Pekhimenko, Eiman Ebrahimi, Nastaran Hajinazar, Phillip B. Gibbons and Onur Mutlu, "A Case for Richer Cross-layer Abstractions: Bridging the Semantic Gap with Expressive Memory" Proceedings of the <u>45th International Symposium on Computer Architecture</u> (**ISCA**), Los Angeles, CA, USA, June 2018. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Lightning Talk Video] #### A Case for Richer Cross-layer Abstractions: Bridging the Semantic Gap with Expressive Memory Nandita Vijaykumar^{†§} Abhilasha Jain[†] Diptesh Majumdar[†] Kevin Hsieh[†] Gennady Pekhimenko[‡] Eiman Ebrahimi^ℵ Nastaran Hajinazar[‡] Phillip B. Gibbons[†] Onur Mutlu^{§†} ## Expressive (Memory) Interfaces for GPUs Nandita Vijaykumar, Eiman Ebrahimi, Kevin Hsieh, Phillip B. Gibbons and Onur Mutlu, "The Locality Descriptor: A Holistic Cross-Layer Abstraction to Express Data Locality in GPUs" Proceedings of the <u>45th International Symposium on Computer Architecture</u> (**ISCA**), Los Angeles, CA, USA, June 2018. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Lightning Talk Video] #### The Locality Descriptor: #### A Holistic Cross-Layer Abstraction to Express Data Locality in GPUs ``` Nandita Vijaykumar^{†§} Eiman Ebrahimi[‡] Kevin Hsieh[†] Phillip B. Gibbons[†] Onur Mutlu^{§†} ``` †Carnegie Mellon University ‡NVIDIA §ETH Zürich #### **Locality Descriptor: Executive Summary** **Exploiting data locality in GPUs is a challenging task** Performance Benefits: 26.6% (up to 46.6%) from <u>cache locality</u> 53.7% (up to 2.8x) from <u>NUMA locality</u> ## An Example: Hybrid Memory Management Hardware/software manage data allocation and movement to achieve the best of multiple technologies Meza+, "Enabling Efficient and Scalable Hybrid Memories," IEEE Comp. Arch. Letters, 2012. Yoon+, "Row Buffer Locality Aware Caching Policies for Hybrid Memories," ICCD 2012 Best Paper Award. ## An Example: Heterogeneous-Reliability Memory Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu, "Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost via Heterogeneous-Reliability Memory" Proceedings of the 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary] [Slides (pptx) (pdf)] [Coverage on ZDNet] #### Characterizing Application Memory Error Vulnerability to Optimize Datacenter Cost via Heterogeneous-Reliability Memory Yixin Luo Sriram Govindan* Bikash Sharma* Mark Santaniello* Justin Meza Aman Kansal* Jie Liu* Badriddine Khessib* Kushagra Vaid* Onur Mutlu Carnegie Mellon University, yixinluo@cs.cmu.edu, {meza, onur}@cmu.edu *Microsoft Corporation, {srgovin, bsharma, marksan, kansal, jie.liu, bkhessib, kvaid}@microsoft.com 360 # Exploiting Memory Error Tolerance with Hybrid Memory Systems Vulnerable data Tolerant data Reliable memory Low-cost memory On Microsoft's Web Search workload Reduces server hardware cost by 4.7 % Achieves single server availability target of 99.90 % Heterogeneous-Reliability Memory [DSN 2014] ## Heterogeneous-Reliability Memory Step 1: Characterize and classify application memory error tolerance Step 2: Map application data to the HRM system enabled by SW/HW cooperative solutions ## More on Heterogeneous-Reliability Memory Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu, "Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost via Heterogeneous-Reliability Memory" Proceedings of the 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary] [Slides (pptx) (pdf)] [Coverage on ZDNet] #### Characterizing Application Memory Error Vulnerability to Optimize Datacenter Cost via Heterogeneous-Reliability Memory Yixin Luo Sriram Govindan* Bikash Sharma* Mark Santaniello* Justin Meza Aman Kansal* Jie Liu* Badriddine Khessib* Kushagra Vaid* Onur Mutlu Carnegie Mellon University, yixinluo@cs.cmu.edu, {meza, onur}@cmu.edu *Microsoft Corporation, {srgovin, bsharma, marksan, kansal, jie.liu, bkhessib, kvaid}@microsoft.com ## Data-Aware Cross-Layer Hybrid System Management - Heterogeneous agents: CPUs, GPUs, and HWAs - Main memory interference between CPUs, GPUs, HWAs - Many timing constraints for various memory types - Many goals at the same time: performance, fairness, QoS, energy efficiency, ... ## Another Example: EDEN for DNNs - Deep Neural Network evaluation is very DRAM-intensive (especially for large networks) - 1. Some data and layers in DNNs are very tolerant to errors - 2. Reduce DRAM latency and voltage on such data and layers - 3. While still achieving a user-specified DNN accuracy target by making training DRAM-error-aware Data-aware management of DRAM latency and voltage for Deep Neural Network Inference ## **Example DNN Data Type to DRAM Mapping** #### **Mapping example of ResNet-50:** Map more error-tolerant DNN layers to DRAM partitions with lower voltage/latency 4 DRAM partitions with different error rates #### **EDEN: Overview** Key idea: Enable accurate, efficient DNN inference using approximate DRAM #### **EDEN** is an **iterative** process that has <u>3 key steps</u> ## **CPU: DRAM Energy Evaluation** Average 21% DRAM energy reduction maintaining accuracy within 1% of original #### **CPU: Performance Evaluation** Average 8% system speedup Some workloads achieve 17% speedup EDEN achieves **close to the ideal** speedup possible via tRCD scaling ## GPU, Eyeriss, and TPU: Energy Evaluation • GPU: average 37% energy reduction Eyeriss: average 31% energy reduction TPU: average 32% energy reduction #### EDEN: Data-Aware Efficient DNN Inference Skanda Koppula, Lois Orosa, A. Giray Yaglikci, Roknoddin Azizi, Taha Shahroodi, Konstantinos Kanellopoulos, and Onur Mutlu, "EDEN: Enabling Energy-Efficient, High-Performance Deep Neural Network Inference Using Approximate DRAM" Proceedings of the 52nd International Symposium on Microarchitecture (MICRO), Columbus, OH, USA, October 2019. [Lightning Talk Slides (pptx) (pdf)] [Lightning Talk Video (90 seconds)] ## EDEN: Enabling Energy-Efficient, High-Performance Deep Neural Network Inference Using Approximate DRAM Skanda Koppula Lois Orosa A. Giray Yağlıkçı Roknoddin Azizi Taha Shahroodi Konstantinos Kanellopoulos Onur Mutlu ETH Zürich ## SMASH: SW/HW Indexing Acceleration Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula, Roknoddin Azizi, Skanda Koppula, Nika Mansouri Ghiasi, Taha Shahroodi, Juan Gomez-Luna, and Onur Mutlu, "SMASH: Co-designing Software Compression and Hardware-<u>Accelerated Indexing for Efficient Sparse Matrix Operations</u>" Proceedings of the <u>52nd International Symposium on</u> Microarchitecture (MICRO), Columbus, OH, USA, October 2019. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Poster (pptx) (pdf)] [Lightning Talk Video (90 seconds)] [Full Talk Lecture (30 minutes)] #### SMASH: Co-designing Software Compression and Hardware-Accelerated Indexing for Efficient Sparse Matrix Operations Konstantinos Kanellopoulos¹ Nandita Vijaykumar^{2,1} Christina Giannoula^{1,3} Roknoddin Azizi¹ Skanda Koppula¹ Nika Mansouri Ghiasi¹ Taha Shahroodi¹ Juan Gomez Luna¹ Onur Mutlu^{1,2} ## Data-Aware Virtual Memory Framework Nastaran Hajinazar, Pratyush Patel, Minesh Patel, Konstantinos Kanellopoulos, Saugata Ghose, Rachata Ausavarungnirun, Geraldo Francisco de Oliveira Jr., Jonathan Appavoo, Vivek Seshadri, and Onur Mutlu, "The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory Framework" Proceedings of the <u>47th International Symposium on Computer Architecture</u> (**ISCA**), Virtual, June 2020. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [ARM Research Summit Poster (pptx) (pdf)] [Talk Video (26 minutes)] [Lightning Talk Video (3 minutes)] [Lecture Video (43 minutes)] ## The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory Framework Nastaran Hajinazar*† Pratyush Patel[™] Minesh Patel* Konstantinos Kanellopoulos* Saugata Ghose[‡] Rachata Ausavarungnirun[⊙] Geraldo F. Oliveira* Jonathan Appavoo[⋄] Vivek Seshadri[▽] Onur Mutlu*[‡] *ETH Zürich †Simon Fraser University Muniversity of Washington ‡Carnegie Mellon University ⊙King Mongkut's University of Technology North Bangkok †Boston University ™Microsoft Research India ## SW/HW Climate Modeling Accelerator Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal, "NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling" Proceedings of the <u>30th International Conference on Field-Programmable Logic</u> <u>and Applications</u>
(**FPL**), Gothenburg, Sweden, September 2020. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (23 minutes)] Nominated for the Stamatis Vassiliadis Memorial Award. ## NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling Gagandeep Singh a,b,c Dionysios Diamantopoulos c Christoph Hagleitner c Juan Gómez-Luna b Sander Stuijk a Onur Mutlu b Henk Corporaal a Eindhoven University of Technology b ETH Zürich c IBM Research Europe, Zurich ## HW/SW Time Series Analysis Accelerator Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu, "NATSA: A Near-Data Processing Accelerator for Time Series Analysis" Proceedings of the 38th IEEE International Conference on Computer Design (ICCD), Virtual, October 2020. [Slides (pptx) (pdf)] [Talk Video (10 minutes)] Source Code ## NATSA: A Near-Data Processing Accelerator for Time Series Analysis Ivan Fernandez§ Ricardo Quislant§ Christina Giannoula† Mohammed Alser‡ Juan Gómez-Luna‡ Eladio Gutiérrez§ Oscar Plata§ Onur Mutlu‡ § University of Malaga †National Technical University of Athens ‡ETH Zürich ## FPGA-based Processing Near Memory Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu, "FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications" IEEE Micro (IEEE MICRO), 2021. # FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications Gagandeep Singh[⋄] Mohammed Alser[⋄] Damla Senol Cali[⋈] Dionysios Diamantopoulos[▽] Juan Gómez-Luna[⋄] Henk Corporaal[⋆] Onur Mutlu^{⋄⋈} [⋄]ETH Zürich [⋈] Carnegie Mellon University *Eindhoven University of Technology [▽]IBM Research Europe ## Accelerating Linked Data Structures Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, and Onur Mutlu, "Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation" Proceedings of the 34th IEEE International Conference on Computer Design (ICCD), Phoenix, AZ, USA, October 2016. ## Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation Kevin Hsieh[†] Samira Khan[‡] Nandita Vijaykumar[†] Kevin K. Chang[†] Amirali Boroumand[†] Saugata Ghose[†] Onur Mutlu^{§†} [†] Carnegie Mellon University [‡] University of Virginia [§] ETH Zürich ## Accelerating Approximate String Matching Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, October 2020. [<u>Lighting Talk Video</u> (1.5 minutes)] [<u>Lightning Talk Slides (pptx) (pdf)</u>] [<u>Talk Video</u> (18 minutes)] [<u>Slides (pptx) (pdf)</u>] #### GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis Damla Senol Cali^{†™} Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[⋄] Lavanya Subramanian[‡] Jeremie S. Kim^{⋄†} Rachata Ausavarungnirun[⊙] Mohammed Alser[⋄] Juan Gomez-Luna[⋄] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{⋄†▽} † Carnegie Mellon University [™] Processor Architecture Research Lab, Intel Labs [▽] Bilkent University [⋄] ETH Zürich ‡ Facebook [⊙] King Mongkut's University of Technology North Bangkok ^{*} University of Illinois at Urbana–Champaign 378 ## Accelerating Genome Analysis [IEEE MICRO 2020] Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, and Onur Mutlu, "Accelerating Genome Analysis: A Primer on an Ongoing Journey" IEEE Micro (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020. [Slides (pptx)(pdf)] [Talk Video (1 hour 2 minutes)] # Accelerating Genome Analysis: A Primer on an Ongoing Journey #### **Mohammed Alser** ETH Zürich #### Zülal Bingöl Bilkent University #### Damla Senol Cali Carnegie Mellon University #### Jeremie Kim ETH Zurich and Carnegie Mellon University #### Saugata Ghose University of Illinois at Urbana–Champaign and Carnegie Mellon University #### Can Alkan Bilkent University #### **Onur Mutlu** ETH Zurich, Carnegie Mellon University, and Bilkent University ## Challenge and Opportunity for Future # Data-Aware (Expressive) Computing Architectures ### We Need to **Rethink** the Entire Stack We can get there case by case # Principled Architectures & What They Can Enable ## A Quote from A Famous Architect "architecture [...] based upon principle, and not upon precedent" ## Precedent-Based Design? "architecture [...] based upon principle, and not upon precedent" ## Principled Design "architecture [...] based upon principle, and not upon precedent" 385 ## The Overarching Principle ## Organic architecture From Wikipedia, the free encyclopedia Organic architecture is a philosophy of architecture which promotes harmony between human habitation and the natural world through design approaches so sympathetic and well integrated with its site, that buildings, furnishings, and surroundings become part of a unified, interrelated composition. A well-known example of organic architecture is Fallingwater, the residence Frank Lloyd Wright designed for the Kaufmann family in rural Pennsylvania. Wright had many choices to locate a home on this large site, but chose to place the home directly over the waterfall and creek creating a close, yet noisy dialog with the rushing water and the steep site. The horizontal striations of stone masonry with daring cantilevers of colored beige concrete blend with native rock outcroppings and the wooded environment. ## Another Example: Precedent-Based Design ## Principled Design ## Another Principled Design ## Another Principled Design ## Principle Applied to Another Structure 392 Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0, SOURCE: https://www.dezeen.gom/2016/2016/2016-09.jpd.cc BY 2.0, Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0, Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0, Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0, Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0, Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0, Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0, Source: B ## The Overarching Principle ## Zoomorphic architecture From Wikipedia, the free encyclopedia **Zoomorphic architecture** is the practice of using animal forms as the inspirational basis and blueprint for architectural design. "While animal forms have always played a role adding some of the deepest layers of meaning in architecture, it is now becoming evident that a new strand of biomorphism is emerging where the meaning derives not from any specific representation but from a more general allusion to biological processes."^[1] Some well-known examples of Zoomorphic architecture can be found in the TWA Flight Center building in New York City, by Eero Saarinen, or the Milwaukee Art Museum by Santiago Calatrava, both inspired by the form of a bird's wings.^[3] ## Overarching Principles for Computing? ## Readings, Videos, Reference Materials ## More on My Research & Teaching # Brief Self Introduction ### Onur Mutlu - Full Professor @ ETH Zurich ITET (INFK), since September 2015 - □ Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-... - PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD - https://people.inf.ethz.ch/omutlu/ - omutlu@gmail.com (Best way to reach me) - https://people.inf.ethz.ch/omutlu/projects.htm ### Research and Teaching in: - Computer architecture, computer systems, hardware security, bioinformatics - Memory and storage systems - Hardware security, safety, predictability - Fault tolerance - Hardware/software cooperation - Architectures for bioinformatics, health, medicine - **-** ... # Current Research Mission ## Computer architecture, HW/SW, systems, bioinformatics, security # **Build fundamentally better architectures** # Four Key Current Directions Fundamentally Secure/Reliable/Safe Architectures - Fundamentally Energy-Efficient Architectures - Memory-centric (Data-centric) Architectures Fundamentally Low-Latency and Predictable Architectures Architectures for AI/ML, Genomics, Medicine, Health # The Transformation Hierarchy Computer Architecture (expanded view) Computer Architecture (narrow view) # Axiom To achieve the highest energy efficiency and performance: # we must take the expanded view of computer architecture Co-design across the hierarchy: Algorithms to devices Specialize as much as possible within the design goals # Current Research Mission & Major Topics # **Build fundamentally better architectures** Broad research spanning apps, systems, logic with architecture at the center - Data-centric arch. for low energy & high perf. - Proc. in Mem/DRAM, NVM, unified mem/storage - Low-latency & predictable architectures - Low-latency, low-energy yet low-cost memory - QoS-aware and predictable memory systems - Fundamentally secure/reliable/safe arch. - Tolerating all bit flips; patchable HW; secure mem - Architectures for ML/AI/Genomics/Health/Med - Algorithm/arch./logic co-design; full heterogeneity - Data-driven and data-aware architectures - ML/AI-driven architectural controllers and design - Expressive memory and expressive systems # Onur Mutlu's SAFARI Research Group Computer architecture, HW/SW, systems, bioinformatics, security, memory https://safari.ethz.ch/safari-newsletter-april-2020/ Think BIG, Aim HIGH! SAFARI
https://safari.ethz.ch # SAFARI Newsletter April 2020 Edition https://safari.ethz.ch/safari-newsletter-april-2020/ View in your browser Think Big, Aim High Dear SAFARI friends, # SAFARI Newsletter January 2021 Edition https://safari.ethz.ch/safari-newsletter-january-2021/ Have a Wonderful 2021! January : Think Big, Aim High, and Newsletter January 2021 Dear SAFARI friends, # SAFARI Newsletter December 2021 Edition https://safari.ethz.ch/safari-newsletter-december-2021/ Think Big, Aim High View in your browser December 2021 # Papers, Talks, Artifacts All are available at https://people.inf.ethz.ch/omutlu/projects.htm https://www.youtube.com/onurmutlulectures https://github.com/CMU-SAFARI/ # Open Source Tools: SAFARI GitHub # SAFARI PhD and Post-Doc Alumni ### https://safari.ethz.ch/safari-alumni/ - Minesh Patel (ETH Zurich), MICRO 2020 and DSN 2020 Best Paper Awards; ISCA Hall of Fame 2021 - Damla Senol Cali (Bionano Genomics), SRC TECHCON 2019 Best Student Presentation Award - Nastaran Hajinazar (ETH Zurich) - Gagandeep Singh (ETH Zurich), FPL 2020 Best Paper Award Finalist - Amirali Boroumand (Stanford Univ → Google), SRC TECHCON 2018 Best Student Presentation Award - Jeremie Kim (ETH Zurich), EDAA Outstanding Dissertation Award 2020; IEEE Micro Top Picks 2019; ISCA/MICRO HoF 2021 - Nandita Vijaykumar (Univ. of Toronto, Assistant Professor), ISCA Hall of Fame 2021 - Kevin Hsieh (Microsoft Research, Senior Researcher) - Justin Meza (Facebook), HiPEAC 2015 Best Student Presentation Award; ICCD 2012 Best Paper Award - Mohammed Alser (ETH Zurich), IEEE Turkey Best PhD Thesis Award 2018 - Yixin Luo (Google), HPCA 2015 Best Paper Session - Kevin Chang (Facebook), SRC TECHCON 2016 Best Student Presentation Award - Rachata Ausavarungnirun (KMUNTB, Assistant Professor), NOCS 2015 and NOCS 2012 Best Paper Award Finalist - Gennady Pekhimenko (Univ. of Toronto, Assistant Professor), ISCA Hall of Fame 2021; ASPLOS 2015 SRC Winner - Vivek Seshadri (Microsoft Research) - Donghyuk Lee (NVIDIA Research, Senior Researcher), HPCA Hall of Fame 2018 - Yoongu Kim (Software Robotics → Google), TCAD'19 Top Pick Award; IEEE Micro Top Picks'10; HPCA'10 Best Paper Session - Lavanya Subramanian (Intel Labs → Facebook) - Samira Khan (Univ. of Virginia, Assistant Professor), HPCA 2014 Best Paper Session - Saugata Ghose (Univ. of Illinois, Assistant Professor), DFRWS-EU 2017 Best Paper Award - Jawad Haj-Yahya (Huawei Research Zurich, Principal Researcher) # Principle: Teaching and Research Teaching drives Research Research drives Teaching . . . Principle: Learning and Scholarship # Focus on learning and scholarship # Focus on Insight Encourage New Ideas Principle: Learning and Scholarship # The quality of your work defines your impact Principle: Good Mindset, Goals & Focus # You can make a good impact on the world # Research & Teaching: Some Overview Talks ### https://www.youtube.com/onurmutlulectures - Future Computing Architectures - https://www.youtube.com/watch?v=kqiZISOcGFM&list=PL5Q2soXY2Zi8D 5MGV6EnXEJHnV2YFBJI&index=1 - Enabling In-Memory Computation - https://www.youtube.com/watch?v=njX 14584Jw&list=PL5Q2soXY2Zi8D 5MGV6EnXEJHnV2YFBJl&index=16 - Accelerating Genome Analysis - https://www.youtube.com/watch?v=r7sn41lH-4A&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=41 - Rethinking Memory System Design - https://www.youtube.com/watch?v=F7xZLNMIY1E&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=3 - Intelligent Architectures for Intelligent Machines - https://www.youtube.com/watch?v=c6_LgzuNdkw&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=25 - The Story of RowHammer - https://www.youtube.com/watch?v=sqd7PHQQ1AI&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=39 # Online Courses & Lectures ## First Computer Architecture & Digital Design Course - Digital Design and Computer Architecture - Spring 2021 Livestream Edition: https://www.youtube.com/watch?v=LbC0EZY8yw4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LIN ## Advanced Computer Architecture Course - Computer Architecture - Fall 2021 Livestream Edition: https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN - Fall 2020 Edition: https://www.youtube.com/watch?v=4yfkM_5EFgo&list=PL5Q2 soXY2Zi-Mnk1PxjEIG32HAGILkTOF 2:33:20 HOME VIDEOS **PLAYLISTS** COMMUNITY CHANNELS ABOUT Q ### Popular uploads Computer Architecture -Lecture 2: Fundamentals.... **Digital Design & Computer** Architecture: Lecture 1:... 49K views • 1 year ago Computer Architecture -Lecture 1: Introduction and... 36K views • 3 years ago Computer Architecture -Lecture 1: Introduction and... 31K views • 1 year ago Lecture 1: Introduction and... 30K views • 8 months ago Design of Digital Circuits -Lecture 1: Introduction and... 22K views • 2 years ago 17K views • 3 years ago ### First Course in Computer Architecture & Digital Design 2021-2013 Livestream - Digital Design and Digital Design & Computer Computer Architecture - ETH... Onur Mutlu Lectures VIEW FULL PLAYLIST Architecture - ETH Zürich... Onur Mutlu Lectures VIEW FULL PLAYLIST Design of Digital Circuits - ETH Zürich - Spring 2019 Onur Mutlu Lectures VIEW FULL PLAYLIST Design of Digital Circuits - ETH Zürich - Spring 2018 Onur Mutlu Lectures VIEW FULL PLAYLIST **Digital Circuits and Computer** Architecture - ETH Zurich -... Onur Mutlu Lectures VIEW FULL PLAYLIST Spring 2015 -- Computer Architecture Lectures --... Carnegie Mellon Computer Architec... VIEW FULL PLAYLIST ### Advanced Computer Architecture Courses 2020-2012 Computer Architecture - ETH Zürich - Fall 2020 Onur Mutlu Lectures VIEW FULL PLAYLIST Computer Architecture - ETH Zürich - Fall 2019 Onur Mutlu Lectures VIEW FULL PLAYLIST Computer Architecture - ETH Zürich - Fall 2018 Onur Mutlu Lectures VIEW FULL PLAYLIST Computer Architecture - ETH Zürich - Fall 2017 Onur Mutlu Lectures VIEW FULL PLAYLIST ### Fall 2015 - 740 Computer Architecture Carnegie Mellon Computer Architec... VIEW FULL PLAYLIST Architecture - Carnegie Mellon Carnegie Mellon Computer Architec... VIEW FULL PLAYLIST ### Special Courses on Memory Systems Memory Technology Lectures Onur Mutlu Lectures VIEW FULL PLAYLIST Memory Systems and Memory... 2019 Onur Mutlu Lectures VIEW FULL PLAYLIST Onur Mutlu Lectures VIEW FULL PLAYLIST Champéry Winter School 2020 - Perugia NiPS Summer School Onur Mutlu Lectures VIEW FULL PLAYLIST Onur Mutlu Lectures VIEW FULL PLAYLIST ACACES 2018 Lectures --Systems and Memory-Centric... Memory Systems and Memory... Onur Mutlu Lectures VIEW FULL PLAYLIST Systems # DDCA (Spring 2021) - https://safari.ethz.ch/digitaltechnik/ spring2021/doku.php?id=schedule - https://www.youtube.com/watch?v =LbC0EZY8yw4&list=PL5Q2soXY2Zi uej3aY39YB5pfW4SJ7LIN - Bachelor's course - 2nd semester at ETH Zurich - Rigorous introduction into "How Computers Work" - Digital Design/Logic - Computer Architecture - 10 FPGA Lab Assignments Recent Changes Media Manager Sitemap schedule Trace: - schedule Announcements - Lectures/Schedule - Lecture Buzzwords - Readings - Ontional HWs - Extra Assignments - Exams - Technical Docs - Secondary Computer Architecture (CMU) - SS15: Lecture Videos - Computer Architecture (CMU) SS15: Course Website - Spigitaltechnik SS18: Lecture Spigitaltechnik SS18: Course - Website Specified in the second of - Digitaltechnik SS19: Course - Website Digitaltechnik SS20: Lecture - Videos Spigitaltechnik SS20: Course - Website - Moodle Moodle ### **Spring 2021 Lectures/Schedule** | Week | Date | Livestream | Lecture | Readings | Lab | HW | |------|---------------|---------------|---|------------------------------------|-----|----| | W1 | 25.02
Thu. | You Tube Live | L1: Introduction and Basics | Required
Suggested
Mentioned | | | | | 26.02
Fri. | You Tube Live | L2a: Tradeoffs, Metrics, Mindset | Required | | | | | | | L2b: Mysteries in Computer Architecture (PDF) (PPT) | Required
Mentioned | | | | W2 | 04.03
Thu. | You Tube Live | L3a: Mysteries in Computer Architecture II | Required
Suggested
Mentioned | | | https://www.youtube.com/watch?v=c3 mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7x RPS-wisBN - Master's level course - Taken by Bachelor's/Masters/PhD students - Cutting-edge research topics + fundamentals in Computer Architecture - 5 Simulator-based Lab Assignments - Potential research exploration - Many research readings Search Recent Changes Media Manager Sitemap schedule Trace: • start • schedule lome Announcements ### Materials - Lectures/Schedule - Lecture Buzzwords - Readings - HWs - Labe - ExamsRelated Courses - Related Courses ### 000111000 - S Computer Architecture FS19: - Course Webpage Computer Architecture FS19: - Lecture Videos Digitaltechnik SS20: Course - Webpage Digitaltechnik SS20: Lecture - Videos Moodle - Piazza (Q&A) - WHotCRP - Verilog Practice Website (HDI Bits) ### Lecture Video Playlist on YouTube ### Fall 2020 Lectures & Schedule | Week | Date | Lecture | Readings | Lab | HW | |------|---------------|--|------------------------|--------------|-------------| | W1 | 17.09
Thu. | L1: Introduction and Basics (PDF) (PPT) You Video | Described
Suggested | | HW 0 | | | 18.09
Fri. | L2a: Memory Performance Attacks (PDF) (PPT) Voulton Video | Described
Suggested | Lab 1
Out | | | | | L2b: Data Retention and Memory Refresh (PDF) (PPT) Voul Video | Described
Suggested | | | | | | L2c: Course Logistics (PDF) (PPT) You the Video | | | | | W2 | 24.09
Thu. | L3a: Introduction to Genome Sequence Analysis (PDF) (PPT) Vou Video | Described
Suggested | | HW 1
Out | | | | L3b: Memory Systems: Challenges and Opportunities (PDF) (PPT) (Vote) Video | Described
Suggested | | | | | 25.09
Fri. | L4a: Memory Systems: Solution Directions (PDF)
(PPT) Vou Video | Described
Suggested | | | | | | L4b: RowHammer (CEPT) (PPT) (Votion Video | Described
Suggested | | | | W3 | 01.10
Thu. | L5a: RowHammer in 2020: TRRespass (PDF) (PPT) Voulum Video | Described
Suggested | | | | | | L5b: RowHammer in 2020: Revisiting RowHammer (PDF) im(PPT) Youth Video | Described
Suggested | | | | | | L5c: Secure and Reliable Memory | Described | | | # Comp Arch (Current) https://safari.ethz.ch/architecture/fall20 21/doku.php?id=schedule ### Youtube Livestream: https://www.youtube.com/watch?v=4yfk M 5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF ### Master's level course - Taken by Bachelor's/Masters/PhD students - Cutting-edge research topics + fundamentals in Computer Architecture - 5 Simulator-based Lab Assignments - Potential research exploration - Many research readings nt Changes Media Manager Sitemap schedule Recent Changes - Media Manager - Sitema Trace: • readings • start • schedule Home Announcements ### Materials - Lectures/Schedule - Lecture Buzzwords - Readings - HWsLabs - Exams - Related Courses - Tutorials ### Resources - Computer Architecture FS20: Course Webpage - Computer Architecture FS20: - Lecture Videos Digitaltechnik SS21: Course - Digitaltechnik SS21: Lecture Videos - Moodle - W HotCRP - Section Verilog Practice Website (HDLBits) ### Lecture Video Playlist on YouTube Livestream Lecture Playlist Recorded Lecture Playlist ### Fall 2021 Lectures & Schedule | Week | Date | Livestream | Lecture | Readings | Lab | HW | |------|---------------|---------------|---|------------------------|--------------|-------------| | W1 | 30.09
Thu. | You Live | L1: Introduction and Basics | Required
Mentioned | Lab 1
Out | HW 0
Out | | | 01.10
Fri. | You Tube Live | L2: Trends, Tradeoffs and Design Fundamentals (a)(PDF) (PPT) | Required
Mentioned | | | | W2 | 07.10
Thu. | You Tube Live | L3a: Memory Systems: Challenges and Opportunities | Described
Suggested | | HW 1
Out | | | | | L3b: Course Info & Logistics (PDF) (PPT) | | | | | | | | L3c: Memory Performance Attacks | Described
Suggested | | | | | 08.10
Fri. | You Tube Live | L4a: Memory Performance Attacks | Described
Suggested | Lab 2
Out | | | | | | L4b: Data Retention and Memory Refresh (PDF) (PPT) | Described
Suggested | | | | | | | L4c: RowHammer | Described
Suggested | | | # Seminar (Spring'21) - https://safari.ethz.ch/architecture_semin ar/spring2021/doku.php?id=schedule - https://www.youtube.com/watch?v=t3m 93ZpLOyw&list=PL5Q2soXY2Zi awYdjm WVIUegsbY7TPGW4 - Critical analysis course - Taken by Bachelor's/Masters/PhD students - Cutting-edge research topics + fundamentals in Computer Architecture - 20+ research papers, presentations, analyses # Seminar (Current) https://safari.ethz.ch/architecture_semin ar/fall2021/doku.php?id=schedule ### Youtube Livestream: - https://www.youtube.com/watch?v=4TcP 297mdsI&list=PL5Q2soXY2Zi 7UBNmC9B 8Yr5JSwTG9yH4 - Critical analysis course - Taken by Bachelor's/Masters/PhD students - Cutting-edge research topics + fundamentals in Computer Architecture - 20+ research papers, presentations, analyses # Hands-On Projects & Seminars Courses https://safari.ethz.ch/projects_and_seminars/doku.php Search Recent Changes Media Manager Sitemap start Trace: • start ### Home Projects ### SoftMC - Ramulator - Accelerating Genomics - Mobile Genomics - Processing-in-Memory - Heterogeneous Systems - SSD Simulator ### **SAFARI Projects & Seminars Courses (Spring 2021)** Welcome to the wiki for Project and Seminar courses SAFARI offers. ### Courses we offer: - Understanding and Improving Modern DRAM Performance, Reliability, and Security with Hands-On Experiments - Designing and Evaluating Memory Systems and Modern Software Workloads with Ramulator - Accelerating Genome Analysis with FPGAs, GPUs, and New Execution Paradigms - Genome Sequencing on Mobile Devices - Exploring the Processing-in-Memory Paradigm for Future Computing Systems - Hands-on Acceleration on Heterogeneous Computing Systems - Understanding and Designing Modern NAND Flash-Based Solid-State Drives (SSDs) by Building a Practical SSD Simulator # PIM Course (Current) ### Fall 2021 Edition: https://safari.ethz.ch/projects and semi nars/fall2021/doku.php?id=processing in memory ### Youtube Livestream: https://www.youtube.com/watch?v=9e4 Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX ### Project course - Taken by Bachelor's/Master's students - Processing-in-Memory lectures - Hands-on research exploration - Many research readings Lecture Video Playlist on YouTube Lecture Playlist ### Fall 2021 Meetings/Schedule | Week | Date | Livestream | Meeting | Learning Materials | Assignments | |------|---------------|---------------|--|--|-------------| | W1 | 05.10
Tue. | You Tube Live | M1: P&S PIM Course Presentation (PDF) (PPT) | Required Materials
Recommended
Materials | HW 0 Out | | W2 | 12.10
Tue. | YouTube Live | M2: Real-World PIM Architectures (PDF) (PDF) | | | | W3 | 19.10
Tue. | You Tube Live | M3: Real-World PIM Architectures II (PDF) (PDF) | | | | W4 | 26.10
Tue. | YouTube Live | M4: Real-World PIM Architectures III (PDF) (PDF) | | | | W5 | 02.11
Tue. | You Tube Live | M5: Real-World PIM Architectures IV (PDF) (PDF) | | | | W6 | 09.11
Tue. | You Tube Live | M6: End-to-End Framework for Processing-using-Memory (PDF) (PPT) | | | | W7 | 16.11
Tue. | You Tube Live | M7: How to Evaluate Data Movement Bottlenecks (PDF) (PPT) | | | | W8 | 23.11
Tue. | You Tube Live | M8: Programming PIM Architectures (PDF) (PDF) | | | | W9 | 30.11
Tue. | You Tube Live | M9: Benchmarking and Workload
Suitability on PIM
(PDF) (PPT) | | | | W10 | 07.12
Tue. | You Tube Live | M10: Bit-Serial SIMD Processing using DRAM | | | (PDF) (PPT) # SAFARI Live Seminars (I) # SAFARI Live Seminars (II) SAFARI Live Seminar: Nastaran Hajinazar 27 Oct 2021 Posted on October 1, 2021 by ewent Join us for our SAFARI Live Seminar with Nastaran Hajinazar. Wednesday, October 27 at 7:00 pm Zurich time (CEST) SAFARI Live Seminar: Gennady Pekhimenko 08 Nov 2021 Posted on November 1, 2021 by ewent Join us for our SAFARI Live Seminar with Gennady Pekhimenko. Monday, November 08 at 4:00 pm Zurich time (CET) SAFARI Live Seminar: Damla Senol Cali 07 Nov 2021 Posted on October 18, 2021 by ewent Join us for our SAFARI Live Seminar with Damla Senol Cali. Sunday, November 07 at 6:00 pm Zurich time (CEST) SAFARI Live Seminar: Serghei Mangul 11 Nov 2021 Posted on November 5, 2021 by ewent Join us for our SAFARI Live Seminar with Serghei Mangul. Thursday, November 11 at 11:00 am Zurich time (CET), ETH Zentrum ETZ K91 # Open-Source Artifacts https://github.com/CMU-SAFARI # Open Source Tools: SAFARI GitHub SAFARI # An Interview on Research and Education - Computing Research and Education (@ ISCA 2019) - https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2 soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz - Maurice Wilkes Award Speech (10 minutes) - https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2 soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15 # More Thoughts and Suggestions Onur Mutlu, ### "Some Reflections (on DRAM)" Award Speech for <u>ACM SIGARCH Maurice Wilkes Award</u>, at the **ISCA** Awards Ceremony, Phoenix, AZ, USA, 25 June 2019. [Slides (pptx) (pdf)] [Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)] [Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes)] (Youku; 1 hour 6 minutes) [News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"] Onur Mutlu, ### "How to Build an Impactful Research Group" 57th Design Automation Conference Early Career Workshop (DAC), Virtual, 19 July 2020. [Slides (pptx) (pdf)] # More Thoughts and Suggestions (II) Onur Mutlu, "Computer Architecture: Why Is It So Important and Exciting Today?" Invited Lecture at *Izmir Institute of Technology (IYTE)*, Virtual, 16 October 2020. [Slides (pptx) (pdf)] [Talk Video (2 hours 12 minutes)] Onur Mutlu, "Applying to Graduate School & Doing Impactful Research" Invited Panel Talk at <u>the 3rd Undergraduate Mentoring Workshop</u>, held with <u>the</u> <u>48th International Symposium on Computer Architecture</u> (**ISCA**), Virtual, 18 June 2021. [Slides (pptx) (pdf)] [Talk Video (50 minutes)] # A Talk on Impactful Research & Teaching # An Interview on Computing Futures # Papers, Talks, Videos, Artifacts All are available at https://people.inf.ethz.ch/omutlu/projects.htm http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en https://www.youtube.com/onurmutlulectures https://github.com/CMU-SAFARI/ # Fundamental Thinking # Historical: Opportunities at the Bottom # There's Plenty of Room at the Bottom From Wikipedia, the free encyclopedia "There's Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics" was a lecture given by physicist Richard Feynman at the annual American Physical Society meeting at Caltech on December 29, 1959.^[1] Feynman considered the possibility of direct manipulation of individual atoms as a more powerful form of synthetic chemistry than those used at the time. Although versions of the talk were reprinted in a few popular magazines, it went largely unnoticed and did not inspire the conceptual beginnings of the field. Beginning in the 1980s, nanotechnology advocates cited it to establish the scientific credibility of their work. # Historical: Opportunities at the Bottom (II) # There's Plenty of Room at the Bottom From Wikipedia, the free encyclopedia Feynman considered some ramifications of a general ability to manipulate matter on an atomic scale. He was particularly interested in the possibilities of denser computer circuitry, and microscopes that could see things much smaller than is possible with scanning electron microscopes. These ideas were later realized by the use of
the scanning tunneling microscope, the atomic force microscope and other examples of scanning probe microscopy and storage systems such as Millipede, created by researchers at IBM. Feynman also suggested that it should be possible, in principle, to make nanoscale machines that "arrange the atoms the way we want", and do chemical synthesis by mechanical manipulation. He also presented the possibility of "swallowing the doctor", an idea that he credited in the essay to his friend and graduate student Albert Hibbs. This concept involved building a tiny, swallowable surgical robot. # Historical: Opportunities at the Top ### **REVIEW** # There's plenty of room at the Top: What will drive computer performance after Moore's law? - © Charles E. Leiserson¹, © Neil C. Thompson^{1,2,*}, © Joel S. Emer^{1,3}, © Bradley C. Kuszmaul^{1,†}, Butler W. Lampson^{1,4}, ©... - + See all authors and affiliations Science 05 Jun 2020: Vol. 368, Issue 6495, eaam9744 DOI: 10.1126/science.aam9744 Much of the improvement in computer performance comes from decades of miniaturization of computer components, a trend that was foreseen by the Nobel Prize-winning physicist Richard Feynman in his 1959 address, "There's Plenty of Room at the Bottom," to the American Physical Society. In 1975, Intel founder Gordon Moore predicted the regularity of this miniaturization trend, now called Moore's law, which, until recently, doubled the number of transistors on computer chips every 2 years. Unfortunately, semiconductor miniaturization is running out of steam as a viable way to grow computer performance—there isn't much more room at the "Bottom." If growth in computing power stalls, practically all industries will face challenges to their productivity. Nevertheless, opportunities for growth in computing performance will still be available, especially at the "Top" of the computing-technology stack: software, algorithms, and hardware architecture. # Axiom, Revisited There **is** plenty of room both at the top and at the bottom but much more so when you communicate well between and optimize across the top and the bottom # Hence the Expanded View Computer Architecture (expanded view) # Fundamentally Better Architectures # **Data-centric** **Data-driven** **Data-aware** # End of Backup Slides