SAFARI Research Group Introduction & Research Onur Mutlu omutlu@gmail.com https://people.inf.ethz.ch/omutlu 19 October 2021 **EFCL Huawei Day** Carnegie Mellon ### Brief Self Introduction ### Onur Mutlu - Full Professor @ ETH Zurich ITET (INFK), since September 2015 - Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-... - PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD - https://people.inf.ethz.ch/omutlu/ - omutlu@gmail.com (Best way to reach me) - https://people.inf.ethz.ch/omutlu/projects.htm ### Research and Teaching in: - Computer architecture, computer systems, hardware security, bioinformatics - Memory and storage systems - Hardware security, safety, predictability - Fault tolerance - Hardware/software cooperation - Architectures for bioinformatics, health, medicine - **...** ### Current Research Mission ### Computer architecture, HW/SW, systems, bioinformatics, security ### **Build fundamentally better architectures** # Four Key Current Directions Fundamentally Secure/Reliable/Safe Architectures - Fundamentally Energy-Efficient Architectures - Memory-centric (Data-centric) Architectures Fundamentally Low-Latency and Predictable Architectures Architectures for AI/ML, Genomics, Medicine, Health, ... # The Transformation Hierarchy Computer Architecture (expanded view) Computer Architecture (narrow view) ### Axiom To achieve the highest energy efficiency and performance: ### we must take the expanded view of computer architecture Co-design across the hierarchy: Algorithms to devices Specialize as much as possible within the design goals # Current Research Mission & Major Topics ### **Build fundamentally better architectures** Broad research spanning apps, systems, logic with architecture at the center - Data-centric arch. for low energy & high perf. - Proc. in Mem/DRAM, NVM, unified mem/storage - Low-latency & predictable architectures - Low-latency, low-energy yet low-cost memory - QoS-aware and predictable memory systems - Fundamentally secure/reliable/safe arch. - Tolerating all bit flips; patchable HW; secure mem - Architectures for ML/AI/Genomics/Health/Med - Algorithm/arch./logic co-design; full heterogeneity - Data-driven and data-aware architectures - ML/AI-driven architectural controllers and design - Expressive memory and expressive systems # SAFARI Research Group # Think BIG, Aim HIGH! https://safari.ethz.ch # Onur Mutlu's SAFARI Research Group Computer architecture, HW/SW, systems, bioinformatics, security, memory https://safari.ethz.ch/safari-newsletter-april-2020/ Think BIG, Aim HIGH! SAFARI https://safari.ethz.ch # SAFARI Newsletter January 2021 Edition https://safari.ethz.ch/safari-newsletter-january-2021/ Newsletter January 2021 Think Big, Aim High, and Have a Wonderful 2021! Dear SAFARI friends, ### SAFARI PhD and Post-Doc Alumni ### https://safari.ethz.ch/safari-alumni/ - Damla Senol Cali (Bionano Genomics) - Nastaran Hajinazar (ETH Zurich) - Gagandeep Singh (ETH Zurich) - Amirali Boroumand (Stanford Univ → Google) - Jeremie Kim (ETH Zurich) - Nandita Vijaykumar (Univ. of Toronto, Assistant Professor) - Kevin Hsieh (Microsoft Research, Senior Researcher) - Justin Meza (Facebook) - Mohammed Alser (ETH Zurich) - Yixin Luo (Google) - Kevin Chang (Facebook) - Rachata Ausavarungnirun (KMUNTB, Assistant Professor) - Gennady Pekhimenko (Univ. of Toronto, Assistant Professor) - Vivek Seshadri (Microsoft Research) - Donghyuk Lee (NVIDIA Research, Senior Researcher) - Yoongu Kim (Software Robotics → Google) - Lavanya Subramanian (Intel Labs → Facebook) - Samira Khan (Univ. of Virginia, Assistant Professor) - Saugata Ghose (Univ. of Illinois, Assistant Professor) - Jawad Haj-Yahya (Huawei Research Zurich, Principal Researcher) # Principle: Teaching and Research Teaching drives Research Research drives Teaching . . . ## Research & Teaching: Some Overview Talks ### https://www.youtube.com/onurmutlulectures - Future Computing Architectures - https://www.youtube.com/watch?v=kqiZISOcGFM&list=PL5Q2soXY2Zi8D 5MGV6EnXEJHnV2YFBJI&index=1 - Enabling In-Memory Computation - https://www.youtube.com/watch?v=njX 14584Jw&list=PL5Q2soXY2Zi8D 5MGV6EnXEJHnV2YFBJl&index=16 - Accelerating Genome Analysis - https://www.youtube.com/watch?v=r7sn41lH-4A&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=41 - Rethinking Memory System Design - https://www.youtube.com/watch?v=F7xZLNMIY1E&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=3 - Intelligent Architectures for Intelligent Machines - https://www.youtube.com/watch?v=c6_LgzuNdkw&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=25 - The Story of RowHammer - https://www.youtube.com/watch?v=sgd7PHQQ1AI&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=39 ### Online Courses & Lectures ### First Computer Architecture & Digital Design Course - Digital Design and Computer Architecture - Spring 2021 Livestream Edition: https://www.youtube.com/watch?v=LbC0EZY8yw4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LIN ### Advanced Computer Architecture Course - Computer Architecture - □ Falll 2020 Edition: https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN 1:22:29 HOME VIDEOS ▶ PLAY ALL 1:33:25 **PLAYLISTS** COMMUNITY CHANNELS ABOUT Q #### Popular uploads TTT TT 2:24:11 Computer Architecture - Computer Architecture - ML accelerator: 260 mm², 6 billion transist 600 GFLOPS GPU, 12 ARM 2.2 GHz CPUs. Design of Digital Circuits -Lecture 1: Introduction and... Design of Digital Circuits Computer Architecture -Lecture 2: Fundamentals.... 17K views • 3 years ago #### **Digital Design & Computer** Architecture: Lecture 1:... 49K views • 1 year ago Computer Architecture -Lecture 1: Introduction and... 36K views • 3 years ago Lecture 1: Introduction and... 31K views • 1 year ago Includes standard DIMM modu number of DPU processors co #### 30K views • 8 months ago Lecture 1: Introduction and... #### 22K views • 2 years ago #### First Course in Computer Architecture & Digital Design 2021-2013 Livestream - Digital Design and Digital Design & Computer Computer Architecture - ETH... Onur Mutlu Lectures VIEW FULL PLAYLIST Architecture - ETH Zürich... Onur Mutlu Lectures VIEW FULL PLAYLIST #### Design of Digital Circuits - ETH Zürich - Spring 2019 Onur Mutlu Lectures VIEW FULL PLAYLIST #### Design of Digital Circuits - ETH Zürich - Spring 2018 Onur Mutlu Lectures VIEW FULL PLAYLIST **Digital Circuits and Computer** Architecture - ETH Zurich -... Onur Mutlu Lectures VIEW FULL PLAYLIST Spring 2015 -- Computer Architecture Lectures --... Carnegie Mellon Computer Architec... VIEW FULL PLAYLIST #### Advanced Computer Architecture Courses 2020-2012 Computer Architecture - ETH Zürich - Fall 2020 Onur Mutlu Lectures VIEW FULL PLAYLIST #### Computer Architecture - ETH Zürich - Fall 2019 Onur Mutlu Lectures VIEW FULL PLAYLIST #### Computer Architecture - ETH Zürich - Fall 2018 Onur Mutlu Lectures VIEW FULL PLAYLIST #### Computer Architecture - ETH Zürich - Fall 2017 Onur Mutlu Lectures VIEW FULL PLAYLIST #### Fall 2015 - 740 Computer Architecture Carnegie Mellon Computer Architec... VIEW FULL PLAYLIST Fall 2013 - 740 Computer Architecture - Carnegie Mellon Carnegie Mellon Computer Architec... VIEW FULL PLAYLIST #### Special Courses on Memory Systems Memory Technology Lectures Onur Mutlu Lectures VIEW FULL PLAYLIST Champéry Winter School 2020 - Perugia NiPS Summer School Memory Systems and Memory... 2019 Onur Mutlu Lectures VIEW FULL PLAYLIST Onur Mutlu Lectures VIEW FULL PLAYLIST Systems Onur Mutlu Lectures VIEW FULL PLAYLIST Systems and Memory-Centric... Onur Mutlu Lectures VIEW FULL PLAYLIST ACACES 2018 Lectures --Memory Systems and Memory... Onur Mutlu Lectures VIEW FULL PLAYLIST # DDCA (Spring 2021) - https://safari.ethz.ch/digitaltechnik/ spring2021/doku.php?id=schedule - https://www.youtube.com/watch?v =LbC0EZY8yw4&list=PL5Q2soXY2Zi uej3aY39YB5pfW4SJ7LIN - Bachelor's course - 2nd semester at ETH Zurich - Rigorous introduction into "How Computers Work" - Digital Design/Logic - Computer Architecture - 10 FPGA Lab Assignments Recent Changes Media Manager Sitemap schedule Trace: - schedule Announcements - Lectures/Schedule - Lecture Buzzwords - Readings Ontional HWs - Extra Assignments - Technical Docs ### Exams - Secondary Computer Architecture (CMU) - SS15: Lecture Videos Computer Architecture (CMU) - SS15: Course Website - Spigitaltechnik SS18: Lecture Spigitaltechnik SS18: Course - Website Specified in the second of - Digitaltechnik SS19: Course - Website Digitaltechnik SS20: Lecture - Videos Spigitaltechnik SS20: Course - Website - Moodle Moodle Recorded Lecture Playlist #### **Spring 2021 Lectures/Schedule** | Week | Date | Livestream | Lecture | Readings | Lab | HW | | |------|---------------|---------------|---|------------------------------------|-----|----|--| | W1 | 25.02
Thu. | You Tube Live | L1: Introduction and Basics | Required
Suggested
Mentioned | | | | | | 26.02
Fri. | You Tube Live | L2a: Tradeoffs, Metrics, Mindset | Required | | | | | | | | L2b: Mysteries in Computer Architecture (PDF) (PPT) | Required
Mentioned | | | | | W2 | 04.03
Thu. | You Tube Live | L3a: Mysteries in Computer Architecture II | Required
Suggested | | | | https://www.youtube.com/watch?v=c3 mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIqBxUz7x **RPS-wisBN** - Master's level course - Taken by Bachelor's/Masters/PhD students - Cutting-edge research topics + fundamentals in Computer Architecture - 5 Simulator-based Lab Assignments - Potential research exploration - Many research readings Q Recent Changes Media Manager Sitemap schedule Trace: · start · schedule Announcements #### Materials - Lectures/Schedule - Lecture Buzzwords - Exams Related Courses - Computer Architecture FS19 Course Webpage - Computer Architecture FS19: - Lecture Videos Digitaltechnik SS20: Course - Webpage Digitaltechnik SS20: Lecture
Videos - Moodle Moodle - Piazza (Q&A) - **S** HotCRP - Verilog Practice Website #### Lecture Video Playlist on YouTube #### Fall 2020 Lectures & Schedule | Week | Date | Lecture | Readings | Lab | HW | |------|---------------|---|------------------------|--------------|-------------| | W1 | 17.09
Thu. | L1: Introduction and Basics (PDF) (PPT) You Video | Described
Suggested | | HW 0 | | | 18.09
Fri. | L2a: Memory Performance Attacks (PDF) (PPT) Voulton Video | Described
Suggested | Lab 1
Out | | | | | L2b: Data Retention and Memory Refresh (PDF) (PPT) Vou Video | Described
Suggested | | | | | | L2c: Course Logistics (PDF) (PPT) You the Video | | | | | W2 | 24.09
Thu. | L3a: Introduction to Genome Sequence Analysis (PDF) (PPT) (Volume Video | Described
Suggested | | HW 1
Out | | | | L3b: Memory Systems: Challenges and Opportunities (PDF) (PPT) Vou Video | Described
Suggested | | | | | 25.09
Fri. | L4a: Memory Systems: Solution Directions (PDF) (PPT) You Video | Described
Suggested | | | | | | L4b: RowHammer (PDF) (PPT) Vou Video | Described
Suggested | | | | W3 | 01.10
Thu. | L5a: RowHammer in 2020: TRRespass (PDF) (PPT) Vou Video | Described
Suggested | | | | | | L5b: RowHammer in 2020: Revisiting RowHammer (PDF) (PPT) Vou Video | Described
Suggested | | | | | | L5c: Secure and Reliable Memory | Described | | | ## Comp Arch (Current) https://safari.ethz.ch/architecture/fall20 21/doku.php?id=schedule #### Youtube Livestream: https://www.youtube.com/watch?v=4yfk M 5EFgo&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF #### Master's level course - Taken by Bachelor's/Masters/PhD students - Cutting-edge research topics + fundamentals in Computer Architecture - 5 Simulator-based Lab Assignments - Potential research exploration - Many research readings cent Changes Media Manager Sitema schedule tooth onangoo moda managor onoma Trace: · readings · start · schedule #### Home Announcements #### Materials - Lectures/Schedule - Lecture Buzzwords - Readings - HWs - LabsExams - Related Courses - Tutorials #### Pecaurees - Course Webpage - Computer Architecture FS20: - Digitaltechnik SS21: Course - Digitaltechnik SS21: Lecture Videos - Moodle - MotCRP - S Verilog Practice Website (HDLBits) #### Lecture Video Playlist on YouTube Recorded Lecture Playlist #### Fall 2021 Lectures & Schedule | Week | Date | Livestream | Lecture | Readings | Lab | HW | |------|---------------|---------------|--|------------------------|--------------|-------------| | W1 | 30.09
Thu. | You Tube Live | L1: Introduction and Basics | Required
Mentioned | Lab 1
Out | HW 0
Out | | | 01.10
Fri. | You Tube Live | L2: Trends, Tradeoffs and Design Fundamentals (PDF) (PPT) | Required
Mentioned | | | | W2 | 07.10
Thu. | You Tube Live | L3a: Memory Systems: Challenges and Opportunities | Described
Suggested | | HW 1
Out | | | | | L3b: Course Info & Logistics | | | | | | | | L3c: Memory Performance Attacks | Described
Suggested | | | | | 08.10
Fri. | You Tube Live | L4a: Memory Performance Attacks (PDF) (PPT) | Described
Suggested | Lab 2
Out | | | | | | L4b: Data Retention and Memory Refresh (PDF) (PPT) | Described
Suggested | | | | | | | L4c: RowHammer | Described
Suggested | | | # Seminar (Spring'21) - <u>https://safari.ethz.ch/architecture_seminar/spring2021/doku.php?id=schedule</u> - https://www.youtube.com/watch?v=t3m 93ZpLOyw&list=PL5Q2soXY2Zi awYdjm WVIUegsbY7TPGW4 - Critical analysis course - Taken by Bachelor's/Masters/PhD students - Cutting-edge research topics + fundamentals in Computer Architecture - 20+ research papers, presentations, analyses # Seminar (Current) https://safari.ethz.ch/architecture_semin ar/fall2021/doku.php?id=schedule ### Youtube Livestream: - https://www.youtube.com/watch?v=4TcP 297mdsI&list=PL5Q2soXY2Zi 7UBNmC9B 8Yr5JSwTG9yH4 - Critical analysis course - Taken by Bachelor's/Masters/PhD students - Cutting-edge research topics + fundamentals in Computer Architecture - 20+ research papers, presentations, analyses ### SAFARI Live Seminars # Upcoming SAFARI Live Seminar: Oct 27 # More on Our Research & Teaching # Open-Source Artifacts https://github.com/CMU-SAFARI # Open Source Tools: SAFARI GitHub SAFARI # Papers, Talks, Videos, Artifacts All are available at https://people.inf.ethz.ch/omutlu/projects.htm https://www.youtube.com/onurmutlulectures https://github.com/CMU-SAFARI/ # Funding Acknowledgments - Alibaba, AMD, ASML, Google, Facebook, Hi-Silicon, HP Labs, Huawei, IBM, Intel, Microsoft, Nvidia, Oracle, Qualcomm, Rambus, Samsung, Seagate, VMware - NSF - NIH - GSRC - SRC - CyLab # Example Research Topics: Quick Overview ### Current Research Mission ### Computer architecture, HW/SW, systems, bioinformatics, security ### **Build fundamentally better architectures** # Four Key Issues in Future Platforms Fundamentally Secure/Reliable/Safe Architectures - Fundamentally Energy-Efficient Architectures - Memory-centric (Data-centric) Architectures Fundamentally Low-Latency and Predictable Architectures Architectures for AI/ML, Genomics, Medicine, Health # Architectures for Intelligent Machines # **Data-centric** **Data-driven** **Data-aware** # Current EFCL Projects - "A New Methodology and Open-Source Benchmark Suite for Evaluating Data Movement Bottlenecks: A Processing-in-Memory Case Study" - Data-centric - "Machine-Learning-Assisted Intelligent Microarchitectures to Reduce Memory Access Latency" - Data-driven - "Cross-layer Hardware/Software Techniques to Enable Powerful Computation and Memory Optimizations" - Data-aware # Computing is Bottlenecked by Data # Data is Key for AI, ML, Genomics, ... Important workloads are all data intensive They require rapid and efficient processing of large amounts of data - Data is increasing - We can generate more than we can process ### Data is Key for Future Workloads ### **In-memory Databases** [Mao+, EuroSys'12; Clapp+ (Intel), IISWC'15] ### **In-Memory Data Analytics** [Clapp+ (Intel), IISWC'15; Awan+, BDCloud'15] ### **Graph/Tree Processing** [Xu+, IISWC'12; Umuroglu+, FPL'15] ### **Datacenter Workloads** [Kanev+ (Google), ISCA' 15] #### Data Overwhelms Modern Machines **In-memory Databases** **Graph/Tree Processing** #### Data → performance & energy bottleneck #### In-Memory Data Analytics [Clapp+ (Intel), IISWC'15; Awan+, BDCloud'15] #### **Datacenter Workloads** [Kanev+ (Google), ISCA' 15] #### Data is Key for Future Workloads Chrome Google's web browser #### **TensorFlow Mobile** Google's machine learning framework Google's video codec Google's video codec #### Data Overwhelms Modern Machines **TensorFlow Mobile** Data → performance & energy bottleneck VP9 VouTube Video Playback Google's video codec Google's video codec #### Data is Key for Future Workloads Sequencing **Genome Analysis** #### Data → performance & energy bottleneck reau4: CGCTTCCAT read5: CCATGACGC read6: TTCCATGAC **Scientific Discovery** Variant Calling ## New Genome Sequencing Technologies # Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017 Published: 02 April 2018 Article history ▼ Oxford Nanopore MinION Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome Assembly: Computational Analysis of the Current State, Bottlenecks and Future Directions," Briefings in Bioinformatics, 2018. [Open arxiv.org version] ## New Genome Sequencing Technologies # Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017 Published: 02 April 2018 Article history ▼ Oxford Nanopore MinION #### Data → performance & energy bottleneck ## Accelerating Genome Analysis [IEEE MICRO 2020] Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, and Onur Mutlu, "Accelerating Genome Analysis: A Primer on an Ongoing Journey" IEEE Micro (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020. [Slides (pptx)(pdf)] [Talk Video (1 hour 2 minutes)] # Accelerating Genome Analysis: A Primer on an Ongoing Journey #### **Mohammed Alser** ETH Zürich #### Zülal Bingöl Bilkent University #### Damla Senol Cali Carnegie Mellon University #### Jeremie Kim ETH Zurich and Carnegie Mellon University #### Saugata Ghose University of Illinois at Urbana–Champaign and Carnegie Mellon University #### Can Alkan Bilkent University #### **Onur Mutlu** ETH Zurich, Carnegie Mellon University, and Bilkent University #### GenASM Framework [MICRO 2020] Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, October 2020. [<u>Lighting Talk Video</u> (1.5 minutes)] [<u>Lightning Talk Slides (pptx) (pdf)</u>] [<u>Talk Video</u> (18 minutes)] [<u>Slides (pptx) (pdf)</u>] #### GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis Damla Senol Cali^{†™} Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[⋄] Lavanya Subramanian[‡] Jeremie S. Kim^{⋄†} Rachata Ausavarungnirun[⊙] Mohammed Alser[⋄] Juan Gomez-Luna[⋄] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can
Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{⋄†▽} † Carnegie Mellon University [™] Processor Architecture Research Lab, Intel Labs [▽] Bilkent University [⋄] ETH Zürich ‡ Facebook [⊙] King Mongkut's University of Technology North Bangkok ^{*} University of Illinois at Urbana–Champaign 45 ## FPGA-based Processing Near Memory Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu, "FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications" IFFE Micro (IEEE MICRO), 2021. # FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications Gagandeep Singh[⋄] Mohammed Alser[⋄] Damla Senol Cali[⋈] Dionysios Diamantopoulos[▽] Juan Gómez-Luna[⋄] Henk Corporaal[⋆] Onur Mutlu^{⋄⋈} [⋄]ETH Zürich [⋈] Carnegie Mellon University *Eindhoven University of Technology [▽]IBM Research Europe # Future of Genome Sequencing & Analysis #### More on Fast & Efficient Genome Analysis ... Onur Mutlu, "Accelerating Genome Analysis: A Primer on an Ongoing Journey" *Invited Lecture at <u>Technion</u>*, Virtual, 26 January 2021. [Slides (pptx) (pdf)] [Talk Video (1 hour 37 minutes, including Q&A)] [Related Invited Paper (at IEEE Micro, 2020)] **EDIT VIDEO** ## Detailed Lectures on Genome Analysis - Computer Architecture, Fall 2020, Lecture 3a - Introduction to Genome Sequence Analysis (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5 - Computer Architecture, Fall 2020, Lecture 8 - Intelligent Genome Analysis (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14 - Computer Architecture, Fall 2020, Lecture 9a - □ **GenASM: Approx. String Matching Accelerator** (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=XoLpzmN Pas&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=15 - Accelerating Genomics Project Course, Fall 2020, Lecture 1 - Accelerating Genomics (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqL gwiDRQDTyId #### Data Overwhelms Modern Machines ... Storage/memory capability Communication capability Computation capability Greatly impacts robustness, energy, performance, cost # A Computing System - Three key components - Computation - Communication - Storage/memory Burks, Goldstein, von Neumann, "Preliminary discussion of the logical design of an electronic computing instrument," 1946. #### Computing System 51 ## Perils of Processor-Centric Design Most of the system is dedicated to storing and moving data #### Data Overwhelms Modern Machines **TensorFlow Mobile** Data → performance & energy bottleneck VP9 VouTube Video Playback Google's video codec Google's video codec #### Data Movement Overwhelms Modern Machines Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks" Proceedings of the <u>23rd International Conference on Architectural Support for Programming</u> <u>Languages and Operating Systems</u> (ASPLOS), Williamsburg, VA, USA, March 2018. #### 62.7% of the total system energy is spent on data movement #### Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks Amirali Boroumand¹ Rachata Ausavarungnirun¹ Aki Kuusela³ Allan Knies³ Saugata Ghose¹ Youngsok Kim² Eric Shiu³ Rahul Thakur³ Daehyun Kim^{4,3} Parthasarathy Ranganathan³ Onur Mutlu^{5,1} # Data Movement vs. Computation Energy A memory access consumes ~100-1000X the energy of a complex addition # An Intelligent Architecture Handles Data Well #### How to Handle Data Well - Ensure data does not overwhelm the components - via intelligent algorithms - via intelligent architectures - via whole system designs: algorithm-architecture-devices - Take advantage of vast amounts of data and metadata - to improve architectural & system-level decisions - Understand and exploit properties of (different) data - to improve algorithms & architectures in various metrics #### Corollaries: Architectures Today ... - Architectures are terrible at dealing with data - Designed to mainly store and move data vs. to compute - They are processor-centric as opposed to data-centric - Architectures are terrible at taking advantage of vast amounts of data (and metadata) available to them - Designed to make simple decisions, ignoring lots of data - They make human-driven decisions vs. data-driven - Architectures are terrible at knowing and exploiting different properties of application data - Designed to treat all data as the same - They make component-aware decisions vs. data-aware # Data-Centric (Memory-Centric) Architectures #### Data-Centric Architectures: Properties - Process data where it resides (where it makes sense) - Processing in and near memory structures - Low-latency and low-energy data access - Low latency memory - Low energy memory - Low-cost data storage and processing - High capacity memory at low cost: hybrid memory, compression - Intelligent data management - Intelligent controllers handling robustness, security, cost # Processing Data Where It Makes Sense #### The Problem Data access is the major performance and energy bottleneck # Our current design principles cause great energy waste (and great performance loss) # Processing of data is performed far away from the data ## We Need A Paradigm Shift To ... Enable computation with minimal data movement Compute where it makes sense (where data resides) Make computing architectures more data-centric ## Challenge and Opportunity for Future # Computing Architectures with Minimal Data Movement ## Challenge and Opportunity for Future Fundamentally **Energy-Efficient** (Data-Centric) Computing Architectures ## Challenge and Opportunity for Future Fundamentally High-Performance (Data-Centric) Computing Architectures # Goal: Processing Inside Memory - Many questions ... How do we design the: - compute-capable memory & controllers? - processor chip and in-memory units? - software and hardware interfaces? - system software, compilers, languages? - algorithms and theoretical foundations? **Problem** Aigorithm Program/Language System Software SW/HW Interface Micro-architecture Logic Electrons # Mindset: Memory-Centric Computing Memory similar to a "conventional" accelerator #### PIM Review and Open Problems #### A Modern Primer on Processing in Memory Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d SAFARI Research Group ^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" Invited Book Chapter in <u>Emerging Computing: From Devices to Systems -</u> Looking Beyond Moore and Von Neumann, Springer, to be published in 2021. #### A Modern Primer on Processing in Memory Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d SAFARI Research Group ^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok #### Abstract Modern computing systems are overwhelmingly designed to move data to computation. This design choice goes directly against at least three key trends in computing that cause performance, scalability and energy bottlenecks: (1) data access is a key bottleneck as many important applications are increasingly data-intensive, and memory bandwidth and energy do not scale well, (2) energy consumption is a key limiter in almost all computing platforms, especially server and mobile systems, (3) data movement, especially off-chip to on-chip, is very expensive in terms of bandwidth, energy and latency, much more so than computation. These trends are especially severely-felt in the data-intensive server and energy-constrained mobile systems of today. At the same time, conventional memory technology is facing many technology scaling challenges in terms of reliability, energy, and performance. As a result, memory system architects are open to organizing memory in different ways and making it more intelligent, at the expense of higher cost. The emergence of 3D-stacked memory plus logic, the adoption of error correcting codes inside the latest DRAM chips, proliferation of different main memory standards and chips, specialized for different purposes (e.g., graphics, low-power, high bandwidth, low latency), and the necessity of designing new solutions to serious reliability and security issues, such as the RowHammer phenomenon, are an evidence of this trend. This chapter discusses recent research that aims to practically enable computation close to data, an approach we call processing-in-memory (PIM). PIM places computation mechanisms in or near where the data is stored (i.e., inside the memory chips, in the logic layer of 3D-stacked memory, or in the memory controllers), so that data movement between the computation units and memory is reduced or eliminated. While the general idea of PIM is not new, we discuss motivating trends in applications as well as memory circuits/technology that greatly exacerbate the need for enabling it in modern computing systems. We examine at least two promising new approaches to designing PIM systems to accelerate important data-intensive applications: (1) processing using memory by exploiting analog operational properties of DRAM chips to perform massively-parallel operations in memory, with low-cost changes, (2) processing near memory by exploiting 3D-stacked memory technology design to provide high memory bandwidth and low memory latency to in-memory logic. In both approaches, we describe and tackle relevant cross-layer research, design, and adoption challenges in devices, architecture, systems,
and programming models. Our focus is on the development of in-memory processing designs that can be adopted in real computing platforms at low cost. We conclude by discussing work on solving key challenges to the practical adoption of PIM. Keywords: memory systems, data movement, main memory, processing-in-memory, near-data processing, computation-in-memory, processing using memory, processing near memory, 3D-stacked memory, non-volatile memory, energy efficiency, high-performance computing, computer architecture, computing paradigm, emerging technologies, memory scaling, technology scaling, dependable systems, robust systems, hardware security, system security, latency, low-latency computing #### Contents | L | Introduction | 2 | |---|---|----| | 2 | Major Trends Affecting Main Memory | 4 | | 3 | The Need for Intelligent Memory Controllers | | | | to Enhance Memory Scaling | 6 | | | 3 | | | 1 | Perils of Processor-Centric Design | 9 | | 5 | Processing-in-Memory (PIM): Technology | | | | Enablers and Two Approaches | 12 | | | 5.1 New Technology Enablers: 3D-Stacked | | | | Memory and Non-Volatile Memory | 12 | | | 5.2 Two Approaches: Processing Using | | | | Memory (PUM) vs. Processing Near | 10 | | | Memory (PNM) | 13 | | 5 | Dunassina Usina Mamanu (DUM) | 14 | |) | Processing Using Memory (PUM) | 14 | | | 6.1 RowClone | | | | 6.2 Ambit | 15 | | | 6.3 Gather-Scatter DRAM | 17 | | | 6.4 In-DRAM Security Primitives | 17 | | 7 | Processing Near Memory (PNM) | 18 | | | 7.1 Tesseract: Coarse-Grained Application- | 10 | | | Level PNM Acceleration of Graph Pro- | | | | cessing | 19 | | | 7.2 Function-Level PNM Acceleration of | | | | Mobile Consumer Workloads | 20 | | | 7.3 Programmer-Transparent Function- | | | | Level PNM Acceleration of GPU | | | | Applications | 21 | | | 7.4 Instruction-Level PNM Acceleration | | | | with PIM-Enabled Instructions (PEI) | 21 | | | 7.5 Function-Level PNM Acceleration of | | | | Genome Analysis Workloads | 22 | | | 7.6 Application-Level PNM Acceleration of | | | | Time Series Analysis | 23 | | | | | | 3 | Enabling the Adoption of PIM | 24 | | | 8.1 Programming Models and Code Genera- | | | | tion for PIM | 24 | | | 8.2 PIM Runtime: Scheduling and Data | | | | Mapping | 25 | | | 8.3 Memory Coherence | 27 | | | 8.4 Virtual Memory Support | 27 | | | 8.5 Data Structures for PIM | 28 | | | 8.6 Benchmarks and Simulation Infrastruc- | 00 | | _ | tures | 29 | | | 8.7 Real PIM Hardware Systems and Proto- | 20 | | | types | 30 | | | 8.8 Security Considerations | 30 | | | | | Conclusion and Future Outlook #### 1. Introduction 31 Main memory, built using the Dynamic Random Access Memory (DRAM) technology, is a major component in nearly all computing systems, including servers, cloud platforms, mobile/embedded devices, and sensor systems. Across all of these systems, the data working set sizes of modern applications are rapidly growing, while the need for fast analysis of such data is increasing. Thus, main memory is becoming an increasingly significant bottleneck across a wide variety of computing systems and applications [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Alleviating the main memory bottleneck requires the memory capacity, energy, cost, and performance to all scale in an efficient manner across technology generations. Unfortunately, it has become increasingly difficult in recent years, especially the past decade, to scale all of these dimensions [1, 2, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], and thus the main memory bottleneck has been worsening. A major reason for the main memory bottleneck is the high energy and latency cost associated with data movement. In modern computers, to perform any operation on data that resides in main memory, the processor must retrieve the data from main memory. This requires the memory controller to issue commands to a DRAM module across a relatively slow and power-hungry off-chip bus (known as the memory channel). The DRAM module sends the requested data across the memory channel, after which the data is placed in the caches and registers. The CPU can perform computation on the data once the data is in its registers. Data movement from the DRAM to the CPU incurs long latency and consumes a significant amount of energy [7, 50, 51, 52, 53, 54]. These costs are often exacerbated by the fact that much of the data brought into the caches is not reused by the CPU [52, 53, 55, 56], providing little benefit in return for the high latency and energy cost. The cost of data movement is a fundamental issue with the processor-centric nature of contemporary computer systems. The CPU is considered to be the master in the system, and computation is performed only in the processor (and accelerators). In contrast, data storage and communication units, including the main memory, are treated as unintelligent workers that are incapable of computation. As a result of this processor-centric design paradigm, data moves a lot in the system between the computation units and communication/ storage units so that computation can be done on it. With the increasingly data-centric nature of contemporary and emerging appli- # PIM Review and Open Problems (II) #### A Workload and Programming Ease Driven Perspective of Processing-in-Memory Saugata Ghose[†] Amirali Boroumand[†] Jeremie S. Kim[†] Juan Gómez-Luna[§] Onur Mutlu^{§†} [†]Carnegie Mellon University [§]ETH Zürich Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu, "Processing-in-Memory: A Workload-Driven Perspective" Invited Article in IBM Journal of Research & Development, Special Issue on Hardware for Artificial Intelligence, to appear in November 2019. [Preliminary arXiv version] # Processing in Memory: Two Approaches - 1. Processing using Memory - 2. Processing near Memory # Processing using Memory - We can support in-DRAM AND, OR, NOT, MAJ - At low cost - Using analog computation capability of DRAM - Idea: activating multiple rows performs computation - 30-60X performance and energy improvement - Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology," MICRO 2017. - New memory technologies enable even more opportunities - Memristors, resistive RAM, phase change mem, STT-MRAM, ... - Can operate on data with minimal movement # Ambit: Bulk-Bitwise in-DRAM Computation Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology" Proceedings of the <u>50th International Symposium on</u> Microarchitecture (MICRO), Boston, MA, USA, October 2017. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)] Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology Vivek Seshadri 1,5 Donghyuk Lee 2,5 Thomas Mullins 3,5 Hasan Hassan 4 Amirali Boroumand 5 Jeremie Kim 4,5 Michael A. Kozuch 3 Onur Mutlu 4,5 Phillip B. Gibbons 5 Todd C. Mowry 5 1 Microsoft Research India 2 NVIDIA Research 3 Intel 4 ETH Zürich 5 Carnegie Mellon University # In-DRAM Bulk Bitwise Execution Paradigm Vivek Seshadri and Onur Mutlu, "In-DRAM Bulk Bitwise Execution Engine" Invited Book Chapter in Advances in Computers, 2020. [Preliminary arXiv version] ## In-DRAM Bulk Bitwise Execution Engine Vivek Seshadri Microsoft Research India visesha@microsoft.com Onur Mutlu ETH Zürich onur.mutlu@inf.ethz.ch #### SIMDRAM Framework Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu, "SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM" Proceedings of the 26th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Virtual, March-April 2021. [2-page Extended Abstract] [Short Talk Slides (pptx) (pdf)] [Talk Slides (pptx) (pdf)] [Short Talk Video (5 mins)] [Full Talk Video (27 mins)] # SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM *Nastaran Hajinazar^{1,2} Nika Mansouri Ghiasi¹ *Geraldo F. Oliveira¹ Minesh Patel¹ Juan Gómez-Luna¹ Sven Gregorio¹ Mohammed Alser¹ Onur Mutlu¹ João Dinis Ferreira¹ Saugata Ghose³ ¹ETH Zürich ²Simon Fraser University ³University of Illinois at Urbana-Champaign # SIMDRAM Key Idea - **SIMDRAM:** An end-to-end processing-using-DRAM framework that provides the programming interface, the ISA, and the hardware support for: - Efficiently computing complex operations in DRAM - Providing the ability to implement **arbitrary** operations as required - Using an **in-DRAM massively-parallel SIMD substrate** that requires **minimal** changes to DRAM architecture ## **SIMDRAM Framework: Overview** # **SIMDRAM Key Results** #### Evaluated on: - 16 complex in-DRAM operations - 7 commonly-used real-world applications #### **SIMDRAM** provides: - 88× and 5.8× the throughput of a CPU and a high-end GPU, respectively, over 16 operations - 257× and 31× the energy efficiency of a CPU and a high-end GPU, respectively, over 16 operations - 21× and 2.1× the performance of a CPU an a high-end GPU, over seven real-world applications ### **SIMDRAM Conclusion** #### • SIMDRAM: - Enables efficient computation of a flexible set and wide range of operations in a PuM massively parallel SIMD substrate - Provides the hardware, programming, and ISA support, to: - Address key system integration challenges - Allow programmers to define and employ new operations without hardware changes #### **SIMDRAM** is a promising PuM framework - Can ease the adoption of processing-using-DRAM architectures - Improves the performance and efficiency of processingusing-memory architectures # Processing in Memory: Two
Approaches - 1. Processing using Memory - 2. Processing near Memory # UPMEM Processing-in-DRAM Engine (2019) - Processing in DRAM Engine - Includes standard DIMM modules, with a large number of DPU processors combined with DRAM chips. - Replaces standard DIMMs - DDR4 R-DIMM modules - 8GB+128 DPUs (16 PIM chips) - Standard 2x-nm DRAM process - Large amounts of compute & memory bandwidth # **UPMEM Memory Modules** - E19: 8 chips DIMM (1 rank). DPUs @ 267 MHz - P21: 16 chips DIMM (2 ranks). DPUs @ 350 MHz # 2,560-DPU Processing-in-Memory System #### Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland IZZAT EL HAJJ, American University of Beirut, Lebanon IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain CHRISTINA GIANNOULA, ETH Zürich, Switzerland and NTUA, Greece GERALDO F. OLIVEIRA, ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound. For such workloads, the data novement between main memory and CPU cores imposes a significant overhead in terns of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data movement bottleneck requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as processing—in-memory (PM). Recent research explores different forms of PIM architectures, motivated by the emergence of new 3Dstacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip. This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present PIM (Processing,-bendumpy) benchmarks), a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra, databases, data analytics, graph processing, which we identify as memory-bound. We evaluate the performance and scaling characteristics of PIM benchmarks on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-of-the-art CPU and CPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM systems with 460 and 25.50 DPUs provides new insights about suitability of different workloads to the PIM systems you for the programming recommendations for software designers, and suggestions and hints for hardware and architecture designers of future PIM systems. # More on the UPMEM PIM System ## Experimental Analysis of the UPMEM PIM Engine # Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland IZZAT EL HAJJ, American University of Beirut, Lebanon IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain CHRISTINA GIANNOULA, ETH Zürich, Switzerland and NTUA, Greece GERALDO F. OLIVEIRA, ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a significant overhead in terms of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this *data movement bottleneck* requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as *processing-in-memory (PIM)*. Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-stacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called *DRAM Processing Units* (*DPUs*), integrated in the same chip. This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present *PrIM* (*Processing-In-Memory benchmarks*), a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra, databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we identify as memory-bound. We evaluate the performance and scaling characteristics of PrIM benchmarks on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM system, programming recommendations for software designers, and suggestions and hints for hardware and architecture designers of future PIM systems. https://arxiv.org/pdf/2105.03814.pdf # **PrIM Benchmarks: Application Domains** | Domain | Benchmark | Short name | |-----------------------|-------------------------------|------------| | Dense linear algebra | Vector Addition | VA | | | Matrix-Vector Multiply | GEMV | | Sparse linear algebra | Sparse Matrix-Vector Multiply | SpMV | | Databases | Select | SEL | | | Unique | UNI | | Data analytics | Binary Search | BS | | | Time Series Analysis | TS | | Graph processing | Breadth-First Search | BFS | | Neural networks | Multilayer Perceptron | MLP | | Bioinformatics | Needleman-Wunsch | NW | | Image processing | Image histogram (short) | HST-S | | | Image histogram (large) | HST-L | | Parallel primitives | Reduction | RED | | | Prefix sum (scan-scan-add) | SCAN-SSA | | | Prefix sum (reduce-scan-scan) | SCAN-RSS | | | Matrix transposition | TRNS | # PrIM Benchmarks are Open Source - All microbenchmarks, benchmarks, and scripts - https://github.com/CMU-SAFARI/prim-benchmarks The throughput saturation point is as low as ¼ OP/B, i.e., 1 integer addition per every 32-bit element fetched Operational Intensity (OP/B) #### KEY TAKEAWAY 1 The UPMEM PIM architecture is fundamentally compute bound. As a result, the most suitable workloads are memory-bound. #### KEY TAKEAWAY 2 The most well-suited workloads for the UPMEM PIM architecture use no arithmetic operations or use only simple operations (e.g., bitwise operations and integer addition/subtraction). #### KEY TAKEAWAY 3 The most well-suited workloads for the UPMEM PIM architecture require little or no communication across DPUs (inter-DPU communication). #### KEY TAKEAWAY 4 - UPMEM-based PIM systems outperform state-of-the-art CPUs in terms of performance and energy efficiency on most of PrIM benchmarks. - UPMEM-based PIM systems **outperform state-of-the-art GPUs on a majority of PrIM benchmarks**, and the outlook is even more positive for future PIM systems. - UPMEM-based PIM systems are more energy-efficient than stateof-the-art CPUs and GPUs on workloads that they provide performance improvements over the CPUs and the GPUs. # More on UPMEM System & Analysis Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F. Oliveira, and Onur Mutlu, "Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture" Preprint in arXiv, 9 May 2021. [arXiv preprint] PrIM Benchmarks Source Code [Slides (pptx) (pdf)] [Long Talk Slides (pptx) (pdf)] [Short Talk Slides (pptx) (pdf)] [SAFARI Live Seminar Slides (pptx) (pdf)] [SAFARI Live Seminar Video (2 hrs 57 mins)] [Lightning Talk Video (3 minutes)] [Short Talk Video (21 minutes)] [<u>1-hour Talk Video</u> (58 minutes)] # Understanding a Modern Processing-in-Memory Architecture: Benchmarking and Experimental Characterization Juan Gómez-Luna 1 Izzat El Hajj 2 Ivan Fernandez 1,3 Christina Giannoula 1,4 Geraldo F. Oliveira 1 Onur Mutlu 1 ¹ETH Zürich ²American University of Beirut ³University of Malaga ⁴National Technical University of Athens # Understanding a Modern PIM Architecture # More on Analysis of the UPMEM PIM Engine # More on Analysis of the UPMEM PIM Engine # FPGA-based Processing Near Memory Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu, "FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications" IEEE Micro (IEEE MICRO), to appear, 2021. # FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications Gagandeep Singh[⋄] Mohammed Alser[⋄] Damla Senol Cali[⋈] Dionysios
Diamantopoulos[▽] Juan Gómez-Luna[⋄] Henk Corporaal[⋆] Onur Mutlu^{⋄⋈} [⋄]ETH Zürich [⋈] Carnegie Mellon University *Eindhoven University of Technology [▽]IBM Research Europe # DAMOV Analysis Methodology & Workloads # DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks GERALDO F. OLIVEIRA, ETH Zürich, Switzerland JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland LOIS OROSA, ETH Zürich, Switzerland SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA NANDITA VIJAYKUMAR, University of Toronto, Canada IVAN FERNANDEZ, University of Malaga, Spain & ETH Zürich, Switzerland MOHAMMAD SADROSADATI, Institute for Research in Fundamental Sciences (IPM), Iran & ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Data movement between the CPU and main memory is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP), where some computation is moved close to memory. Prior NDP works investigate the root causes of data movement bottlenecks using different profiling methodologies and tools. However, there is still a lack of understanding about the key metrics that can identify different data movement bottlenecks and their relation to traditional and emerging data movement mitigation mechanisms. Our goal is to methodically identify potential sources of data movement over a broad set of applications and to comprehensively compare traditional compute-centric data movement mitigation techniques (e.g., caching and prefetching) to more memory-centric techniques (e.g., NDP), thereby developing a rigorous understanding of the best techniques to mitigate each source of data movement. With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main memory. We develop the first systematic methodology to classify applications based on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a particular application. We open-source DAMOV and the complete source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV. SAFARI https://arxiv.org/pdf/2105.03725.pdf # When to Employ Near-Data Processing? - [1] Ahn+, "A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing," ISCA, 2015 - [2] Boroumand+, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks," ASPLOS, 2018 - [3] Cali+, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis," MICRO, 2020 - [4] Kim+, "GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory Technologies," BMC Genomics, 2018 - [5] Boroumand+, "Polynesia: Enabling Effective Hybrid Transactional/Analytical Databases with Specialized Hardware/Software Co-Design," arXiv:2103.00798 [cs.AR], 2021 [6] Fernandez+, "NATSA: A Near-Data Processing Accelerator for Time Series Analysis," ICCD, 2020 # **Key Approach** - New workload characterization methodology to analyze: - data movement bottlenecks - suitability of different data movement mitigation mechanisms - Two main profiling strategies: #### **Architecture-independent profiling:** characterizes the memory behavior independently of the underlying hardware #### **Architecture-dependent profiling:** evaluates the impact of the system configuration on the memory behavior # **Methodology Overview** # **Step 1: Application Profiling** - We analyze 345 applications from distinct domains: - Graph Processing - Deep Neural Networks - Physics - High-Performance Computing - Genomics - Machine Learning - Databases - Data Reorganization - Image Processing - Map-Reduce - Benchmarking - Linear Algebra # Step 3: Memory Bottleneck Analysis # DAMOV is Open Source We open-source our benchmark suite and our toolchain # DAMOV is Open Source We open-source our benchmark suite and our toolchain #### **Get DAMOV at:** #### https://github.com/CMU-SAFARI/DAMOV ### More on DAMOV Analysis Methodology & Workloads ### More on DAMOV Geraldo F. Oliveira, Juan Gomez-Luna, Lois Orosa, Saugata Ghose, Nandita Vijaykumar, Ivan fernandez, Mohammad Sadrosadati, and Onur Mutlu, "DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks" Preprint in <u>arXiv</u>, 8 May 2021. [arXiv preprint] [DAMOV Suite and Simulator Source Code] [SAFARI Live Seminar Video (2 hrs 40 mins)] ONUR MUTLU, ETH Zürich, Switzerland [Short Talk Video (21 minutes)] # DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks GERALDO F. OLIVEIRA, ETH Zürich, Switzerland JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland LOIS OROSA, ETH Zürich, Switzerland SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA NANDITA VIJAYKUMAR, University of Toronto, Canada IVAN FERNANDEZ, University of Malaga, Spain & ETH Zürich, Switzerland MOHAMMAD SADROSADATI, ETH Zürich, Switzerland # Eliminating the Adoption Barriers # How to Enable Adoption of Processing in Memory # Potential Barriers to Adoption of PIM - 1. Functionality and applications & software for PIM - 2. Ease of **programming** (interfaces and compiler/HW support) - 3. **System** support: coherence, synchronization, virtual memory - 4. **Runtime** and **compilation** systems for adaptive scheduling, data mapping, access/sharing control - 5. **Infrastructures** to assess benefits and feasibility All can be solved with change of mindset ## We Need to Revisit the Entire Stack We can get there step by step # Challenge and Opportunity for Future # Data-Driven (Self-Optimizing) Computing Architectures # Challenge and Opportunity for Future # Data-Aware (Expressive) Computing Architectures ### More Info in This Tutorial... Onur Mutlu, "Memory-Centric Computing Systems" Invited Tutorial at <u>66th International Electron Devices</u> Meeting (IEDM), Virtual, 12 December 2020. [Slides (pptx) (pdf)] [Executive Summary Slides (pptx) (pdf)] [Tutorial Video (1 hour 51 minutes)] [Executive Summary Video (2 minutes)] [Abstract and Bio] [Related Keynote Paper from VLSI-DAT 2020] [Related Review Paper on Processing in Memory] https://www.youtube.com/watch?v=H3sEaINPBOE 1,641 views • Dec 23, 2020 → SHARE =+ SAVE • ANALYTICS EDIT VIDEO # Architectures for Intelligent Machines # **Data-centric** **Data-driven** **Data-aware** # SAFARI Research Group Introduction & Research Onur Mutlu omutlu@gmail.com https://people.inf.ethz.ch/omutlu 19 October 2021 **EFCL Huawei Day** Carnegie Mellon # More Detailed Research Overview # Slides from ISCA 2021 Mentoring Workshop Panel #### Onur Mutlu, #### "Applying to Graduate School & Doing Impactful Research" Invited Panel Talk at the 3rd Undergraduate Mentoring Workshop, held with the 48th International Symposium on Computer Architecture (ISCA), Virtual, 18 June 2021. [Slides (pptx) (pdf)] [Talk Video (50 minutes)] # A Talk on Impactful Research & Teaching # Example Research Topics: Quick Overview # Challenge and Opportunity for Future # High Performance (to solve the **toughest** & **all** problems) # Challenge and Opportunity for Future # Personalized and Private (in every aspect of life: health, medicine, spaces, devices, robotics, ...) # Accelerating Genome Analysis Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, and Onur Mutlu, "Accelerating Genome Analysis: A Primer on an Ongoing Journey" IEEE Micro (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020. [Slides (pptx)(pdf)] [Talk Video (1 hour 2 minutes)] # Accelerating Genome Analysis: A Primer on an Ongoing Journey #### **Mohammed Alser** ETH Zürich #### Zülal Bingöl Bilkent University #### Damla Senol Cali Carnegie Mellon University #### Jeremie Kim ETH Zurich and Carnegie Mellon University #### Saugata Ghose University of Illinois at Urbana–Champaign and Carnegie Mellon University #### Can Alkan Bilkent University #### **Onur Mutlu** ETH Zurich, Carnegie Mellon University, and Bilkent University ## GenASM Framework [MICRO 2020] Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu, "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual, October 2020. [<u>Lighting Talk Video</u> (1.5 minutes)] [<u>Lightning Talk Slides (pptx) (pdf)</u>] [<u>Talk Video</u> (18 minutes)] [<u>Slides (pptx) (pdf)</u>] #### GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis Damla Senol Cali^{†™} Gurpreet S. Kalsi[™] Zülal Bingöl[▽] Can Firtina[⋄] Lavanya Subramanian[‡] Jeremie S. Kim^{⋄†} Rachata Ausavarungnirun[⊙] Mohammed Alser[⋄] Juan Gomez-Luna[⋄] Amirali Boroumand[†] Anant Nori[™] Allison Scibisz[†] Sreenivas Subramoney[™] Can Alkan[▽] Saugata Ghose^{*†} Onur Mutlu^{⋄†▽} † Carnegie Mellon
University [™] Processor Architecture Research Lab, Intel Labs [▽] Bilkent University [⋄] ETH Zürich ‡ Facebook [⊙] King Mongkut's University of Technology North Bangkok ^{*} University of Illinois at Urbana–Champaign 127 # New Genome Sequencing Technologies # Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017 Published: 02 April 2018 Article history ▼ Oxford Nanopore MinION Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome Assembly: Computational Analysis of the Current State, Bottlenecks and Future Directions," Briefings in Bioinformatics, 2018. [Preliminary arxiv.org version] # Future of Genome Sequencing & Analysis # More on Fast & Efficient Genome Analysis Onur Mutlu, "Accelerating Genome Analysis: A Primer on an Ongoing Journey" *Invited Lecture at <u>Technion</u>*, Virtual, 26 January 2021. [Slides (pptx) (pdf)] [Talk Video (1 hour 37 minutes, including Q&A)] [Related Invited Paper (at IEEE Micro, 2020)] **ANALYTICS** # Detailed Lectures on Genome Analysis - Computer Architecture, Fall 2020, Lecture 3a - Introduction to Genome Sequence Analysis (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5 - Computer Architecture, Fall 2020, Lecture 8 - □ **Intelligent Genome Analysis** (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14 - Computer Architecture, Fall 2020, Lecture 9a - □ **GenASM: Approx. String Matching Accelerator** (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=XoLpzmN Pas&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=15 - Accelerating Genomics Project Course, Fall 2020, Lecture 1 - Accelerating Genomics (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqL gwiDRQDTyId # Computing is Bottlenecked by Data # Modern Systems are Bottlenecked by Data Storage and Movement # Modern Systems are Bottlenecked by Memory # An "Early" Overview Paper... Onur Mutlu, "Memory Scaling: A Systems Architecture Perspective" Proceedings of the 5th International Memory Workshop (IMW), Monterey, CA, May 2013. Slides (pptx) (pdf) EETimes Reprint ## Memory Scaling: A Systems Architecture Perspective Onur Mutlu Carnegie Mellon University onur@cmu.edu http://users.ece.cmu.edu/~omutlu/ # Challenge and Opportunity for Future # Fundamentally Secure, Reliable, Safe Computing Architectures ## Infrastructures to Understand Such Issues Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014) Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case (Lee et al., HPCA 2015) AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems (Qureshi et al., DSN 2015) An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms (Liu et al., ISCA 2013) The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study (Khan et al., SIGMETRICS 2014) ### Infrastructures to Understand Such Issues # SoftMC: Open Source DRAM Infrastructure Hasan Hassan et al., "SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies," HPCA 2017. - Easy to Use (C++ API) - Open-source github.com/CMU-SAFARI/SoftMC ## SoftMC https://github.com/CMU-SAFARI/SoftMC # SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies ``` Hasan Hassan Nandita Vijaykumar Samira Khan Saugata Ghose Kevin Chang Gennady Pekhimenko Donghyuk Lee Gennady Pekhimenko Onur Mutlu Nandita Vijaykumar Samira Khan Saugata Ghose Kevin Chang Gennady Pekhimenko Onur Mutlu Nandita Vijaykumar Samira Khan Saugata Ghose Nandita Vijaykumar Samira Khan Saugata Ghose Nandita Vijaykumar Samira Khan Saugata Ghose Kevin Chang Gennady Pekhimenko Onur Mutlu Nandita Vijaykumar Samira Khan Saugata Ghose Nandita Vijaykumar Vija ``` ``` ¹ETH Zürich ²TOBB University of Economics & Technology ³Carnegie Mellon University ⁴University of Virginia ⁵Microsoft Research ⁶NVIDIA Research ``` # A Curious Discovery [Kim et al., ISCA 2014] # One can predictably induce errors in most DRAM memory chips ### DRAM RowHammer # A simple hardware failure mechanism can create a widespread system security vulnerability Forget Software—Now Hackers Are Exploiting Physics BUSINESS CULTURE DESIGN GEAR SCIENCE SHARE ANDY GREENBERG SECURITY 08.31.16 7:00 AM # FORGET SOFTWARE—NOW HACKERS ARE EXPLOITING PHYSICS ## One Can Take Over an Otherwise-Secure System ## Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors Abstract. Memory isolation is a key property of a reliable and secure computing system — an access to one memory address should not have unintended side effects on data stored in other addresses. However, as DRAM process technology # Project Zero Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014) News and updates from the Project Zero team at Google Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015) Monday, March 9, 2015 Exploiting the DRAM rowhammer bug to gain kernel privileges #### First RowHammer Analysis Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors" Proceedings of the 41st International Symposium on Computer Architecture (ISCA), Minneapolis, MN, June 2014. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data] #### Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors Yoongu Kim¹ Ross Daly* Jeremie Kim¹ Chris Fallin* Ji Hye Lee¹ Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹ Carnegie Mellon University ²Intel Labs #### Future of Memory Reliability/Security Onur Mutlu, "The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser" Invited Paper in Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Lausanne, Switzerland, March 2017. [Slides (pptx) (pdf)] ### The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser Onur Mutlu ETH Zürich onur.mutlu@inf.ethz.ch https://people.inf.ethz.ch/omutlu #### A More Recent RowHammer Retrospective Onur Mutlu and Jeremie Kim, "RowHammer: A Retrospective" <u>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems</u> (**TCAD**) Special Issue on Top Picks in Hardware and Embedded Security, 2019. [Preliminary arXiv version] [Slides from COSADE 2019 (pptx)] [Slides from VLSI-SOC 2020 (pptx) (pdf)] [Talk Video (30 minutes)] #### RowHammer: A Retrospective Onur Mutlu^{§‡} Jeremie S. Kim^{‡§} §ETH Zürich [‡]Carnegie Mellon University #### RowHammer in 2020 #### RowHammer in 2020 (I) Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan, Roknoddin Azizi, Lois Orosa, and Onur Mutlu, "Revisiting RowHammer: An Experimental Analysis of Modern Devices and Mitigation Techniques" Proceedings of the <u>47th International Symposium on Computer</u> <u>Architecture</u> (**ISCA**), Valencia, Spain, June 2020. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (20 minutes)] [Lightning Talk Video (3 minutes)] ### Revisiting RowHammer: An Experimental Analysis of Modern DRAM Devices and Mitigation Techniques ``` Jeremie S. Kim^{\S \dagger} Minesh Patel^{\S} A. Giray Yağlıkçı^{\S} Hasan Hassan^{\S} Roknoddin Azizi^{\S} Lois Orosa^{\S} Onur Mutlu^{\S \dagger} ^{\S} ETH Zürich ^{\dagger} Carnegie Mellon University ``` #### RowHammer in 2020 (II) Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi, "TRRespass: Exploiting the Many Sides of Target Row Refresh" Proceedings of the <u>41st IEEE Symposium on Security and Privacy</u> (**S&P**), San Francisco, CA, USA, May 2020. [Slides (pptx) (pdf)] [Lecture Slides (pptx) (pdf)] [Talk Video (17 minutes)] [Lecture Video (59 minutes)] [Source Code] [Web Article] Best paper award. Pwnie Award 2020 for Most Innovative Research. Pwnie Awards 2020 ## TRRespass: Exploiting the Many Sides of Target Row Refresh Pietro Frigo*† Emanuele Vannacci*† Hasan Hassan§ Victor van der Veen¶ Onur Mutlu§ Cristiano Giuffrida* Herbert Bos* Kaveh Razavi* *Vrije Universiteit Amsterdam §ETH Zürich ¶Oualcomm Technologies Inc. ## RowHammer is still an open problem Security by obscurity is likely not a good solution #### RowHammer in 2020 (III) Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu, Alec Wolman, and Onur Mutlu, "Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers" Proceedings of the <u>41st IEEE Symposium on Security and</u> <u>Privacy</u> (**S&P**), San Francisco, CA, USA, May 2020. [Slides (pptx) (pdf)] [Talk Video (17 minutes)] ## Are We Susceptible to Rowhammer? An End-to-End Methodology for Cloud Providers Lucian Cojocar, Jeremie Kim^{§†}, Minesh Patel[§], Lillian Tsai[‡], Stefan Saroiu, Alec Wolman, and Onur Mutlu^{§†} Microsoft Research, [§]ETH Zürich, [†]CMU, [‡]MIT #### BlockHammer Solution in 2021 A. Giray Yaglikci, Minesh Patel, Jeremie S. Kim, Roknoddin Azizi, Ataberk Olgun, Lois Orosa, Hasan Hassan, Jisung Park, Konstantinos Kanellopoulos, Taha Shahroodi, Saugata Ghose, and Onur Mutlu, "BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM Rows" Proceedings of the <u>27th International Symposium on High-Performance</u> <u>Computer Architecture</u> (**HPCA**), Virtual, February-March 2021. [Slides (pptx) (pdf)] [Short Talk Slides (pptx)
(pdf)] [Talk Video (22 minutes)] [Short Talk Video (7 minutes)] #### BlockHammer: Preventing RowHammer at Low Cost by Blacklisting Rapidly-Accessed DRAM Rows A. Giray Yağlıkçı¹ Minesh Patel¹ Jeremie S. Kim¹ Roknoddin Azizi¹ Ataberk Olgun¹ Lois Orosa¹ Hasan Hassan¹ Jisung Park¹ Konstantinos Kanellopoulos¹ Taha Shahroodi¹ Saugata Ghose² Onur Mutlu¹ ¹ETH Zürich ²University of Illinois at Urbana–Champaign #### Detailed Lectures on RowHammer - Computer Architecture, Fall 2020, Lecture 4b - RowHammer (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=KDy632z23UE&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=8 - Computer Architecture, Fall 2020, Lecture 5a - RowHammer in 2020: TRRespass (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=pwRw7QqK_qA&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=9 - Computer Architecture, Fall 2020, Lecture 5b - RowHammer in 2020: Revisiting RowHammer (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=gR7XR-Eepcg&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=10 - Computer Architecture, Fall 2020, Lecture 5c - Secure and Reliable Memory (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=HvswnsfG3oQ&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=11 #### The Story of RowHammer Lecture ... Onur Mutlu, #### "The Story of RowHammer" Keynote Talk at <u>Secure Hardware, Architectures, and Operating Systems</u> <u>Workshop</u> (**SeHAS**), held with <u>HiPEAC 2021 Conference</u>, Virtual, 19 January 2021. [Slides (pptx) (pdf)] [Talk Video (1 hr 15 minutes, with Q&A)] #### Understanding Flash Memory & SSD Reliability Proceedings of the IEEE, Sept. 2017 #### Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD's reliability and lifetime. By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu #### Understand and Model with Experiments (Flash) [DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE 2017, HPCA 2018, SIGMETRICS 2018] NAND Daughter Board # Main Memory Needs Intelligent Controllers #### Another Challenge and Opportunity ## High Performance, Energy Efficient, Sustainable # Processing of data is performed far away from the data #### Energy Waste in Mobile Devices Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks" Proceedings of the <u>23rd International Conference on Architectural Support for Programming</u> <u>Languages and Operating Systems</u> (ASPLOS), Williamsburg, VA, USA, March 2018. #### 62.7% of the total system energy is spent on data movement #### Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks Amirali Boroumand¹ Rachata Ausavarungnirun¹ Aki Kuusela³ Allan Knies³ Saugata Ghose¹ Youngsok Kim² Eric Shiu³ Rahul Thakur³ Daehyun Kim^{4,3} Parthasarathy Ranganathan³ Onur Mutlu^{5,1} #### The Problem Data access is the major performance and energy bottleneck # Our current design principles cause great energy waste (and great performance loss) #### We Need A Paradigm Shift To ... Enable computation with minimal data movement Compute where it makes sense (where data resides) Make computing architectures more data-centric #### Challenge and Opportunity for Future # Computing Architectures with Minimal Data Movement #### Challenge and Opportunity for Future Fundamentally **Energy-Efficient** (Data-Centric) Computing Architectures #### Challenge and Opportunity for Future Fundamentally High-Performance (Data-Centric) Computing Architectures #### Goal: Processing Inside Memory - Many questions ... How do we design the: - compute-capable memory & controllers? - processor chip and in-memory units? - software and hardware interfaces? - system software, compilers, languages? - algorithms and theoretical foundations? **Problem** Aigorithm Program/Language System Software SW/HW Interface Micro-architecture Logic Electrons #### Memory as an Accelerator Memory similar to a "conventional" accelerator # Processing in Memory: Two Approaches - 1. Processing using Memory - 2. Processing near Memory #### PIM Review and Open Problems #### A Modern Primer on Processing in Memory Onur Mutlu^{a,b}, Saugata Ghose^{b,c}, Juan Gómez-Luna^a, Rachata Ausavarungnirun^d SAFARI Research Group ^aETH Zürich ^bCarnegie Mellon University ^cUniversity of Illinois at Urbana-Champaign ^dKing Mongkut's University of Technology North Bangkok Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory" Invited Book Chapter in Emerging Computing: From Devices to Systems Looking Beyond Moore and Von Neumann, Springer, to be published in 2021. #### PIM Review and Open Problems (II) #### A Workload and Programming Ease Driven Perspective of Processing-in-Memory Saugata Ghose[†] Amirali Boroumand[†] Jeremie S. Kim[†]§ Juan Gómez-Luna[§] Onur Mutlu^{§†} †Carnegie Mellon University §ETH Zürich Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu, "Processing-in-Memory: A Workload-Driven Perspective" Invited Article in IBM Journal of Research & Development, Special Issue on Hardware for Artificial Intelligence, to appear in November 2019. [Preliminary arXiv version] #### More on Processing in Memory Vivek Seshadri et al., "<u>Ambit: In-Memory Accelerator</u> for Bulk Bitwise Operations Using Commodity DRAM <u>Technology</u>," MICRO 2017. Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology ``` Vivek Seshadri^{1,5} Donghyuk Lee^{2,5} Thomas Mullins^{3,5} Hasan Hassan^4 Amirali Boroumand^5 Jeremie Kim^{4,5} Michael A. Kozuch^3 Onur Mutlu^{4,5} Phillip B. Gibbons^5 Todd C. Mowry^5 ``` 1 Microsoft Research India 2 NVIDIA Research 3 Intel 4 ETH Zürich 5 Carnegie Mellon University #### More on Processing in Memory Vivek Seshadri and Onur Mutlu, "In-DRAM Bulk Bitwise Execution Engine" Invited Book Chapter in Advances in Computers, to appear in 2020. [Preliminary arXiv version] #### In-DRAM Bulk Bitwise Execution Engine Vivek Seshadri Microsoft Research India visesha@microsoft.com Onur Mutlu ETH Zürich onur.mutlu@inf.ethz.ch #### More on Processing in Memory (II) Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu, "SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM" Proceedings of the 26th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Virtual, March-April 2021. [2-page Extended Abstract] [Short Talk Slides (pptx) (pdf)] [Talk Slides (pptx) (pdf)] [Short Talk Video (5 mins)] [Full Talk Video (27 mins)] ### SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM *Nastaran Hajinazar^{1,2} Nika Mansouri Ghiasi¹ *Geraldo F. Oliveira¹ Minesh Patel¹ Juan Gómez-Luna¹ Sven Gregorio¹ Mohammed Alser¹ Onur Mutlu¹ João Dinis Ferreira¹ Saugata Ghose³ ¹ETH Zürich ²Simon Fraser University ³University of Illinois at Urbana–Champaign #### More on Processing in Memory (III) Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, "A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing" Proceedings of the <u>42nd International Symposium on</u> <u>Computer Architecture</u> (**ISCA**), Portland, OR, June 2015. [Slides (pdf)] [Lightning Session Slides (pdf)] #### A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing Junwhan Ahn Sungpack Hong[§] Sungjoo Yoo Onur Mutlu[†] Kiyoung Choi junwhan@snu.ac.kr, sungpack.hong@oracle.com, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr Seoul National University [§]Oracle Labs [†]Carnegie Mellon University #### More on Processing in Memory (IV) Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu, "Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks" Proceedings of the <u>23rd International Conference on Architectural</u> <u>Support for Programming Languages and Operating</u> <u>Systems</u> (**ASPLOS**), Williamsburg, VA, USA, March 2018. #### Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks Amirali Boroumand¹ Saugata Ghose¹ Youngsok Kim² Rachata Ausavarungnirun¹ Eric Shiu³ Rahul Thakur³ Daehyun Kim^{4,3} Aki Kuusela³ Allan Knies³ Parthasarathy Ranganathan³ Onur Mutlu^{5,1} #### More on Processing in Memory (V) Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, "PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture" Proceedings of the <u>42nd International Symposium on</u> Computer Architecture (ISCA), Portland, OR, June 2015. [Slides (pdf)] [Lightning Session Slides (pdf)] #### PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture Junwhan Ahn Sungjoo Yoo Onur Mutlu[†] Kiyoung Choi junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr Seoul National University [†]Carnegie Mellon University #### In-DRAM Physical Unclonable Functions Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu, "The DRAM Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM Devices" Proceedings of the <u>24th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), Vienna, Austria, February 2018. [Lightning Talk Video] [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Full Talk Lecture Video (28 minutes)] #### The DRAM Latency
PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices Jeremie S. Kim^{†§} Minesh Patel[§] Hasan Hassan[§] Onur Mutlu^{§†} [†]Carnegie Mellon University [§]ETH Zürich #### In-DRAM True Random Number Generation Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu, "D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput" Proceedings of the <u>25th International Symposium on High-Performance Computer</u> <u>Architecture</u> (**HPCA**), Washington, DC, USA, February 2019. [Slides (pptx) (pdf)] [Full Talk Video (21 minutes)] [Full Talk Lecture Video (27 minutes)] Top Picks Honorable Mention by IEEE Micro. #### D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput Jeremie S. Kim^{‡§} Minesh Patel[§] Hasan Hassan[§] Lois Orosa[§] Onur Mutlu^{§‡} [‡]Carnegie Mellon University [§]ETH Zürich 179 #### Eliminating the Adoption Barriers # How to Enable Adoption of Processing in Memory #### We Need to Revisit the Entire Stack We can get there step by step #### UPMEM Processing-in-DRAM Engine (2019) - Processing in DRAM Engine - Includes standard DIMM modules, with a large number of DPU processors combined with DRAM chips. - Replaces standard DIMMs - DDR4 R-DIMM modules - 8GB+128 DPUs (16 PIM chips) - Standard 2x-nm DRAM process - Large amounts of compute & memory bandwidth #### **UPMEM Memory Modules** - E19: 8 chips DIMM (1 rank). DPUs @ 267 MHz - P21: 16 chips DIMM (2 ranks). DPUs @ 350 MHz #### **PIM System Organization** UPMEM-based PIM system with 20 UPMEM memory modules of 16 chips each (40 ranks) → 2560 DPUs #### More on the UPMEM PIM System #### Experimental Analysis of the UPMEM PIM Engine #### Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland IZZAT EL HAJJ, American University of Beirut, Lebanon IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain CHRISTINA GIANNOULA, ETH Zürich, Switzerland and NTUA, Greece GERALDO F. OLIVEIRA, ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a significant overhead in terms of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this *data movement bottleneck* requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as *processing-in-memory (PIM)*. Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-stacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called *DRAM Processing Units* (*DPUs*), integrated in the same chip. This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present *PrIM* (*Processing-In-Memory benchmarks*), a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra, databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we identify as memory-bound. We evaluate the performance and scaling characteristics of PrIM benchmarks on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM system, programming recommendations for software designers, and suggestions and hints for hardware and architecture designers of future PIM systems. https://arxiv.org/pdf/2105.03814.pdf #### DAMOV Methodology & Workloads #### DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks GERALDO F. OLIVEIRA, ETH Zürich, Switzerland JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland LOIS OROSA, ETH Zürich, Switzerland SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA NANDITA VIJAYKUMAR, University of Toronto, Canada IVAN FERNANDEZ, University of Malaga, Spain & ETH Zürich, Switzerland MOHAMMAD SADROSADATI, Institute for Research in Fundamental Sciences (IPM), Iran & ETH Zürich, Switzerland ONUR MUTLU, ETH Zürich, Switzerland Data movement between the CPU and main memory is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP), where some computation is moved close to memory. Prior NDP works investigate the root causes of data movement bottlenecks using different profiling methodologies and tools. However, there is still a lack of understanding about the key metrics that can identify different data movement bottlenecks and their relation to traditional and emerging data movement mitigation mechanisms. Our goal is to methodically identify potential sources of data movement over a broad set of applications and to comprehensively compare traditional compute-centric data movement mitigation techniques (e.g., caching and prefetching) to more memory-centric techniques (e.g., NDP), thereby developing a rigorous understanding of the best techniques to mitigate each source of data movement. With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main memory. We develop the first systematic methodology to classify applications based on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a particular application. We open-source DAMOV and the complete source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV. SAFARI https://arxiv.org/pdf/2105.03725.pdf #### Detailed Lectures on PIM (I) - Computer Architecture, Fall 2020, Lecture 6 - Computation in Memory (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=oGcZAGwfEUE&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=12 - Computer Architecture, Fall 2020, Lecture 7 - Near-Data Processing (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=j2GIigqn1Qw&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=13 - Computer Architecture, Fall 2020, Lecture 11a - Memory Controllers (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=TeG773OgiMQ&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=20 - Computer Architecture, Fall 2020, Lecture 12d - Real Processing-in-DRAM with UPMEM (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=25 #### Detailed Lectures on PIM (II) - Computer Architecture, Fall 2020, Lecture 15 - Emerging Memory Technologies (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=AlE1rD9G_YU&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=28 - Computer Architecture, Fall 2020, Lecture 16a - Opportunities & Challenges of Emerging Memory Technologies (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=pmLszWGmMGQ&list=PL5Q2soXY2Zi9xidyIgBx Uz7xRPS-wisBN&index=29 - Computer Architecture, Fall 2020, Guest Lecture - In-Memory Computing: Memory Devices & Applications (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=wNmqQHiEZNk&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=41 #### A Tutorial on PIM Onur Mutlu, "Memory-Centric Computing Systems" Invited Tutorial at <u>66th International Electron Devices</u> Meeting (IEDM), Virtual, 12 December 2020. [Slides (pptx) (pdf)] [Executive Summary Slides (pptx) (pdf)] [Tutorial Video (1 hour 51 minutes)] [Executive Summary Video (2 minutes)] [Abstract and Bio] [Related Keynote Paper from VLSI-DAT 2020] [Related Review Paper on Processing in Memory] https://www.youtube.com/watch?v=H3sEaINPBOE 1,641 views • Dec 23, 2020 ♣ SHARE =+ SAVE • ANALYTICS EDIT VIDEO #### PIM Can Enable New Medical Platforms ## Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu Briefings in Bioinformatics, bby017,
https://doi.org/10.1093/bib/bby017 Published: 02 April 2018 Article history ▼ Oxford Nanopore MinION Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome Assembly: Computational Analysis of the Current State, Bottlenecks and Future Directions," Briefings in Bioinformatics, 2018. [Preliminary arxiv.org version] #### Future of Genome Sequencing & Analysis #### Accelerating Genome Analysis: Overview Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, and Onur Mutlu, "Accelerating Genome Analysis: A Primer on an Ongoing Journey" IEEE Micro (IEEE MICRO), Vol. 40, No. 5, pages 65-75, September/October 2020. [Slides (pptx)(pdf)] [Talk Video (1 hour 2 minutes)] ## Accelerating Genome Analysis: A Primer on an Ongoing Journey #### **Mohammed Alser** ETH Zürich #### Zülal Bingöl Bilkent University #### Damla Senol Cali Carnegie Mellon University #### Jeremie Kim ETH Zurich and Carnegie Mellon University #### Saugata Ghose University of Illinois at Urbana–Champaign and Carnegie Mellon University #### Can Alkan Bilkent University #### **Onur Mutlu** ETH Zurich, Carnegie Mellon University, and Bilkent University #### More on Fast Genome Analysis ... Onur Mutlu, "Accelerating Genome Analysis: A Primer on an Ongoing Journey" Invited Lecture at <u>Technion</u>, Virtual, 26 January 2021. [Slides (pptx) (pdf)] [Talk Video (1 hour 37 minutes, including Q&A)] [Related Invited Paper (at IEEE Micro, 2020)] #### Detailed Lectures on Genome Analysis - Computer Architecture, Fall 2020, Lecture 3a - Introduction to Genome Sequence Analysis (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5 - Computer Architecture, Fall 2020, Lecture 8 - Intelligent Genome Analysis (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14 - Computer Architecture, Fall 2020, Lecture 9a - □ **GenASM: Approx. String Matching Accelerator** (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=XoLpzmN Pas&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=15 - Accelerating Genomics Project Course, Fall 2020, Lecture 1 - Accelerating Genomics (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqL gwiDRQDTyId #### Challenge and Opportunity for Future # Fundamentally Low-Latency Computing Architectures ## Truly Reducing Memory Latency #### Tiered-Latency DRAM Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, and Onur Mutlu, "Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture" Proceedings of the <u>19th International Symposium on High-</u> <u>Performance Computer Architecture</u> (**HPCA**), Shenzhen, China, February 2013. <u>Slides (pptx)</u> #### Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture Donghyuk Lee Yoongu Kim Vivek Seshadri Jamie Liu Lavanya Subramanian Onur Mutlu Carnegie Mellon University #### Adaptive-Latency DRAM Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan, Vivek Seshadri, Kevin Chang, and Onur Mutlu, "Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case" Proceedings of the <u>21st International Symposium on High-</u> <u>Performance Computer Architecture</u> (**HPCA**), Bay Area, CA, February 2015. [Slides (pptx) (pdf)] [Full data sets] #### Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case Donghyuk Lee Yoongu Kim Gennady Pekhimenko Samira Khan Vivek Seshadri Kevin Chang Onur Mutlu Carnegie Mellon University 200 #### Analysis of Latency Variation in DRAM Chips Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh, Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and Onur Mutlu, "Understanding Latency Variation in Modern DRAM Chips: **Experimental Characterization, Analysis, and Optimization** Proceedings of the <u>ACM International Conference on Measurement and</u> Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins, France, June 2016. [Slides (pptx) (pdf)] Source Code #### **Understanding Latency Variation in Modern DRAM Chips: Experimental Characterization, Analysis, and Optimization** Kevin K. Chang¹ Abhijith Kashyap¹ Hasan Hassan^{1,2} Saugata Ghose¹ Kevin Hsieh¹ Donghyuk Lee¹ Tianshi Li^{1,3} Gennady Pekhimenko¹ Samira Khan⁴ Onur Mutlu^{5,1} ¹Carnegie Mellon University ²TOBB ETÜ ³Peking University ⁴University of Virginia ⁵ETH Zürich SAFARI #### Design-Induced Latency Variation in DRAM Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose, Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and Onur Mutlu, "Design-Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms" Proceedings of the ACM International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, USA, June 2017. ## Design-Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms Donghyuk Lee, NVIDIA and Carnegie Mellon University Samira Khan, University of Virginia Lavanya Subramanian, Saugata Ghose, Rachata Ausavarungnirun, Carnegie Mellon University Gennady Pekhimenko, Vivek Seshadri, Microsoft Research Onur Mutlu, ETH Zürich and Carnegie Mellon University #### Solar-DRAM: Putting It Together Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu, "Solar-DRAM: Reducing DRAM Access Latency by Exploiting the Variation in Local Bitlines" Proceedings of the 36th IEEE International Conference on Computer Design (ICCD), Orlando, FL, USA, October 2018. [Slides (pptx) (pdf)] [Talk Video (16 minutes)] ## Solar-DRAM: Reducing DRAM Access Latency by Exploiting the Variation in Local Bitlines Jeremie S. Kim^{‡§} Minesh Patel[§] Hasan Hassan[§] Onur Mutlu^{§‡} [‡]Carnegie Mellon University [§]ETH Zürich 203 #### CLR-DRAM: Capacity-Latency Reconfigurability Haocong Luo, Taha Shahroodi, Hasan Hassan, Minesh Patel, A. Giray Yaglikci, Lois Orosa, Jisung Park, and Onur Mutlu, "CLR-DRAM: A Low-Cost DRAM Architecture Enabling **Dynamic Capacity-Latency Trade-Off**" Proceedings of the <u>47th International Symposium on Computer</u> Architecture (ISCA), Valencia, Spain, June 2020. [Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)] [Talk Video (20 minutes)] [Lightning Talk Video (3 minutes)] #### CLR-DRAM: A Low-Cost DRAM Architecture **Enabling Dynamic Capacity-Latency Trade-Off** Taha Shahroodi[§] Hasan Hassan[§] Haocong Luo§† Minesh Patel§ A. Giray Yağlıkçı[§] Lois Orosa[§] Jisung Park[§] Onur Mutlu[§] §ETH Zürich †ShanghaiTech University #### Low-Latency Solid-State Drives (SSDs) Jisung Park, Myungsuk Kim, Myoungjun Chun, Lois Orosa, Jihong Kim, and Onur Mutlu, "Reducing Solid-State Drive Read Latency by Optimizing Read-Retry" Proceedings of the <u>26th International Conference on Architectural Support for Programming Languages and Operating Systems</u> (ASPLOS), Virtual, March-April 2021. [2-page Extended Abstract] [Short Talk Slides (pptx) (pdf)] [Full Talk Slides (pptx) (pdf)] [Short Talk Video (5 mins)] [Full Talk Video (19 mins)] ## Reducing Solid-State Drive Read Latency by Optimizing Read-Retry Jisung Park¹ Myungsuk Kim^{2,3} Myoungjun Chun² Lois Orosa¹ Jihong Kim² Onur Mutlu¹ ¹ETH Zürich Switzerland ²Seoul National University Republic of Korea ³Kyungpook National University Republic of Korea #### Lectures on Low-Latency Memory - Computer Architecture, Fall 2020, Lecture 10 - Low-Latency Memory (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=vQd1YgOH1Mw&list=PL5Q2soXY2Zi9xidyIgBx Uz7xRPS-wisBN&index=19 - Computer Architecture, Fall 2020, Lecture 12b - Capacity-Latency Reconfigurable DRAM (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=DUtPFW3jxq4&list=PL5Q2soXY2Zi9xidyIgBxUz 7xRPS-wisBN&index=23 - Computer Architecture, Fall 2019, Lecture 11a - DRAM Latency PUF (ETH Zürich, Fall 2019) - https://www.youtube.com/watch?v=7gqnrTZpjxE&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=15 - Computer Architecture, Fall 2019, Lecture 11b - DRAM True Random Number Generator (ETH Zürich, Fall 2020) - https://www.youtube.com/watch?v=Y3hPv1I5f8Y&list=PL5Q2soXY2Zi-DyoI3HbqcdtUm9YWRR_z-&index=16 #### A Tutorial on Low-Latency Memory https://www.youtube.com/onurmutlulectures #### We Need to Revisit the Entire Stack We can get there step by step ### Open-Source Artifacts https://github.com/CMU-SAFARI SAFARI #### Some Open Source Tools (I) - Rowhammer Program to Induce RowHammer Errors - https://github.com/CMU-SAFARI/rowhammer - Ramulator Fast and Extensible DRAM Simulator - https://github.com/CMU-SAFARI/ramulator - MemSim Simple Memory Simulator - https://github.com/CMU-SAFARI/memsim - NOCulator Flexible Network-on-Chip Simulator - https://github.com/CMU-SAFARI/NOCulator - SoftMC FPGA-Based DRAM Testing Infrastructure - https://github.com/CMU-SAFARI/SoftMC - Other open-source software from my group - https://github.com/CMU-SAFARI/ - http://www.ece.cmu.edu/~safari/tools.html #### Some Open Source Tools (II) - MQSim A Fast Modern SSD Simulator - https://github.com/CMU-SAFARI/MQSim - Mosaic GPU Simulator Supporting Concurrent Applications - https://github.com/CMU-SAFARI/Mosaic - IMPICA Processing in 3D-Stacked Memory Simulator - https://github.com/CMU-SAFARI/IMPICA - SMLA Detailed 3D-Stacked Memory Simulator - https://github.com/CMU-SAFARI/SMLA - HWASim Simulator for Heterogeneous CPU-HWA Systems - https://github.com/CMU-SAFARI/HWASim - Other open-source software from my group - https://github.com/CMU-SAFARI/ - http://www.ece.cmu.edu/~safari/tools.html #### More Open Source Tools (III) - A lot more open-source software from my group - https://github.com/CMU-SAFARI/ #### ramulator-pim A fast and flexible simulation infrastructure for exploring general-purpose processing-in-memory (PIM) architectures. Ramulator-PIM combines a widely-used simulator for out-of-order and in-order processors (ZSim) with Ramulator, a DRAM simulator with memory models for DDRx, LPDDRx, GDDRx,
WIOx, HBMx, and HMCx. Ramulator is described in the IEEE ... ● C++ ♀ 11 ☆ 29 ① 6 ┆ 0 Updated 19 days ago #### **SMASH** SMASH is a hardware-software cooperative mechanism that enables highly-efficient indexing and storage of sparse matrices. The key idea of SMASH is to compress sparse matrices with a hierarchical bitmap compression format that can be accelerated from hardware. Described by Kanellopoulos et al. (MICRO '19) https://people.inf.ethz.ch/omutlu/pub/SMA... ●C ♀1 ☆6 ①0 ♯ 0 Updated on May 17 #### **MQSim** MQSim is a fast and accurate simulator modeling the performance of modern multi-queue (MQ) SSDs as well as traditional SATA based SSDs. MQSim faithfully models new high-bandwidth protocol implementations, steady-state SSD conditions, and the full end-to-end latency of requests in modern SSDs. It is described in detail in the FAST 2018 paper by A... ●C++ គ្ MIT ೪ 54 ☆62 ①10 រឿ 1 Updated on May 15 #### Apollo Apollo is an assembly polishing algorithm that attempts to correct the errors in an assembly. It can take multiple set of reads in a single run and polish the assemblies of genomes of any size. Described in the Bioinformatics journal paper (2020) by Firtina et al. at https://people.inf.ethz.ch/omutlu/pub/apollotechnology-independent-genome-asse... #### ramulator A Fast and Extensible DRAM Simulator, with built-in support for modeling many different DRAM technologies including DDRx, LPDDRx, GDDRx, WIOx, HBMx, and various academic proposals. Described in the IEEE CAL 2015 paper by Kim et al. at http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf ●C++ № MIT ೪ 93 ☆ 170 ① 37 % 2 Updated on Apr 13 #### Shifted-Hamming-Distance Source code for the Shifted Hamming Distance (SHD) filtering mechanism for sequence alignment. Described in the Bioinformatics journal paper (2015) by Xin et al. at http://users.ece.cmu.edu/~omutlu/pub/shiftedhamming-distance_bioinformatics15_proofs.pdf #### **SneakySnake** The first and the only pre-alignment filtering algorithm that works on all modern high-performance computing architectures. It works efficiently and fast on CPU, FPGA, and GPU architectures and that greatly (by more than two orders of magnitude) expedites sequence alignment calculation. Described by Alser et al. (preliminary version at https://a... ● VHDL 4 GPL-3.0 ♀ 3 ☆ 11 ① 0 ; 0 Updated on Mar 10 #### AirLift AirLift is a tool that updates mapped reads from one reference genome to another. Unlike existing tools, It accounts for regions not shared between the two reference genomes and enables remapping across all parts of the references. Described by Kim et al. (preliminary version at http://arxiv.org/abs/1912.08735) ●C ម្0 ☆3 ①0 រុេ្ 0 Updated on Feb 19 #### **GPGPUSim-Ramulator** The source code for GPGPUSim+Ramulator simulator. In this version, GPGPUSim uses Ramulator to simulate the DRAM. This simulator is used to produce some of the ## End of Slides on More Detailed Research Overview