Intelligent Architectures for Intelligent Machines

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
29 April 2021
FICC Keynote Talk
The Problem

Computing is Bottlenecked by Data
Data is Key for AI, ML, Genomics, …

- Important workloads are all data intensive

- They require rapid and efficient processing of large amounts of data

- Data is increasing
 - We can generate more than we can process
Data is Key for Future Workloads

In-memory Databases
[Mao+, EuroSys’12; Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15; Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]
Data Overwhelms Modern Machines

In-memory Databases

Graph/Tree Processing

Data → performance & energy bottleneck

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15; Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]
Data is Key for Future Workloads

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec
Data Overwhelms Modern Machines

Chrome

TensorFlow Mobile

Data → performance & energy bottleneck

VP9

Video Playback

Google’s video codec

Video Capture

Google’s video codec
Data is Key for Future Workloads

- Development of high-throughput sequencing (HTS) technologies

Number of Genomes Sequenced

Genome Analysis

1. Sequencing
2. Read Mapping
3. Variant Calling
4. Scientific Discovery

Data → performance & energy bottleneck
New Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions

Damla Senol Cali+, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017

Published: 02 April 2018 Article history ▼

New Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions

Damla Senol Cali, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017

Published: 02 April 2018 Article history ▼

Data → performance & energy bottleneck
Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, and Onur Mutlu,

"Accelerating Genome Analysis: A Primer on an Ongoing Journey"

[Slides (pptx)(pdf)]
[Talk Video (1 hour 2 minutes)]
GenASMs Framework [MICRO 2020]

[Lighting Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]

GenASMs: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis

Damla Senol Cali†, Gurpreet S. Kalsi†, Zülal Bingölverty, Can Firtinaverty, Lavanya Subramanian†, Jeremie S. Kim†, Rachata Ausavarungnirunverty, Mohammed Alserverty, Juan Gomez-Lunaverty, Amirali Boroumand†, Anant Nori†, Allison Scibisz†, Sreenivas Subramoneyverty, Can Alkanverty, Saugata Ghoseverty†, Onur Mutluverty†

†Carnegie Mellon University ‼Processor Architecture Research Lab, Intel Labs ‡Bilkent University ◇ETH Zürich †Facebook ◊King Mongkut’s University of Technology North Bangkok †University of Illinois at Urbana–Champaign

SAFARI
Future of Genome Sequencing & Analysis

MinION from ONT

SmidgION from ONT

More on Fast & Efficient Genome Analysis …

- Onur Mutlu,
 "Accelerating Genome Analysis: A Primer on an Ongoing Journey"
 Invited Lecture at Technion, Virtual, 26 January 2021.
 [Slides (pptx) (pdf)]
 [Talk Video (1 hour 37 minutes, including Q&A)]
 [Related Invited Paper (at IEEE Micro, 2020)]
Detailed Lectures on Genome Analysis

- Computer Architecture, Fall 2020, Lecture 3a
 - Introduction to Genome Sequence Analysis (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5

- Computer Architecture, Fall 2020, Lecture 8
 - Intelligent Genome Analysis (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14

- Computer Architecture, Fall 2020, Lecture 9a
 - GenASM: Approx. String Matching Accelerator (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=XoLpzmN-Pas&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=15

- Accelerating Genomics Project Course, Fall 2020, Lecture 1
 - Accelerating Genomics (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqLgwiDRQDTyId

SAFARI: https://www.youtube.com/onurmutlulectures
Data Overwhelms Modern Machines …

- Storage/memory capability
- Communication capability
- Computation capability

- Greatly impacts robustness, energy, performance, cost
A Computing System

- Three key components
- Computation
- Communication
- Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the logical design of an electronic computing instrument,” 1946.

Most of the system is dedicated to storing and moving data.
Data Overwhelms Modern Machines

Chrome

TensorFlow Mobile

Data → performance & energy bottleneck

VP9

Video Playback
Google’s video codec

Video Capture
Google’s video codec
Data Movement Overwhelms Modern Machines

62.7% of the total system energy is spent on data movement

Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks

Amirali Boroumand1
Rachata Ausavarungnirun1
Aki Kuusela3
Allan Knies3

Saugata Ghose1
Eric Shiu3

Youngsok Kim2
Rahul Thakur3
Parthasarathy Ranganathan3

Daehyun Kim4,3
Onur Mutlu5,1

SAFARI
Axiom

An Intelligent Architecture
Handles Data Well
How to Handle Data Well

- Ensure data does not overwhelm the components
 - via intelligent algorithms
 - via intelligent architectures
 - via whole system designs: algorithm-architecture-devices

- Take advantage of vast amounts of data and metadata
 - to improve architectural & system-level decisions

- Understand and exploit properties of (different) data
 - to improve algorithms & architectures in various metrics
Corollaries: Architectures Today …

- **Architectures are terrible at dealing with data**
 - Designed to mainly store and move data vs. to compute
 - They are processor-centric as opposed to data-centric

- **Architectures are terrible at taking advantage of vast amounts of data** (and metadata) available to them
 - Designed to make simple decisions, ignoring lots of data
 - They make human-driven decisions vs. data-driven

- **Architectures are terrible at knowing and exploiting different properties of application data**
 - Designed to treat all data as the same
 - They make component-aware decisions vs. data-aware
Data-Centric (Memory-Centric) Architectures
Data-Centric Architectures: Properties

- **Process data where it resides** *(where it makes sense)*
 - Processing in and near memory structures

- **Low-latency and low-energy data access**
 - Low latency memory
 - Low energy memory

- **Low-cost data storage and processing**
 - High capacity memory at low cost: hybrid memory, compression

- **Intelligent data management**
 - Intelligent controllers handling robustness, security, cost
Processing Data
Where It Makes Sense

A Logic-in-Memory Computer

HAROLD S. STONE

Abstract—If, as presently projected, the cost of microelectronic arrays in the future will tend to reflect the number of pins on the array rather than the number of gates, the logic-in-memory array is an extremely attractive computer component. Such an array is essentially a microelectronic memory with some combinational logic associated with each storage element.
Why In-Memory Computation Today?

- Push from Technology
 - DRAM Scaling at jeopardy
 - Controllers close to DRAM
 - Industry open to new memory architectures
Why In-Memory Computation Today?

- Push from Technology
- DRAM Scaling at jeopardy
- Controllers close to DRAM
- Industry open to new memory architectures
Memory Scaling Issues Were Real

- Onur Mutlu,
 "Memory Scaling: A Systems Architecture Perspective"
 Proceedings of the 5th International Memory Workshop (IMW), Monterey, CA, May 2013. Slides (pptx) (pdf)
 EETimes Reprint

Memory Scaling: A Systems Architecture Perspective

Onur Mutlu
Carnegie Mellon University
onur@cmu.edu
http://users.ece.cmu.edu/~omutlu/

As Memory Scales, It Becomes Unreliable

- Data from all of Facebook’s servers worldwide
- Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.

Intuition: quadratic increase in capacity
Large-Scale Failure Analysis of DRAM Chips

- Analysis and modeling of memory errors found in all of Facebook’s server fleet

- Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, "Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field" Proceedings of the 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.

[Slides (pptx) (pdf)] [DRAM Error Model]

Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field

Justin Meza Qiang Wu* Sanjeev Kumar* Onur Mutlu
Carnegie Mellon University * Facebook, Inc.
Infrastructures to Understand Such Issues

An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study (Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case (Lee et al., HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems (Qureshi et al., DSN 2015)
Infrastructures to Understand Such Issues

SoftMC: Open Source DRAM Infrastructure

- Flexible
- Easy to Use (C++ API)
- Open-source

 github.com/CMU-SAFARI/SoftMC
SoftMC

- https://github.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies

Hasan Hassan\(^1,2,3\) Nandita Vijaykumar\(^3\) Samira Khan\(^4,3\) Saugata Ghose\(^3\) Kevin Chang\(^3\) Gennady Pekhimenko\(^5,3\) Donghyuk Lee\(^6,3\) Oguz Ergin\(^2\) Onur Mutlu\(^1,3\)

\(^1\) ETH Zürich \(^2\) TOBB University of Economics & Technology \(^3\) Carnegie Mellon University
\(^4\) University of Virginia \(^5\) Microsoft Research \(^6\) NVIDIA Research
One can predictably induce errors in most DRAM memory chips
The Story of RowHammer

- One can predictably induce bit flips in commodity DRAM chips
 - >80% of the tested DRAM chips are vulnerable

- First example of how a simple hardware failure mechanism can create a widespread system security vulnerability

Wired

Forget Software—Now Hackers Are Exploiting Physics

Andy Greenberg Security 08.31.16 7:00 AM

FORGET SOFTWARE—NOW HACKERS ARE EXPLOITING PHYSICS
Modern DRAM is Prone to Disturbance Errors

Repeatedly reading a row enough times (before memory gets refreshed) induces disturbance errors in adjacent rows in most real DRAM chips you can buy today.

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors, (Kim et al., ISCA 2014)
Most DRAM Modules Are Vulnerable

A company

86%
(37/43)

Up to 1.0 \times 10^7 errors

B company

83%
(45/54)

Up to 2.7 \times 10^6 errors

C company

88%
(28/32)

Up to 3.3 \times 10^5 errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors, (Kim et al., ISCA 2014)
Recent DRAM Is More Vulnerable

All modules from 2012–2013 are vulnerable
One Can Take Over an Otherwise-Secure System

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable and secure computing system — an access to one memory address should not have unintended side effects on data stored in other addresses. However, as DRAM process technology

Project Zero

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

Monday, March 9, 2015
More Security Implications (I)

“We can gain unrestricted access to systems of website visitors.”

Not there yet, but...

ROOT privileges for web apps!

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

Source: https://lab.dsst.io/32c3-slides/7197.html
More Security Implications (II)

“Can gain control of a smart phone deterministically”

Drammer: Deterministic Rowhammer Attacks on Mobile Platforms, CCS’16
More Security Implications (VII)

USENIX Security 2019

Terminal Brain Damage: Exposing the Graceless Degradation in Deep Neural Networks Under Hardware Fault Attacks

Sanghyun Hong, Pietro Frigo†, Yiğitcan Kaya, Cristiano Giuffrida†, Tudor Dumitraș

\textit{University of Maryland, College Park}
\textit{†Vrije Universiteit Amsterdam}

A Single Bit-flip Can Cause Terminal Brain Damage to DNNs

One specific bit-flip in a DNN’s representation leads to accuracy drop over 90%

Our research found that a specific bit-flip in a DNN’s bitwise representation can cause the accuracy loss up to 90%, and the DNN has 40-50% parameters, on average, that can lead to the accuracy drop over 10% when individually subjected to such single bitwise corruptions...
More Security Implications (VIII)

- USENIX Security 2020

DeepHammer: Depleting the Intelligence of Deep Neural Networks through Targeted Chain of Bit Flips

Fan Yao
University of Central Florida
fan.yao@ucf.edu

Adnan Siraj Rakin
Arizona State University
asrakin@asu.edu

Deliang Fan
dfan@asu.edu

Degrade the inference accuracy to the level of Random Guess

Example: ResNet-20 for CIFAR-10, 10 output classes
Before attack, **Accuracy: 90.2%**
After attack, **Accuracy: ~10% (1/10)**
Memory Scaling Issues Are Real

- Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data]

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Yoongu Kim¹ Ross Daly* Jeremie Kim¹ Chris Fallin* Ji Hye Lee¹ Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹
¹Carnegie Mellon University ²Intel Labs
A Review of the RowHammer Vulnerability

Onur Mutlu and Jeremie Kim,
"RowHammer: A Retrospective"
[Preliminary arXiv version]

RowHammer: A Retrospective

Onur Mutlu§‡
§ETH Zürich
Jeremie S. Kim‡§
‡Carnegie Mellon University
The Push from Circuits and Devices

Main Memory Needs

Intelligent Controllers
RowHammer in 2020 (I)

- Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu,

"Revisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniques"
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (3 minutes)]

Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques

Jeremie S. Kim\dagger, Minesh Patel$§$, A. Giray Yaglıkçı$§$
Hasan Hassan$§$, Roknoddin Azizi$§$, Lois Orosa$§$, Onur Mutlu$§\dagger$

$§$ETH Zürich \daggerCarnegie Mellon University
Key Takeaways from 1580 Chips

• Newer DRAM chips are more vulnerable to RowHammer

• There are chips today whose weakest cells fail after only 4800 hammers

• Chips of newer DRAM technology nodes can exhibit RowHammer bit flips 1) in more rows and 2) farther away from the victim row.

• Existing mitigation mechanisms are NOT effective
RowHammer in 2020 (II)

- Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi, "TRRespass: Exploiting the Many Sides of Target Row Refresh"
 [Slides (pptx) (pdf)]
 [Talk Video (17 minutes)]
 [Source Code]
 [Web Article]
 Best paper award.

TRRespass: Exploiting the Many Sides of Target Row Refresh

Pietro Frigo*† Emanuele Vannacci*† Hasan Hassan§ Victor van der Veen¶
Onur Mutlu§ Cristiano Giuffrida* Herbert Bos* Kaveh Razavi*

*Vrije Universiteit Amsterdam
†ETH Zürich
§ETH Zürich
¶Qualcomm Technologies Inc.
RowHammer in 2020 (III)

- Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu, Alec Wolman, and Onur Mutlu,
 "Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers"

[Slides (pptx) (pdf)]
[Talk Video (17 minutes)]

Are We Susceptible to Rowhammer?
An End-to-End Methodology for Cloud Providers

Lucian Cojocar, Jeremie Kim§†, Minesh Patel§, Lillian Tsai‡,
Stefan Saroiu, Alec Wolman, and Onur Mutlu§†
Microsoft Research, §ETH Zürich, †CMU, ‡MIT
BlockHammer Solution in 2021

- A. Giray Yaglikci, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi, Ataberk Olgun, Lois Orosa, Hasan Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha Shahroodi, Saugata Ghose, and Onur Mutlu,

"BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM Rows"

[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (22 minutes)]
[Short Talk Video (7 minutes)]

BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM Rows

A. Giray Yağlıkçı¹ Minesh Patel¹ Jeremie S. Kim¹ Roknoddin Azizi¹ Ataberk Olgun¹ Lois Orosa¹ Hasan Hassan¹ Jisung Park¹ Konstantinos Kanellopoulos¹ Taha Shahroodi¹ Saugata Ghose² Onur Mutlu¹

¹ETH Zürich ²University of Illinois at Urbana–Champaign
Detailed Lectures on RowHammer

- **Computer Architecture, Fall 2020, Lecture 4b**
 - RowHammer (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=K Dy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=8

- **Computer Architecture, Fall 2020, Lecture 5a**
 - RowHammer in 2020: TRRespass (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9

- **Computer Architecture, Fall 2020, Lecture 5b**
 - RowHammer in 2020: Revisiting RowHammer (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=qR7XR-Eepcq&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10

- **Computer Architecture, Fall 2020, Lecture 5c**
 - Secure and Reliable Memory (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=HvswnsfG3oQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=11

https://www.youtube.com/onurmutlulectures
Onur Mutlu, "The Story of RowHammer"
Keynote Talk at *Secure Hardware, Architectures, and Operating Systems Workshop (SeHAS)*, held with *HiPEAC 2021 Conference*, Virtual, 19 January 2021.

[Slides (pptx) (pdf)]
[Talk Video (1 hr 15 minutes, with Q&A)]
Rowhammer
How Reliable/Secure/Safe is This Bridge?

Source: http://www.technologystudent.com/struct1/tacom1.png
Collapse of the “Galloping Gertie” (1940)

Source: AP
http://www.wsdot.wa.gov/tnbhistory/connections/connections3.htm
Another Example (1994)

Source: By 최광모 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=35197984
Yet Another Example (2007)

Source: Morry Gash/AP,
https://www.npr.org/2017/08/01/540669701/10-years-after-bridge-collapse-amERICA-is-still-crumbling?t=1535427165809
A More Recent Example (2018)

How Safe & Secure Is This Platform?

Security is about preventing unforeseen consequences
How Safe & Secure Is This Platform?

Source: https://taxistartup.com/wp-content/uploads/2015/03/UK-Self-Driving-Cars.jpg
Fundamentally Secure, Reliable, Safe Computing Architectures
Design fundamentally secure computing architectures

Predict and prevent safety & security issues
The Push from Circuits andDevices

Computing Systems Need Intelligent Memories
The Takeaway, Again

In-Field Patch-ability (Intelligent Memory) Can Avoid Many Failures
Why In-Memory Computation Today?

- **Push from Technology**
 - DRAM Scaling at jeopardy
 - Controllers close to DRAM
 - Industry open to new memory architectures

- **Pull from Systems and Applications**
 - Data access is a major system and application bottleneck
 - Systems are energy limited
 - Data movement much more energy-hungry than computation
Three Key Systems & Application Trends

1. Data access is a major bottleneck
 - Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
 - Especially true for off-chip to on-chip movement
Do We Want This?
Or This?
Challenge and Opportunity for Future

High Performance, Energy Efficient, Sustainable
The Problem

Data access is the major performance and energy bottleneck

Our current design principles cause great energy waste (and great performance loss)
The Problem

Processing of data is performed far away from the data.
A Computing System

- Three key components
 - Computation
 - Communication
 - Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the logical design of an electronic computing instrument,” 1946.

A Computing System

- Three key components
 - Computation
 - Communication
 - Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the logical design of an electronic computing instrument,” 1946.
Today’s Computing Systems

- Are overwhelmingly processor centric
- **All data processed in the processor** → at great system cost
- Processor is heavily optimized and is considered the master
- **Data storage units are dumb** and are largely unoptimized (except for some that are on the processor die)
Yet …

“*It’s the Memory, Stupid!*” (Richard Sites, MPR, 1996)

I expect that over the coming decade memory subsystem design will be the *only* important design issue for microprocessors.

Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt, "Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors"

The Performance Perspective (Today)

- All of Google’s Data Center Workloads (2015):

The Performance Perspective (Today)

- All of Google’s Data Center Workloads (2015):

Figure 11: Half of cycles are spent stalled on caches.

Perils of Processor-Centric Design

- Grossly-imbalanced systems
 - Processing done only in one place
 - Everything else just stores and moves data: data moves a lot
 - Energy inefficient
 - Low performance
 - Complex

- Overly complex and bloated processor (and accelerators)
 - To tolerate data access from memory
 - Complex hierarchies and mechanisms
 - Energy inefficient
 - Low performance
 - Complex
Most of the system is dedicated to storing and moving data
The Energy Perspective

Communication Dominates Arithmetic

Dally, HiPEAC 2015

- 64-bit DP: 20pJ
- 256-bit buses
- 256-bit access: 8 kB SRAM
- DRAM Rd/Wr: 16 nJ
- Efficient off-chip link: 500 pJ
- 1 nJ

SAFARI
A memory access consumes $\sim 100-1000\times$ the energy of a complex addition.
Data Movement vs. Computation Energy

- **Data movement** is a major system energy bottleneck
 - Comprises **41%** of mobile system energy during web browsing [2]
 - Costs ~**115** times as much energy as an ADD operation [1, 2]

[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)
[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)
Energy Waste in Mobile Devices

62.7% of the total system energy is spent on data movement

Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks

Amirali Boroumand1
Rachata Ausavarungrun1
Aki Kuusela3
Allan Knies3
Saugata Ghose1
Eric Shiu3
Rahul Thakur3
Parthasarathy Ranganathan3
Youngsok Kim2
Daehyun Kim4,3
Onur Mutlu5,1

SAFARI
We Do Not Want to Move Data!

Communication Dominates Arithmetic

A memory access consumes $\sim 100-1000X$ the energy of a complex addition.
We Need A Paradigm Shift To …

- Enable computation with **minimal data movement**

- **Compute where it makes sense** (where data resides)

- Make computing architectures more **data-centric**
Many questions ... How do we design the:

- compute-capable memory & controllers?
- processor chip and in-memory units?
- software and hardware interfaces?
- system software, compilers, languages?
- algorithms and theoretical foundations?
Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory
Starting Simple: Data Copy and Initialization

\[\text{memmove} \& \text{memcpy}: 5\% \text{ cycles in Google’s datacenter} \ [\text{Kanev+ ISCA’15}] \]

- Forking
- Zero initialization (e.g., security)
- Checkpointing
- VM Cloning
- Deduplication
- Page Migration
- Many more
Today’s Systems: Bulk Data Copy

1) High latency
2) High bandwidth utilization
3) Cache pollution
4) Unwanted data movement

1046ns, 3.6uJ (for 4KB page copy via DMA)
Future Systems: In-Memory Copy

1) Low latency
2) Low bandwidth utilization
3) No cache pollution
4) No unwanted data movement

1046ns, 3.6uJ → 90ns, 0.04uJ
RowClone: In-DRAM Row Copy

Idea: Two consecutive ACTivates

Negligible HW cost

Step 1: Activate row A
Step 2: Activate row B

DRAM subarray

Row Buffer (4 Kbytes)

4 Kbytes

8 bits

Data Bus
RowClone: Latency and Energy Savings

More on RowClone

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization"
Proceedings of the 46th International Symposium on Microarchitecture (MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri vseshadr@cs.cmu.edu Yoongu Kim yoongukim@cmu.edu Chris Fallin* cfallin@c1f.net Donghyuk Lee donghyuk1@cmu.edu
Rachata Ausavarungnirun rachata@cmu.edu Gennady Pekhimenko gpekhime@cs.cmu.edu Yixin Luo yixinluo@andrew.cmu.edu
Onur Mutlu onur@cmu.edu Phillip B. Gibbons† phillip.b.gibbons@intel.com Michael A. Kozuch† michael.a.kozuch@intel.com Todd C. Mowry tcm@cs.cmu.edu

Carnegie Mellon University †Intel Pittsburgh
Memory as an Accelerator

- CPU core
- CPU core
- mini-CPU core
- video core
- imaging core
- GPU (throughput) core
- GPU (throughput) core
- GPU (throughput) core
- GPU (throughput) core

Memory similar to a “conventional” accelerator

Specialized compute-capability in memory
(Truly) In-Memory Computation

- We can support in-DRAM AND, OR, NOT, MAJ
- At low cost
- Using analog computation capability of DRAM
 - Idea: activating multiple rows performs computation
- 30-60X performance and energy improvement

- New memory technologies enable even more opportunities
 - Memristors, resistive RAM, phase change mem, STT-MRAM, ...
 - Can operate on data with minimal movement
In-DRAM Acceleration of Database Queries

Figure 11: Speedup offered by Ambit over baseline CPU with SIMD for BitWeaving
More on Ambit

- Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry,

"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology"

Proceedings of the 50th International Symposium on Microarchitecture (MICRO), Boston, MA, USA, October 2017.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology

Vivek Seshadri¹,⁵ Donghyuk Lee²,⁵ Thomas Mullins³,⁵ Hasan Hassan⁴ Amirali Boroumand⁵
Jeremie Kim⁴,⁵ Michael A. Kozuch³ Onur Mutlu⁴,⁵ Phillip B. Gibbons⁵ Todd C. Mowry⁵

¹Microsoft Research India ²NVIDIA Research ³Intel ⁴ETH Zürich ⁵Carnegie Mellon University
In-DRAM Bulk Bitwise Execution

In-DRAM Bulk Bitwise Execution Engine

Vivek Seshadri
Microsoft Research India
visesha@microsoft.com

Onur Mutlu
ETH Zürich
onur.mutlu@inf.ethz.ch

SAFARI
SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM

*Nastaran Hajinazar1,2 Nika Mansouri Ghiasi1 Geraldo F. Oliveira1 Sven Gregorio1 João Dinis Ferreira1 Mohammed Alser1 Onur Mutlu1 Saugata Ghose3

1ETH Zürich \hspace{1cm} 2Simon Fraser University \hspace{1cm} 3University of Illinois at Urbana–Champaign
Processing in Memory: Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory
Another Example: In-Memory Graph Processing

- Large graphs are everywhere (circa 2015)

36 Million Wikipedia Pages
1.4 Billion Facebook Users
300 Million Twitter Users
30 Billion Instagram Photos

- Scalable large-scale graph processing is challenging

<table>
<thead>
<tr>
<th>Cores</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>+42%</td>
</tr>
</tbody>
</table>

+42% Speedup
Key Bottlenecks in Graph Processing

```java
for (v: graph.vertices) {
    for (w: v.successors) {
        w.next_rank += weight * v.rank;
    }
}
```

1. Frequent random memory accesses

2. Little amount of computation
Opportunity: 3D-Stacked Logic+Memory

Other “True 3D” technologies under development
Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped Accelerator Interface (Noncacheable, Physically Addressed)

Memory

Logic

In-Order Core

LP

PF Buffer

MTP

Message Queue

DRAM Controller

SAFARI Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.
Tesseract System for Graph Processing

Host Processor

Memory-Mapped Accelerator Interface
(Noncacheable, Physically Addressed)

Memory

Logic

Crossbar Network

In-Order Core

Communications via Remote Function Calls

Message Queue

SAFARI
Tesseract System for Graph Processing

- Host Processor
- Memory-Mapped Accelerator Interface (Noncacheable, Physically Addressed)
- Crossbar Network
- Logic
- Memory
- Prefetching
- DRAM Controller
- Message Queue
- LP
- PF Buffer
- MTP

SAFARI
Evaluated Systems

DDR3-OoO
- 8 OoO 4GHz
- 8 OoO 4GHz

HMC-OoO
- 8 OoO 4GHz
- 8 OoO 4GHz

HMC-MC
- 128 In-Order 2GHz
- 128 In-Order 2GHz

Tesseract
- 32 Tesseract Cores

- 102.4GB/s
- 640GB/s
- 640GB/s
- 8TB/s

SAFARI Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.
Tesseract Graph Processing Performance

>13X Performance Improvement

On five graph processing algorithms

- DDR3-OoO
- HMC-OoO
- HMC-MC
- Tesseract
- Tesseract-LP
- Tesseract-LP-MTP

Speedup

0 2 4 6 8 10 12 14 16

+56% +25% 9.0x 11.6x 13.8x

SAFARI Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.
Memory Bandwidth Consumption

- DDR3-OoO: 80GB/s
- HMC-OoO: 190GB/s
- HMC-MC: 243GB/s
- Tesseract: 1.3TB/s
- Tesseract-LP: 2.2TB/s
- Tesseract-LP-MTP: 2.9TB/s

Memory Bandwidth Consumption Graph
Tesseract Graph Processing System Energy

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.
More on Tesseract

- Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
 "A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing"
 [Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn Sungpack Hong§ Sungjoo Yoo Onur Mutlu† Kiyoung Choi
junwhan@snu.ac.kr, sungpack.hong@oracle.com, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr
Seoul National University §Oracle Labs †Carnegie Mellon University

SAFARI
Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks

Amirali Boroumand
Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

SAFARI Carnegie Mellon Google SAMSUNG SEOUL NATIONAL UNIVERSITY ETH Zürich
Consumer Devices

Consumer devices are everywhere!

Energy consumption is a first-class concern in consumer devices.
Popular Consumer Workloads

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning framework

VP9
Video Playback
Google’s video codec

VP9
Video Capture
Google’s video codec
Energy Cost of Data Movement

1st key observation: 62.7% of the total system energy is spent on data movement.

Potential solution: move computation close to data.

Challenge: limited area and energy budget.

SoC
CPU
L1
L2
DRAM
Processing-In-Memory (PIM)
Using PIM to Reduce Data Movement

2nd key observation: a significant fraction of the data movement often comes from simple functions.

We can design lightweight logic to implement these simple functions in memory.

Offloading to PIM logic reduces energy and improves performance, on average, by 2.3X and 2.2X.
Workload Analysis

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning framework

VP9
Video Playback
Google’s video codec

VP9
Video Capture
Google’s video codec

SAFARI
57.3% of the inference energy is spent on data movement.

54.4% of the data movement energy comes from packing/unpacking and quantization.
More on PIM for Mobile Devices

- Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,

"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)] [Lightning Talk Video (2 minutes)] [Full Talk Video (21 minutes)]

Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks

Amirali Boroumand¹ Rachata Ausavarungnirun¹ Aki Kuusela³ Allan Knies³
Saugata Ghose¹ Eric Shiu³ Rahul Thakur³ Parthasarathy Ranganathan³
Youngsok Kim² Daehyun Kim⁴³ Onur Mutlu⁵¹

SAFARI
Truly Distributed GPU Processing with PIM

3D-stacked memory (memory stack)

SM (Streaming Multiprocessor)

Main GPU

Logic layer

Crossbar switch

Vault Ctrl

Vault Ctrl

Listing:

```c
void applyScaleFactorsKernel( uint8_t * const out,
                                uint8_t const * const in,
                                const double *factor,
                                size_t const numRows,
                                size_t const numCols )
{
    // Work out which pixel we are working on.
    const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
    const int colIdx = blockIdx.y;
    const int sliceIdx = threadIdx.z;

    // Check this thread isn't off the image
    if( rowIdx >= numRows ) return;

    // Compute the index of my element
    size_t linearIdx = rowIdx + colIdx*numRows +
                      sliceIdx*numRows*numCols;
```
Accelerating GPU Execution with PIM (I)

[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh† Eiman Ebrahimi† Gwangsun Kim* Niladrish Chatterjee† Mike O’Connor†
Nandita Vijaykumar† Onur Mutlu§† Stephen W. Keckler†
†Carnegie Mellon University †NVIDIA *KAIST §ETH Zürich
Accelerating GPU Execution with PIM (II)

Proceedings of the 25th International Conference on Parallel Architectures and Compilation Techniques (PACT), Haifa, Israel, September 2016.

Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Ashutosh Pattnaik\(^1\) Xulong Tang\(^1\) Adwait Jog\(^2\) Onur Kayiran\(^3\)
Asit K. Mishra\(^4\) Mahmut T. Kandemir\(^1\) Onur Mutlu\(^5,6\) Chita R. Das\(^1\)

\(^1\)Pennsylvania State University \(^2\)College of William and Mary
\(^3\)Advanced Micro Devices, Inc. \(^4\)Intel Labs \(^5\)ETH Zürich \(^6\)Carnegie Mellon University
Accelerating Linked Data Structures

Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation

Kevin Hsieh† Samira Khan‡ Nandita Vijaykumar†
Kevin K. Chang† Amirali Boroumand† Saugata Ghose† Onur Mutlu§†
†Carnegie Mellon University ‡University of Virginia §ETH Zürich
Accelerating Climate Modeling

- Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal,

"NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling"

Proceedings of the 30th International Conference on Field-Programmable Logic and Applications (FPL), Gothenburg, Sweden, September 2020.

[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]
Nominated for the Stamatis Vassiliadis Memorial Award.
Accelerating Genome Sequence Analysis

- Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,

"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies"

GRIM-Filter - Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies

GRIM-Filter - Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC), Yokohama, Japan, January 2018.

[Slides (pptx) (pdf)]
[Source Code]
[arxiv.org Version (pdf)]
[Talk Video at AACBB 2019]

GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies

Jeremie S. Kim^{1,6,*}, Damla Senol Cali^{1}, Hongyi Xin^{2}, Donghyuk Lee^{3}, Saugata Ghose^{1}, Mohammed Alser^{4}, Hasan Hassan^{6}, Oguz Ergin^{5}, Can Alkan^{4,*} and Onur Mutlu^{6,1,*}

From The Sixteenth Asia Pacific Bioinformatics Conference 2018

Yokohama, Japan. 15-17 January 2018
Accelerating Approximate String Matching

- Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,

"GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis"

[Lighting Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis

Damla Senol Cali† M Gurpreet S. Kalsi M Zülal Bingöl V Can Firtina Lavanya Subramanian† Jeremie S. Kim† V
Rachata Ausavarungnirun© Mohammed Alser© Juan Gomez-Luna Amirali Boroumand† Anant Nori M
Allison Scibisz† Sreenivas Subramoney M Can Alkan V Saugata Ghose† Onur Mutlu† V

†Carnegie Mellon University ©Processor Architecture Research Lab, Intel Labs V Bilkent University °ETH Zürich
‡Facebook ©King Mongkut’s University of Technology North Bangkok *University of Illinois at Urbana–Champaign

SAFARI
Accelerating Time Series Analysis

- Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu,

"NATSA: A Near-Data Processing Accelerator for Time Series Analysis"

[Slides (pptx) (pdf)]
[Talk Video (10 minutes)]

NATSA: A Near-Data Processing Accelerator for Time Series Analysis

Ivan Fernandez§ Ricardo Quislant§ Christina Giannoula† Mohammed Alser†
Juan Gómez-Luna‡ Eladio Gutiérrez§ Oscar Plata§ Onur Mutlu‡

§University of Malaga †National Technical University of Athens ‡ETH Zürich
We Need to Revisit the Entire Stack

We can get there step by step
A Modern Primer on Processing in Memory

Onur Mutlua,b, Saugata Ghoseb,c, Juan Gómez-Lunaa, Rachata Ausavarungnirund

SAFARI Research Group

aETH Zürich
bCarnegie Mellon University
cUniversity of Illinois at Urbana-Champaign
dKing Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory"

\url{https://arxiv.org/pdf/1903.03988.pdf}
A Workload and Programming Ease Driven Perspective of Processing-in-Memory

Saugata Ghose† Amirali Boroumand† Jeremie S. Kim‡§ Juan Gómez-Luna§ Onur Mutlu§†

†Carnegie Mellon University §ETH Zürich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu, "Processing-in-Memory: A Workload-Driven Perspective"
[Preliminary arXiv version]
UPMEM Processing-in-DRAM Engine (2019)

- Processing in DRAM Engine
- Includes **standard DIMM modules**, with a **large number of DPU processors** combined with DRAM chips.

- Replaces **standard** DIMMs
 - DDR4 R-DIMM modules
 - 8GB+128 DPUs (16 PIM chips)
 - Standard 2x-nm DRAM process
 - **Large amounts of** compute & memory bandwidth

Samsung Develops Industry’s First High Bandwidth Memory with AI Processing Power

The new architecture will deliver over twice the system performance and reduce energy consumption by more than 70%

Samsung Electronics, the world leader in advanced memory technology, today announced that it has developed the industry’s first High Bandwidth Memory (HBM) integrated with artificial intelligence (AI) processing power — the HBM-PIM. The new processing-in-memory (PIM) architecture brings powerful AI computing capabilities inside high-performance memory, to accelerate large-scale processing in data centers, high performance computing (HPC) systems and AI-enabled mobile applications.

Kwangil Park, senior vice president of Memory Product Planning at Samsung Electronics stated, “Our groundbreaking HBM-PIM is the industry’s first programmable PIM solution tailored for diverse AI-driven workloads such as HPC, training and inference. We plan to build upon this breakthrough by further collaborating with AI solution providers for even more advanced PIM-powered applications.”

Samsung Function-in-Memory DRAM (2021)

- FIMDRAM based on HBM2

Chip Specification
- 128DQ / 8CH / 16 banks / BL4
- 32 PCU blocks (1 FIM block/2 banks)
- 1.2 TFLOPS (4H)
- FP16 ADD / Multiply (MUL) / Multiply-Accumulate (MAC) / Multiply-and-Add (MAD)

[3D Chip Structure of HBM with FIMDRAM]

ISSCC 2021 / SESSION 25 / DRAM / 25.4

25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications

Young-Heeun Kwon1, Suk Han Lee1, Jaehoon Lee1, Sang-Hyuk Kwon1, Ja Min Ryu1, Jong-Pil Son1, Seongil O1, Hak-SoO Yu1, Hassuk Lee1, Soo Young Kim1, Youngmin Cho1, Jin Guk Kim1, Jongyoon Choi1, Hyeon-Sung Shin1, Jin Kim1, BengSeng Phua1, HyoongMin Kim1, Myeong Jun Song1, Ahn Choi1, Daeho Kim1, SooYoung Kim1, Eun-Bong Kim1, David Wang1, Shinheung Kang1, Yuhwan Ro1, Seungwoo Seo1, JoonHo Song1, Jaryoun Youn1, Kyomin Sohn1, Nam Sung Kim1

1Samsung Electronics, Hwasung, Korea
2Samsung Electronics, San Jose, CA
3Samsung Electronics, Suwon, Korea
Chip Implementation

- Mixed design methodology to implement FIMDRAM
 - Full-custom + Digital RTL

[Digital RTL design for PCU block]
Detailed Lectures on PIM (I)

- Computer Architecture, Fall 2020, Lecture 6
 - Computation in Memory (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=oGcZAGwfEUE&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=12

- Computer Architecture, Fall 2020, Lecture 7
 - Near-Data Processing (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=j2GIigqn1Qw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=13

- Computer Architecture, Fall 2020, Lecture 11a
 - Memory Controllers (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=TeG773OiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=20

- Computer Architecture, Fall 2020, Lecture 12d
 - Real Processing-in-DRAM with UPMEM (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=25

https://www.youtube.com/onurmutlulectures
Detailed Lectures on PIM (II)

- Computer Architecture, Fall 2020, Lecture 15
 - Emerging Memory Technologies (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=AIE1rD9G_YU&list=PL5Q2soXY2Zi9idayIgBxUz7xRPS-wisBN&index=28

- Computer Architecture, Fall 2020, Lecture 16a
 - Opportunities & Challenges of Emerging Memory Technologies (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=pmLszWGMGQ&list=PL5Q2soXY2Zi9idayIgBxUz7xRPS-wisBN&index=29

- Computer Architecture, Fall 2020, Guest Lecture
 - In-Memory Computing: Memory Devices & Applications (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=wNmqQHiEZNk&list=PL5Q2soXY2Zi9idayIgBxUz7xRPS-wisBN&index=41

https://www.youtube.com/onurmutlulectures
A Tutorial on PIM

Onur Mutlu,
"Memory-Centric Computing Systems"

[Slides (pptx) (pdf)]
[Executive Summary Slides (pptx) (pdf)]
[Tutorial Video (1 hour 51 minutes)]
[Executive Summary Video (2 minutes)]
[Abstract and Bio]
[Related Keynote Paper from VLSI-DAT 2020]
[Related Review Paper on Processing in Memory]

https://www.youtube.com/watch?v=H3sEaINPBOE

https://www.youtube.com/onurmutlulectures
Memory-Centric Computing Systems

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
12 December 2020
IEDM Tutorial

https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/onurmutlulectures
Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures
Challenge and Opportunity for Future

Fundamentally High-Performance (Data-Centric) Computing Architectures
Challenge and Opportunity for Future Computing Architectures with Minimal Data Movement
Eliminating the Adoption Barriers

How to Enable Adoption of Processing in Memory
Barriers to Adoption of PIM

1. Functionality of and applications & software for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime and compilation systems for adaptive scheduling, data mapping, access/sharing control

5. Infrastructures to assess benefits and feasibility

All can be solved with change of mindset
We Need to Revisit the Entire Stack

We can get there step by step
Challenge and Opportunity for Future

Data-Driven (Self-Optimizing) Computing Architectures
Challenge and Opportunity for Future

Data-Aware
(Expressive)
Computing Architectures
Concluding Remarks
Recap: Corollaries: Architectures Today

- **Architectures are terrible at dealing with data**
 - Designed to mainly store and move data vs. to compute
 - They are processor-centric as opposed to data-centric

- **Architectures are terrible at taking advantage of vast amounts of data** (and metadata) available to them
 - Designed to make simple decisions, ignoring lots of data
 - They make human-driven decisions vs. data-driven

- **Architectures are terrible at knowing and exploiting different properties of application data**
 - Designed to treat all data as the same
 - They make component-aware decisions vs. data-aware
Concluding Remarks

- It is time to design principled system architectures to solve the data handling (i.e., memory/storage) problem.

- Design complete systems to be truly balanced, high-performance, and energy-efficient → intelligent architectures
 - Data-centric, data-driven, data-aware

- Enable computation capability inside and close to memory

- This can
 - Lead to orders-of-magnitude improvements
 - Enable new applications & computing platforms
 - Enable better understanding of nature
 - ...

155
Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware
We Need to Revisit the Entire Stack

We can get there step by step
We Need to Exploit Good Principles

- Data-centric system design
- All components intelligent
- Better cross-layer communication, better interfaces
- Better-than-worst-case design
- Heterogeneity
- Flexibility, adaptability

Open minds
PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlua,b, Saugata Ghoseb,c, Juan Gómez-Lunaa, Rachata Ausavarungnirund

SAFARI Research Group

aETH Zürich
bCarnegie Mellon University
cUniversity of Illinois at Urbana-Champaign
dKing Mongkut’s University of Technology North Bangkok

A Workload and Programming Ease Driven Perspective of Processing-in-Memory

Saugata Ghose† Amirali Boroumand† Jeremie S. Kim†§ Juan Gómez-Luna§ Onur Mutlu§†

†Carnegie Mellon University §ETH Zürich

A Longer Version of This Talk

- Onur Mutlu,
 "Memory-Centric Computing Systems"
[Slides (pptx) (pdf)]
[Executive Summary Slides (pptx) (pdf)]
[Tutorial Video (1 hour 51 minutes)]
[Executive Summary Video (2 minutes)]
[Abstract and Bio]
[Related Keynote Paper from VLSI-DAT 2020]
[Related Review Paper on Processing in Memory]

https://www.youtube.com/watch?v=H3sEaINPBOE

https://www.youtube.com/onurmutlulectures
A Tutorial on PIM

Onur Mutlu,
"Memory-Centric Computing Systems"
Invited Tutorial at IEDM, Virtual, 12 December 2020.

Slides (pptx) (pdf)
Executive Summary Slides (pptx) (pdf)
Tutorial Video (1 hour 51 minutes)
Executive Summary Video (2 minutes)
Abstract and Bio
Related Keynote Paper from VLSI-DAT 2020
Related Review Paper on Processing in Memory

https://www.youtube.com/watch?v=H3sEaINPBOE
https://www.youtube.com/onurmutlulectures

IEDM 2020 Tutorial: Memory-Centric Computing Systems, Onur Mutlu, 12 December 2020
1,641 views • Dec 23, 2020

https://www.youtube.com/onurmutlulectures
Funding Acknowledgments

- Alibaba, AMD, ASML, Google, Facebook, Hi-Silicon, HP Labs, Huawei, IBM, Intel, Microsoft, Nvidia, Oracle, Qualcomm, Rambus, Samsung, Seagate, VMware
- NSF
- NIH
- GSRC
- SRC
- CyLab
Acknowledgments

SAFARI
SAFARI Research Group
safari.ethz.ch

Think BIG, Aim HIGH!

https://safari.ethz.ch
Onur Mutlu’s SAFARI Research Group

Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://safari.ethz.ch/safari-newsletter-january-2021/

Think BIG, Aim HIGH!

https://safari.ethz.ch
Dear SAFARI friends,

2019 and the first three months of 2020 have been very positive eventful times for SAFARI.
Dear SAFARI friends,

Happy New Year! We are excited to share our group highlights with you in this second edition of the SAFARI newsletter (You can find the first edition from April 2020 here). 2020 has
Referenced Papers, Talks, Artifacts

- All are available at

 https://people.inf.ethz.ch/omutlu/projects.htm

 http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en

 https://www.youtube.com/onurmutlulectures

 https://github.com/CMU-SAFARI/
Intelligent Architectures for Intelligent Machines

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
29 April 2021
FICC Keynote Talk
Backup Slides
A Quote from A Famous Architect

- “architecture [...] based upon principle, and not upon precedent”
Precedent-Based Design?

“architecture [...] based upon principle, and not upon precedent”
Principled Design

“architecture [...] based upon principle, and not upon precedent”
The Overarching Principle

Organic architecture

From Wikipedia, the free encyclopedia

Organic architecture is a philosophy of architecture which promotes harmony between human habitation and the natural world through design approaches so sympathetic and well integrated with its site, that buildings, furnishings, and surroundings become part of a unified, interrelated composition.

A well-known example of organic architecture is **Fallingwater**, the residence Frank Lloyd Wright designed for the Kaufmann family in rural Pennsylvania. Wright had many choices to locate a home on this large site, but chose to place the home directly over the waterfall and creek creating a close, yet noisy dialog with the rushing water and the steep site. The horizontal striations of stone masonry with daring **cantilevers** of colored beige concrete blend with native rock outcroppings and the wooded environment.
Another Example: Precedent-Based Design

Source: http://cookiemagik.deviantart.com/art/Train-station-207266944
Principled Design

Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256
Another Principled Design
Another Principled Design

Principle Applied to Another Structure
The Overarching Principle

Zoomorphic architecture

From Wikipedia, the free encyclopedia

Zoomorphic architecture is the practice of using animal forms as the inspirational basis and blueprint for architectural design. "While animal forms have always played a role adding some of the deepest layers of meaning in architecture, it is now becoming evident that a new strand of biomorphism is emerging where the meaning derives not from any specific representation but from a more general allusion to biological processes."[1]

Some well-known examples of Zoomorphic architecture can be found in the TWA Flight Center building in New York City, by Eero Saarinen, or the Milwaukee Art Museum by Santiago Calatrava, both inspired by the form of a bird’s wings.[3]
Overarching Principles for Computing?
Readings, Videos, Reference Materials
More on My Research & Teaching
Brief Self Introduction

- **Onur Mutlu**
 - Full Professor @ ETH Zurich ITET (INFK), since September 2015
 - Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-...
 - PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD
 - https://people.inf.ethz.ch/omutlu/
 - omutlu@gmail.com (Best way to reach me)
 - https://people.inf.ethz.ch/omutlu/projects.htm

- **Research and Teaching in:**
 - Computer architecture, computer systems, hardware security, bioinformatics
 - Memory and storage systems
 - Hardware security, safety, predictability
 - Fault tolerance
 - Hardware/software cooperation
 - Architectures for bioinformatics, health, medicine
 - ...
Current Research Mission

Computer architecture, HW/SW, systems, bioinformatics, security

Heterogeneous Processors and Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Graphics and Vision Processing

Build fundamentally better architectures
Four Key Current Directions

- Fundamentally Secure/Reliable/Safe Architectures
- Fundamentally Energy-Efficient Architectures
 - Memory-centric (Data-centric) Architectures
- Fundamentally Low-Latency and Predictable Architectures
- Architectures for AI/ML, Genomics, Medicine, Health
The Transformation Hierarchy

Computer Architecture (expanded view)

Problem
Algorithm
Program/Language
System Software
SW/HW Interface
Micro-architecture
Logic
Devices
Electrons

Computer Architecture (narrow view)
Axiom

To achieve the highest energy efficiency and performance:

we must take the expanded view
of computer architecture

Co-design across the hierarchy:
Algorithms to devices

Specialize as much as possible
within the design goals
Current Research Mission & Major Topics

Build fundamentally better architectures

- **Data-centric arch. for low energy & high perf.**
 - Proc. in Mem/DRAM, NVM, unified mem/storage

- **Low-latency & predictable architectures**
 - Low-latency, low-energy yet low-cost memory
 - QoS-aware and predictable memory systems

- **Fundamentally secure/reliable/safe arch.**
 - Tolerating all bit flips; patchable HW; secure mem

- **Architectures for ML/AI/Genomics/Health/Med**
 - Algorithm/arch./logic co-design; full heterogeneity

- **Data-driven and data-aware architectures**
 - ML/AI-driven architectural controllers and design
 - Expressive memory and expressive systems

Broad research spanning apps, systems, logic with architecture at the center
Onur Mutlu’s SAFARI Research Group

Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://safari.ethz.ch/safari-newsletter-april-2020/

Think BIG, Aim HIGH!

SAFARI

https://safari.ethz.ch
Dear SAFARI friends,

Happy New Year! We are excited to share our group highlights with you in this second edition of the SAFARI newsletter (You can find the first edition from April 2020 here). 2020 has
Principle: Teaching and Research

... Teaching drives Research
Research drives Teaching

...
Principle: Insight and Ideas

Focus on Insight
Encourage New Ideas
Research & Teaching: Some Overview Talks

https://www.youtube.com/onurmutlulectures

- Future Computing Architectures
 - https://www.youtube.com/watch?v=kgiZISOcGFM&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=1

- Enabling In-Memory Computation
 - https://www.youtube.com/watch?v=njX_14584Jw&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=16

- Accelerating Genome Analysis
 - https://www.youtube.com/watch?v=r7sn41lH-4A&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=41

- Rethinking Memory System Design
 - https://www.youtube.com/watch?v=F7xZLNMIY1E&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=3

- Intelligent Architectures for Intelligent Machines
 - https://www.youtube.com/watch?v=c6_LqzuNdkw&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=25

- The Story of RowHammer
 - https://www.youtube.com/watch?v=sgd7PHQQ1AI&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=39
An Interview on Research and Education

- **Computing Research and Education (@ ISCA 2019)**
 - https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz

- **Maurice Wilkes Award Speech (10 minutes)**
 - https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15
More Thoughts and Suggestions

- Onur Mutlu,
 "Some Reflections (on DRAM)"
 Award Speech for ACM SIGARCH Maurice Wilkes Award, at the ISCA Awards Ceremony, Phoenix, AZ, USA, 25 June 2019.
 [Slides (pptx) (pdf)]
 [Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)]
 [Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku; 1 hour 6 minutes)]
 [News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]

- Onur Mutlu,
 "How to Build an Impactful Research Group"
 57th Design Automation Conference Early Career Workshop (DAC), Virtual, 19 July 2020.
 [Slides (pptx) (pdf)]
Referenced Papers, Talks, Artifacts

- All are available at

 https://people.inf.ethz.ch/omutlu/projects.htm

 http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en

 https://www.youtube.com/onurmutlulectures

 https://github.com/CMU-SAFARI/
End of Backup Slides