Memory-Centric Computing

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
17 August 2023
Hunan University
The Problem

Computing is bottlenecked by Data
Data is Key for AI, ML, Genomics, ...

- Important workloads are all data intensive

- They require rapid and efficient processing of large amounts of data

- Data is increasing
 - We can generate more than we can process
 - We need to perform more sophisticated analyses on more data
Huge Demand for Performance & Efficiency

Exponential Growth of Neural Networks

1800x more compute
In just 2 years

Tomorrow, multi-trillion parameter models

Source: https://youtu.be/Bh13Idwcb0Q?t=283
Data is Key for Future Workloads

In-memory Databases
[Mao+, EuroSys’12; Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15; Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]
Data Overwhelms Modern Machines

In-memory Databases

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15; Awan+, BDCloud’15]

Graph/Tree Processing

Datacenter Workloads
[Kanev+ (Google), ISCA’15]
Data is Key for Future Workloads

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning framework

VP9
Google’s video codec

Video Playback
Google’s video codec

Video Capture
Google’s video codec
Data Overwhelms Modern Machines

Chrome

TensorFlow Mobile

Data → performance & energy bottleneck

VP9

Video Playback

Google’s video codec

VP9

Video Capture

Google’s video codec
Data is Key for Future Workloads

Development of high-throughput sequencing (HTS) technologies

Number of Genomes Sequenced

Genome Analysis

1 Sequencing

Data → performance & energy bottleneck

2 Read Mapping

Variant Calling

3

Scientific Discovery

4
We Need Faster & Scalable Genome Analysis

Understanding **genetic variations**, species, evolution, ...

Predicting the presence and relative abundance of **microbes** in a sample

Rapid surveillance of **disease outbreaks**

Developing **personalized medicine**

SAFARI

And, many, many other applications ...
New Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions

Damla Senol Cali+, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017

Published: 02 April 2018 **Article history ▼**

Nanopore sequencing technology and tools for genome assembly: computational analysis of the current state, bottlenecks and future directions

Damla Senol Cali, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017

Published: 02 April 2018
Article history ▼

Data → performance & energy bottleneck
Problems with (Genome) Analysis Today

Special-Purpose Machine for Data Generation

General-Purpose Machine for Data Analysis

FAST

SLOW

Slow and inefficient processing capability
Large amounts of data movement

SAFARI This picture is similar for many “data generators & analyzers” today
Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, and Onur Mutlu,
"Accelerating Genome Analysis: A Primer on an Ongoing Journey"
[Slides (pptx)(pdf)]
[Talk Video (1 hour 2 minutes)]
Beginner Reading on Genome Analysis

Mohammed Alser, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, Gagandeep Singh, Juan Gomez-Luna, Onur Mutlu

“From Molecules to Genomic Variations to Scientific Discovery: Intelligent Algorithms and Architectures for Intelligent Genome Analysis”
Computational and Structural Biotechnology Journal, 2022

[Source code]

Review

From molecules to genomic variations: Accelerating genome analysis via intelligent algorithms and architectures

Mohammed Alser *, Joel Lindegger, Can Firtina, Nour Almadhoun, Haiyu Mao, Gagandeep Singh, Juan Gomez-Luna, Onur Mutlu *

ETH Zurich, Gloriastrasse 35, 8092 Zürich, Switzerland

FPGA-based Near-Memory Analytics

FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications

Gagandeep Singh\(^{\diamondsuit}\) Mohammed Alser\(^{\diamondsuit}\) Damla Senol Cali\(^{\&}\) Dionysios Diamantopoulos\(^{\downarrow}\) Juan Gómez-Luna\(^{\diamondsuit}\) Henk Corporaal* Onur Mutlu\(^{\diamondsuit \&}\)

\(^{\diamondsuit}\)ETH Zürich \(^{\&}\)Carnegie Mellon University

*Eindhoven University of Technology \(^{\downarrow}\)IBM Research Europe
Near-Memory Acceleration using FPGAs

IBM POWER9 CPU

HBM-based FPGA board

Near-HBM FPGA-based accelerator

Two communication technologies: CAPI2 and OCAPI
Two memory technologies: DDR4 and HBM
Two workloads: Weather Modeling and Genome Analysis
Performance & Energy Greatly Improve

5-27× performance vs. a 16-core (64-thread) IBM POWER9 CPU

12-133× energy efficiency vs. a 16-core (64-thread) IBM POWER9 CPU

HBM alleviates memory bandwidth contention vs. DDR4
GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,

"GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis"

[Lighting Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]
Scrooge: Overcoming GenASM Limitations

- Joël Lindegger, Damla Senol Cali, Mohammed Alser, Juan Gómez-Luna, Nika Mansouri Ghiasi, and Onur Mutlu,

"Scrooge: A Fast and Memory-Frugal Genomic Sequence Aligner for CPUs, GPUs, and ASICs"

[Online link at Bioinformatics Journal]
[arXiv preprint]
[Scrooge Source Code]

Scrooge: A Fast and Memory-Frugal Genomic Sequence Aligner for CPUs, GPUs, and ASICs

Joël Lindegger\S
Juan Gómez-Luna\S
Damla Senol Cali\d
Nika Mansouri Ghiasi\S
Mohammed Alser\S
Onur Mutlu\S

\SETH Zürich
\dBionano Genomics

In-Storage Genome Filtering [ASPLOS 2022]

- Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,

"GenStore: A High-Performance and Energy-Efficient In-Storage Computing System for Genome Sequence Analysis"

[Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]
[Talk Video (17 minutes)]

GenStore: A High-Performance In-Storage Processing System for Genome Sequence Analysis

Nika Mansouri Ghiasi1 Jisung Park1 Harun Mustafa1 Jeremie Kim1 Ataberk Olgun1 Arvid Gollwitzer1 Damla Senol Cali2 Can Firtina1 Haiyu Mao1 Nour Almadhoun Alserr1 Rachata Ausavarungnirun3 Nandita Vijaykumar4 Mohammed Alser1 Onur Mutlu1

1ETH Zürich 2Bionano Genomics 3KMUTNB 4University of Toronto
Accelerating Sequence-to-Graph Mapping

- Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika Mansouri Ghiasi, Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,

"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping"

[arXiv version]

SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali\(^1\) Konstantinos Kanellopoulos\(^2\) Joël Lindegger\(^2\) Züalal Bingöl\(^3\)
Gurpreet S. Kalsi\(^4\) Ziyi Zuo\(^5\) Can Firtina\(^2\) Meryem Banu Cavlak\(^2\) Jeremie Kim\(^2\)
Nika Mansouri Ghiasi\(^2\) Gagandeep Singh\(^2\) Juan Gómez-Luna\(^2\) Nour Almadhoun Alserr\(^2\)
Mohammed Alser\(^2\) Sreenivas Subramoney\(^4\) Can Alkan\(^3\) Saugata Ghose\(^6\) Onur Mutlu\(^2\)

\(^1\)Bionano Genomics \(^2\)ETH Zürich \(^3\)Bilkent University \(^4\)Intel Labs
\(^5\)Carnegie Mellon University \(^6\)University of Illinois Urbana-Champaign

Accelerating Basecalling + Read Mapping

- Haiyu Mao, Mohammed Alser, Mohammad Sadrosadati, Can Firtina, Akanksha Baranwal, Damla Senol Cali, Aditya Manglik, Nour Almadhoun Alser, and Onur Mutlu, "GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of Basecalling and Read Mapping" Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, October 2022.
- [Slides (pptx) (pdf)]
- [Longer Lecture Slides (pptx) (pdf)]
- [Lecture Video (25 minutes)]
- [arXiv version]

GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of Basecalling and Read Mapping

Haiyu Mao¹ Mohammed Alser¹ Mohammad Sadrosadati¹ Can Firtina¹ Akanksha Baranwal¹
Damla Senol Cali² Aditya Manglik¹ Nour Almadhoun Alser¹ Onur Mutlu¹

¹ETH Zürich ²Bionano Genomics

A Framework for Designing Efficient Deep Learning-Based Genomic Basecallers

Gagandeep Singha Mohammed Alser*a Alireza Khodamoradi*b \\
Kristof Denolfb Can Firtinaa Meryem Banu Cavlaka \\
Henk Corporaalc Onur Mutlua \\
aETH Zürich \quad bAMD \quad cEindhoven University of Technology

Nanopore sequencing is a widely-used high-throughput genome sequencing technology that can sequence long fragments of a genome. Nanopore sequencing generates noisy electrical signals that need to be converted into a standard string of DNA nucleotide bases (i.e., A, C, G, T) using a computational step called \textit{basecalling}. The accuracy and speed of basecalling have critical implications for every subsequent step in genome analysis. Currently, basecallers are developed mainly based on deep learning techniques to provide high sequencing accuracy without considering the compute demands of such tools. We observe that state-of-the-art basecallers (i.e., Guppy, Bonito, Fast-Bonito) are slow, inefficient, and memory-hungry.

SAFARI \hspace{.5cm} https://arxiv.org/pdf/2211.03079.pdf
Future of Genome Sequencing & Analysis

Mohammed Alser, Zülal Bingöl, Damla Senol Cali, Jeremie Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Accelerating Genome Analysis: A Primer on an Ongoing Journey
DOI Bookmark: 10.1109/MM.2020.3013728

FPGA-Based Near-Memory Acceleration of Modern Data-Intensive Applications
DOI Bookmark: 10.1109/MM.2021.3088396

MinION from ONT
More on Fast & Efficient Genome Analysis …

- Onur Mutlu,

 "Accelerating Genome Analysis: A Primer on an Ongoing Journey"

 Invited Lecture at Technion, Virtual, 26 January 2021.

 [Slides (pptx) (pdf)]
 [Talk Video (1 hour 37 minutes, including Q&A)]
 [Related Invited Paper (at IEEE Micro, 2020)]

https://www.youtube.com/watch?v=r7sn41Ih-4A
More on Fast & Efficient Genome Analysis …

Accelerating Genome Analysis

A Primer on an Ongoing Journey

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
5 April 2022
SPMA Workshop Keynote @ EuroSys

https://www.youtube.com/watch?v=NCagwf0ivT0
Detailed Lectures on Genome Analysis

- Computer Architecture, Fall 2020, Lecture 3a
 - **Introduction to Genome Sequence Analysis** (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=CrRb32v7SJc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=5

- Computer Architecture, Fall 2020, Lecture 8
 - **Intelligent Genome Analysis** (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=ygmQpdDTL7o&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=14

- Computer Architecture, Fall 2020, Lecture 9a
 - **GenASM: Approx. String Matching Accelerator** (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=XoLpzmN-Pas&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN&index=15

- Accelerating Genomics Project Course, Fall 2020, Lecture 1
 - **Accelerating Genomics** (ETH Zürich, Fall 2020)
 - https://www.youtube.com/watch?v=rgjl8ZyLsAg&list=PL5Q2soXY2Zi9E2bBVAgCqLgwiDRQDTyId
Genomics Course (Fall 2022)

- **Fall 2022 Edition:**
 - https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=bioinformatics

- **Spring 2022 Edition:**
 - https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics

- **Youtube Livestream (Fall 2022):**
 - https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tF1QvdxOdizD_EhVAMVQV

- **Youtube Livestream (Spring 2022):**
 - https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrpDqOR1yRU_Cxxjw-u18

- **Project course**
 - Taken by Bachelor’s/Master’s students
 - Genomics lectures
 - Hands-on research exploration
 - Many research readings

https://www.youtube.com/onurmutlulectures
BIO-Arch Workshop at RECOMB 2023

- April 14, 2023

BIO-Arch: Workshop on Hardware Acceleration of Bioinformatics Workloads

About

BIO-Arch is a new forum for presenting and discussing new ideas in accelerating bioinformatics workloads with the co-design of hardware & software and the use of new computer architectures. Our goal is to discuss new system designs tailored for bioinformatics. BIO-Arch aims to bring together researchers in the bioinformatics, computational biology, and computer architecture communities to strengthen the progress in accelerating bioinformatics analysis (e.g., genome analysis) with efficient system designs that include hardware acceleration and software systems tailored for new hardware technologies.

Venue

BIO-Arch will be held in The Social Facilities of Istanbul Technical University on April 14. Detailed information about how to arrive at the venue location with various transportation options can be found on the RECOMB website.

Our panel discussion will be held in conjunction with the main RECOMB conference. The panel discussion will be held in Marriott Şişli on April 17 at 17:00. You can find

https://www.youtube.com/watch?v=2rCsb4-nLmg

https://safari.ethz.ch/recomb23-arch-workshop/
Data Overwhelms Modern Machines …

- Storage/memory capability
- Communication capability
- Computation capability

- Greatly impacts robustness, energy, performance, cost
A Computing System

- Three key components
 - Computation
 - Communication
 - Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the logical design of an electronic computing instrument,” 1946.

Perils of Processor-Centric Design

Most of the system is dedicated to storing and moving data

Yet, system is still bottlenecked by memory & storage
Deeper and Larger Memory Hierarchies

AMD Ryzen 5000, 2020

Core Count:
8 cores/16 threads

L1 Caches:
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared

AMD increases the L3 size of their 8-core Zen 3 processors from 32 MB to 96 MB

Additional 64 MB L3 cache die stacked on top of the processor die
- Connected using Through Silicon Vias (TSVs)
- Total of 96 MB L3 cache

structural silicon
64MB L3 cache die
Direct copper-to-copper bond
Through Silicon Vias (TSVs) for silicon-to-silicon communication
Up to 8-core “Zen 3” CCD
Deeper and Larger Memory Hierarchies

IBM POWER10, 2020

Cores:
15-16 cores, 8 threads/core

L2 Caches:
2 MB per core

L3 Cache:
120 MB shared

Deeper and Larger Memory Hierarchies

Apple M1 Ultra System (2022)

https://www.gsmarena.com/apple_announces_m1_ultra_with_20core_cpu_and_64core_gpu-news-53481.php
Data Overwhelms Modern Machines

Chrome

TensorFlow Mobile

Data → performance & energy bottleneck

VP9

Video Playback
Google’s video codec

VP9

Video Capture
Google’s video codec
Data Movement Overwhelms Modern Machines

62.7% of the total system energy is spent on data movement

Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks

Amirali Boroumand¹
Rachata Ausavarungnirun¹
Aki Kuusela³
Allan Knies³

Saugata Ghose¹
Eric Shiu³
Parthasarathy Ranganathan³

Youngsok Kim²
Rahul Thakur³

Daehyun Kim⁴,³
Onur Mutlu⁵,¹

SAFARI
Data Movement Overwhelms Accelerators

- Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,

"Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks"

Proceedings of the 30th International Conference on Parallel Architectures and Compilation Techniques (PACT), Virtual, September 2021.

[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]

> 90% of the total system energy is spent on memory in large ML models
An Intelligent Architecture
Handles Data Well
How to Handle Data Well

- **Ensure data does not overwhelm the components**
 - via intelligent algorithms, architectures & system designs: algorithm-architecture-devices

- **Take advantage of vast amounts of data and metadata**
 - to improve architectural & system-level decisions

- **Understand and exploit properties of (different) data**
 - to improve algorithms & architectures in various metrics
Corollaries: Computing Systems Today …

- Are processor-centric vs. data-centric

- Make designer-dictated decisions vs. data-driven

- Make component-based myopic decisions vs. data-aware
Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
We Need to Revisit the Entire Stack

We can get there step by step
A Blueprint for Fundamentally Better Architectures

Onur Mutlu,
"Intelligent Architectures for Intelligent Computing Systems"
[Slides (pptx) (pdf)]
[IEDM Tutorial Slides (pptx) (pdf)]
[Short DATE Talk Video (11 minutes)]
[Longer IEDM Tutorial Video (1 hr 51 minutes)]

Intelligent Architectures for Intelligent Computing Systems

Onur Mutlu
ETH Zurich
omutlu@gmail.com
Data-Centric (Memory-Centric) Architectures
Data-Centric Architectures: Properties

- **Process data where it resides** *(where it makes sense)*
 - Processing in and near memory & sensor structures

- Low-latency & low-energy data access

- Low-cost data storage & processing
 - High capacity memory at low cost: hybrid memory, compression

- Intelligent data management
 - Intelligent controllers handling robustness, security, cost, perf.
Processing Data
Where It Makes Sense
Process Data Where It Makes Sense

Apple M1 Ultra System (2022)

https://www.gsmarena.com/apple_announces_m1_ultra_with_20core_cpu_and_64core_gpu-news-53481.php
Processing in/near Memory: An Old Idea

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-18, NO. 8, AUGUST 1969

Cellular Logic-in-Memory Arrays

WILLIAM H. KAUTF, MEMBER, IEEE

Abstract—As a direct consequence of large-scale integration, many advantages in the design, fabrication, testing, and use of digital circuitry can be achieved if the circuits can be arranged in a two-dimensional iterative, or cellular, array of identical elementary networks, or cells. When a small amount of storage is included in each cell, the same array may be regarded either as a logically enhanced memory array, or as a logic array whose elementary gates and connections can be “programmed” to realize a desired logical behavior.

In this paper the specific engineering features of such cellular logic-in-memory (CLIM) arrays are discussed, and one such special-purpose array, a cellular sorting array, is described in detail to illustrate how these features may be achieved in a particular design. It is shown how the cellular sorting array can be employed as a single-address, multiword memory that keeps in order all words stored within it. It can also be used as a content-addressed memory, a pushdown memory, a buffer memory, and (with a lower logical efficiency) a programmable array for the realization of arbitrary switching functions. A second version of a sorting array, operating on a different sorting principle, is also described.

Index Terms—Cellular logic, large-scale integration, logic arrays logic in memory, push-down memory, sorting, switching functions.

Fig. 1. Cellular sorting array I.

https://doi.org/10.1109/T-C.1969.222754

A Logic-in-Memory Computer

HAROLD S. STONE

Abstract—If, as presently projected, the cost of microelectronic arrays in the future will tend to reflect the number of pins on the array rather than the number of gates, the logic-in-memory array is an extremely attractive computer component. Such an array is essentially a microelectronic memory with some combinational logic associated with each storage element.
Why In-Memory Computation Today?

- **Huge problems with Memory Technology**
 - Memory technology scaling is not going well (e.g., RowHammer)
 - Many scaling issues demand intelligence in memory

- **Huge demand from Applications & Systems**
 - Data access bottleneck
 - Energy & power bottlenecks
 - Data movement energy dominates computation energy
 - Need all at the same time: performance, energy, sustainability
 - We can improve all metrics by minimizing data movement

- **Designs are squeezed in the middle**
Processing-in-Memory Landscape Today

And, many other experimental chips and startups
Memory Scaling Issues Are Real

- Onur Mutlu,
 "Memory Scaling: A Systems Architecture Perspective"
Proceedings of the 5th International Memory Workshop (IMW), Monterey, CA, May 2013. Slides (pptx) (pdf)
EETimes Reprint

Memory Scaling: A Systems Architecture Perspective

Onur Mutlu
Carnegie Mellon University
onur@cmu.edu
http://users.ece.cmu.edu/~omutlu/

One can predictably induce errors in most DRAM memory chips.
Repeatedly reading a row enough times (before memory gets refreshed) induces disturbance errors in adjacent rows in most real DRAM chips you can buy today.

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors, (Kim et al., ISCA 2014)
Most DRAM Modules Are Vulnerable

A company

86% (37/43)

Up to 1.0×10^7 errors

B company

83% (45/54)

Up to 2.7×10^6 errors

C company

88% (28/32)

Up to 3.3×10^5 errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors, (Kim et al., ISCA 2014)
The RowHammer Vulnerability

A simple hardware failure mechanism can create a widespread system security vulnerability.
RowHammer [ISCA 2014]

- Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data] [Lecture Video (1 hr 49 mins), 25 September 2020]

One of the 7 papers of 2012-2017 selected as Top Picks in Hardware and Embedded Security for IEEE TCAD (link).

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Yoongu Kim¹ Ross Daly* Jeremie Kim¹ Chris Fallin* Ji Hye Lee¹ Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹
¹Carnegie Mellon University ²Intel Labs
Memory Scaling Issues Are Real

- Onur Mutlu and Jeremie Kim, "RowHammer: A Retrospective"
 [Preliminary arXiv version]
 [Slides from COSADE 2019 (pptx)]
 [Slides from VLSI-SOC 2020 (pptx) (pdf)]
 [Talk Video (1 hr 15 minutes, with Q&A)]

RowHammer: A Retrospective

Onur Mutlu§‡ Jeremie S. Kim‡§
§ETH Zürich ‡Carnegie Mellon University
Memory Scaling Issues Are Real

 [arXiv version]
 [Slides (pptx) (pdf)]
 [Talk Video (26 minutes)]

Fundamentally Understanding and Solving RowHammer

Onur Mutlu
onur.mutlu@safari.ethz.ch
ETH Zürich
Zürich, Switzerland

Ataberk Olgun
ataberk.olgun@safari.ethz.ch
ETH Zürich
Zürich, Switzerland

A. Giray Yağlıkçı
giray.yaglikci@safari.ethz.ch
ETH Zürich
Zürich, Switzerland

Latest RowHammer Lecture

Collapse of the “Galloping Gertie” (1940)

Source: AP
http://www.wsdot.wa.gov/tnhistory/connections/connections3.htm

Seminar in Computer Architecture - Lecture 4: RowHammer (Spring 2023)

408 views 2 months ago Livestream - Seminar in Computer Architecture - ETH Zürich (Spring 2023)
Seminar in Computer Architecture, ETH Zürich, Spring 2023 (https://safari.ethz.ch/architecture_s...)

https://www.youtube.com/watch?v=e6G_Vbrqr_c
The Story of RowHammer Tutorial …

Onur Mutlu,
"Security Aspects of DRAM: The Story of RowHammer"
[Slides (pptx)(pdf)]
[Tutorial Video (57 minutes)]

Security Aspects of DRAM
The Story of RowHammer

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
15 May 2022
IMW Tutorial

https://www.youtube.com/watch?v=37hWglkQRG0
10 Years of RowHammer in 20 Minutes

- Onur Mutlu, "The Story of RowHammer"
 Invited Talk at the Workshop on Robust and Safe Software 2.0 (RSS2), held with the 27th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Virtual, 28 February 2022.
 [Slides (pptx) (pdf)]

https://www.youtube.com/watch?v=ctKTRyi96Bk
The Push from Circuits and Devices

Main Memory Needs

Intelligent Controllers
Industry’s Intelligent DRAM Controllers (I)

ISSCC 2023 / SESSION 28 / HIGH-DENSITY MEMORIES

28.8 A 1.1V 16Gb DDR5 DRAM with Probabilistic-Aggressor Tracking, Refresh-Management Functionality, Per-Row Hammer Tracking, a Multi-Step Precharge, and Core-Bias Modulation for Security and Reliability Enhancement

Woongrae Kim, Chulmoon Jung, Seongnyuh Yoo, Duckhwa Hong, Jeongjin Hwang, Jungmin Yoon, Ohyong Jung, Joonwoo Choi, Sanga Hyun, Mankeun Kang, Sangho Lee, Dohong Kim, Sanghyun Ku, Donhyun Choi, Nogeun Joo, Sangwoo Yoon, Junseok Noh, Byeongyong Go, Cheolhoe Kim, Sunil Hwang, Mihyun Hwang, Seol-Min Yi, Hyungmin Kim, Sanghyuk Heo, Yeonsu Jang, Kyoungchul Jang, Shinho Chu, Yoonna Oh, Kwidong Kim, Junghyun Kim, Soohwan Kim, Jeongtae Hwang, Sangil Park, Junphyo Lee, Inchul Jeong, Joohwan Cho, Jonghwan Kim

SK hynix Semiconductor, Icheon, Korea
Industry’s Intelligent DRAM Controllers (II)

SK hynix Semiconductor, Icheon, Korea

DRAM products have been recently adopted in a wide range of high-performance computing applications: such as in cloud computing, in big data systems, and IoT devices. This demand creates larger memory capacity requirements, thereby requiring aggressive DRAM technology node scaling to reduce the cost per bit [1,2]. However, DRAM manufacturers are facing technology scaling challenges due to row hammer and refresh retention time beyond 1a-nm [2]. Row hammer is a failure mechanism, where repeatedly activating a DRAM row disturbs data in adjacent rows. Scaling down severely threatens reliability since a reduction of DRAM cell size leads to a reduction in the intrinsic row hammer tolerance [2,3]. To improve row hammer tolerance, there is a need to probabilistically activate adjacent rows with carefully sampled active addresses and to improve intrinsic row hammer tolerance [2]. In this paper, row-hammer-protection and refresh-management schemes are presented to guarantee DRAM security and reliability despite the aggressive scaling from 1a-nm to sub 10-nm nodes. The probabilistic-aggressor-tracking scheme with a refresh-management function (RFM) and per-row hammer tracking (PRHT) improve DRAM resilience. A multi-step precharge reinforces intrinsic row-hammer tolerance and a core-bias modulation improves retention time: even in the face of cell-transistor degradation due to technology scaling. This comprehensive scheme leads to a reduced probability of failure, due to row hammer attacks, by 93.1% and an improvement in retention time by 17%.
DSAC: Low-Cost Rowhammer Mitigation Using In-DRAM Stochastic and Approximate Counting Algorithm

Seungki Hong Dongha Kim Jaehyung Lee Reum Oh
Changsik Yoo Sangjoon Hwang Jooyoung Lee

DRAM Design Team, Memory Division, Samsung Electronics

Are We Now BitFlip Free?

- Appears at ISCA 2023

RowPress: Amplifying Read-Disturbance in Modern DRAM Chips

Haocong Luo Ataberk Olgun A. Giray Yağlıkçı Yahya Can Tuğrul Steve Rhyner Meryem Banu Cavlak Joël Lindegger Mohammad Sadrosadati Onur Mutlu

ETH Zürich
RowPress [ISCA 2023]

- Haocong Luo, Ataberk Olgun, Giray Yaglıkçı, Yahya Can Tuğrul, Steve Rhyner, M. Banu Cavlak, Joel Lindegger, Mohammad Sadrosadati, and Onur Mutlu,

"RowPress: Amplifying Read Disturbance in Modern DRAM Chips"

[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (3 minutes)]
[RowPress Source Code and Datasets (Officially Artifact Evaluated with All Badges)]

Officially artifact evaluated as available, reusable and reproducible.
Best artifact award at ISCA 2023.

RowPress: Amplifying Read-Disturbance in Modern DRAM Chips

Haocong Luo Ataberk Olgun A. Giray Yağlıkçı Yahya Can Tuğrul Steve Rhyner
Meryem Banu Cavlak Joël Lindegger Mohammad Sadrosadati Onur Mutlu

ETH Zürich
Emerging Memories Also Need Intelligent Controllers

- Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,
 "Architecting Phase Change Memory as a Scalable DRAM Alternative"
 Proceedings of the 36th International Symposium on Computer
 Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides (pdf)
 One of the 13 computer architecture papers of 2009 selected as Top
 Picks by IEEE Micro. Selected as a CACM Research Highlight.
 2022 Persistent Impact Prize.

Architecting Phase Change Memory as a Scalable DRAM Alternative

Benjamin C. Lee† Engin Ipek† Onur Mutlu‡ Doug Burger‡

†Computer Architecture Group
Microsoft Research
Redmond, WA
{blee, ipek, dburger}@microsoft.com

‡Computer Architecture Laboratory
Carnegie Mellon University
Pittsburgh, PA
onur@cmu.edu
The Takeaway

Intelligent Memory Controllers Can Avoid Many Failures & Enable Better Scaling
Three Key Systems & Application Trends

1. **Data access** is the major bottleneck
 - Applications are increasingly data hungry

2. **Energy** consumption is a key limiter

3. **Data movement energy** dominates compute
 - Especially true for off-chip to on-chip movement
Do We Want This?

Source: V. Milutinovic
Or This?

Source: V. Milutinovic
Challenge and Opportunity for Future

High Performance, Energy Efficient, Sustainable (All at the Same Time)
The Problem

Data access is the major performance and energy bottleneck

Our current design principles cause great energy waste (and great performance loss)
The Problem

Processing of data is performed far away from the data
Today’s Computing Systems

- Processor centric

- All data processed in the processor → at great system cost
It’s the Memory, Stupid!

“It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Richard Sites

It’s the Memory, Stupid!
When we started the Alpha architecture design in 1988, we estimated a 25-year lifetime and a relatively modest 32% per year compounded performance improvement of implementations over that lifetime (1,000× total). We guestimated about 10× would come from CPU clock improvement, 10× from multiple instruction issue, and 10× from multiple processors.

5, 1996 Microprocessor Report

I expect that over the coming decade memory subsystem design will be the only important design issue for microprocessors.

The Performance Perspective

The Performance Perspective

- Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
 "Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors"

One of the 15 computer arch. papers of 2003 selected as Top Picks by IEEE Micro. HPCA Test of Time Award (awarded in 2021).

Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark † Chris Wilkerson ‡ Yale N. Patt §

§ECE Department
The University of Texas at Austin
{onur,patt}@ece.utexas.edu

†Microprocessor Research
Intel Labs
jared.w.stark@intel.com

‡Desktop Platforms Group
Intel Corporation
chris.wilkerson@intel.com
The Performance Perspective (Today)

- All of Google’s Data Center Workloads (2015):

A memory access consumes \(~100-1000\)X the energy of a complex addition.
Data Movement vs. Computation Energy

Energy for a 32-bit Operation (log scale)

Energy (pJ) ADD (int) Relative Cost

ADD (int) ADD (float) Register File MULT (int) MULT (float) SRAM Cache DRAM

0.1 0.9 1 3.1 3.7 5 640

Data Movement vs. Computation Energy

A memory access consumes 6400X the energy of a simple integer addition.
Energy Waste in Mobile Devices

62.7% of the total system energy is spent on data movement

Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks

Amirali Boroumand¹
Rachata Ausavarungnirun¹
Aki Kuusela³
Allan Knies³

Saugata Ghose¹
Eric Shiu³

Youngsok Kim²
Rahul Thakur³
Parthasarathy Ranganathan³
Daehyun Kim⁴,³
Onur Mutlu⁵,¹

SAFARI
Energy Waste in Accelerators

- Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,
 "Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks"
 Proceedings of the 30th International Conference on Parallel Architectures and Compilation Techniques (PACT), Virtual, September 2021.
 [Slides (pptx) (pdf)]
 [Talk Video (14 minutes)]

> 90% of the total system energy is spent on memory in large ML models
A memory access consumes ~100-$1000\times$ the energy of a complex addition.
We Do Not Want to Move Data!

A memory access consumes \(\sim 100-1000\times \) the energy of a complex addition
We Need A Paradigm Shift To …

- Enable computation with minimal data movement

- Compute where it makes sense (where data resides)

- Make computing architectures more data-centric
Goal: Processing Inside Memory/Storage

- Many questions ... How do we design the:
 - compute-capable memory & controllers?
 - processors & communication units?
 - software & hardware interfaces?
 - system software, compilers, languages?
 - algorithms & theoretical foundations?
PIM Review and Open Problems

A Modern Primer on Processing in Memory

Onur Mutlua,b, Saugata Ghoseb,c, Juan Gómez-Lunaa, Rachata Ausavarungnirund

SAFARI Research Group

aETH Zürich
bCarnegie Mellon University
cUniversity of Illinois at Urbana-Champaign
dKing Mongkut’s University of Technology North Bangkok

PIM Course (Fall 2022)

- **Fall 2022 Edition:**
 - https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=processing_in_memory

- **Spring 2022 Edition:**
 - https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory

- **Youtube Livestream (Fall 2022):**
 - https://www.youtube.com/watch?v=QLL0wQ9I4Dw&list=PL5Q2soXY2Zi8KzG2CQYRNQOVD0GOBrnKy

- **Youtube Livestream (Spring 2022):**
 - https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYUK9EsXKhQKRPyX

- Project course
 - Taken by Bachelor’s/Master’s students
 - Processing-in-Memory lectures
 - Hands-on research exploration
 - Many research readings

https://www.youtube.com/onurmutlulectures
Processing-in-Memory Course (Spring 2023)

- Short weekly lectures
- Hands-on projects

https://www.youtube.com/playlist?list=PL5Q2soXY2Zi_EObuoAZVSq_o6UySWQHvZ

https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=processing_in_memory
SSD Course (Spring 2023)

- **Spring 2023 Edition:**

- **Fall 2022 Edition:**

- **Youtube Livestream (Spring 2023):**
 - https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB

- **Youtube Livestream (Fall 2022):**
 - https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4J15bwhAMpAp13&p=p=iAQB

- **Project course**
 - Taken by Bachelor’s/Master’s students
 - SSD Basics and Advanced Topics
 - Hands-on research exploration
 - Many research readings

https://www.youtube.com/onurmutlulectures
Genomics Course (Fall 2022)

- **Fall 2022 Edition:**
 - https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=bioinformatics

- **Spring 2022 Edition:**
 - https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics

- **Youtube Livestream (Fall 2022):**
 - https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tFlQvdx0dizD_EhVAMVQV

- **Youtube Livestream (Spring 2022):**
 - https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDgOR1yRU_Cxxjw-u18

- **Project course**
 - Taken by Bachelor’s/Master’s students
 - Genomics lectures
 - Hands-on research exploration
 - Many research readings

https://www.youtube.com/onurmutlulectures
Real PIM Tutorials [ISCA’23, ASPLOS’23, HPCA’23]

- June, March, Feb: Lectures + Hands-on labs + Invited talks

Real-world Processing-in-Memory Systems for Modern Workloads

Tutorial Description

Processing-in-Memory (PIM) is a computing paradigm that aims at overcoming the data movement bottleneck (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement between memory units and compute units) by making memory compute-capable.

Explored over several decades since the 1960s, PIM systems are becoming a reality with the advent of the first commercial products and prototypes.

A number of startups (e.g., UPMEM, Neuroblade) are already commercializing real PIM hardware, each with its own design approach and target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two years. Most of these architectures have in common that they place compute units near the memory arrays. This type of PIM is called processing near memory (PNM).

2,560-DPU Processing-in-Memory System

PIM can provide large improvements in both performance and energy consumption for many modern applications, thereby enabling a commercially viable way of dealing with huge amounts of data that is bottlenecking our computing systems. Yet, it is critical to (1) study and understand the characteristics that make a workload suitable for a PIM architecture, (2) propose optimization strategies for PIM kernels, and (3) develop programming frameworks and tools that can lower the learning curve and ease the adoption of PIM.

This tutorial focuses on the latest advances in PIM technology, workload characterization for PIM, and programming and optimizing PIM kernels. We will (1) provide an introduction to PIM and taxonomy of PIM systems, (2) give an overview and a rigorous analysis of existing real-world PIM hardware, (3) conduct hand-on labs about important workloads (machine learning, sparse linear algebra, bioinformatics, etc.) using real PIM systems, and (4) shed light on how to improve future PIM systems for such workloads.

https://events.safari.ethz.ch/isca-pim-tutorial/
Real PIM Tutorial [ISCA 2023]

- June 18: Lectures + Hands-on labs + Invited talks

ISCA 2023 Real-World PIM Tutorial

Sunday, June 18, Orlando, Florida

Organizers: Juan Gómez Luna, Onur Mutlu, Ataberk Olguin

Program: https://events.safari.ethz.ch/isca-pim-tutorial/

Tutorial Materials

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:55am-9:00am</td>
<td>Dr. Juan Gómez Luna</td>
<td>Welcome & Agenda</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>9:00am-10:20am</td>
<td>Prof. Onur Mutlu</td>
<td>Memory-Centric Computing</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>10:20am-11:00am</td>
<td>Dr. Juan Gómez Luna</td>
<td>Processing-Near-Memory: Real PNM Architectures / Programming</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td></td>
<td>General-purpose PIM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:20am-11:50am</td>
<td>Prof. Izzat El Hajj</td>
<td>High-throughput Sequence Alignment using Real Processing-in-Memory</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td></td>
<td>Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:50am-12:30pm</td>
<td>Dr. Christina Giannoula</td>
<td>SparseP: Towards Efficient Sparse Matrix Vector Multiplication for</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Real Processing-In-Memory Systems</td>
<td></td>
</tr>
<tr>
<td>2:00pm-2:45pm</td>
<td>Dr. Sukhan Lee</td>
<td>Introducing Real-world HBM-PIM Powered System for Memory-bound</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applications</td>
<td></td>
</tr>
<tr>
<td>2:45pm-3:30pm</td>
<td>Dr. Juan Gómez Luna / Ataberk Olguin</td>
<td>Processing-Using-Memory: Exploiting the Analog Operational</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Properties of Memory Components / PUM Prototypes: PiDRAM</td>
<td></td>
</tr>
<tr>
<td>4:00pm-4:40pm</td>
<td>Dr. Juan Gómez Luna</td>
<td>Accelerating Modern Workloads on a General-purpose PIM System</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>4:40pm-5:20pm</td>
<td>Dr. Juan Gómez Luna</td>
<td>Adoption Issues: How to Enable PIM?</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>5:20pm-5:30pm</td>
<td>Dr. Juan Gómez Luna</td>
<td>Hands-on Lab: Programming and Understanding a Real Processing-in-</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Memory Architecture</td>
<td></td>
</tr>
</tbody>
</table>

Real-world Processing-in-Memory Systems for Modern Workloads

ISCA 2023 Tutorial: Real-world Processing-in-Memory Systems for Modern Workloads

https://www.youtube.com/live/GIb5EgSrWko?feature=share

https://events.safari.ethz.ch/isca-pim-tutorial/
Real PIM Tutorial [ASPLOS 2023]

- March 26: Lectures + Hands-on labs + Invited talks

https://www.youtube.com/watch?v=oYCaLcT0Kmo

https://events.safari.ethz.ch/asplos-pim-tutorial/
Real PIM Tutorial [HPCA 2023]

- February 26: Lectures + Hands-on labs + Invited Talks

Real-world Processing-in-Memory Architectures

Processing-in-Memory (PIM) is a computing paradigm that aims at overcoming the data movement bottleneck (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement between memory units and compute units) by making memory compute-capable.

Exploded over several decades since the 1960s, PIM systems are becoming a reality with the advent of the first commercial products and prototypes.

A number of startups (e.g., UP MEM, Neuroblade, Mythic) are already commercializing real PIM hardware, each with its own design approach and target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two years.

2,560-DPU Processing-in-Memory System

Most of these architectures have in common that they place compute units near the memory arrays. But, there is more to come. Academia and Industry are actively exploring other types of PIM by, e.g., exploiting the analog operation of DRAM SRAM, flash memory and emerging non-volatile memories.

PIM can provide large improvements in both performance and energy consumption, thereby enabling a commercially viable way of dealing with huge amounts of data that is bottlenecking our computing systems. Yet, it is critical to examine and research adoption issues of PIM using especially learnings from real PIM systems that are available today.

This tutorial focuses on the latest advances in PIM technology. We will (1) provide an introduction to PIM and taxonomy of PIM systems, (2) give an overview and a rigorous analysis of existing real-world PIM hardware, (3) conduct hands-on labs using real PIM systems, and (4) shed light on how to enable the adoption of PIM in future computing systems.

Goal: Processing Inside Memory

- Many questions ... How do we design the:
 - compute-capable memory & controllers?
 - processors & communication units?
 - software & hardware interfaces?
 - system software, compilers, languages?
 - algorithms & theoretical foundations?

https://www.youtube.com/watch?v=f5-nT1tbz5w

https://events.safari.ethz.ch/real-pim-tutorial/
Upcoming Real PIM Tutorial [MICRO 2023]

- **October 29**: Lectures + Hands-on labs + Invited talks

Real-world Processing-in-Memory Systems for Modern Workloads

Tutorial Description

Processing-in-Memory (PIM) is a computing paradigm that aims at overcoming the data movement bottleneck (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement between memory units and compute units) by making memory compute-capable.

Explained over several decades since the 1990s, PIM systems are becoming a reality with the advent of the first commercial products and prototypes.

- A number of startups (e.g., UPRIMEM, Neuroblade) are already commercializing real PIM hardware, each with its own design approach and target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two years. Most of these architectures have in common that they place compute units near the memory arrays. This type of PIM is called processing near memory (PIM).

PIM can provide large improvements in both performance and energy consumption for many modern applications, thereby enabling a commercially viable way of dealing with huge amounts of data that is better suited for our computing systems. Yet, it is critical to (1) study and understand the characteristics that make a workload suitable for a PIM architecture, (2) propose optimization strategies for PIM kernels, and (3) develop programming frameworks and tools that can lower the learning curve and ease the adoption of PIM.

This tutorial focuses on the latest advances in PIM technology, workload characterization for PIM, and programming and optimizing PIM kernels. We will (1) provide an introduction to PIM and taxonomy of PIM systems, (2) give an overview and a rigorous analysis of existing real-world PIM hardware, (3) conduct hands-on labs about important workloads (machine learning, sparse linear algebra, bioinformatics, etc.) using real PIM systems, and (4) shed light on how to improve future PIM systems for such workloads.

Agenda (Tentative, October 29, 2023)

- Lectures
 1. Introduction: PIM as a paradigm to overcome the data movement bottleneck.
 2. PIM taxonomy: PNM (processing near memory) and PUM (processing using memory).
 3. General-purpose PNM: UPMEM PIM.
 4. PNM for neural networks: Samsung HBM-PIM, SK Hynix AIM.
 5. PNM for recommender systems: Samsung AxDIMM, Alibaba PNM.
 6. PUM prototypes: PIDRAM, SRAM-based PUM, Flash-based PUM.
 7. Other approaches: Neuroblade, Myric.
 8. Adoption issues: How to enable PIM?
 9. Hands-on labs: Programming a real PIM system.

2,560-DPU Processing-in-Memory System

- [Visit the tutorial](https://www.youtube.com/live/ohU0oNSlxOI)

- [Visit the tutorial](https://events.safari.ethz.ch/micro-pim-tutorial)
We Need to Think Differently from the Past Approaches
Processing in Memory: Two Approaches

1. Processing using Memory
2. Processing near Memory
A PIM Taxonomy

- **Nature** *(of computation)*
 - **Using**: Use operational properties of memory structures
 - **Near**: Add logic close to memory structures

- **Technology**
 - Flash, DRAM, SRAM, RRAM, MRAM, FeRAM, PCM, 3D, ...

- **Location**
 - Sensor, Cold Storage, Hard Disk, SSD, Main Memory, Cache, Register File, Memory Controller, Interconnect, ...

- A tuple of the three determines “PIM type”
- One can combine multiple “PIM types” in a system
Memory similar to a “conventional” accelerator
Example PIM Type: Processing using DRAM

- Nature: Using
- Technology: DRAM
- Location: Main Memory

Processing using DRAM in Main Memory

Processing using DRAM

- We can support
 - Bulk bitwise AND, OR, NOT, MAJ
 - Bulk bitwise COPY and INIT/ZERO
 - True Random Number Generation; Physical Unclonable Functions
 - Lookup Table based more complex computation

- At low cost

- Using analog computation capability of DRAM
 - Idea: activating (multiple) rows performs computation

- 30-77X performance and energy improvement
 - Seshadri+ “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.
Starting Simple: Data Copy and Initialization

\textit{memcpy} & \textit{memmove}: 5\% cycles in Google's datacenter [Kanev+ ISCA'15]

- Zero initialization (e.g., security)
- Forking
- Checkpointing
- VM Cloning
- Deduplication
- Page Migration
- Many more

\textbf{SAFARI}
Future Systems: In-Memory Copy

1) Low latency
2) Low bandwidth utilization
3) No cache pollution
4) No unwanted data movement

1046ns, 3.6uJ → 90ns, 0.04uJ
RowClone: In-DRAM Row Copy

Idea: Two consecutive ACTivates

Negligible HW cost

Step 1: Activate row A

Step 2: Activate row B

DRAM subarray

Row Buffer (4 Kbytes)

Transfer row

Transfer row

4 Kbytes

8 bits

Data Bus
RowClone: Latency and Energy Savings

More on RowClone

- Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
 "RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization"
 *Proceedings of the 46th International Symposium on Microarchitecture (MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri vseshadr@cs.cmu.edu Yoongu Kim yoongukim@cmu.edu Chris Fallin* cfallin@c1f.net Donghyuk Lee donghyuk1@cmu.edu
Rachata Ausavarungnirun rachata@cmu.edu Gennady Pekhimenko gpekhime@cs.cmu.edu Yixin Luo yixinluo@andrew.cmu.edu
Onur Mutlu onur@cmu.edu Phillip B. Gibbons† phillip.b.gibbons@intel.com Michael A. Kozuch† michael.a.kozuch@intel.com Todd C. Mowry tcm@cs.cmu.edu
Carnegie Mellon University †Intel Pittsburgh
RowClone in Off-the-Shelf DRAM Chips

- Idea: Violate DRAM timing parameters to mimic RowClone

ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs

Fei Gao
feig@princeton.edu
Department of Electrical Engineering
Princeton University

Georgios Tziantzioulis
georgios.tziantzioulis@princeton.edu
Department of Electrical Engineering
Princeton University

David Wentzlaff
wentzlaf@princeton.edu
Department of Electrical Engineering
Princeton University

Real Processing Using Memory Prototype

- End-to-end RowClone & TRNG using off-the-shelf DRAM chips
- Idea: Violate DRAM timing parameters to mimic RowClone

PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-DRAM

Ataberk Olgun§† Juan Gómez Luna§
Hasan Hassan§ Konstantinos Kanellopoulos§
Oğuz Ergin† Onur Mutlu§
§ETH Zürich †TOBB ETÜ *BSC

https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=queukNs5XI3g&t=4192s
Real Processing-using-Memory Prototype

https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s
Building a PiDRAM Prototype

To build PiDRAM's prototype on Xilinx ZC706 boards, developers need to use the two sub-projects in this directory. `fpga-zyynq` is a repository branched off of UC-BAR's `fpga-zyynq` repository. We use `fpga-zyynq` to generate rocket chip designs that support end-to-end DRAM PuM execution. `controller-hardware` is where we keep the main Vivado project and Verilog sources for PiDRAM's memory controller and the top level system design.

Rebuilding Steps

1. Navigate into `fpga-zyynq` and read the README file to understand the overall workflow of the repository
 - Follow the readme in `fpga-zyynq/rocket-chip/riscv-tools` to install dependencies
2. Create the Verilog source of the rocket chip design using the `ZynqCopyFPGAConfig`
 - Navigate into zc706, then run `make rocket CONFIG=ZynqCopyFPGAConfig -j` number of cores`
3. Copy the generated Verilog file (should be under zc706/src) and overwrite the same file in `controller-hardware/source/hdl/impl/rocket-chip`
4. Open the Vivado project in `controller-hardware/Vivado_Project` using Vivado 2016.2
5. Generate a bitstream
6. Copy the bitstream (system_top.bit) to `fpga-zyynq/zc706`
7. Use the `./build_script.sh` to generate the new `boot.bin` under `fpga-images-zc706`, you can use this file to program the FPGA using the SD-Card
 - For details, follow the relevant instructions in `fpga-zyynq/README.md`

You can run programs compiled with the RISC-V Toolchain supplied within the `fpga-zyynq` repository. To install the toolchain, follow the instructions under `fpga-zyynq/rocket-chip/riscv-tools`.

Generating DDR3 Controller IP sources

We cannot provide the sources for the Xilinx PhFy IP we use in PiDRAM's memory controller due to licensing issues. We describe here how to regenerate them using Vivado 2016.2. First, you need to generate the IP RTL files:

1- Open IP Catalog
2- Find "Memory Interface Generator (MIG 7 Series)" IP and double click

https://github.com/cmu-safari/pidram
https://www.youtube.com/watch?v=qeukNs5XI3g&t=4192s
In-DRAM Copy and Initialization improve throughput by 119x and 89x
More on PiDRAM

- Ataberk Olgun, Juan Gomez Luna, Konstantinos Kanellopoulos, Behzad Salami, Hasan Hassan, Oğuz Ergin, and Onur Mutlu,

PiDRAM: A Holistic End-to-end FPGA-based Framework for Processing-in-DRAM

[arXiv version]

Presented at the 18th HiPEAC Conference, Toulouse, France, January 2023.

[Slides (pptx) (pdf)]

[Longer Lecture Slides (pptx) (pdf)]

[Lecture Video (40 minutes)]

[PiDRAM Source Code]

...
Lecture on RowClone & Processing using DRAM

Mindset: Memory as an Accelerator

- Memory similar to a “conventional” accelerator

DEPARTMENT OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (D-ITET)
Seminar in Computer Arch. - Meeting 3: RowClone: In-Memory Data Copy and Initialization (Fall 2021)

https://www.youtube.com/watch?v=n6Pwg1qax_E&list=PL5Q2soXY2Zi_7UBNmC9B8Yr5JSwTG9yH4&index=4
(Truly) In-Memory Computation

- We can support in-DRAM AND, OR, NOT, MAJ
- At low cost
- Using analog computation capability of DRAM
 - Idea: activating multiple rows performs computation
- 30-60X performance and energy improvement

- New memory technologies enable even more opportunities
 - Memristors, resistive RAM, phase change mem, STT-MRAM, ...
 - Can operate on data with minimal movement
In-DRAM AND/OR: Triple Row Activation

\[
\frac{1}{2}V_{DD} + \delta
\]

Final State

\[AB + BC + AC\]

\[C(A + B) + \sim C(AB)\]

Bulk Bitwise Operations in Workloads

- Bitmap indices (database indexing)
- Set operations
- Encryption algorithms
- BitWeaving (database queries)
- BitFunnel (web search)
- DNA sequence mapping

[1] Li and Patel, BitWeaving, SIGMOD 2013
In-DRAM Acceleration of Database Queries

Figure 11: Speedup offered by Ambit over baseline CPU with SIMD for BitWeaving

More on Ambit

- Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry,

"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology"

Proceedings of the 50th International Symposium on Microarchitecture (MICRO), Boston, MA, USA, October 2017.

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]
In-DRAM Bulk Bitwise Execution

[Preliminary arXiv version]

In-DRAM Bulk Bitwise Execution Engine

Vivek Seshadri
Microsoft Research India
visesha@microsoft.com

Onur Mutlu
ETH Zürich
onur.mutlu@inf.ethz.ch
SIMDRAM Framework

 [2-page Extended Abstract]
 [Short Talk Slides (pptx) (pdf)]
 [Talk Slides (pptx) (pdf)]
 [Short Talk Video (5 mins)]
 [Full Talk Video (27 mins)]

SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM

*Nastaran Hajinazar1,2
Nika Mansouri Ghiasi1
Minesh Patel1
Juan Gómez-Luna1

*Geraldo F. Oliveira1
Sven Gregorio1
Mohammed Alser1
Onur Mutlu1
João Dinis Ferreira1
Saugata Ghose3

1ETH Zürich
2Simon Fraser University
3University of Illinois at Urbana–Champaign
SIMDRAM Framework: Overview

Step 1: Generate MAJ logic
- Desired operation AND/OR/NOT logic
- MAJ/NOT logic

Step 2: Generate sequence of DRAM commands
- ACT/PRE
- ACT/PRE
- ACT/PRE
- ACT/ACT/PRE
- done

Step 3: Execution according to μProgram
- foo () {
 bbop_new
}
- Control Unit
- Memory Controller

SIMDRAM Output
- New SIMDRAM μProgram
- μProgram
- Main memory
- ISA
- bbop_new
- New SIMDRAM instruction
SIMDRAM Key Results

Evaluated on:
- 16 complex in-DRAM operations
- 7 commonly-used real-world applications

SIMDRAM provides:

- $88 \times$ and $5.8 \times$ the **throughput** of a CPU and a high-end GPU, respectively, over **16 operations**

- $257 \times$ and $31 \times$ the **energy efficiency** of a CPU and a high-end GPU, respectively, over **16 operations**

- $21 \times$ and $2.1 \times$ the **performance** of a CPU and a high-end GPU, over **seven real-world applications**
More on SIMDGRAM

- Nastaran Hajinazar, Geraldo F. Oliveira, Sven Gregorio, Joao Dinis Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser, Saugata Ghose, Juan Gomez-Luna, and Onur Mutlu,

"SIMDRAM: An End-to-End Framework for Bit-Serial SIMD Computing in DRAM"

[2-page Extended Abstract]
[Short Talk Slides (pptx) (pdf)]
[Talk Slides (pptx) (pdf)]
[Short Talk Video (5 mins)]
[Full Talk Video (27 mins)]

SIMDRAM: A Framework for Bit-Serial SIMD Processing using DRAM

*Nastaran Hajinazar¹,²
Nika Mansouri Ghiasi¹

*Geraldo F. Oliveira¹
Minesh Patel¹

Sven Gregorio¹
Mohammed Alser¹

João Dinis Ferreira¹
Saugata Ghose³

¹ETH Zürich ²Simon Fraser University ³University of Illinois at Urbana–Champaign
In-DRAM Lookup-Table Based Execution

João Dinis Ferreira, Gabriel Falcao, Juan Gómez-Luna, Mohammed Alser, Lois Orosa, Mohammad Sadrosadati, Jeremie S. Kim, Geraldo F. Oliveira, Taha Shahroodi, Anant Nori, and Onur Mutlu,

"pLUTo: Enabling Massively Parallel Computation in DRAM via Lookup Tables"
Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, October 2022.

[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Lecture Video (26 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]

Officially artifact evaluated as available, reusable and reproducible.

pLUTo: Enabling Massively Parallel Computation in DRAM via Lookup Tables

João Dinis Ferreira§
Lois Orosa\dagger
Gabriel Falcao†
Mohammad Sadrosadati§
Taha Shahroodi‡
Juan Gómez-Luna§
Jeremie S. Kim§
Anant Nori*
Mohammed Alser§
Geraldo F. Oliveira§

§ETH Zürich †IT, University of Coimbra ‡Galicia Supercomputing Center *Intel

SAFARI

In-DRAM Physical Unclonable Functions

- Jeremie S. Kim, Minesh Patel, Hasan Hassan, and Onur Mutlu, "The DRAM Latency PUF: Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern DRAM Devices"
 [Lightning Talk Video]
 [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
 [Full Talk Lecture Video (28 minutes)]

The DRAM Latency PUF:
Quickly Evaluating Physical Unclonable Functions
by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices

Jeremie S. Kim†§ Minesh Patel§ Hasan Hassan§ Onur Mutlu§†
†Carnegie Mellon University §ETH Zürich

SAFARI
In-DRAM True Random Number Generation

- Jeremie S. Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur Mutlu, "D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput"

[Slides (pptx) (pdf)]
[Full Talk Video (21 minutes)]
[Full Talk Lecture Video (27 minutes)]

Top Picks Honorable Mention by IEEE Micro.

D-RaNGe: Using Commodity DRAM Devices to Generate True Random Numbers with Low Latency and High Throughput

Jeremie S. Kim‡§, Minesh Patel§, Hasan Hassan§, Lois Orosa§, Onur Mutlu§‡

‡Carnegie Mellon University §ETH Zürich
In-DRAM True Random Number Generation

- Ataberk Olgun, Minesh Patel, A. Giray Yaglikci, Haocong Luo, Jeremie S. Kim, F. Nisa Bostanci, Nandita Vijaykumar, Oguz Ergin, and Onur Mutlu,

"QUAC-TRNG: High-Throughput True Random Number Generation Using Quadruple Row Activation in Commodity DRAM Chips"

[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (25 minutes)]
[SAFARI Live Seminar Video (1 hr 26 mins)]

QUAC-TRNG: High-Throughput True Random Number Generation Using Quadruple Row Activation in Commodity DRAM Chips

Ataberk Olgun†
Minesh Patel†
A. Giray Yağlıkçı†
Haocong Luo†
Jeremie S. Kim†
F. Nisa Bostanci†
Nandita Vijaykumar†
Oğuz Ergin†
Onur Mutlu†

†ETH Zürich
†TOBB University of Economics and Technology
†University of Toronto

SAFARI
In-DRAM True Random Number Generation

- F. Nisa Bostanci, Ataberk Olgun, Lois Orosa, A. Giray Yağlıkçı, Jeremie S. Kim, Hasan Hassan, Oguz Ergin, and Onur Mutlu,

"DR-STRaNGe: End-to-End System Design for DRAM-based True Random Number Generators"

Proceedings of the 28th International Symposium on High-Performance Computer Architecture (HPCA), Virtual, April 2022.
[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]

DR-STRaNGe: End-to-End System Design for DRAM-based True Random Number Generators

F. Nisa Bostancı†§️
Ataberk Olgun†§️
Lois Orosa§️
A. Giray Yağlıkçı§️
Jeremie S. Kim§️
Hasan Hassan§️
Oğuz Ergin†
Onur Mutlu§️

†TOBB University of Economics and Technology
§️ETH Zürich

SAFARI

In-Flash Bulk Bitwise Execution

- Jisung Park, Roknoddin Azizi, Geraldo F. Oliveira, Mohammad Sadrosadati, Rakesh Nadig, David Novo, Juan Gómez-Luna, Myungsuk Kim, and Onur Mutlu, "Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent Computation Capability of NAND Flash Memory" Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, October 2022.
 [Slides (pptx) (pdf)]
 [Longer Lecture Slides (pptx) (pdf)]
 [Lecture Video (44 minutes)]
 [arXiv version]

Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent Computation Capability of NAND Flash Memory

Jisung Park§▼ Roknoddin Azizi§ Geraldo F. Oliveira§ Mohammad Sadrosadati§
Rakesh Nadig§ David Novo† Juan Gómez-Luna§ Myungsuk Kim‡ Onur Mutlu§

§ETH Zürich ▼ POSTECH †LIRMM, Univ. Montpellier, CNRS ‡Kyungpook National University

Summary: Flash-Cosmos

- The first work that enables in-flash multi-operand bulk bitwise operations with a single sensing operation and high reliability
- Improves performance by 32x/25x/3.5x over OSP/ISP/ParaBit
- Improves energy efficiency by 95x/13.4x/3.3x over OSP/ISP/ParaBit
- Low-cost & requires no changes to flash cell arrays
Flash-Cosmos: Basic Ideas

- **Flash-Cosmos enables**
 - Computation on multiple operands with a single sensing operation
 - Accurate computation results by eliminating raw bit errors in stored data
Key Ideas of Flash-Cosmos

Multi-Wordline Sensing (MWS)
to enable in-flash bulk bitwise operations via a single sensing operation

Enhanced SLC-Mode Programming (ESP)
to eliminate raw bit errors in stored data (and thus in computation results)
Multi-Wordline Sensing (MWS): Bitwise AND

- **Intra-Block MWS:**
 Simultaneously activates multiple WLs in the same block
 → Bitwise AND of the stored data in the WLs

A bitline reads as ‘1’ only when all the target cells store ‘1’
→ Equivalent to the bitwise AND of all the target cells

Target Cell:
Operate as a resistance (1) or an open switch (0)

Result:
A bitline reads as ‘1’ only when all the target cells store ‘1’
→ Equivalent to the bitwise AND of all the target cells
Multi-Wordline Sensing (MWS): Bitwise AND

- **Intra-Block MWS:**
 Simultaneously activates multiple WLs in the same block
 \rightarrow Bitwise AND of the stored data in the WLs

Flash-Cosmos (Intra-Block MWS) enables **bitwise AND** of multiple pages in the same block via a **single sensing operation**
Multi-Wordline Sensing (MWS): Bitwise OR

- **Inter-Block MWS:**
 Simultaneously activates multiple WLs in different blocks
 → Bitwise OR of the stored data in the WLs

A bitline reads as ‘0’ only when all the target cells store ‘0’
→ Equivalent to the bitwise OR of all the target cells
Multi-Wordline Sensing (MWS): Bitwise OR

- **Inter-Block MWS:**
 Simultaneously activates multiple WLs in different blocks → Bitwise OR of the stored data in the WLs

Flash-Cosmos (Inter-Block MWS) enables bitwise OR of multiple pages in different blocks via a single sensing operation.
Other Types of Bitwise Operations

Flash-Cosmos also enables other types of bitwise operations (NOT/NAND/NOR/XOR/XNOR) leveraging existing features of NAND flash memory.

Flash-Cosmos: In-Flash Bulk Bitwise Operations Using Inherent Computation Capability of NAND Flash Memory

Jisung Park$^\text{V}$, Roknoddin Azizi$,^\text{S}$, Geraldo F. Oliveira$^\text{S}$, Mohammad Sadrosadati$^\text{S}$, Rakesh Nadig$,^\text{S}$, David Novo$^\text{†}$, Juan Gómez-Luna$^\text{S}$, Myungsuk Kim$^\text{‡}$, Onur Mutlu$^\text{S}$

$^\text{S}$ETH Zürich, $^\text{V}$POSTECH, $^\text{†}$LIRMM, Univ. Montpellier, CNRS, $^\text{‡}$Kyungpook National University

Results: Real-Device Characterization

No changes to the cell array of commodity NAND flash chips

Can have many operands
 (AND: up to 48, OR: up to 4)
with small increase in sensing latency (< 10%)

ESP significantly improves the reliability of computation results
 (no observed bit error in the tested flash cells)
Results: Performance & Energy

Flash-Cosmos provides significant performance & energy benefits over all the baselines.

The larger the number of operands, the higher the performance & energy benefits.
Pinatubo: A Processing-in-Memory Architecture for Bulk Bitwise Operations in Emerging Non-volatile Memories

Shuangchen Li¹, Cong Xu², Qiaosha Zou¹,⁵, Jishen Zhao³, Yu Lu⁴, and Yuan Xie¹

University of California, Santa Barbara¹, Hewlett Packard Labs²
University of California, Santa Cruz³, Qualcomm Inc.⁴, Huawei Technologies Inc.⁵
{shuangchenli, yuanxie}@ece.ucsb.edu¹
Other Readings on Processing using NVM

Processing in Memory: Two Approaches

1. Processing using Memory
2. Processing near Memory
Mindset: Memory as an Accelerator

Memory similar to a “conventional” accelerator
Accelerating In-Memory Graph Analytics

- Large graphs are everywhere (circa 2015)
 - 36 Million Wikipedia Pages
 - 1.4 Billion Facebook Users
 - 300 Million Twitter Users
 - 30 Billion Instagram Photos

- Scalable large-scale graph processing is challenging

- Speedup
 - 32 Cores
 - 128...
 - +42%
Key Bottlenecks in Graph Processing

for (v: graph.vertices) {
 for (w: v.successors) {
 w.next_rank += weight * v.rank;
 }
}

1. Frequent random memory accesses
2. Little amount of computation
Opportunity: 3D-Stacked Logic+Memory

Other “True 3D” technologies under development
Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped
Accelerator Interface
(Noncacheable, Physically Addressed)

In-Order Core

PF Buffer

MTP

Message Queue

SAFARI Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.
Tesseract System for Graph Processing

Host Processor

Memory-Mapped Accelerator Interface
(Noncacheable, Physically Addressed)

Communications via Remote Function Calls

Message Queue

In-Order Core

Crossbar Network

DRAM Controller

NI
Tesseract System for Graph Processing

Host Processor

Memory-Mapped Accelerator Interface
Noncacheable, Physically Addressed

Memory

Crossbar Network

Logic

Prefetching

DRAM Controller

NI

Message Queue

LP
PF Buffer
MTP
Evaluated Systems

<table>
<thead>
<tr>
<th>DDR3-OoO</th>
<th>HMC-OoO</th>
<th>HMC-MC</th>
<th>Tesseract</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 OoO 4GHz</td>
<td>8 OoO 4GHz</td>
<td>8 OoO 4GHz</td>
<td>128 In-Order 2GHz</td>
</tr>
<tr>
<td>8 OoO 4GHz</td>
<td>8 OoO 4GHz</td>
<td>8 OoO 4GHz</td>
<td>128 In-Order 2GHz</td>
</tr>
<tr>
<td>8 OoO 4GHz</td>
<td>8 OoO 4GHz</td>
<td>8 OoO 4GHz</td>
<td>128 In-Order 2GHz</td>
</tr>
<tr>
<td>8 OoO 4GHz</td>
<td>8 OoO 4GHz</td>
<td>8 OoO 4GHz</td>
<td>128 In-Order 2GHz</td>
</tr>
</tbody>
</table>

102.4GB/s | 640GB/s | 640GB/s | 8TB/s

SAFARI Ahn+, "A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing" ISCA 2015.
Tesseract Graph Processing Performance

>13X Performance Improvement

On five graph processing algorithms

- DDR3-OoO
- HMC-OoO
- HMC-MC
- Tesseract
- Tesseract-LP
- Tesseract-LP-MTP

>13X Performance Improvement

SAFARI Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.
Tesseract Graph Processing System Energy

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.
More on Tesseract

Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing"
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]
Top Picks Honorable Mention by IEEE Micro.

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn Sungpack Hong§ Sungjoo Yoo Onur Mutlu† Kiyoung Choi
junwhan@snu.ac.kr, sungpack.hong@oracle.com, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr
Seoul National University §Oracle Labs †Carnegie Mellon University

SAFARI
In-Storage Genomic Data Filtering [ASPLOS 2022]

- Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,

"GenStore: A High-Performance and Energy-Efficient In-Storage Computing System for Genome Sequence Analysis"

[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]

GenStore: A High-Performance In-Storage Processing System for Genome Sequence Analysis

Nika Mansouri Ghiasi¹ Jisung Park¹ Harun Mustafa¹ Jeremie Kim¹ Ataberk Olgun¹
Arvid Gollwitzer¹ Damla Senol Cali² Can Firtina¹ Haiyu Mao¹ Nour Almadhoun Alserr¹
Rachata Ausavarungnirun³ Nandita Vijaykumar⁴ Mohammed Alser¹ Onur Mutlu¹

¹ETH Zürich ²Bionano Genomics ³KMUTNB ⁴University of Toronto
Genome Sequence Analysis

Data Movement from Storage

- Storage System
- Main Memory
- Cache (Computation Unit (CPU or Accelerator))

Alignment

- Computation overhead
- Data movement overhead
Compute-Centric Accelerators

- Storage System
- Heuristics
- Main Memory
- Accelerators
- Cache
- Filters
- Computation Unit (CPU or Accelerator)

- ✓ Computation overhead
- ✗ Data movement overhead
Key Idea: In-Storage Filtering

Filter reads that do not require alignment inside the storage system

Filtered Reads

Exactly-matching reads
Do not need expensive approximate string matching during alignment

Non-matching reads
Do not have potential matching locations and can skip alignment
GenStore provides significant speedup (1.4x - 33.6x) and energy reduction (3.9x – 29.2x) at low cost.
In-Storage Genomic Data Filtering [ASPLOS 2022]

- Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,

"GenStore: A High-Performance and Energy-Efficient In-Storage Computing System for Genome Sequence Analysis"
[Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]

GenStore: A High-Performance In-Storage Processing System for Genome Sequence Analysis

Nika Mansouri Ghiasi1 Jisung Park1 Harun Mustafa1 Jeremie Kim1 Ataberk Olgun1 Arvid Gollwitzer1 Damla Senol Cali2 Can Firtina1 Haiyu Mao1 Nour Almadhoun Alserr1 Rachata Ausavarungnirun3 Nandita Vijaykumar4 Mohammed Alser1 Onur Mutlu1

1ETH Zürich 2Bionano Genomics 3KMUTNB 4University of Toronto
Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand
Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

SAFARI Carnegie Mellon Google
SAMSUNG ETH Zürich
Consumer Devices

Consumer devices are everywhere!

Energy consumption is a first-class concern in consumer devices.
Popular Consumer Workloads

- Chrome
 Google’s web browser

- TensorFlow Mobile
 Google’s machine learning framework

- VP9
 Video Playback
 Google’s video codec

- VP9
 Video Capture
 Google’s video codec
Energy Cost of Data Movement

1st key observation: 62.7% of the total system energy is spent on data movement

Potential solution: move computation close to data

Challenge: limited area and energy budget
Using PIM to Reduce Data Movement

2nd key observation: a significant fraction of the data movement often comes from simple functions

We can design lightweight logic to implement these simple functions in memory

Small embedded low-power core

PIM Core

Small fixed-function accelerators

PIM Accelerator

Offloading to PIM logic reduces energy and improves performance, on average, by 2.3X and 2.2X
Workload Analysis

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning framework

VP9
Video Playback
Google’s video codec

VP9
Video Capture
Google’s video codec
57.3% of the inference energy is spent on data movement.

54.4% of the data movement energy comes from packing/unpacking and quantization.
Normalized Energy

PIM core and PIM accelerator reduce energy consumption on average by 49.1% and 55.4%
Offloading these kernels to **PIM core and PIM accelerator** reduces **program runtime** on average by **44.6%** and **54.2%**.
More on PIM for Mobile Devices

- Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,

"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]
[Lightning Talk Video (2 minutes)]
[Full Talk Video (21 minutes)]
Truly Distributed GPU Processing with PIM

```c
__global__ void applyScaleFactorsKernel( int8_t * const out,
                              int8_t const * const in,
                              const double *factor,
                              size_t const numRows,
                              size_t const numCols )
{
    // Work out which pixel we are working on.
    const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x;
    const int colIdx = blockIdx.y;          
    const int sliceIdx = threadIdx.z;

    // Check this thread isn't off the image
    if( rowIdx >= numRows ) return;

    // Compute the index of my element
    size_t linearIdx = rowIdx + colIdx*numRows +     
                        sliceIdx*numRows*numCols;
```
Accelerating GPU Execution with PIM (I)

- Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
 "Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems"

[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]
Accelerating GPU Execution with PIM (II)

Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities

Ashutosh Pattnaik\(^1\) Xulong Tang\(^1\) Adwait Jog\(^2\) Onur Kayiran\(^3\)
Asit K. Mishra\(^4\) Mahmut T. Kandemir\(^1\) Onur Mutlu\(^5,6\) Chita R. Das\(^1\)

\(^1\)Pennsylvania State University \(^2\)College of William and Mary
\(^3\)Advanced Micro Devices, Inc. \(^4\)Intel Labs \(^5\)ETH Zürich \(^6\)Carnegie Mellon University
Accelerating Linked Data Structures

Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation

Kevin Hsieh† Samira Khan‡ Nandita Vijaykumar†
Kevin K. Chang† Amirali Boroumand† Saugata Ghose† Onur Mutlu§†
†Carnegie Mellon University ‡University of Virginia §ETH Zürich
Accelerating Dependent Cache Misses

- Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt, "Accelerating Dependent Cache Misses with an Enhanced Memory Controller"
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an Enhanced Memory Controller

Milad Hashemi*, Khubaib†, Eiman Ebrahimi‡, Onur Mutlu§, Yale N. Patt*

*The University of Texas at Austin †Apple ‡NVIDIA §ETH Zürich & Carnegie Mellon University

SAFARI
Accelerating Runahead Execution

- Milad Hashemi, Onur Mutlu, and Yale N. Patt,
 "Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads"
 Proceedings of the 49th International Symposium on Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
 [Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]
 Best paper session.

Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu§, Yale N. Patt*

*The University of Texas at Austin §ETH Zürich
Gagandeep Singh, Dionysios Diamantopoulos, Christoph Hagleitner, Juan Gómez-Luna, Sander Stuijk, Onur Mutlu, and Henk Corporaal, "NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling".

Proceedings of the 30th International Conference on Field-Programmable Logic and Applications (FPL), Gothenburg, Sweden, September 2020.

[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (23 minutes)]

Nominated for the Stamatis Vassiliadis Memorial Award.

NERO: A Near High-Bandwidth Memory Stencil Accelerator for Weather Prediction Modeling

Gagandeep Singha,b,c Dionysios Diamantopoulosc Christoph Hagleitnerc Juan Gómez-Lunab Sander Stuijka Onur Mutlub Henk Corporaala

aEindhoven University of Technology \hspace{1cm} bETH Zürich \hspace{1cm} cIBM Research Europe, Zurich
Accelerating Approximate String Matching

"GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis"

[Lighting Talk Video (1.5 minutes)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (18 minutes)]
[Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis

Carnegie Mellon University, Processor Architecture Research Lab, Intel Labs, Bilkent University, ETH Zürich, Facebook, King Mongkut’s University of Technology North Bangkok, University of Illinois at Urbana–Champaign.
Accelerating Sequence-to-Graph Mapping

- Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi, Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,

"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping"
[arXiv version]

SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali¹ Konstantinos Kanellopoulos² Joël Lindegger² Zülal Bingöl³ Gurpreet S. Kalsi⁴ Ziyi Zuo⁵ Can Firtina² Meryem Banu Cavlak² Jeremie Kim² Nika Mansouri Ghiasi² Gagandeep Singh² Juan Gómez-Luna² Nour Almadhoun Alserr² Mohammed Alser² Sreenivas Subramoney⁴ Can Alkan³ Saugata Ghose⁶ Onur Mutlu²

¹Bionano Genomics ²ETH Zürich ³Bilkent University ⁴Intel Labs
⁵Carnegie Mellon University ⁶University of Illinois Urbana-Champaign

Accelerating Basecalling + Read Mapping

- Haiyu Mao, Mohammed Alser, Mohammad Sadrosadati, Can Firtina, Akanksha Baranwal, Damla Senol Cali, Aditya Manglik, Nour Almadhoun Alserr, and Onur Mutlu, "GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of Basecalling and Read Mapping"
 Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, October 2022.
 [Slides (pptx) (pdf)]
 [Longer Lecture Slides (pptx) (pdf)]
 [Lecture Video (25 minutes)]
 [arXiv version]

GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of Basecalling and Read Mapping

Haiyu Mao¹ Mohammed Alser¹ Mohammad Sadrosadati¹ Can Firtina¹ Akanksha Baranwal¹
Damla Senol Cali² Aditya Manglik¹ Nour Almadhoun Alserr¹ Onur Mutlu¹

¹ETH Zürich ²Bionano Genomics

Accelerating Time Series Analysis

- Ivan Fernandez, Ricardo Quislant, Christina Giannoula, Mohammed Alser, Juan Gómez-Luna, Eladio Gutiérrez, Oscar Plata, and Onur Mutlu,

"NATSA: A Near-Data Processing Accelerator for Time Series Analysis"

[Slides (pptx) (pdf)]
[Talk Video (10 minutes)]
[Source Code]

NATSA: A Near-Data Processing Accelerator for Time Series Analysis

Ivan Fernandez§ Ricardo Quislant§ Christina Giannoula† Mohammed Alser†
Juan Gómez-Luna‡ Eladio Gutiérrez§ Oscar Plata§ Onur Mutlu‡

§University of Malaga †National Technical University of Athens ‡ETH Zürich
Accelerating Graph Pattern Mining

- Maciej Besta, Raghavendra Kanakagiri, Grzegorz Kwasniewski, Rachata Ausavarungnirun, Jakub Beránek, Konstantinos Kanellopoulos, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi, Ioana Stefan, Juan Gómez-Luna, Marcin Copik, Lukas Kapp-Schwoerer, Salvatore Di Girolamo, Nils Blach, Marek Konieczny, Onur Mutlu, and Torsten Hoefler,

"SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-Memory Systems"

Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.

[Slides (pdf)]
[Talk Video (22 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Full arXiv version]

SISA: Set-Centric Instruction Set Architecture for Graph Mining on Processing-in-Memory Systems

Maciej Besta¹, Raghavendra Kanakagiri², Grzegorz Kwasniewski¹, Rachata Ausavarungnirun³, Jakub Beránek⁴, Konstantinos Kanellopoulos¹, Kacper Janda⁵, Zur Vonarburg-Shmaria¹, Lukas Gianinazzi¹, Ioana Stefan¹, Juan Gómez-Luna¹, Marcin Copik¹, Lukas Kapp-Schwoerer¹, Salvatore Di Girolamo¹, Nils Blach¹, Marek Konieczny⁵, Onur Mutlu¹, Torsten Hoefler¹

¹ETH Zurich, Switzerland ²IIT Tirupati, India ³King Mongkut’s University of Technology North Bangkok, Thailand ⁴Technical University of Ostrava, Czech Republic ⁵AGH-UST, Poland

SAFARI
Accelerating HTAP Database Systems

 [arXiv version]
 [Slides (pptx) (pdf)]
 [Short Talk Slides (pptx) (pdf)]

Polynesia: Enabling High-Performance and Energy-Efficient Hybrid Transactional/Analytical Databases with Hardware/Software Co-Design

Amirali Boroumand†
†Google
Saugata Ghose○
○Univ. of Illinois Urbana-Champaign
Geraldo F. Oliveira‡
‡ETH Zürich
Onur Mutlu‡

Accelerating Neural Network Inference

- Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,

"Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks"

Proceedings of the 30th International Conference on Parallel Architectures and Compilation Techniques (PACT), Virtual, September 2021.

[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]

Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks

Amirali Boroumand\(^{\dagger}\),
Geraldo F. Oliveira\(^{*}\)
Saugata Ghose\(^{\dagger}\)
Xiaoyu Ma\(^{\dagger}\)
Berkin Akin\(^{\dagger}\)
Eric Shiu\(^{\dagger}\)
Ravi Narayanaswami\(^{\dagger}\)
Onur Mutlu\(^{*}\)

\(^{\dagger}\)Carnegie Mellon Univ.
\(^{*}\)Stanford Univ.
\(^{\dagger}\)Univ. of Illinois Urbana-Champaign
\(^{\dagger}\)Google
\(^*\)ETH Zürich
Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks

Amirali Boroumand Saugata Ghose Berkin Akin
Ravi Narayanaswami Geraldo F. Oliveira Xiaoyu Ma
Eric Shiu Onur Mutlu

PACT 2021

SAFARI

Carnegie Mellon University of Illinois Urbana-Champaign Google ETH Zürich
Executive Summary

Context: We extensively analyze a state-of-the-art edge ML accelerator (Google Edge TPU) using 24 Google edge models
- Wide range of models (CNNs, LSTMs, Transducers, RCNNs)

Problem: The Edge TPU accelerator suffers from three challenges:
- It operates **significantly below** its peak throughput
- It operates **significantly below** its theoretical energy efficiency
- It **inefficiently** handles memory accesses

Key Insight: These shortcomings arise from the monolithic design of the Edge TPU accelerator
- The Edge TPU accelerator design does not account for layer heterogeneity

Key Mechanism: A new framework called Mensa
- Mensa consists of heterogeneous accelerators whose dataflow and hardware are specialized for specific families of layers

Key Results: We design a version of Mensa for Google edge ML models
- Mensa improves performance and energy by **3.0X** and **3.1X**
- Mensa reduces cost and improves area efficiency
We analyze inference execution using 24 edge NN models.

- Speech Recognition
- Face Detection
- Image Captioning
- Language Translation

Google Edge TPU

- 6 RNN Transducers
- 13 CNN
- 2 LSTMs
- 3 RCNN
Diversity Across the Models

Insight 1: there is significant variation in terms of layer characteristics across the models

![Graph showing FLOP/Byte vs. Parameter Footprint (MB) for various models including CNNs and RCNNs versus LSTMs and Transducers.](image)
Diversity Within the Models

Insight 2: even within each model, layers exhibit significant variation in terms of layer characteristics.

For example, our analysis of edge CNN models shows:

Variation in MAC intensity: up to 200x across layers

Variation in FLOP/Byte: up to 244x across layers
Key observation: the majority of layers group into a small number of layer families.

Families 1 & 2: low parameter footprint, high data reuse and MAC intensity → compute-centric layers

Families 3, 4 & 5: high parameter footprint, low data reuse and MAC intensity → data-centric layers
Mensa: Energy Reduction

Mensa-G reduces energy consumption by 3.0X compared to the baseline Edge TPU.
Mensa-G improves inference throughput by 3.1X compared to the baseline Edge TPU
Mensa: Highly-Efficient ML Inference

- Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,

"Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks"

Proceedings of the 30th International Conference on Parallel Architectures and Compilation Techniques (PACT), Virtual, September 2021.

[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]

Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks

Amirali Boroumand†○
Geraldo F. Oliveira*
Saugata Ghose‡
Xiaoyu Ma§
Berkin Akin§
Eric Shiu§
Ravi Narayanaswami§
Onur Mutlu*†

†Carnegie Mellon Univ. ○Stanford Univ. ‡Univ. of Illinois Urbana-Champaign §Google *ETH Zürich
Accelerating Data-Intensive Workloads

- Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoungh Choi, "PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture"
 [Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture

Junwhan Ahn Sungjoo Yoo Onur Mutlu† Kiyoungh Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr

Seoul National University †Carnegie Mellon University

SAFARI
FPGA-based Processing Near Memory

FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan Gómez-Luna, Henk Corporaal, and Onur Mutlu

ETH Zürich, Carnegie Mellon University, Eindhoven University of Technology, IBM Research Europe
We Need to Revisit the Entire Stack

We can get there step by step
A Modern Primer on Processing in Memory

Onur Mutlua,b, Saugata Ghoseb,c, Juan Gómez-Lunaa, Rachata Ausavarungnirund

SAFARI Research Group

aETH Zürich
bCarnegie Mellon University
cUniversity of Illinois at Urbana-Champaign
dKing Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "A Modern Primer on Processing in Memory"

SAFARI
A Workload and Programming Ease Driven Perspective of Processing-in-Memory

Saugata Ghose† Amirali Boroumand† Jeremie S. Kim‡§ Juan Gómez-Luna§ Onur Mutlu§†
†Carnegie Mellon University ‡ETH Zürich

Saugata Ghose, Amirali Boroumand, Jeremie S. Kim, Juan Gomez-Luna, and Onur Mutlu, "Processing-in-Memory: A Workload-Driven Perspective"
[Preliminary arXiv version]

Processing in Memory: Adoption Challenges

1. Processing *using* Memory
2. Processing *near* Memory
Eliminating the Adoption Barriers

How to Enable Adoption of Processing in Memory
Potential Barriers to Adoption of PIM

1. **Applications & software** for PIM

2. Ease of **programming** (interfaces and compiler/HW support)

3. **System** and **security** support: coherence, synchronization, virtual memory, isolation, communication interfaces, ...

4. **Runtime** and **compilation** systems for adaptive scheduling, data mapping, access/sharing control, ...

5. **Infrastructures** to assess benefits and feasibility

All can be solved with change of mindset
We Need to Revisit the Entire Stack

We can get there step by step
Adoption: How to Keep It Simple?

Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoungh Choi,
"PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture"
[Slides (pdf)] [Lightning Session Slides (pdf)]
Adoption: How to Maintain Coherence? (I)

- Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu,

"LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory"

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand†, Saugata Ghose†, Minesh Patel†, Hasan Hassan†‡, Brandon Lucia†, Kevin Hsieh†, Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu‡†

†Carnegie Mellon University *Samsung Semiconductor, Inc. §TOBB ETÜ ‡ETH Zürich
Challenge: Coherence for Hybrid CPU-PIM Apps

The graph compares the speedup of various applications using different coherence models and PIM configurations.

- **Components**: arXiv, Gnutella, Enron, IMDB, GMean
- **Performance Models**: Traditional coherence, CPU-only, FG, CG, NC, LazyPIM, Ideal-PIM

The graph shows that traditional coherence and CPU-only configurations have lower speedup compared to other models. The Ideal-PIM model appears to offer the highest speedup in most cases, indicating its potential for improved performance.

No coherence overhead is observed in the graph for the Ideal-PIM model, suggesting it may offer significant benefits in terms of performance and efficiency.
Adoption: How to Maintain Coherence? (II)

- Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, Hongzhong Zheng, and Onur Mutlu,

"CoNDA: Efficient Cache Coherence Support for Near-Data Accelerators"

CoNDA: Efficient Cache Coherence Support for Near-Data Accelerators

Amirali Boroumand†
Brandon Lucia†
Saugata Ghose†
Rachata Ausavarunngirun†‡
Nastaran Hajinazar○†
Krishna T. Malladi§
Hasan Hassan‡
Kevin Hsieh†
Hongzhong Zheng§
Onur Mutlu*†

†Carnegie Mellon University
○Simon Fraser University
‡ETH Zürich
§KMUTNB
§Samsung Semiconductor, Inc.

SAFARI
Adoption: How to Support **Synchronization**

[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Talk Video (21 minutes)]
[Short Talk Video (7 minutes)]

SynCron: Efficient Synchronization Support for Near-Data-Processing Architectures

Christina Giannoula‡ ‡ Nandita Vijaykumar*‡ Nikela Papadopoulou‡ Vasileios Karakostas‡ Ivan Fernandez§‡
Juan Gómez-Luna‡ Lois Orosa‡ Nectarios Koziris‡ Georgios Goumas‡ Onur Mutlu‡

†National Technical University of Athens ‡ETH Zürich *University of Toronto §University of Malaga
Adoption: How to Support Virtual Memory?

Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation

Kevin Hsieh† Samira Khan‡ Nandita Vijaykumar† Kevin K. Chang† Amirali Boroumand† Saugata Ghose† Onur Mutlu§†

†Carnegie Mellon University ‡University of Virginia §ETH Zürich
Eliminating the Adoption Barriers

Processing-in-Memory in the Real World
Processing-in-Memory Landscape Today

This does not include many experimental chips and startups.
Real PIM Tutorials [ISCA’23, ASPLOS’23, HPCA’23]

- June, March, Feb: Lectures + Hands-on labs + Invited talks

Real-world Processing-in-Memory Systems for Modern Workloads

Tutorial Description

Processing-in-Memory (PIM) is a computing paradigm that aims at overcoming the data movement bottleneck (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement between memory units and compute units) by making memory compute-capable.

Explored over several decades since the 1960s, PIM systems are becoming a reality with the advent of the first commercial products and prototypes.

A number of startups (e.g., UP MEM, Neuroblade) are already commercializing real PIM hardware, each with its own design approach and target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two years. Most of these architectures have in common that they place compute units near the memory arrays. This type of PIM is called processing near memory (PNM).

2,560-DPU Processing-in-Memory System

PIM can provide large improvements in both performance and energy consumption for many modern applications, thereby enabling a commercially viable way of dealing with huge amounts of data that is bottlenecking our computing systems. Yet, it is critical to (1) study and understand the characteristics that make a workload suitable for a PIM architecture, (2) propose optimization strategies for PIM kernels, and (3) develop programming frameworks and tools that can lower the learning curve and ease the adoption of PIM.

This tutorial focuses on the latest advances in PIM technology, workload characterization for PIM, and programming and optimizing PIM kernels. We will (1) provide an introduction to PIM and taxonomy of PIM systems, (2) give an overview and a rigorous analysis of existing real-world PIM hardware, (3) conduct hand-on labs about important workloads (machine learning, sparse linear algebra, bioinformatics, etc.) using real PIM systems, and (4) shed light on how to improve future PIM systems for such workloads.

https://events.safari.ethz.ch/isca-pim-tutorial/
Real PIM Tutorial [ISCA 2023]

June 18: Lectures + Hands-on labs + Invited talks

ISCA 2023 Real-World PIM Tutorial
Sunday, June 18, Orlando, Florida

Organizers: Juan Gómez Luna, Onur Mutlu, Ataberk Olgun

Program:
- Overview PIM | PNM | UPMEM PIM | PNM for neural networks | PNM for recommender systems | PNM for ML workloads | How to enable PIM? | PUM prototypes
- Hands-on Labs: Benchmarking | Accelerating real-world workloads

Tutorial Materials

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:55am-9:00am</td>
<td>Dr. Juan Gómez Luna</td>
<td>Welcome & Agenda</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>9:00am-10:20am</td>
<td>Prof. Onur Mutlu</td>
<td>Memory-Centric Computing</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>10:20am-11:00am</td>
<td>Dr. Juan Gómez Luna</td>
<td>Processing-Near-Memory: Real PNM Architectures / Programming General-purpose PIM</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>11:20am-11:50am</td>
<td>Prof. Izzat El Hajj</td>
<td>High-throughput Sequence Alignment using Real Processing-in-Memory Systems</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>11:50am-12:30pm</td>
<td>Dr. Christina Giannoulia</td>
<td>SparseP: Towards Efficient Sparse Matrix Vector Multiplication for Real Processing-In-Memory Systems</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>2:00pm-2:45pm</td>
<td>Dr. Sukhan Lee</td>
<td>Introducing Real-world HBM-PIM Powered System for Memory-bound Applications</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>2:45pm-3:30pm</td>
<td>Dr. Juan Gómez Luna / Ataberk Olgun</td>
<td>Processing-Using-Memory: Exploiting the Analog Operational Properties of Memory Components / PUM Prototypes: PiDRAM</td>
<td>[PDF] [PPT] [PPT]</td>
</tr>
<tr>
<td>4:00pm-4:40pm</td>
<td>Dr. Juan Gómez Luna</td>
<td>Accelerating Modern Workloads on a General-purpose PIM System</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>4:40pm-5:20pm</td>
<td>Dr. Juan Gómez Luna</td>
<td>Adoption Issues: How to Enable PIM?</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>5:20pm-5:30pm</td>
<td>Dr. Juan Gómez Luna</td>
<td>Hands-on Lab: Programming and Understanding a Real Processing-in-Memory Architecture</td>
<td>[Handout] [PDF] [PPT]</td>
</tr>
</tbody>
</table>

Real-world Processing-in-Memory Systems for Modern Workloads

https://www.youtube.com/live/GIb5EgSrWko?feature=share

https://events.safari.ethz.ch/isca-pim-tutorial/
Real PIM Tutorial [ASPLOS 2023]

- **March 26: Lectures + Hands-on labs + Invited talks**

 ![Real-world Processing-in-Memory Systems for Modern Workloads](image)

 Table of Contents
 - Real-world Processing-in-Memory Systems for Modern Workloads
 - Architecture
 - Algorithms & Applications
 - Challenges
 - Conclusion

 Tutorial Description
 Processing-in-Memory (PIM) is a computing paradigm that aims at overcoming the data movement bottleneck (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement between memory units and compute units) by making memory compute-capable.

 Explained over several decades since the 1960s, PIM systems are becoming a reality with the advent of the first commercial products and prototypes.

 A number of startups (e.g., UPNEM, Neuroblade) are already commercializing real PIM hardware, each with its own design approach and target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two years. Most of these architectures have in common that they place compute units near the memory arrays. This type of PIM is called processing near memory (PNM).

 2,560-DPU Processing-in-Memory System
 PIM can provide large improvements in both performance and energy consumption for many modern applications, thereby enabling a commercially viable way of dealing with huge amounts of data that is bottlenecking our computing systems. Yet, it is critical to (1) study and understand the characteristics that make a workload suitable for a PIM architecture, (2) ensure satisfactory statistics for DMA and MM, and (3) accelerate.

 ![Real-world Processing-in-Memory Systems for Modern Workloads](image)

 Real-world Processing-in-Memory Systems for Modern Workloads

 Dr. Juan Gómez Luna
 Professor Onur Mutlu
 ETH Zurich
 Sunday, March 26, 2023

 ASPLoS 2023 Tutorial
 Real-world Processing-in-Memory Systems for Modern Workloads

 Onur Mutlu Lectures
 - Memory-Centric Computing
 - Processing-Near-Memory: Real PNM Architectures Programming General-purpose PIM
 - Processing in Memory in the Wild
 - Processing-Using-Memory: Exploiting the Analog Operational Properties of Memory Components
 - Adoption issues: How to enable PIM? Accelerating Modern Workloads on a General-purpose PIM System
 - System Architecture and Software Stack for GDDR6-AIM
 - Hands-on Lab: Programming and Understanding a Real Processing-in-Memory Architecture

 ![Real-world Processing-in-Memory Systems for Modern Workloads](image)

 Real-world Processing-in-Memory Systems for Modern Workloads

 Dr. Juan Gómez Luna
 Professor Onur Mutlu
 ETH Zurich
 Sunday, March 26, 2023

 ASPLoS 2023 Tutorial
 Real-world Processing-in-Memory Systems for Modern Workloads

 Onur Mutlu Lectures
 - Memory-Centric Computing
 - Processing-Near-Memory: Real PNM Architectures Programming General-purpose PIM
 - Processing in Memory in the Wild
 - Processing-Using-Memory: Exploiting the Analog Operational Properties of Memory Components
 - Adoption issues: How to enable PIM? Accelerating Modern Workloads on a General-purpose PIM System
 - System Architecture and Software Stack for GDDR6-AIM
 - Hands-on Lab: Programming and Understanding a Real Processing-in-Memory Architecture

 https://events.safari.ethz.ch/asplos-pim-tutorial/

 https://www.youtube.com/watch?v=oYCaLcT0Kmo
Real PIM Tutorial [HPCA 2023]

- February 26: Lectures + Hands-on labs + Invited Talks

[Image of the Real PIM Tutorial schedule]

Goal: Processing Inside Memory

- Many questions ... How do we design the:
 - compute-capable memory & controllers?
 - processors & communication units?
 - software & hardware interfaces?
 - system software, compilers, languages?
 - algorithms & theoretical foundations?

[Image of a video on processing inside memory]

https://www.youtube.com/watch?v=f5-nT1tbz5w

https://events.safari.ethz.ch/real-pim-tutorial/
Upcoming Real PIM Tutorial [MICRO 2023]

- **October 29**: Lectures + Hands-on labs + Invited talks

Real-world Processing-in-Memory Systems for Modern Workloads

Tutorial Description

Processing-in-Memory (PIM) is a computing paradigm that aims at overcoming the data movement bottleneck (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement between memory units and compute units) by making memory compute-capable.

Explored over several decades since the 1990s, PIM systems are becoming reality with the advent of the first commercial products and prototypes.

A number of startups (e.g., UPMEM, Neuromedia) are already commercializing real PIM hardware, each with its own design approach and target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last few years. Most of these architectures have in common that they place compute units near the memory arrays. This type of PIM is called processing near memory (PNM).

PIM can provide large improvements in both performance and energy consumption for many modern applications, thereby enabling a commercially viable way of dealing with huge amounts of data that is better accessed by our computing systems. Yet, it is critical to (1) study and understand the characteristics that make a workload suitable for a PIM architecture, (2) propose optimization strategies for PM kernels, and (3) develop programming frameworks and tools that can lower the learning curve and ease the adoption of PIM.

This tutorial focuses on the latest advances in PIM technology, workload characterization for PIM, and programming and optimizing PIM kernels. We will (1) provide an introduction to PIM and taxonomy of PIM systems, (2) give an overview and a rigorous analysis of existing real-world PIM hardware, (3) conduct hands-on labs about important workloads (machine learning, sparse linear algebra, bioinformation, etc.) using real PIM systems, and (4) shed light on how to improve future PIM systems for such workloads.

Agenda (Tentative, October 29, 2023)

- **Lectures**
 1. Introduction: PIM as a paradigm to overcome the data movement bottleneck.
 2. PIM taxonomy: PNM (processing near memory) and PUM (processing using memory).
 3. General-purpose PNM: UPMEM PIM.
 4. PNM for neural networks: Samsung HBM-PIM, SK Hynix AIM.
 5. PNM for recommender systems: Samsung AxDIMM, Alibaba PNM.
 6. PUM prototypes: PRIDAM, SRAM-based PUM, Flash-based PUM.
 7. Other approaches: Neuroblade, Mythic.
 8. Adoption issues: How to enable PIM?
 9. Hands-on labs: Programming a real PIM system.

https://www.youtube.com/live/ohUooNSIxEQ
https://events.safari.ethz.ch/micro-pim-tutorial
UPMEM Processing-in-DRAM Engine (2019)

- Processing in DRAM Engine
- Includes **standard DIMM modules**, with a **large number of DPU processors** combined with DRAM chips.

- Replaces **standard** DIMMs
 - DDR4 R-DIMM modules
 - 8GB+128 DPUs (16 PIM chips)
 - Standard 2x-nm DRAM process
 - **Large amounts of** compute & memory bandwidth

UPMEM Memory Modules

- E19: 8 chips DIMM (1 rank). DPUs @ 267 MHz
- P21: 16 chips DIMM (2 ranks). DPUs @ 350 MHz
Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture

JUAN GÓMEZ-LUNA, ETH Zurich, Switzerland
IZZAT EL HAJI, American University of Beirut, Lebanon
IVAN FERNANDEZ, ETH Zurich and University of Malaga, Spain
CHRISTINA GIANNOLA, ETH Zurich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Zurich, Switzerland
ONUR MUTLU, ETH Zurich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a significant overhead in terms of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is insufficient to amortize the cost of main memory access. Fundamentally unlocking this data movement bottleneck requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM architecture, motivated by the emergence of new 3D-stacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulations or, at best, with simplified hardware prototypes. In contrast, the UPNEM company has designed and manufactured the first publicly available real-world PIM architecture. The UPNEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called DRAM Processing Units (PUs), integrated in the same chip.

This paper presents the first comprehensive analysis of the first publicly available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPNEM-board PIM system using microbenchmarks across various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present PIM (Processing-in-Memory) benchmarks, a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra, databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we identify as memory-bound. We evaluate the performance and scaling characteristics of PIM benchmarks on the UPNEM PIM architecture, and compare their performance and energy consumption to their state-of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPNEM-based PIM systems with 140 and 2,560 PUs provides new insights about suitability of different workloads to the PIM system, programming recommendations for software designers, and suggestions and hints for hardware and architecture designers of future PIM systems.

More on the UPMEM PIM System

https://www.youtube.com/watch?v=Sscy1Wrr22A&list=PL5Q2soXY2ZI9xidyIgBxUz7xRPS-wisBN&index=26
Experimental Analysis of the UPMEM PIM Engine

Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture

JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland
IZZAT EL HAJJ, American University of Beirut, Lebanon
IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain
CHRISTINA GIANNOLA, ETH Zürich, Switzerland and NTUA, Greece
GERALDO F. OLIVEIRA, ETH Zürich, Switzerland
ONUR MUTLU, ETH Zürich, Switzerland

Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a significant overhead in terms of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data movement bottleneck requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as processing-in-memory (PIM).

Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-stacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available real-world PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip.

This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present PrIM (Processing-In-Memory benchmarks), a benchmark suite of 16 workloads from different application domains (e.g., dense/sparse linear algebra, databases, data analytics, graph processing, neural networks, bioinformatics, image processing), which we identify as memory-bound. We evaluate the performance and scaling characteristics of PrIM benchmarks on the UPMEM PIM architecture, and compare their performance and energy consumption to their state-of-the-art CPU and GPU counterparts. Our extensive evaluation conducted on two real UPMEM-based PIM systems with 640 and 2,556 DPUs provides new insights about suitability of different workloads to the PIM system, programming recommendations for software designers, and suggestions and hints for hardware and architecture designers of future PIM systems.

Understanding a Modern Processing-in-Memory Architecture:
Benchmarking and Experimental Characterization

Juan Gómez Luna, Izzat El Hajj,
Ivan Fernandez, Christina Giannoula,
Geraldo F. Oliveira, Onur Mutlu

https://github.com/CMU-SAFARI/prim-benchmarks
Recent SRC TECHCON Presentation

- Dr. Juan Gomez-Luna
 - Benchmarking Memory-Centric Computing Systems: Analysis of Real Processing-in-Memory Hardware
 - Based on two major works

Benchmarking Memory-Centric Computing Systems: Analysis of Real Processing-In-Memory Hardware

Year: 2021, Pages: 1-7
DOI Bookmark: 10.1109/IGSC54211.2021.9651614

Authors
Juan Gómez-Luna, ETH Zürich
Izzat El Hajj, American University of Beirut
Ivan Fernandez, University of Malaga
Christina Giannoula, National Technical University of Athens
Geraldo F. Oliveira, ETH Zürich
Onur Mutlu, ETH Zürich

https://www.youtube.com/watch?v=nphV36SrySA
The UPMEM PIM architecture is fundamentally compute bound. As a result, the most suitable workloads are memory-bound.

The throughput saturation point is as low as \(\frac{1}{4} \) OP/B, i.e., 1 integer addition per every 32-bit element fetched.
Key Takeaway 2

The most well-suited workloads for the UPMEM PIM architecture use no arithmetic operations or use only simple operations (e.g., bitwise operations and integer addition/subtraction).

Key Takeaway 2

The most well-suited workloads for the UPMEM PIM architecture use no arithmetic operations or use only simple operations (e.g., bitwise operations and integer addition/subtraction).

Table 4: Evaluation of CPU, GPU, and UPMEM-based PIM Systems

<table>
<thead>
<tr>
<th>System</th>
<th>Process Node</th>
<th>Total Cores</th>
<th>Frequency</th>
<th>Peak Performance</th>
<th>Capacity</th>
<th>Total Bandwidth</th>
<th>TDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intel Xeon E3-1223 v6 CPU [241]</td>
<td>14 nm</td>
<td>4 (8 threads)</td>
<td>3.3 GHz</td>
<td>20.4 GFLOPS*</td>
<td>22 GB</td>
<td>37.5 Gbps</td>
<td>73 W</td>
</tr>
<tr>
<td>NVIDIA Titan V GPU [277]</td>
<td>14 nm</td>
<td>80 (5,120 SIMD lanes)</td>
<td>1.2 GHz</td>
<td>12,288 GFLOPS</td>
<td>12 GB</td>
<td>662.8 Gbps</td>
<td>256 W</td>
</tr>
<tr>
<td>2,556-DPU PIM System</td>
<td>2x nm</td>
<td>2,556*</td>
<td>350 MHz</td>
<td>894.6 GOPS</td>
<td>139.7 GB</td>
<td>1.7 TB/s</td>
<td>354 W^</td>
</tr>
<tr>
<td>640-DPU PIM System</td>
<td>2x nm</td>
<td>640</td>
<td>267 MHz</td>
<td>179.9 GOPS</td>
<td>40 GB</td>
<td>333.75 GB/s</td>
<td>96 W</td>
</tr>
</tbody>
</table>

*Estimated GFLOPS = 5.5 GFLOPs x 4 cores x 2 instructions per cycle.

^Estimated TDP = Total power consumed x 1.2 W/chip [199].

Diagram

The diagram illustrates the speedup over CPU for different workloads across various systems. The x-axis represents different categories of workloads: More PIM-suitable (1) and Less PIM-suitable (2). The y-axis shows the speedup over CPU (log scale). The lines represent different systems: CPU, GPU, 640 DPUs, and 2556 DPUs. The diagram emphasizes the performance gains for specific workloads, particularly those that are more PIM-suitable.
Key Takeaway 3

The most well-suited workloads for the UPMEM PIM architecture require little or no communication across DPUs (inter-DPU communication).
Understanding a Modern Processing-in-Memory Architecture: Benchmarking and Experimental Characterization

Juan Gómez Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F. Oliveira, Onur Mutlu

el1goluj@gmail.com

https://github.com/CMU-SAFARI/prim-benchmarks
UPMEM PIM System Summary & Analysis

- Juan Gomez-Luna, Izzat El Hajj, Ivan Fernandez, Christina Giannoula, Geraldo F. Oliveira, and Onur Mutlu,
 "Benchmarking Memory-Centric Computing Systems: Analysis of Real Processing-in-Memory Hardware"
 [arXiv version]
 [PrIM Benchmarks Source Code]
 [Slides (pptx) (pdf)]
 [Talk Video (37 minutes)]
 [Lightning Talk Video (3 minutes)]

Benchmarking Memory-Centric Computing Systems: Analysis of Real Processing-in-Memory Hardware

Juan Gómez-Luna Izzat El Hajj Ivan Fernandez Christina Giannoula Geraldo F. Oliveira Onur Mutlu
ETH Zürich American University of Beirut University of Malaga National Technical University of Athens ETH Zürich ETH Zürich
PrIM Benchmarks: Application Domains

<table>
<thead>
<tr>
<th>Domain</th>
<th>Benchmark</th>
<th>Short name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense linear algebra</td>
<td>Vector Addition</td>
<td>VA</td>
</tr>
<tr>
<td></td>
<td>Matrix-Vector Multiply</td>
<td>GEMV</td>
</tr>
<tr>
<td>Sparse linear algebra</td>
<td>Sparse Matrix-Vector Multiply</td>
<td>SpMV</td>
</tr>
<tr>
<td>Databases</td>
<td>Select</td>
<td>SEL</td>
</tr>
<tr>
<td></td>
<td>Unique</td>
<td>UNI</td>
</tr>
<tr>
<td>Data analytics</td>
<td>Binary Search</td>
<td>BS</td>
</tr>
<tr>
<td></td>
<td>Time Series Analysis</td>
<td>TS</td>
</tr>
<tr>
<td>Graph processing</td>
<td>Breadth-First Search</td>
<td>BFS</td>
</tr>
<tr>
<td>Neural networks</td>
<td>Multilayer Perceptron</td>
<td>MLP</td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>Needleman-Wunsch</td>
<td>NW</td>
</tr>
<tr>
<td>Image processing</td>
<td>Image histogram (short)</td>
<td>HST-S</td>
</tr>
<tr>
<td></td>
<td>Image histogram (large)</td>
<td>HST-L</td>
</tr>
<tr>
<td>Parallel primitives</td>
<td>Reduction</td>
<td>RED</td>
</tr>
<tr>
<td></td>
<td>Prefix sum (scan-scan-add)</td>
<td>SCAN-SSA</td>
</tr>
<tr>
<td></td>
<td>Prefix sum (reduce-scan-scan)</td>
<td>SCAN-RSS</td>
</tr>
<tr>
<td></td>
<td>Matrix transposition</td>
<td>TRNS</td>
</tr>
</tbody>
</table>
PrIM Benchmarks are Open Source

• All microbenchmarks, benchmarks, and scripts
• https://github.com/CMU-SAFARI/prim-benchmarks

PrIM (Processing-In-Memory Benchmarks)

PrIM is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate, analyze, and characterize the first publicly-available real-world processing-in-memory (PIM) architecture, the UPMEM PIM architecture. The UPMEM PIM architecture combines traditional DRAM memory arrays with general-purpose in-order cores, called DRAM Processing Units (DPUs), integrated in the same chip.

PrIM provides a common set of workloads to evaluate the UPMEM PIM architecture with and can be useful for programming, architecture and system researchers all alike to improve multiple aspects of future PIM hardware and software. The workloads have different characteristics, exhibiting heterogeneity in their memory access patterns, operations and data types, and communication patterns. This repository also contains baseline CPU and GPU implementations of PrIM benchmarks for comparison purposes.

PrIM also includes a set of microbenchmarks can be used to assess various architecture limits such as compute throughput and memory bandwidth.
Understanding a Modern PIM Architecture

Benchmarking a New Paradigm: Experimental Analysis and Characterization of a Real Processing-in-Memory System

JUAN GÓMEZ-LUNA\(^1\), IZZAT EL HAJJ\(^2\), IVAN FERNANDEZ\(^1,3\), CHRISTINA GIANNOULA\(^1,4\), GERALDO F. OLIVEIRA\(^1\), AND ONUR MUTLU\(^1\)

\(^1\)ETH Zürich
\(^2\)American University of Beirut
\(^3\)University of Malaga
\(^4\)National Technical University of Athens

Corresponding author: Juan Gómez-Luna (e-mail: juang@ethz.ch).

https://github.com/CMU-SAFARI/prim-benchmarks
More on Analysis of the UPMEM PIM Engine

Inter-DPU Communication

- There is no direct communication channel between DPUs

- Inter-DPU communication takes place via the host CPU using CPU-DPU and DPU-CPU transfers

- Example communication patterns:
 - Merging of partial results to obtain the final result
 - Only DPU-CPU transfers
 - Redistribution of intermediate results for further computation
 - DPU-CPU transfers and CPU-DPU transfers

SAFARI Live Seminar: Understanding a Modern Processing-in-Memory Architecture
1,868 views • Streamed live on Jul 12, 2021

Onur Mutlu Lectures
17.6K subscribers

Talk Title: Understanding a Modern Processing-in-Memory Architecture: Benchmarking and Experimental Characterization
Dr. Juan Gómez-Luna, SAFARI Research Group, D-ITET, ETH Zurich

https://www.youtube.com/watch?v=D8Hjy2iU9I4&list=PL5Q2soXY2Zj_tOTAYm--dYByNPL7JhwR9
More on Analysis of the UPMEM PIM Engine

Data Movement in Computing Systems

- Data movement dominates performance and is a major system energy bottleneck
- Total system energy: data movement accounts for
 - 62% in consumer applications\(^a\{68}{69},\)
 - 40% in scientific applications\(^b\)
 - 35% in mobile applications\(^b\)

\(^a\) Bouyoucos et al., “Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
\(^b\) Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” ISWC 2013
\(^b\) Pandey and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” ISWC 2014

Understanding a Modern Processing-in-Memory Arch: Benchmarking & Experimental Characterization; 21m

3,482 views • Premiered Jul 25, 2021

https://www.youtube.com/watch?v=Pp9jSU2b9oM&list=PL5Q2soXY2Zi8_VVChACnON4sfh2bJ5IrD&index=159
ML Training on a Real PIM System

Machine Learning Training on a Real Processing-in-Memory System

Juan Gómez-Luna¹ Yuxin Guo¹ Sylvan Brocard² Julien Legriel²
Remy Cimadomo² Geraldo F. Oliveira¹ Gagandeep Singh¹ Onur Mutlu¹
¹ETH Zürich ²UPMEM

An Experimental Evaluation of Machine Learning Training on a Real Processing-in-Memory System

Juan Gómez-Luna¹ Yuxin Guo¹ Sylvan Brocard² Julien Legriel²
Remy Cimadomo² Geraldo F. Oliveira¹ Gagandeep Singh¹ Onur Mutlu¹
¹ETH Zürich ²UPMEM

https://www.youtube.com/watch?v=qeukNs5XI3g&t=11226s
ML Training on a Real PIM System

• Need to optimize data representation
 (1) fixed-point
 (2) quantization
 (3) hybrid precision

• Use lookup tables (LUTs) to implement complex functions (e.g., sigmoid)

• Optimize data placement & layout for streaming

• Large speedups: 2.8X/27X vs. CPU, 1.3x/3.2x vs. GPU
ML Training on Real PIM Talk Video

Comparison to CPU and GPU (III)

- Decision tree and K-means with Criteo 1TB dataset

- PIM version of DTR is 62x faster than the CPU version and 4.5x faster than the GPU version
- PIM version of KME is 2.7x faster than the CPU version and 3.2x faster than the GPU version

Machine Learning Training on Memory-centric Computing Systems, Juan Gómez-Luna for ISPASS 2023

https://www.youtube.com/watch?v=60pkaI5AeM4
ML Training on Real PIM Systems

[arXiv version, 16 July 2022.]
[PIM-ML Source Code]

Best paper session.

An Experimental Evaluation of Machine Learning Training on a Real Processing-in-Memory System

Juan Gómez-Luna¹ Yuxin Guo¹ Sylvan Brocard² Julien Legriel² Remy Cimadomo² Geraldo F. Oliveira¹ Gagandeep Singh¹ Onur Mutlu¹

¹ETH Zürich ²UPMEM

https://github.com/CMU-SAFARI/pim-ml

SAFARI

SpMV Multiplication on Real PIM Systems

- Appears at SIGMETRICS 2022

SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Systems

CHRISTINA GIANNOUNLA, ETH Zürich, Switzerland and National Technical University of Athens, Greece
IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain
JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland
NECTARIONS KOZIRIS, National Technical University of Athens, Greece
GEORGIOS GOUMAS, National Technical University of Athens, Greece
ONUR MUTLU, ETH Zürich, Switzerland

https://github.com/CMU-SAFARI/SparseP
https://www.youtube.com/watch?v=5kaOsJKlGrE
Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures

Christina Giannoula
Ivan Fernandez, Juan Gomez-Luna,
Nectarios Koziris, Georgios Goumas, Onur Mutlu
SparseP: Key Contributions

1. **Efficient SpMV kernels** for current & future PIM systems
 - SparseP library = 25 SpMV kernels
 - Compression, data types, data partitioning, synchronization, load balancing

SparseP is Open-Source
SparseP: https://github.com/CMU-SAFARI/SparseP

2. **Comprehensive analysis** of SpMV on the first commercially-available real PIM system
 - 26 sparse matrices
 - Comparisons to state-of-the-art CPU and GPU systems
 - Recommendations for software, system and hardware designers

Recommendations for Architects and Programmers
SparseP Talk Video

Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures

Christina Giannoula
Ivan Fernandez, Juan Gomez-Luna, Nectarios Koziris, Georgios Goumas, Onur Mutlu

Processing-in-Memory Course: Lecture 11: SpMV on a Real PIM Architecture - Spring 2022

https://www.youtube.com/watch?v=5kaOsJKIGrE
More on SparseP

Christina Giannoula, Ivan Fernandez, Juan Gomez-Luna, Nectarios Koziris, Georgios Goumas, and Onur Mutlu,

"SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Architectures"

[Extended arXiv Version]
[Abstract]
[Slides (pptx) (pdf)]
[Long Talk Slides (pptx) (pdf)]
[SparseP Source Code]
[Talk Video (16 minutes)]
[Long Talk Video (55 minutes)]

SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Systems

CHRISTINA GIANNOULA, ETH Zürich, Switzerland and National Technical University of Athens, Greece
IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain
JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland
NECTARIO KOZIRIS, National Technical University of Athens, Greece
GEORGIOS GOUMAS, National Technical University of Athens, Greece
ONUR MUTLU, ETH Zürich, Switzerland

https://github.com/CMU-SAFARI/SparseP

SpMV Multiplication on Real PIM Systems

- Appears at SIGMETRICS 2022

SparseP: Towards Efficient Sparse Matrix Vector Multiplication on Real Processing-In-Memory Systems

CHRISTINA GIANNOUNA, ETH Zürich, Switzerland and National Technical University of Athens, Greece

IVAN FERNANDEZ, ETH Zürich, Switzerland and University of Malaga, Spain

JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland

NECTARIOS KOZIRIS, National Technical University of Athens, Greece

GEORGIOS GOUMAS, National Technical University of Athens, Greece

ONUR MUTLU, ETH Zürich, Switzerland

https://github.com/CMU-SAFARI/SparseP
https://www.youtube.com/watch?v=5kaOsJKlGrE
Transcendental Functions on Real PIM Systems

- Maurus Item, Juan Gómez Luna, Yuxin Guo, Geraldo F. Oliveira, Mohammad Sadrosadati, and Onur Mutlu,

"TransPimLib: Efficient Transcendental Functions for Processing-in-Memory Systems"
[arXiv version]
[Slides (pptx) (pdf)]
[TransPimLib Source Code]
[Talk Video (17 minutes)]

TransPimLib: Efficient Transcendental Functions for Processing-in-Memory Systems

Maurus Item
Juan Gómez-Luna
Yuxin Guo
Geraldo F. Oliveira
Mohammad Sadrosadati
Onur Mutlu
ETH Zürich

https://github.com/CMU-SAFARI/transpimlib

SAFARI

256
Sequence Alignment on Real PIM Systems

- Safaa Diab, Amir Nassereldine, Mohammed Alser, Juan Gómez Luna, Onur Mutlu, and Izzat El Hajj,

"A Framework for High-throughput Sequence Alignment using Real Processing-in-Memory Systems"

[Online link at Bioinformatics Journal]
[arXiv preprint]
[AiM Source Code]

A Framework for High-throughput Sequence Alignment using Real Processing-in-Memory Systems

Safaa Diab\(^1\) Amir Nassereldine\(^1\) Mohammed Alser\(^2\) Juan Gómez Luna\(^2\) Onur Mutlu\(^2\) Izzat El Hajj\(^1\)

\(^1\)American University of Beirut \(^2\)ETH Zürich

https://github.com/CMU-SAFARI/alignment-in-memory

SAFARI

Sequence alignment on traditional systems is limited by the memory bandwidth bottleneck.

- **Processing-in-memory (PIM)** overcomes this bottleneck by placing cores near the memory.

- Our framework, **Alignment-in-Memory (AIM)**, is a PIM framework that supports multiple alignment algorithms (NW, SWG, GenASM, WFA).
 - Implemented on UPMEM, the first real PIM system.

- Results show **substantial speedups over both CPUs (1.8X-28X) and GPUs (1.2X-2.7X)**.

- AIM is available at:
Samsung Develops Industry’s First High Bandwidth Memory with AI Processing Power

The new architecture will deliver over twice the system performance and reduce energy consumption by more than 70%

Samsung Electronics, the world leader in advanced memory technology, today announced that it has developed the industry’s first High Bandwidth Memory (HBM) integrated with artificial intelligence (AI) processing power — the HBM-PIM. The new processing-in-memory (PIM) architecture brings powerful AI computing capabilities inside high-performance memory, to accelerate large-scale processing in data centers, high performance computing (HPC) systems and AI-enabled mobile applications.

Kwangil Park, senior vice president of Memory Product Planning at Samsung Electronics stated, “Our groundbreaking HBM-PIM is the industry’s first programmable PIM solution tailored for diverse AI-driven workloads such as HPC, training and inference. We plan to build upon this breakthrough by further collaborating with AI solution providers for even more advanced PIM-powered applications.”

Samsung Function-in-Memory DRAM (2021)

- FIMDRAM based on HBM2

Chip Specification

- 128DQ / 8CH / 16 banks / BL4
- 32 PCU blocks (1 FIM block/2 banks)
- 1.2 TFLOPS (4H)
 - FP16 ADD / Multiply (MUL) / Multiply-Accumulate (MAC) / Multiply-and-Add (MAD)

25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable Computing Unit Using Bank-Level Parallelism, for Machine Learning Applications

Young-Cheon Kwon¹, Suk Han Lee¹, Jaein Lee¹, Sang-Hyuk Kwon¹, Je Min Ryu¹, Jong-Hil Son¹, Seonggil O¹, Hak-Soo Yu¹, Hassuk Lee¹, Soo Young Kim¹, Youngmin Cho¹, Jin Guk Kim¹, Jongyoon Choi¹, Hyeon-Sung Shin¹, Jin Kim¹, BengSeng Phua¹, HyungMin Kim¹, Myeong Jun Song¹, Ahn Choi¹, Daeho Kim¹, SooYoung Kim¹, Eun-Bong Kim¹, David Wang¹, Shinhueng Kang¹, Yuhwan Ro¹, Seungwoo Seo¹, JoonHo Song¹, Jaryoung Youn¹, Kyomin Sohn¹, Nam Sung Kim¹

¹Samsung Electronics, Hwasung, Korea
²Samsung Electronics, San Jose, CA
³Samsung Electronics, Suwon, Korea
Programmable Computing Unit

- Configuration of PCU block
 - Interface unit to control data flow
 - Execution unit to perform operations
 - Register group
 - 32 entries of CRF for instruction memory
 - 16 GRF for weight and accumulation
 - 16 SRF to store constants for MAC operations

[Block diagram of PCU in FIMDRAM]
Available instruction list for FIM operation

<table>
<thead>
<tr>
<th>Type</th>
<th>CMD</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floating Point</td>
<td>ADD</td>
<td>FP16 addition</td>
</tr>
<tr>
<td></td>
<td>MUL</td>
<td>FP16 multiplication</td>
</tr>
<tr>
<td></td>
<td>MAC</td>
<td>FP16 multiply-accumulate</td>
</tr>
<tr>
<td></td>
<td>MAD</td>
<td>FP16 multiply and add</td>
</tr>
<tr>
<td>Data Path</td>
<td>MOVE</td>
<td>Load or store data</td>
</tr>
<tr>
<td></td>
<td>FILL</td>
<td>Copy data from bank to GRFs</td>
</tr>
<tr>
<td>Control Path</td>
<td>NOP</td>
<td>Do nothing</td>
</tr>
<tr>
<td></td>
<td>JUMP</td>
<td>Jump instruction</td>
</tr>
<tr>
<td></td>
<td>EXIT</td>
<td>Exit instruction</td>
</tr>
</tbody>
</table>
Chip Implementation

- Mixed design methodology to implement FIMDRAM
 - Full-custom + Digital RTL
Samsung AxDIMM (2021)

- DDRx-PIM
 - DLRM recommendation system

SK hynix Develops PIM, Next-Generation AI Accelerator

February 16, 2022

Seoul, February 16, 2022

SK hynix (or “the Company”, www.skhynix.com) announced on February 16 that it has developed PIM*, a next-generation memory chip with computing capabilities.

*PIM (Processing in Memory): A next-generation technology that provides a solution for data congestion issues for AI and big data by adding computational functions to semiconductor memory.

It has been generally accepted that memory chips store data and CPU or GPU, like human brain, process data. SK hynix, following its challenge to such notion and efforts to pursue innovation in the next-generation smart memory, has found a breakthrough solution with the development of the latest technology.

SK hynix plans to showcase its PIM development at the world’s most prestigious semiconductor conference, 2022 ISSCC*, in San Francisco at the end of this month. The company expects continued efforts for innovation of this technology to bring the memory-centric computing, in which semiconductor memory plays a central role, a step closer to the reality in devices such as smartphones.

*ISSCC: The International Solid-State Circuits Conference will be held virtually from Feb. 20 to Feb. 24 this year with a theme of “Intelligent Silicon for a Sustainable World”

For the first product that adopts the PIM technology, SK hynix has developed a sample of GDDR6-AIM (Accelerator in memory). The GDDR6-AIM adds computational functions to GDDR6 memory chips, which process data at 16Gbps. A combination of GDDR6-AIM with CPU or GPU instead of a typical DRAM makes certain computation speed 16 times faster. GDDR6-AIM is widely expected to be adopted for machine learning, high-performance computing, and big data computation and storage.

SK Hynix Accelerator-in-Memory (2022)

System Architecture and Software Stack for GDDR6-AiM

Yongkee Kwon and Chanwook Park
SK hynix inc.

ASPLOS 2023 Tutorial: Real-world Processing-in-Memory Systems for Modern Workloads

https://www.youtube.com/watch?v=oYCaLcT0Kmo
29.1 184QPS/W 64Mb/mm² 3D Logic-to-DRAM Hybrid Bonding with Process-Near-Memory Engine for Recommendation System

Dimin Niu¹, Shuangchen Li¹, Yuhao Wang¹, Wei Han¹, Zhe Zhang², Yijin Guan², Tianchan Guan³, Fei Sun¹, Fei Xue¹, Lide Duan¹, Yuanwei Fang¹, Hongzhong Zheng¹, Xiping Jiang⁴, Song Wang⁴, Fengguo Zuo⁴, Yubing Wang⁴, Bing Yu⁴, Qiwei Ren⁴, Yuan Xie¹
DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

GERALDO F. OLIVEIRA, ETH Zürich, Switzerland
JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland
LOIS OROSA, ETH Zürich, Switzerland
SAUGATA GHOSE, University of Illinois at Urbana-Champaign, USA
NANDITA VIJAYKUMAR, University of Toronto, Canada
IVAN FERNANDEZ, University of Malaga, Spain & ETH Zürich, Switzerland
MOHAMMAD SADROSADATI, Institute for Research in Fundamental Sciences (IPM), Iran & ETH Zürich, Switzerland
ONUR MUTLU, ETH Zürich, Switzerland

Data movement between the CPU and main memory is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems. Computer systems employ a range of techniques to reduce overheads tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such as Near-Data Processing (NDP), where some computation is moved close to memory. Prior NDP works investigate the root causes of data movement bottlenecks using different profiling methodologies and tools. However, there is still a lack of understanding about the key metrics that can identify different data movement bottlenecks and their relation to traditional and emerging data movement mitigation mechanisms. Our goal is to methodically identify potential sources of data movement over a broad set of applications and to comprehensively compare traditional compute-centric data movement mitigation techniques (e.g., caching and prefetching) to more memory-centric techniques (e.g., NDP), thereby developing a rigorous understanding of the best techniques to mitigate each source of data movement.

With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement. We develop the first systematic methodology to classify applications based on the sources contributing to data movement bottlenecks. From our large-scale characterization of 77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite (DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a particular application. We open-source DAMOV and the complete source code for our new characterization methodology at https://github.com/CMU-SAFARI/DAMOV.

When to Employ Near-Data Processing?

Mobile consumer workloads
(\text{GoogleWL}^2)

Graph processing
(Tesseract1)

Databases
(Polynesia5)

Neural networks
(\text{GoogleWL}^2)

Time series analysis
(\text{NATSA}^6)

DNA sequence mapping
(\text{GenASM}^3; \text{GRIM-Filter}^4)

...
Step 1: Application Profiling

- We analyze **345 applications** from distinct domains:
 - Graph Processing
 - Deep Neural Networks
 - Physics
 - High-Performance Computing
 - Genomics
 - Machine Learning
 - Databases
 - Data Reorganization
 - Image Processing
 - Map-Reduce
 - Benchmarking
 - Linear Algebra
 ...

SAFARI
Step 3: Memory Bottleneck Analysis

Six classes of data movement bottlenecks:

- each class ↔ data movement mitigation mechanism

Memory Bottleneck Class:

1a: DRAM Bandwidth
1b: DRAM Latency
1c: L1/L2 Cache Capacity
2a: L3 Cache Contention
2b: L1 Cache Capacity
2c: Compute-Bound
DAMOV is Open Source

- We open-source our **benchmark suite** and our **toolchain**

DAMOV

DAMOV-SIM

DAMOV Benchmarks

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

DAMOV is a benchmark suite and a methodical framework targeting the study of data movement bottlenecks in modern applications. It is intended to study new architectures, such as near-data processing. The DAMOV benchmark suite is the first open-source benchmark suite for main memory data movement-related studies, based on our systematic characterization methodology. This suite consists of 144 functions representing different sources of data movement bottlenecks and can be used as a baseline benchmark set for future data-motion mitigation research. The applications in the DAMOV benchmark suite belong to popular benchmark suites, including BWA, Chai, Darknet, GASE, Hardware Effects, Hashjoin, HPCC, HPCG, Ligra, PARSEC, Parboil, PolyBench, Phoenix, Rodinia, SPLASH-2, STREAM.
DAMOV is Open Source

• We open-source our benchmark suite and our toolchain

Get DAMOV at:
https://github.com/CMU-SAFARI/DAMOV

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

DAMOV is a benchmark suite and a methodical framework targeting the study of data movement bottlenecks in modern applications. It is intended to study new architectures, such as near-data processing.

The DAMOV benchmark suite is the first open-source benchmark suite for main memory data movement-related studies, based on our systematic characterization methodology. This suite consists of 144 functions representing different sources of data movement bottlenecks and can be used as a baseline benchmark set for future data-movement mitigation research. The applications in the DAMOV benchmark suite belong to popular benchmark suites, including BWA, Chai, Darknet, GASE, Hardware Effects, Hashjoin, HPCC, HPCG, Ligra, PARSEC, Parboil, PolyBench, Phoenix, Rodinia, SPLASH-2, STREAM.
More on DAMOV Analysis Methodology & Workloads

Step 3: Memory Bottleneck Classification (2/3)

- **Goal:** identify the specific sources of data movement bottlenecks

 - **Scalability Analysis:**
 - 1, 4, 16, 64, and 256 out-of-order/in-order host and NDP CPU cores
 - 3D-stacked memory as main memory

SAFARI Live Seminar: DAMOV: A New Methodology & Benchmark Suite for Data Movement Bottlenecks

https://www.youtube.com/watch?v=GWideVyo0nM&list=PL5Q2soXY2Zi_tOTAYm--dYByNPL7JhwR9&index=3
More on DAMOV Methods & Benchmarks

 [arXiv preprint]
 [IEEE Access version]
 [DAMOV Suite and Simulator Source Code]
 [SAFARI Live Seminar Video (2 hrs 40 mins)]
 [Short Talk Video (21 minutes)]

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

GERALDO F. OLIVEIRA, ETH Zürich, Switzerland
JUAN GÓMEZ-LUNA, ETH Zürich, Switzerland
LOIS OROSA, ETH Zürich, Switzerland
SAUGATA GHOSE, University of Illinois at Urbana–Champaign, USA
NANDITA VIJAYKUMAR, University of Toronto, Canada
IVAN FERNANDEZ, University of Malaga, Spain & ETH Zürich, Switzerland
MOHAMMAD SADROSADATI, ETH Zürich, Switzerland
ONUR MUTLU, ETH Zürich, Switzerland
Fundamentally Energy-Efficient (Data-Centric) Computing Architectures
Challenge and Opportunity for Future

Fundamentally High-Performance (Data-Centric) Computing Architectures
Challenge and Opportunity for Future Computing Architectures with Minimal Data Movement
Concluding Remarks
Concluding Remarks

- We must design systems to be balanced, high-performance, energy-efficient (all at the same time) → intelligent systems
 - Data-centric, data-driven, data-aware

- Enable computation capability inside and close to memory

- This can
 - Lead to orders-of-magnitude improvements
 - Enable new applications & computing platforms
 - Enable better understanding of nature
 - ...

- Future of truly memory-centric computing is bright
 - We need to do research & design across the computing stack
Fundamentally Better Architectures

Data-centric

Data-driven

Data-aware
We Need to Revisit the Entire Stack

We can get there step by step
We Need to Exploit Good Principles

- Data-centric system design
- All components intelligent
- Better (cross-layer) communication, better interfaces
- Better-than-worst-case design
- Heterogeneity
- Flexibility, adaptability

Open minds
A Blueprint for Fundamentally Better Architectures

- Onur Mutlu,
 "Intelligent Architectures for Intelligent Computing Systems"
 Invited Paper in Proceedings of the Design, Automation, and Test in
 Europe Conference (DATE), Virtual, February 2021.
 [Slides (pptx) (pdf)]
 [IEDM Tutorial Slides (pptx) (pdf)]
 [Short DATE Talk Video (11 minutes)]
 [Longer IEDM Tutorial Video (1 hr 51 minutes)]

Intelligent Architectures for Intelligent Computing Systems

Onur Mutlu
ETH Zurich
omutlu@gmail.com
Funding Acknowledgments

- Alibaba, AMD, ASML, Google, Facebook, Hi-Silicon, HP Labs, Huawei, IBM, Intel, Microsoft, Nvidia, Oracle, Qualcomm, Rambus, Samsung, Seagate, VMware, Xilinx
- NSF
- NIH
- GSRC
- SRC
- CyLab
- EFCL
- SNSF

Thank you!
Acknowledgments

Think BIG, Aim HIGH!

https://safari.ethz.ch
Onur Mutlu’s SAFARI Research Group

Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://safari.ethz.ch/safari-newsletter-january-2021/

Think BIG, Aim HIGH!

https://safari.ethz.ch
SAFARI Newsletter December 2021 Edition

https://safari.ethz.ch/safari-newsletter-december-2021/

ETH Zürich
SAFARI Newsletter June 2023 Edition

https://safari.ethz.ch/safari-newsletter-june-2023/
SAFARI Introduction & Research

Computer architecture, HW/SW, systems, bioinformatics, security, memory

Think BIG, Aim HIGH!

SAFARI https://www.youtube.com/watch?v=mV2OuB2djEs
Referenced Papers, Talks, Artifacts

- All are available at

 https://people.inf.ethz.ch/omutlu/projects.htm
 https://www.youtube.com/onurmutlulectures
 https://github.com/CMU-SAFARI/
Open Source Tools: SAFARI GitHub

SAFARI Research Group at ETH Zurich and Carnegie Mellon University

Site for source code and tools distribution from SAFARI Research Group at ETH Zurich and Carnegie Mellon University.

241 followers ETH Zurich and Carnegie Mellon U... https://safari.ethz.ch/ omutlu@gmail.com

Pinned

- **ramulator** (Public)
 A Fast and Extensible DRAM Simulator, with built-in support for modeling many different DRAM technologies including DDRx, LPDDRx, GDDRx, WIOx, HBMx, and various academic proposals. Described in the...
 - C++
 - 426
 - 193

- **prim-benchmarks** (Public)
 PrIM (Processing-In-Memory benchmarks) is the first benchmark suite for a real-world processing-in-memory (PIM) architecture. PrIM is developed to evaluate, analyze, and characterize the first publi...
 - C
 - 86
 - 36

- **MQSim** (Public)
 MQSim is a fast and accurate simulator modeling the performance of modern multi-queue (MQ) SSDs as well as traditional SATA based SSDs. MQSim faithfully models new high-bandwidth protocol implement...
 - C++
 - 198
 - 119

- **rowhammer** (Public)
 - C
 - 206
 - 41

- **SparseP** (Public)
 SparseP is the first open-source Sparse Matrix Vector Multiplication (SpMV) software package for real-world Processing-In-Memory (PIM) architectures. SparseP is developed to evaluate and characteri...
 - C
 - 59
 - 11

- **SoftMC** (Public)
 SoftMC is an experimental FPGA-based memory controller design that can be used to develop tests for DDR3 SODIMMs using a C++ based API. The design, the interface, and its capabilities and limitatio...
 - Verilog
 - 101
 - 26

https://github.com/CMU-SAFAIR/
Special Research Sessions & Courses

- Special Session at ISVLSI 2022: 9 cutting-edge talks

https://www.youtube.com/watch?v=qeukNs5XI3g
Special Research Sessions & Courses (II)

- Special Session at ISVLSI 2022: 9 cutting-edge talks

https://www.youtube.com/playlist?list=PL5Q2soXY2Zi8KzG2CQYRNQOVD0GObnK
Comp Arch (Fall 2021)

- **Fall 2021 Edition:**
 - https://safari.ethz.ch/architecture/fall2021/doku.php?id=schedule

- **Fall 2020 Edition:**

- **Youtube Livestream (2021):**
 - https://www.youtube.com/watch?v=4yfkM_5EFg0&list=PL5Q2soXY2Zi-Mnk1PxjEIG32HAGILkTOF

- **Youtube Livestream (2020):**
 - https://www.youtube.com/watch?v=c3mPdZA-Fmc&list=PL5Q2soXY2Zi9xidyIgBxUz7xRPS-wisBN

- Master’s level course
 - Taken by Bachelor’s/Masters/PhD students
 - Cutting-edge research topics + fundamentals in Computer Architecture
 - 5 Simulator-based Lab Assignments
 - Potential research exploration
 - Many research readings

https://www.youtube.com/onurmutlulectures
DDCA (Spring 2022)

Spring 2022 Edition:
- https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule

Spring 2021 Edition:

Youtube Livestream (Spring 2022):
- https://www.youtube.com/watch?v=cpXdE3HwyK0&list=PL5Q2soXY2Zi97Ya5DEUpMpO2bbAoaG7c6

Youtube Livestream (Spring 2021):
- https://www.youtube.com/watch?v=LbCOEZY8yw4&list=PL5Q2soXY2Zi_uej3aY39YB5pfW4SJ7LIN

Bachelor’s course
- 2nd semester at ETH Zurich
- Rigorous introduction into “How Computers Work”
- Digital Design/Logic
- Computer Architecture
- 10 FPGA Lab Assignments

https://www.youtube.com/onurmutlulectures
Processing-in-Memory Course (Fall 2022)

- Short weekly lectures
- Hands-on projects

Data-Centric Architectures: Fundamentally Improving Performance and Energy (227-0085-37L)

Course Description
Data movement between the memory units and the compute units of current computing systems is a major performance and energy bottleneck. From large-scale servers to mobile devices, data movement costs dominate computation costs in terms of both performance and energy consumption. For example, data movement between the main memory and the processing cores accounts for 62% of the total system energy in consumer applications. As a result, the data movement bottleneck is a huge burden that greatly limits the energy efficiency and performance of modern computing systems. This phenomenon is an undesired effect of the dichotomy between memory and the processor, which leads to the data movement bottleneck.

Many modern and important workloads such as machine learning, computational biology, graph processing, databases, video analytics, and real-time data analytics suffer greatly from the data movement bottleneck. These workloads are exemplified by irregular memory accesses, relatively low data reuse, low cache line utilization, low arithmetic intensity (i.e., ratio of operations per accessed byte), and large datasets that greatly exceed the main memory size. The computation in these workloads cannot usually compensate for the data movement costs. In order to alleviate this data movement bottleneck, we need a paradigm shift from the traditional processor-centric design, where all computation takes place in the compute units, to a more data-centric design where processing elements are placed closer to or inside where the data resides. This paradigm of computing is known as Processing-in-Memory (PIM).

This is your perfect P&S if you want to become familiar with the main PIM technologies, which represent "the next big thing" in Computer Architecture. You will work hands-on with the first real-world PIM architecture, will explore different PIM architecture designs for important workloads, and will develop tools to enable research of future PIM systems. Projects in this course span software and hardware as well as the software/hardware interface. You can potentially work on developing and optimizing new workloads for the first real-world PIM hardware or explore new PIM designs in simulators, or do something else that can forward our understanding of the PIM paradigm.

https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=processing_in_memory

https://youtube.com/playlist?list=PL5Q2soXY2Zi8KzG2CQYRNOVD0GOBrnKy
PIM Course (Fall 2022)

- **Fall 2022 Edition:**
 - https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=processing_in_memory
- **Spring 2022 Edition:**
 - https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory

- **Youtube Livestream (Fall 2022):**
 - https://www.youtube.com/watch?v=QLL0wQ9I4Dw&list=PL5Q2soXYZi8KzG2CQYRNQOVAD0GOBrnKy

- **Youtube Livestream (Spring 2022):**
 - https://www.youtube.com/watch?v=9e4Chnwdovo&lis

- **Project course**
 - Taken by Bachelor’s/Master’s students
 - Processing-in-Memory lectures
 - Hands-on research exploration
 - Many research readings

https://www.youtube.com/onurmutlulectures
Processing-in-Memory Course (Spring 2023)

- Short weekly lectures
- Hands-on projects

https://www.youtube.com/playlist?list=PL5Q2soXY2Zi_EObuoAZVSq_o6UYySWQHz

https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=processing_in_memory
Real PIM Tutorials [ISCA’23, ASPLOS’23, HPCA’23]

- June, March, Feb: Lectures + Hands-on labs + Invited talks

Real-world Processing-in-Memory Systems for Modern Workloads

Tutorial Description

Processing-in-Memory (PIM) is a computing paradigm that aims at overcoming the data movement bottleneck (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement between memory units and compute units) by making memory compute-capable.

Explored over several decades since the 1960s, PIM systems are becoming a reality with the advent of the first commercial products and prototypes.

A number of startups (e.g., UPMEM, Neuroblade) are already commercializing real PIM hardware, each with its own design approach and target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two years. Most of these architectures have in common that they place compute units near the memory arrays. This type of PIM is called processing near memory (PNM).

2,560-DPU Processing-in-Memory System

PIM can provide large improvements in both performance and energy consumption for many modern applications, thereby enabling a commercially viable way of dealing with huge amounts of data that is bottlenecking our computing systems. Yet, it is critical to (1) study and understand the characteristics that make a workload suitable for a PIM architecture, (2) propose optimization strategies for PIM kernels, and (3) develop programming frameworks and tools that can lower the learning curve and ease the adoption of PIM.

This tutorial focuses on the latest advances in PIM technology, workload characterization for PIM, and programming and optimizing PIM kernels. We will (1) provide an introduction to PIM and taxonomy of PIM systems, (2) give an overview and a rigorous analysis of existing real-world PIM hardware, (3) conduct hand-on labs about important workloads (machine learning, sparse linear algebra, bioinformatics, etc.) using real PIM systems, and (4) shed light on how to improve future PIM systems for such workloads.

https://events.safari.ethz.ch/isca-pim-tutorial/
Real PIM Tutorial [ISCA 2023]

- **June 18: Lectures + Hands-on labs + Invited talks**

ISCA 2023 Real-World PIM Tutorial

Sunday, June 18, Orlando, Florida

Organizers: Juan Gómez Luna, Onur Mutlu, Ataberk Olguin

Program: https://events.safari.ethz.ch/isca-pim-tutorial/

Tutorial Materials

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:55am-9:00am</td>
<td>Dr. Juan Gómez Luna</td>
<td>Welcome & Agenda</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>9:00am-10:20am</td>
<td>Prof. Onur Mutlu</td>
<td>Memory-Centric Computing</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>10:20am-11:00am</td>
<td>Dr. Juan Gómez Luna</td>
<td>Processing-Near-Memory: Real PNM Architectures / Programming General-purpose PIM</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>11:20am-11:50am</td>
<td>Prof. Izzat El Hajj</td>
<td>High-throughput Sequence Alignment using Real Processing-in-Memory Systems</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>11:50am-12:30pm</td>
<td>Dr. Christina Giannoulia</td>
<td>SparseP: Towards Efficient Sparse Matrix Vector Multiplication for Real Processing-in-Memory Systems</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>2:00pm-2:45pm</td>
<td>Dr. Sukhan Lee</td>
<td>Introducing Real-world HBM-PIM Powered System for Memory-bound Applications</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>2:45pm-3:30pm</td>
<td>Dr. Juan Gómez Luna / Ataberk Olguin</td>
<td>Processing-Using-Memory: Exploiting the Analog Operational Properties of Memory Components / PUM Prototypes: PiDRAM</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>4:00pm-4:40pm</td>
<td>Dr. Juan Gómez Luna</td>
<td>Accelerating Modern Workloads on a General-purpose PIM System</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>4:40pm-5:20pm</td>
<td>Dr. Juan Gómez Luna</td>
<td>Adoption Issues: How to Enable PIM?</td>
<td>[PDF] [PPT]</td>
</tr>
<tr>
<td>5:20pm-5:30pm</td>
<td>Dr. Juan Gómez Luna</td>
<td>Hands-on Lab: Programming and Understanding a Real Processing-in-Memory Architecture</td>
<td>[Handout] [PDF] [PPT]</td>
</tr>
</tbody>
</table>

Real-world Processing-in-Memory Systems for Modern Workloads

https://www.youtube.com/live/GIb5EgSrWk0?feature=share

International Symposium on Computer Architecture (ISCA)

https://events.safari.ethz.ch/isca-pim-tutorial/
Real PIM Tutorial [ASPLOS 2023]

March 26: Lectures + Hands-on labs + Invited talks

- March 26: Lectures + Hands-on labs + Invited talks

https://www.youtube.com/watch?v=oYCaldcT0Kmo

https://events.safari.ethz.ch/asplos-pim-tutorial/
Real PIM Tutorial [HPCA 2023]

- **February 26: Lectures + Hands-on labs + Invited Talks**

Real-world Processing-in-Memory Architectures

Table of Contents
- Real-world Processing-in-Memory Architectures
- Tutorial Description
- Organizers
- Agenda (February 26, 2023)
 - Lectures (tentative)
 - Hands-on Labs (tentative)
 - Learning Materials

Exploring over several decades since the 1960s, PIM systems are becoming a reality with the advent of the first commercial products and prototypes.

A number of startups (e.g., UPMEM, Neuroblade, Mythic) are already commercializing real PIM hardware, each with its own design approach and target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two years.

2,560-DPU Processing-in-Memory System

Most of these architectures have in common that they place compute units near the memory arrays. But, there is more to consider. Academia and Industry are actively exploring other types of PIM by, e.g., exploiting the analog operation of DRAM, SRAM, flash memory and emerging non-volatile memories.

PIM can provide large improvements in both performance and energy consumption, thereby enabling a commercially viable way of dealing with huge amounts of data that is bottlenecking our computing systems. Yet, it is critical to examine and research adoption issues of PIM using especially learnings from real PIM systems that are available today.

This tutorial focuses on the latest advances in PIM technology. We will (1) provide an introduction to PIM and taxonomy of PIM systems, (2) give an overview and a rigorous analysis of existing real-world PIM hardware, (3) conduct hands-on labs using real PIM systems, and (4) shed light on how to enable the adoption of PIM in future computing systems.

Goal: Processing Inside Memory

- Database
- Graphs
- Media

Many questions ... How do we design the:
- compute-capable memory & controllers?
- processors & communication units?
- software & hardware interfaces?
- system software, compilers, languages?
- algorithms & theoretical foundations?

https://www.youtube.com/watch?v=f5-nT1tbz5w

https://events.safari.ethz.ch/real-pim-tutorial/
Upcoming Real PIM Tutorial [MICRO 2023]

- **October 29**: Lectures + Hands-on labs + Invited talks

Real-world Processing-in-Memory Systems for Modern Workloads

Tutorial Description

Processing-in-Memory (PIM) is a computing paradigm that aims at overcoming the data movement bottleneck (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement between memory units and compute units) by making memory compute-capable.

Explored over several decades since the 1960s, PIM systems are becoming a reality with the advent of the first commercial products and prototypes.

A number of startups (e.g., UPIMEM, Neuroad) are already commercializing real PIM hardware, each with its own design approach and target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two years. Most of these architectures have in common that they place compute units near the memory arrays. This type of PIM is called processing near memory (PIM).

PIM can provide large improvements in both performance and energy consumption for many modern applications, thereby enabling a commercially viable way of dealing with huge amounts of data that is bottlenecking our computing systems. Yet, it is critical to (1) study and understand the characteristics that make a workload suitable for a PIM architecture, (2) propose optimization strategies for PIM kernels, and (3) develop programming frameworks and tools that can lower the learning curve and ease the adoption of PIM.

This tutorial focuses on the latest advances in PIM technology, workload characterization for PIM, and programming and optimizing PIM kernels. We will (1) provide an introduction to PIM and taxonomy of PIM systems, (2) give an overview and a rigorous analysis of existing real-world PIM hardware, (3) conduct hands-on labs about important workloads (machine learning, sparse linear algebra, bioinformatics, etc.) using real PIM systems, and (4) shed light on how to improve future PIM systems for such workloads.

Agenda (Tentative, October 29, 2023)

1. Introduction: PIM as a paradigm to overcome the data movement bottleneck.
2. PIM taxonomy: PNM (processing near memory) and PUM (processing using memory).
3. General-purpose PNM: UPIMEM PIM.
4. PNM for neural networks: Samsung HBM-PIM, SK Hynix AIM.
5. PNM for recommender systems: Samsung AxDMM, Alibaba PNM.
6. PUM prototypes: SIMD, SRAM-based PUM, Flash-based PUM.
7. Other approaches: Neuroblade, Mythic.
8. Adoption issues: How to enable PIM?
9. Hands-on labs: Programming a real PIM system.

https://www.youtube.com/live/ohUooNS1xO1

https://events.safari.ethz.ch/micro-pim-tutorial
SSD Course (Spring 2023)

- **Spring 2023 Edition:**

- **Fall 2022 Edition:**

- **Youtube Livestream (Spring 2023):**
 - https://www.youtube.com/watch?v=4VTwOMmsnJY&list=PL5Q2soXY2Zi_8qOM5Icpp8hB2SHtm4z57&pp=iAQB

- **Youtube Livestream (Fall 2022):**
 - https://www.youtube.com/watch?v=hqLrd-Uj0aU&list=PL5Q2soXY2Zi9BJhenUq4Jl5bwhAMpAp13&pp=iAQB

- **Project course**
 - Taken by Bachelor’s/Master’s students
 - SSD Basics and Advanced Topics
 - Hands-on research exploration
 - Many research readings

https://www.youtube.com/onurmutlulectures
Genomics Course (Fall 2022)

- **Fall 2022 Edition:**
 - https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=bioinformatics

- **Spring 2022 Edition:**
 - https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics

- **Youtube Livestream (Fall 2022):**
 - https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV

- **Youtube Livestream (Spring 2022):**
 - https://www.youtube.com/watch?v=DEL_5A_Y3TI&list=PL5Q2soXY2Zi8NrPDqOR1yRU_Cxxjw-u18

- **Project course**
 - Taken by Bachelor’s/Master’s students
 - Genomics lectures
 - Hands-on research exploration
 - Many research readings

https://www.youtube.com/onurmutlulectures
Hetero. Systems (Spring’22)

- **Spring 2022 Edition:**
 - https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=heterogeneous_systems

- **Youtube Livestream:**
 - https://www.youtube.com/watch?v=oFO5fTrqFIY&list=PL5Q2soXY2Zi9XrgXR38IM_FTjmY6h7Gzm

- **Project course**
 - Taken by Bachelor’s/Master’s students
 - GPU and Parallelism lectures
 - Hands-on research exploration
 - Many research readings

https://www.youtube.com/onurmutlulectures
Spring 2022 Edition:
- https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=hw_sw_co_design

Youtube Livestream:
- https://youtube.com/playlist?list=PL5Q2soXY2Zi8nH7un3ghD2nutKWWDk-NK

Project course
- Taken by Bachelor’s/Master’s students
- HW/SW co-design lectures
- Hands-on research exploration
- Many research readings

https://www.youtube.com/onurmutlulectures
RowHammer & DRAM Exploration (Fall 2022)

- **Fall 2022 Edition:**
 - https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=softmc

- **Spring 2022 Edition:**
 - https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=softmc

- **Youtube Livestream (Spring 2022):**
 - https://www.youtube.com/watch?v=r5QxuoJWttg&list=PL5Q2soXY2Zi_1trfCckr6PTN8WR72icUQ

- Bachelor’s course
 - Elective at ETH Zurich
 - Introduction to DRAM organization & operation
 - Tutorial on using FPGA-based infrastructure
 - Verilog & C++
 - Potential research exploration

https://www.youtube.com/onurmutlulectures
Exploration of Emerging Memory Systems (Fall 2022)

- **Fall 2022 Edition:**
 - https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=ramulator
- **Spring 2022 Edition:**
 - https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=ramulator
- **Youtube Livestream (Spring 2022):**
 - https://www.youtube.com/watch?v=aMllXRQd3s&list=PL5Q2soXY2Zi_TlmLGw_Z8hBo2925ZApgV

- Bachelor’s course
 - Elective at ETH Zurich
 - Introduction to memory system simulation
 - Tutorial on using Ramulator
 - C++
 - Potential research exploration

https://www.youtube.com/onurmutlulectures
Memory-Centric Computing

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
17 August 2023
Hunan University
Backup Slides
SAFARI PhD and Post-Doc Alumni

- Hasan Hassan (Rivos), EDAA Outstanding Dissertation Award 2023; S&P 2020 Best Paper Award, 2020 Pwnie Award, IEEE Micro TP HM 2020
- Christina Giannoula (Univ. of Toronto)
- Minesh Patel (ETH Zurich), DSN Carter Award for Best Thesis 2022; ETH Medal 2023; MICRO’20 & DSN’20 Best Paper Awards; ISCA HoF 2021
- Damla Senol Cali (Bionano Genomics), SRC TECHCON 2019 Best Student Presentation Award; RECOMB-Seq 2018 Best Poster Award
- Nastaran Hajinazar (Intel)
- Gagandeep Singh (AMD/Xilinx), FPL 2020 Best Paper Award Finalist
- Amirali Boroumand (Stanford Univ → Google), SRC TECHCON 2018 Best Presentation Award
- Jeremie Kim (Apple), EDAA Outstanding Dissertation Award 2020; IEEE Micro Top Picks 2019; ISCA/MICRO HoF 2021
- Nandita Vijaykumar (Univ. of Toronto, Assistant Professor), ISCA Hall of Fame 2021
- Kevin Hsieh (Microsoft Research, Senior Researcher)
- Justin Meza (Facebook), HiPEAC 2015 Best Student Presentation Award; ICCD 2012 Best Paper Award
- Mohammed Alser (ETH Zurich), IEEE Turkey Best PhD Thesis Award 2018
- Yixin Luo (Google), HPCA 2015 Best Paper Session
- Kevin Chang (Facebook), SRC TECHCON 2016 Best Student Presentation Award
- Rachata Ausavarungnirun (KMUNTB, Assistant Professor), NOCS 2015 and NOCS 2012 Best Paper Award Finalist
- Gennady Pekhimenko (Univ. of Toronto, Assistant Professor), ISCA Hall of Fame 2021; ASPLOS 2015 SRC Winner
- Vivek Seshadri (Microsoft Research)
- Donghyuk Lee (NVIDIA Research, Senior Researcher), HPCA Hall of Fame 2018
- Yoongu Kim (Software Robotics → Google), TCAD’19 Top Pick Award; IEEE Micro Top Picks’10; HPCA’10 Best Paper Session
- Lavanya Subramanian (Intel Labs → Facebook)
- Samira Khan (Univ. of Virginia, Assistant Professor), HPCA 2014 Best Paper Session
- Saugata Ghose (Univ. of Illinois, Assistant Professor), DFRWS-EU 2017 Best Paper Award
- Jawad Haj-Yahya (Huawei Research Zurich, Principal Researcher)
- Lois Orosa (Galicia Supercomputing Center, Director)
- Jisung Park (POSTECH, Assistant Professor)
- Gagandeep Singh (AMD/Xilinx, Researcher)
You Can Join Us!

- https://safari.ethz.ch/apply/

SAFARI Researcher Applications

Sign in

This is the application submission site to be considered for being a researcher in the SAFARI Research Group, directed by Professor Onur Mutlu (Publications and Teaching).

If you are interested in doing research in the SAFARI Research Group, please make sure you apply through this submissions site and supply as many of the requested documents and information as possible. Please read and follow the provided instructions and submit as complete an application as possible (given the position you are applying for).

We suggest studying the following materials before submission:
SAFARI Publications and Courses
Onur Mutlu's Online Lectures and Course Materials

We strongly recommend that you read and analyze critically as many recent papers from our group as possible. This is the best way to prepare for the application process. Our recommendation is that you use professor Mutlu's methodology for critically analyzing papers.

Guide On Reviewing Papers

Good luck!

Welcome to the SAFARI at ETH Zurich -- PhD, Postdoc, Internship, Visiting Researcher Applications (SAFARI Researcher Applications) submissions site.
Data-Driven (Self-Optimizing) Architectures
System Architecture Design Today

- Human-driven
 - Humans design the policies (how to do things)

- Many (too) simple, short-sighted policies all over the system

- No automatic data-driven policy learning

- (Almost) no learning: cannot take lessons from past actions

Can we design fundamentally intelligent architectures?
An Intelligent Architecture

- Data-driven
 - Machine learns the “best” policies (how to do things)

- Sophisticated, workload-driven, changing, far-sighted policies

- Automatic data-driven policy learning

- All controllers are intelligent data-driven agents

We need to rethink design (of all controllers)
Self-Optimizing Memory Controllers

Engin İpek, Onur Mutlu, José F. Martínez, and Rich Caruana, "Self Optimizing Memory Controllers: A Reinforcement Learning Approach"

Self-Optimizing Memory Controllers: A Reinforcement Learning Approach

Engin İpek1,2 Onur Mutlu2 José F. Martínez1 Rich Caruana1

1Cornell University, Ithaca, NY 14850 USA
2Microsoft Research, Redmond, WA 98052 USA
Self-Optimizing Memory Prefetchers

Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreenivas Subramoney, and Onur Mutlu,
"Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning"
Proceedings of the 54th International Symposium on Microarchitecture (MICRO), Virtual, October 2021.

[Slides (pptx) (pdf)]
[Short Talk Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (1.5 minutes)]
[Pythia Source Code (Officially Artifact Evaluated with All Badges)]
[arXiv version]

Officially artifact evaluated as available, reusable and reproducible.

Pythia: A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

Rahul Bera¹, Konstantinos Kanellopoulos¹, Anant V. Nori², Taha Shahroodi³,¹
Sreenivas Subramoney², Onur Mutlu¹

¹ETH Zürich ²Processor Architecture Research Labs, Intel Labs ³TU Delft

Learning-Based Off-Chip Load Predictors

- Rahul Bera, Konstantinos Kanellopoulos, Shankar Balachandran, David Novo, Ataberk Olgun, Mohammad Sadrosadati, and Onur Mutlu,

"Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction"

Proceedings of the 55th International Symposium on Microarchitecture (MICRO), Chicago, IL, USA, October 2022.

[Slides (pptx) (pdf)]
[Longer Lecture Slides (pptx) (pdf)]
[Talk Video (12 minutes)]
[Lecture Video (25 minutes)]
[arXiv version]
[Source Code (Officially Artifact Evaluated with All Badges)]

Officially artifact evaluated as available, reusable and reproducible.

Best paper award at MICRO 2022.

Hermes: Accelerating Long-Latency Load Requests via Perceptron-Based Off-Chip Load Prediction

Rahul Bera¹ Konstantinos Kanellopoulos¹ Shankar Balachandran² David Novo³
Ataberk Olgun¹ Mohammad Sadrosadati¹ Onur Mutlu¹

¹ETH Zürich ²Intel Processor Architecture Research Lab ³LIRMM, Univ. Montpellier, CNRS

Self-Optimizing Hybrid SSD Controllers

[Slides (pptx) (pdf)]
[arXiv version]
[Sibyl Source Code]
[Talk Video (16 minutes)]

Sibyl: Adaptive and Extensible Data Placement in Hybrid Storage Systems Using Online Reinforcement Learning

Gagandeep Singh¹ Rakesh Nadig¹ Jisung Park¹ Rahul Bera¹ Nastaran Hajinazar¹
David Novo³ Juan Gómez-Luna¹ Sander Stuijk² Henk Corporaal² Onur Mutlu¹

¹ETH Zürich ²Eindhoven University of Technology ³LIRMM, Univ. Montpellier, CNRS

Data-Driven (Self-Optimizing) Computing Architectures
Data-Characteristic-Aware Architectures
Data-Aware Architectures

- A data-aware architecture understands what it can do with and to each piece of data.

- It makes use of different properties of data to improve performance, efficiency and other metrics:
 - Compressibility
 - Approximability
 - Locality
 - Sparsity
 - Criticality for Computation X
 - Access Semantics
 - ...

One Problem: Limited Expressiveness

Higher-level information is not visible to HW

Software

Hardware

Data Structures

Code Optimizations

Access Patterns

Integer

Float

Data Type

Char

Instructions

Memory Addresses

100011111...

101010011...
A Solution: More Expressive Interfaces

Performance

Software

Functionality

Hardware

ISA
Virtual Memory

Higher-level Program Semantics

Expressive Memory “XMem”
Expressive (Memory) Interfaces

[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]
Expressive (Memory) Interfaces for GPUs

- Nandita Vijaykumar, Eiman Ebrahimi, Kevin Hsieh, Phillip B. Gibbons and Onur Mutlu, "The Locality Descriptor: A Holistic Cross-Layer Abstraction to Express Data Locality in GPUs"

[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]

The Locality Descriptor:
A Holistic Cross-Layer Abstraction to Express Data Locality in GPUs

Nandita Vijaykumar†§ Eiman Ebrahimi‡ Kevin Hsieh†
Phillip B. Gibbons† Onur Mutlu§†

†Carnegie Mellon University ‡NVIDIA §ETH Zürich
Open-Source Frameworks for Data-Aware Systems

Nandita Vijaykumar, Ataberk Olgun, Konstantinos Kanellopoulos, F. Nisa Bostanci, Hasan Hassan, Mehrshad Lotfi, Phillip B. Gibbons, and Onur Mutlu,

"MetaSys: A Practical Open-source Metadata Management System to Implement and Evaluate Cross-layer Optimizations"

arXiv version

Presented at the 18th HiPEAC Conference, Toulouse, France, January 2023.

Slides (pptx) (pdf)

[Preliminary Talk Video (14 minutes)]

[SAFARI Live Seminar Video (1 hour 26 minutes)]

[MetaSys Source Code]

Best paper award at HiPEAC 2023.

MetaSys: A Practical Open-Source Metadata Management System to Implement and Evaluate Cross-Layer Optimizations

Nandita Vijaykumar* Ataberk Olgun\^\$ Konstantinos Kanellopoulos\^\$ Hasan Hassan\^\$

Mehrshad Lotfi\^\$ Phillip B. Gibbons\^\[1\] Onur Mutlu\^\$

*University of Toronto \^\$ETH Zürich \[1\]Carnegie Mellon University
Heterogeneous-Reliability Memory

- Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu, "Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost via Heterogeneous-Reliability Memory" Proceedings of the 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary] [Slides (pptx) (pdf)] [Coverage on ZDNet]
EDEN: Data-Aware Efficient DNN Inference

- Skanda Koppula, Lois Orosa, A. Giray Yağlıkçı, Roknoddin Azizi, Taha Shahroodi, Konstantinos Kanellopoulos, and Onur Mutlu,

"EDEN: Enabling Energy-Efficient, High-Performance Deep Neural Network Inference Using Approximate DRAM"

Proceedings of the 52nd International Symposium on Microarchitecture (MICRO), Columbus, OH, USA, October 2019.

[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Poster (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]
[Full Talk Lecture (38 minutes)]

EDEN: Enabling Energy-Efficient, High-Performance Deep Neural Network Inference Using Approximate DRAM

Skanda Koppula Lois Orosa A. Giray Yağlıkçı
Roknoddin Azizi Taha Shahroodi Konstantinos Kanellopoulos Onur Mutlu

ETH Zürich
SMASH: Co-designing Software Compression and Hardware-Accelerated Indexing for Efficient Sparse Matrix Operations

Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula, Roknoddin Azizi, Skanda Koppula, Nika Mansouri Ghiasi, Taha Shahroodi, Juan Gomez-Luna, and Onur Mutlu,

"SMASH: Co-designing Software Compression and Hardware-Accelerated Indexing for Efficient Sparse Matrix Operations"

Proceedings of the 52nd International Symposium on Microarchitecture (MICRO), Columbus, OH, USA, October 2019.

[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Poster (pptx) (pdf)]
[Lightning Talk Video (90 seconds)]
[Full Talk Lecture (30 minutes)]
Rethinking Virtual Memory

- Nastaran Hajinazar, Pratyush Patel, Minesh Patel, Konstantinos Kanellopoulos, Saugata Ghose, Rachata Ausavarungnirun, Geraldo Francisco de Oliveira Jr., Jonathan Appavoo, Vivek Seshadri, and Onur Mutlu,

"The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory Framework"

[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[ARM Research Summit Poster (pptx) (pdf)]
[Talk Video (26 minutes)]
[Lightning Talk Video (3 minutes)]

The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory Framework

Nastaran Hajinazar*† Pratyush Patel*‡ Minesh Patel* Konstantinos Kanellopoulos* Saugata Ghose† Rachata Ausavarungnirun© Geraldo F. Oliveira* Jonathan Appavoo© Vivek Seshadri© Onur Mutlu*†

*ETH Zürich †Simon Fraser University ‡University of Washington ․Carnegie Mellon University
©King Mongkut’s University of Technology North Bangkok ©Boston University ․Microsoft Research India
Data-Characteristic-Aware Computing Architectures
More Background Slides
Processing-in-Memory Landscape Today

And, many other experimental chips and startups
Memory Scaling Issues Are Real

- Onur Mutlu,
 "Memory Scaling: A Systems Architecture Perspective"
 Proceedings of the 5th International Memory Workshop (IMW), Monterey, CA, May 2013. Slides (pptx) (pdf)
 EETimes Reprint

Memory Scaling: A Systems Architecture Perspective

Onur Mutlu
Carnegie Mellon University
onur@cmu.edu
http://users.ece.cmu.edu/~omutlu/

As Memory Scales, It Becomes Unreliable

- Data from all of Facebook’s servers worldwide
- Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.

Intuition: quadratic increase in capacity
Infrastructures to Understand Such Issues

Memory Testing Infrastructures

*SoftMC [Hassan+, HPCA’17] enhanced for DDR4
Updated Memory Testing Infrastructure

FPGA-based SoftMC (Xilinx Virtex UltraScale+ XCU200)

Fine-grained control over DRAM commands, timing (±1.5ns), temperature (±0.1°C), and voltage (±1mV)

SoftMC: Open Source DRAM Infrastructure

[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Full Talk Lecture (39 minutes)] [Source Code]

SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies

Hasan Hassan1,2,3 Nandita Vijaykumar3 Samira Khan4,3 Saugata Ghose3 Kevin Chang3
Gennady Pekhimenko5,3 Donghyuk Lee6,3 Oguz Ergin2 Onur Mutlu1,3

1ETH Zürich 2TOBB University of Economics & Technology 3Carnegie Mellon University
4University of Virginia 5Microsoft Research 6NVIDIA Research

SAFARI https://github.com/CMU-SAFAI/SoftMC
DRAM Bender

- Ataberk Olgun, Hasan Hassan, A Giray Yağlıkçı, Yahya Can Tuğrul, Lois Orosa, Haocong Luo, Minesh Patel, Oğuz Ergin, and Onur Mutlu,

"DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure to Easily Test State-of-the-art DRAM Chips"

[Extended arXiv version]
[DRAM Bender Source Code]
[DRAM Bender Tutorial Video (43 minutes)]

DRAM Bender: An Extensible and Versatile FPGA-based Infrastructure to Easily Test State-of-the-art DRAM Chips

Ataberk Olgun\(^\S\) Hasan Hassan\(^\S\) A. Giray Yağlıkçı\(^\S\) Yahya Can Tuğrul\(^{\dagger}\)
Lois Orosa\(^\S\) Haocong Luo\(^\S\) Minesh Patel\(^\S\) Oğuz Ergin\(^\dagger\) Onur Mutlu\(^\S\)
\(^\S\)ETH Zürich \(^\dagger\)TOBB ETÜ \(^\circ\)Galician Supercomputing Center

SAFARI https://github.com/CMU-SAFARI/DRAM-Bender
One can predictably induce errors in most DRAM memory chips

Kim+，“Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.
Repeatedly reading a row enough times (before memory gets refreshed) induces disturbance errors in adjacent rows in most real DRAM chips you can buy today.

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors, (Kim et al., ISCA 2014)
Most DRAM Modules Are Vulnerable

A company

86% (37/43)

Up to 1.0×10^7 errors

B company

83% (45/54)

Up to 2.7×10^6 errors

C company

88% (28/32)

Up to 3.3×10^5 errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors, (Kim et al., ISCA 2014)
The RowHammer Vulnerability

A simple hardware failure mechanism can create a widespread system security vulnerability.

FORGET SOFTWARE—NOW HACKERS ARE EXPLOITING PHYSICS
RowHammer [ISCA 2014]

- Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,

"Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data] [Lecture Video (1 hr 49 mins), 25 September 2020]

One of the 7 papers of 2012-2017 selected as Top Picks in Hardware and Embedded Security for IEEE TCAD (link).

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Yoongu Kim¹ Ross Daly* Jeremie Kim¹ Chris Fallin* Ji Hye Lee¹
Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹
¹Carnegie Mellon University ²Intel Labs
Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser"
[Slides (pptx) (pdf)]
Memory Scaling Issues Are Real

- Onur Mutlu and Jeremie Kim, "RowHammer: A Retrospective"
 [Preliminary arXiv version]
 [Slides from COSADE 2019 (pptx)]
 [Slides from VLSI-SOC 2020 (pptx) (pdf)]
 [Talk Video (1 hr 15 minutes, with Q&A)]

RowHammer: A Retrospective

Onur Mutlu§‡ Jeremie S. Kim‡§
§ETH Zürich ‡Carnegie Mellon University
Memory Scaling Issues Are Real

 [arXiv version]
 [Slides (pptx) (pdf)]
 [Talk Video (26 minutes)]

Fundamentally Understanding and Solving RowHammer

Onur Mutlu
onur.mutlu@safari.ethz.ch
ETH Zürich
Zürich, Switzerland

Ataberk Olgun
ataberk.olgun@safari.ethz.ch
ETH Zürich
Zürich, Switzerland

A. Giray Yağlıkçı
giray.yaglikci@safari.ethz.ch
ETH Zürich
Zürich, Switzerland

The Story of RowHammer Tutorial …

Onur Mutlu,
"Security Aspects of DRAM: The Story of RowHammer"

[Slides (pptx)(pdf)]
[Tutorial Video (57 minutes)]

Security Aspects of DRAM
The Story of RowHammer

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
15 May 2022
IMW Tutorial

https://www.youtube.com/watch?v=37hWglkQRG0
Onur Mutlu, "The Story of RowHammer"

Invited Talk at the Workshop on Robust and Safe Software 2.0 (RSS2), held with the 27th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Virtual, 28 February 2022.

[Slides (pptx) (pdf)]

https://www.youtube.com/watch?v=ctKTRyi96Bk
The Push from Circuits and Devices

Main Memory Needs

Intelligent Controllers
A 1.1V 16Gb DDR5 DRAM with Probabilistic-Aggressor Tracking, Refresh-Management Functionality, Per-Row Hammer Tracking, a Multi-Step Precharge, and Core-Bias Modulation for Security and Reliability Enhancement

Woongrae Kim, Chulmoon Jung, Seongnyuh Yoo, Duckhwa Hong, Jeongjin Hwang, Jungmin Yoon, Ohyong Jung, Joonwoo Choi, Sanga Hyun, Mankeun Kang, Sangho Lee, Dohong Kim, Sanghyun Ku, Donhyun Choi, Nojeun Joo, Sangwoo Yoon, Junseok Noh, Byeongyong Go, Cheolhoe Kim, Sunil Hwang, Mihyun Hwang, Seol-Min Yi, Hyungmin Kim, Sanghyuk Heo, Yeonsu Jang, Kyoungchul Jang, Shinho Chu, Yoonna Oh, Kwidong Kim, Junghyun Kim, Soohwan Kim, Jeongtae Hwang, Sangil Park, Junphyo Lee, Inchul Jeong, Joohwan Cho, Jonghwan Kim

SK hynix Semiconductor, Icheon, Korea
Industry’s Intelligent DRAM Controllers (II)

SK hynix Semiconductor, Icheon, Korea

DRAM products have been recently adopted in a wide range of high-performance computing applications: such as in cloud computing, in big data systems, and IoT devices. This demand creates larger memory capacity requirements, thereby requiring aggressive DRAM technology node scaling to reduce the cost per bit [1,2]. However, DRAM manufacturers are facing technology scaling challenges due to row hammer and refresh retention time beyond 1a-nm [2]. Row hammer is a failure mechanism, where repeatedly activating a DRAM row disturbs data in adjacent rows. Scaling down severely threatens reliability since a reduction of DRAM cell size leads to a reduction in the intrinsic row hammer tolerance [2,3]. To improve row hammer tolerance, there is a need to probabilistically activate adjacent rows with carefully sampled active addresses and to improve intrinsic row hammer tolerance [2]. In this paper, row-hammer-protection and refresh-management schemes are presented to guarantee DRAM security and reliability despite the aggressive scaling from 1a-nm to sub 10-nm nodes. The probabilistic-aggressor-tracking scheme with a refresh-management function (RFM) and per-row hammer tracking (PRHT) improve DRAM resilience. A multi-step precharge reinforces intrinsic row-hammer tolerance and a core-bias modulation improves retention time: even in the face of cell-transistor degradation due to technology scaling. This comprehensive scheme leads to a reduced probability of failure, due to row hammer attacks, by 93.1% and an improvement in retention time by 17%.
DSAC: Low-Cost Rowhammer Mitigation Using In-DRAM Stochastic and Approximate Counting Algorithm

Seungki Hong Dongha Kim Jaehyung Lee Reum Oh
Changsik Yoo Sangjoon Hwang Jooyoung Lee

DRAM Design Team, Memory Division, Samsung Electronics

Intel Optane Persistent Memory (2019)

- Non-volatile main memory
- Based on 3D-XPoint Technology
Emerging Memories Also Need Intelligent Controllers

One of the 13 computer architecture papers of 2009 selected as Top Picks by IEEE Micro. Selected as a CACM Research Highlight. 2022 Persistent Impact Prize.
Intelligent Memory Controllers Can Avoid Many Failures & Enable Better Scaling
Three Key Systems & Application Trends

1. Data access is the major bottleneck
 - Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
 - Especially true for off-chip to on-chip movement
Do We Want This?

Source: V. Milutinovic
Or This?

Source: V. Milutinovic
Challenge and Opportunity for Future

High Performance, Energy Efficient, Sustainable (All at the Same Time)
The Problem

Data access is the major performance and energy bottleneck

Our current design principles cause great energy waste (and great performance loss)
The Problem

Processing of data is performed far away from the data
A Computing System

- Three key components
- Computation
- Communication
- Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the logical design of an electronic computing instrument,” 1946.

A Computing System

- Three key components
- Computation
- Communication
- Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the logical design of an electronic computing instrument,” 1946.
Today’s Computing Systems

- Processor centric

- All data processed in the processor → at great system cost
It’s the Memory, Stupid!

“It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

RICHARD SITES

It’s the Memory, Stupid!
When we started the Alpha architecture design in 1988, we estimated a 25-year lifetime and a relatively modest 32% per year compounded performance improvement of implementations over that lifetime (1,000× total). We guestimated about 10× would come from CPU clock improvement, 10× from multiple instruction issue, and 10× from multiple processors.

5, 1996 MICROPROCESSOR REPORT

I expect that over the coming decade memory subsystem design will be the only important design issue for microprocessors.

The Performance Perspective

The Performance Perspective

One of the 15 computer arch. papers of 2003 selected as Top Picks by IEEE Micro. HPCA Test of Time Award (awarded in 2021).

Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark † Chris Wilkerson ‡ Yale N. Patt §

§ECE Department †Microprocessor Research ‡Desktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation
{onur,patt}@ece.utexas.edu jared.w.stark@intel.com chris.wilkerson@intel.com
The Performance Perspective (Today)

- All of Google’s Data Center Workloads (2015):

The Energy Perspective

Communication Dominates Arithmetic

64-bit DP
20pJ

256-bit buses

256-bit access
8 kB SRAM

20mm

26 pJ

256 pJ

16 nJ

DRAM
Rd/WR

500 pJ

Efficient
off-chip link

50 pJ

1 nJ

Dally, HiPEAC 2015
A memory access consumes $\sim 100-1000X$ the energy of a complex addition.
Data Movement vs. Computation Energy

Energy for a 32-bit Operation (log scale)

- ADD (int)
- ADD (float)
- Register File
- MULT (int)
- MULT (float)
- SRAM Cache
- DRAM

Energy (pJ)

ADD (int) Relative Cost

0.1

A memory access consumes 6400X the energy of a simple integer addition.
Energy Waste in Mobile Devices

62.7% of the total system energy is spent on data movement

Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks

Amirali Boroumand1
Rachata Ausavarungnirun1
Aki Kuusela3
Allan Knies3

Saugata Ghose1
Eric Shiu3

Youngsok Kim2
Rahul Thakur3
Parthasarathy Ranganathan3
Daehyun Kim4,3
Onur Mutlu5,1

SAFARI
Energy Waste in Accelerators

- Amirali Boroumand, Saugata Ghose, Berkin Akin, Ravi Narayanaswami, Geraldo F. Oliveira, Xiaoyu Ma, Eric Shiu, and Onur Mutlu,

"Google Neural Network Models for Edge Devices: Analyzing and Mitigating Machine Learning Inference Bottlenecks"

Proceedings of the 30th International Conference on Parallel Architectures and Compilation Techniques (PACT), Virtual, September 2021.

[Slides (pptx) (pdf)]
[Talk Video (14 minutes)]

> 90% of the total system energy is spent on memory in large ML models
We Do Not Want to Move Data!

Communication Dominates Arithmetic

Dally, HiPEAC 2015

A memory access consumes ~ 100-1000X the energy of a complex addition
We Need A Paradigm Shift To ...

- Enable computation with minimal data movement
- Compute where it makes sense *(where data resides)*
- Make computing architectures more data-centric
Goal: Processing Inside Memory

- Many questions ... How do we design the:
 - compute-capable memory & controllers?
 - processors & communication units?
 - software & hardware interfaces?
 - system software, compilers, languages?
 - algorithms & theoretical foundations?
A Modern Primer on Processing in Memory

Onur Mutlua,b, Saugata Ghoseb,c, Juan Gómez-Lunaa, Rachata Ausavarungnirund

SAFARI Research Group

aETH Zürich
bCarnegie Mellon University
cUniversity of Illinois at Urbana-Champaign
dKing Mongkut’s University of Technology North Bangkok

SAFARI

PIM Course (Fall 2022)

- **Fall 2022 Edition:**
 - https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=processing_in_memory

- **Spring 2022 Edition:**
 - https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=processing_in_memory

- **Youtube Livestream (Fall 2022):**
 - https://www.youtube.com/watch?v=QLL0wQ9I4Dw&list=PL5Q2soXY2Zi8KzG2CQYRNQOVD0GOBnnKy

- **Youtube Livestream (Spring 2022):**
 - https://www.youtube.com/watch?v=9e4Chnwdovo&list=PL5Q2soXY2Zi-841fUYYUK9EsXKhQKRPyX

- **Project course**
 - Taken by Bachelor’s/Master’s students
 - Processing-in-Memory lectures
 - Hands-on research exploration
 - Many research readings

https://www.youtube.com/onurmutlulectures
Processing-in-Memory Course (Spring 2023)

- Short weekly lectures
- Hands-on projects

https://www.youtube.com/playlist?list=PL5Q2soXY2Zi_EObuoAZVSq_o6UySWQHvZ

https://safari.ethz.ch/projects_and_seminars/spring2023/doku.php?id=processing_in_memory
Real PIM Tutorial (ASPLOS 2023)

- March 26: Lectures + Hands-on labs + Invited talks

https://www.youtube.com/watch?v=oYCaaLcT0Kmo

https://events.safari.ethz.ch/asplos-pim-tutorial/
Current Real PIM Tutorial (ISCA 2023)

- June 18: Lectures + Hands-on labs + Invited talks

[Image of the ISCA 2023 Real-World PIM Tutorial]

Real-world Processing-in-Memory Systems for Modern Workloads

Tutorial Description

Processing-in-Memory (PIM) is a computing paradigm that aims at overcoming the data movement bottleneck (i.e., the waste of execution cycles and energy resulting from the back-and-forth data movement between memory units and compute units) by making memory compute-capable.

Explored over several decades since the 1960s, PIM systems are becoming a reality with the advent of the first commercial products and prototypes.

A number of startups (e.g., UPMEM, Neuroblade) are already commercializing real PIM hardware, each with its own design approach and target applications. Several major vendors (e.g., Samsung, SK Hynix, Alibaba) have presented real PIM chip prototypes in the last two years. Most of these architectures have in common that they place compute units near the memory arrays. This type of PIM is called processing near memory (PNM).

2,560-DPU Processing-in-Memory System

PIM can provide large improvements in both performance and energy consumption for many modern applications, thereby enabling a commercially viable way of dealing with huge amounts of data that is bottlenecking our computing systems. Yet, it is critical to (1) study and understand the characteristics that make a workload suitable for a PIM architecture, (2) propose optimization strategies for PIM kernels, and (3) develop programming frameworks and tools that can lower the learning curve and ease the adoption of PIM.

This tutorial focuses on the latest advances in PIM technology, workload characterization for PIM, and programming and optimizing PIM kernels. We will (1) provide an introduction to PIM and taxonomy of PIM systems, (2) give an overview and a rigorous analysis of existing real-world PIM hardware, (3) conduct hand-on labs about important workloads (machine learning, sparse linear algebra, bioinformatics, etc.) using real PIM systems, and (4) shed light on how to improve future PIM systems for such workloads.

https://events.safari.ethz.ch/isca-pim-tutorial/
End of Backup Slides