
Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
October 27, 2017

MST Workshop Keynote (Milan)

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

The Main Memory System

n Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

2

Processors
and caches

Main Memory Storage (SSD/HDD)

The Main Memory System

n Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

3

Main Memory Storage (SSD/HDD)FPGAs

The Main Memory System

n Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

4

Main Memory Storage (SSD/HDD)GPUs

Memory System: A Shared Resource View

5

Storage

Most of the system is dedicated to storing and moving data

State of the Main Memory System
n Recent technology, architecture, and application trends

q lead to new requirements
q exacerbate old requirements

n DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

n Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

n We need to rethink the main memory system
q to fix DRAM issues and enable emerging technologies
q to satisfy all requirements

6

Major Trends Affecting Main Memory (I)
n Need for main memory capacity, bandwidth, QoS increasing

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending

7

Major Trends Affecting Main Memory (II)
n Need for main memory capacity, bandwidth, QoS increasing

q Multi-core: increasing number of cores/agents
q Data-intensive applications: increasing demand/hunger for data
q Consolidation: cloud computing, GPUs, mobile, heterogeneity

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending

8

Example: The Memory Capacity Gap

n Memory capacity per core expected to drop by 30% every two years
n Trends worse for memory bandwidth per core!

9

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years

Lim et al., ISCA 2009

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

D
R

A
M

 Im
pr

ov
em

en
t

(lo
g)

Capacity Bandwidth Latency

Example: Memory Bandwidth & Latency

128x

20x

1.3x

Memory latency remains almost constant

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance bottleneck

Major Trends Affecting Main Memory (III)
n Need for main memory capacity, bandwidth, QoS increasing

n Main memory energy/power is a key system design concern
q ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,

IEEE Computer’03] >40% power in DRAM [Ware, HPCA’10][Paul,ISCA’15]
q DRAM consumes power even when not used (periodic refresh)

n DRAM technology scaling is ending

13

Major Trends Affecting Main Memory (IV)
n Need for main memory capacity, bandwidth, QoS increasing

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending
q ITRS projects DRAM will not scale easily below X nm
q Scaling has provided many benefits:

n higher capacity (density), lower cost, lower energy

14

Major Trends Affecting Main Memory (V)
n DRAM scaling has already become increasingly difficult

q Increasing cell leakage current, reduced cell reliability,
increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

q Difficult to significantly improve capacity, energy

n Emerging memory technologies are promising
3D-Stacked DRAM higher bandwidth smaller capacity
Reduced-Latency DRAM
(e.g., RLDRAM, TL-DRAM) lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4) lower power higher latency

higher cost
Non-Volatile Memory (NVM)
(e.g., PCM, STTRAM, ReRAM,
3D Xpoint)

larger capacity
higher latency

higher dynamic power
lower endurance

15

Major Trends Affecting Main Memory (V)
n DRAM scaling has already become increasingly difficult

q Increasing cell leakage current, reduced cell reliability,
increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

q Difficult to significantly improve capacity, energy

n Emerging memory technologies are promising
3D-Stacked DRAM higher bandwidth smaller capacity
Reduced-Latency DRAM
(e.g., RL/TL-DRAM, FLY-RAM) lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4, Voltron) lower power higher latency

higher cost
Non-Volatile Memory (NVM)
(e.g., PCM, STTRAM, ReRAM, 3D
Xpoint)

larger capacity
higher latency

higher dynamic power
lower endurance

16

Major Trend: Hybrid Main Memory

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Foreshadowing

Main Memory Needs
Intelligent Controllers

18

Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion

19

Last Time I Was Here …

20

The DRAM Scaling Problem
n DRAM stores charge in a capacitor (charge-based memory)

q Capacitor must be large enough for reliable sensing
q Access transistor should be large enough for low leakage and high

retention time
q Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

n DRAM capacity, cost, and energy/power hard to scale
21

As Memory Scales, It Becomes Unreliable
n Data from all of Facebook’s servers worldwide
n Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.

22

Large-Scale Failure Analysis of DRAM Chips
n Analysis and modeling of memory errors found in all of

Facebook’s server fleet

n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.
[Slides (pptx) (pdf)] [DRAM Error Model]

23

Infrastructures to Understand Such Issues

24Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source

github.com/CMU-SAFARI/SoftMC

25

SoftMC

n https://github.com/CMU-SAFARI/SoftMC

26

A Curious Discovery [Kim et al., ISCA 2014]

One can
predictably induce errors

in most DRAM memory chips

27

DRAM RowHammer

A simple hardware failure mechanism
can create a widespread

system security vulnerability

28

Row	of	Cells
Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim	Row

Victim	Row
Hammered	Row

Repeatedly reading a	row	enough	times	(before	memory	gets	
refreshed)	induces	disturbance	errors in	adjacent rows in	
most	real	DRAM	chips	you	can	buy	today

OpenedClosed

29

Modern DRAM is Prone to Disturbance Errors

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)

86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C	company

Up	to
1.0×107
errors	

Up	to
2.7×106
errors	

Up	to
3.3×105
errors	

30

Most DRAM Modules Are Vulnerable

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)

31

Recent DRAM Is More Vulnerable

32

First
Appearance

Recent DRAM Is More Vulnerable

33
All	modules	from	2012–2013	are	vulnerable

First
Appearance

Recent DRAM Is More Vulnerable

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download	from:	https://github.com/CMU-SAFARI/rowhammer

DRAM	Module

A Simple Program Can Induce Many Errors

Y

X

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download	from:	https://github.com/CMU-SAFARI/rowhammer

DRAM	Module

A Simple Program Can Induce Many Errors

Y

X

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download	from:	https://github.com/CMU-SAFARI/rowhammer

DRAM	Module

A Simple Program Can Induce Many Errors

Y

X

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Y

X

Download	from:	https://github.com/CMU-SAFARI/rowhammer

DRAM	Module

A Simple Program Can Induce Many Errors

A	real	reliability	&	security	issue	

CPU	Architecture Errors Access-Rate

Intel	Haswell	(2013) 22.9K 12.3M/sec

Intel	Ivy Bridge	(2012) 20.7K 11.7M/sec

Intel	Sandy	Bridge	(2011) 16.1K 11.6M/sec

AMD Piledriver	(2012) 59 6.1M/sec

38Kim+, “Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	
DRAM	Disturbance	Errors,” ISCA 2014.

Observed Errors in Real Systems

One Can Take Over an Otherwise-Secure System

39

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

Security Implications

40

More Security Implications

41
Source: https://lab.dsst.io/32c3-slides/7197.html

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

“We can gain unrestricted access to systems of website visitors.”

More Security Implications

42
Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16

“Can gain control of a smart phone deterministically”

More Security Implications?

43

More on RowHammer Analysis

44

n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

Future of Memory Reliability

45https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

n Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

Industry Is Writing Papers About It, Too

46

Call for Intelligent Memory Controllers

47

Aside: Intelligent Controller for NAND Flash

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm
NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014,
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE’17]

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

Aside: NAND Flash & SSD Scaling Issues
n Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,

"Error Characterization, Mitigation, and Recovery in Flash Memory Based
Solid State Drives"
to appear in Proceedings of the IEEE, 2017.

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD
2012.
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE
2013.
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.
Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.
Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.
Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST
2015.
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.
Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE
JSAC 2016.
Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation
Techniques,” HPCA 2017.
Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

Aside: Intelligent Controller for NAND Flash

50

https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

Takeaway

Main Memory Needs
Intelligent Controllers

51

Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion

52

Three Key Systems Trends
1. Data access is a major bottleneck

q Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
q Especially true for off-chip to on-chip movement

53

The Need for More Memory Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

The Performance Perspective
n “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

The Performance Perspective

n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February
2003. Slides (pdf)

56

The Energy Perspective

57

Dally, HiPEAC 2015

Data Movement vs. Computation Energy

58

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

Challenge and Opportunity for Future

High Performance
and

Energy Efficient

59

The Problem

Data access is the major performance and energy bottleneck

Our current
design principles

cause great energy waste
(and great performance loss)

60

The Problem

Processing of data
is performed

far away from the data

61

A Computing System
n Three key components
n Computation
n Communication
n Storage/memory

62

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

A Computing System
n Three key components
n Computation
n Communication
n Storage/memory

63

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Today’s Computing Systems
n Are overwhelmingly processor centric
n All data processed in the processor à at great system cost
n Processor is heavily optimized and is considered the master
n Data storage units are dumb and are largely unoptimized

(except for some that are on the processor die)

64

Yet …
n “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

Perils of Processor-Centric Design
n Grossly-imbalanced systems

q Processing done only in one place
q Everything else just stores and moves data: data moves a lot
à Energy inefficient
à Low performance
à Complex

n Overly complex and bloated processor (and accelerators)
q To tolerate data access from memory
q Complex hierarchies and mechanisms
à Energy inefficient
à Low performance
à Complex

66

Perils of Processor-Centric Design

67

Most of the system is dedicated to storing and moving data

We Do Not Want to Move Data!

68

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

We Need A Paradigm Shift To …

n Enable computation with minimal data movement

n Compute where it makes sense (where data resides)

n Make computing architectures more data-centric

69

Goal: Processing Inside Memory

n Many questions … How do we design the:
q compute-capable memory & controllers?
q processor chip?
q software and hardware interfaces?
q system software and languages?
q algorithms?

Cache

Processor
Core

Interconnect

Memory
Database

Graphs

Media
Query

Results

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Why In-Memory Computation Today?

n Push from Technology
q DRAM Scaling at jeopardy
à Controllers close to DRAM
à Industry open to new memory architectures

n Pull from Systems and Applications
q Data access is a major system and application bottleneck
q Systems are energy limited
q Data movement much more energy-hungry than computation

71

Dally, HiPEAC 2015

Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion

72

Approach 1: Minimally Changing DRAM
n DRAM has great capability to perform bulk data movement and

computation internally with small changes
q Can exploit internal bandwidth to move data
q Can exploit analog computation capability
q …

n Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
q RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)
q Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
q Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)
q "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity

DRAM Technology” (Seshadri et al., MICRO 2017)

73

Starting Simple: Data Copy and Initialization

74

Forking

00000
00000
00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration
Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

Today’s Systems: Bulk Data Copy

Memory

MCL3L2L1CPU

1)	High	latency

2)	High	bandwidth	utilization

3)	Cache	pollution

4)	Unwanted	data	movement

751046ns,	3.6uJ				(for	4KB	page	copy	via	DMA)

Future Systems: In-Memory Copy

Memory

MCL3L2L1CPU

1)	Low	latency

2)	Low	bandwidth	utilization

3)	No	cache	pollution

4)	No	unwanted	data	movement

761046ns,	3.6uJ à 90ns,	0.04uJ

RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
Idea: Two consecutive ACTivates

RowClone: Latency and Energy Savings

0

0.2

0.4

0.6

0.8

1

1.2

Latency Energy

N
or
m
al
ize

d	
Sa
vi
ng
s

Baseline Intra-Subarray
Inter-Bank Inter-Subarray

11.6x 74x

78
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

More on RowClone
n Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

79

Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator

In-Memory Bulk Bitwise Operations
n We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
n At low cost
n Using analog computation capability of DRAM

q Idea: activating multiple rows performs computation
n 30-60X performance and energy improvement

q Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

n New memory technologies enable even more opportunities
q Memristors, resistive RAM, phase change mem, STT-MRAM, …
q Can operate on data with minimal movement

81

In-DRAM AND/OR: Triple Row Activation

82

½VDD

½VDD

dis

A

B

C

Final	State
AB	+	BC	+	AC

½VDD+δ

C(A	+	B)	+	
~C(AB)en

0

VDD

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.

In-DRAM Bulk Bitwise AND/OR Operation

n BULKAND A, B à C
n Semantics: Perform a bitwise AND of two rows A and B and

store the result in row C

n R0 – reserved zero row, R1 – reserved one row
n D1, D2, D3 – Designated rows for triple activation

1. RowClone A into D1
2. RowClone B into D2
3. RowClone R0 into D3
4. ACTIVATE D1,D2,D3
5. RowClone Result into C

83

In-DRAM AND/OR Results
n 20X improvement in AND/OR throughput vs. Intel AVX
n 50.5X reduction in memory energy consumption
n At least 30% performance improvement in range queries

84Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

8K
B"

16
KB
"
32
KB
"
64
KB
"

12
8K
B"

25
6K
B"

51
2K
B"

1M
B"

2M
B"

4M
B"

8M
B"

16
MB
"

32
MB
"

Size of Vectors to be ANDed

In-DRAM AND (2 banks)

In-DRAM AND (1 bank)

Intel AVX

More on In-DRAM Bulk AND/OR

n Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

85

In-DRAM NOT: Dual Contact Cell

86

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Idea:
Feed the

negated value
in the sense amplifier

into a special row

In-DRAM NOT Operation

87

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Performance: In-DRAM Bitwise Operations

88

Energy of In-DRAM Bitwise Operations

89

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Example Data Structure: Bitmap Index

n Alternative to B-tree and its variants
n Efficient for performing range queries and joins
n Many bitwise operations to perform a query

Bi
tm

ap
	1

Bi
tm

ap
	2

Bi
tm

ap
	4

Bi
tm

ap
	3

age	<	18 18	<	age	<	25 25	<	age	<	60 age	>	60

Performance: Bitmap Index on Ambit

91

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Performance: BitWeaving on Ambit

92

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

More on Ambit

n Vivek Seshadri et al., “Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

93

Challenge and Opportunity for Future

Computing Architectures
with

Minimal Data Movement

94

Challenge: Intelligent Memory Device

Does memory
have to be

dumb?
95

Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion

96

Opportunity: 3D-Stacked Logic+Memory

97

Logic

Memory

DRAM Landscape (circa 2015)

98
Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.

Two Key Questions in 3D-Stacked PIM

n How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?
q what is the architecture and programming model?
q what are the mechanisms for acceleration?

n What is the minimal processing-in-memory support we can
provide?
q without changing the system significantly
q while achieving significant benefits

99

Graph Processing

100

n Large graphs are everywhere (circa 2015)

n Scalable large-scale graph processing is challenging

36 Million
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128 …

32 Cores

Speedup

Key Bottlenecks in Graph Processing

101

for (v:	graph.vertices)	{
for (w:	v.successors)	{
w.next_rank +=	weight	*	v.rank;

}
}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank

w.next_rank
w.edges

…

Tesseract System for Graph Processing

Crossbar	Network

…
…

…
…

DRAM
	Controller

NI

In-Order	Core

Message	Queue

PF	Buffer

MTP

LP

Host	Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Logic

Memory

Tesseract System for Graph Processing

103

Crossbar	Network

…
…

…
…

DRAM
	Controller

NI

In-Order	Core

Message	Queue

PF	Buffer

MTP

LP

Host	Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Communications	via
Remote	Function	Calls

Communications In Tesseract (I)

104

Communications In Tesseract (II)

105

Communications In Tesseract (III)

106

Remote Function Call (Non-Blocking)

107

Logic

Memory

Tesseract System for Graph Processing

108

Crossbar	Network

…
…

…
…

DRAM
	Controller

NI

In-Order	Core

Message	Queue

PF	Buffer

MTP

LP

Host	Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Prefetching

Evaluated Systems

HMC-MC

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

102.4GB/s 640GB/s 640GB/s 8TB/s

HMC-OoO

8	OoO
4GHz

8	OoO
4GHz

8	OoO
4GHz

8	OoO
4GHz

8	OoO
4GHz

8	OoO
4GHz

8	OoO
4GHz

8	OoO
4GHz

DDR3-OoO Tesseract

32	
Tesseract	
Cores

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
ee
du

p

>13X Performance Improvement

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms

Tesseract Graph Processing Performance

111

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
ee
du

p

80GB/s 190GB/s 243GB/s

1.3TB/s

2.2TB/s

2.9TB/s

0

0.5

1

1.5

2

2.5

3

3.5

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

M
em

or
y	
Ba

nd
w
id
th
	(T

B/
s)

Memory	Bandwidth	Consumption

Effect of Bandwidth & Programming Model

112

2.3x
3.0x

6.5x

0

1

2

3

4

5

6

7

HMC-MC HMC-MC	+
PIM	BW

Tesseract	+	
Conventional	BW

Tesseract

Sp
ee
du

p

HMC-MC Bandwidth (640GB/s) Tesseract Bandwidth (8TB/s)

Bandwidth

Programming Model

(No Prefetching)

Tesseract Graph Processing System Energy

0

0.2

0.4

0.6

0.8

1

1.2

HMC-OoO Tesseract	with	Prefetching

Memory	Layers Logic	Layers Cores

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

More on Tesseract
n Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,

and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

114

Accelerating GPU Execution with PIM

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack) SM (Streaming Multiprocessor)

Accelerating GPU Execution with PIM (I)
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

116

Accelerating GPU Execution with PIM (II)
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

117

Accelerating Linked Data Structures
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

118

Result – Microbenchmark Performance

119

0.0

0.5

1.0

1.5

2.0

Linked	List Hash	Table B-Tree

Sp
ee
du

p
Baseline	+	extra	128KB	L2 IMPICA

1.9X

1.3X 1.2X

Result – Database Performance

120

0.90

1.00

1.10

1.20

Baseline	+	extra	
128KB	L2

Baseline	+	extra	
1MB	L2

IMPICA

Da
ta
ba
se
	

Th
ro
ug
hp

ut

+2%
+5%

+16%

0.80
0.85
0.90
0.95
1.00

Baseline	+	extra	
128KB	L2

Baseline	+	extra	
1MB	L2

IMPICA

Da
ta
ba
se
	

La
te
nc
y -4%

-13%

-0%

System Energy Consumption

121

0.0

0.5

1.0

Linked	List Hash	
Table

B-Tree DBx1000

N
or
m
al
ize

d	
En

er
gy
	 Baseline	+	extra	128KB	L2 IMPICA

-41%
-24%

-6%
-10%

Two Key Questions in 3D-Stacked PIM

n How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?
q what is the architecture and programming model?
q what are the mechanisms for acceleration?

n What is the minimal processing-in-memory support we can
provide?
q without changing the system significantly
q while achieving significant benefits

122

PEI: PIM-Enabled Instructions (Ideas)
n Goal: Develop mechanisms to get the most out of near-data

processing with minimal cost, minimal changes to the system, no
changes to the programming model

n Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block
q e.g., __pim_add(&w.next_rank,	value)	à pim.add r1,	(r2)
q No changes sequential execution/programming model
q No changes to virtual memory
q Minimal changes to cache coherence
q No need for data mapping: Each PEI restricted to a single memory module

n Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors
q Execute each operation at the location that provides the best performance

123

Simple PIM Operations as ISA Extensions (I)

124

Main	Memory

w.next_rankw.next_rank

for (v:	graph.vertices)	{
value	=	weight	*	v.rank;
for (w:	v.successors)	{
w.next_rank +=	value;

}
}

Host	Processor

w.next_rankw.next_rank
64	bytes	in
64	bytes	out

Conventional	Architecture

Simple PIM Operations as ISA Extensions (II)

125

Main	Memory

w.next_rankw.next_rank

Host	Processor

value
8 bytes	in
0 bytes	out

In-Memory	Addition

for (v:	graph.vertices)	{
value	=	weight	*	v.rank;
for (w:	v.successors)	{
__pim_add(&w.next_rank, value);

}
}

pim.add r1,	(r2)

Always Executing in Memory? Not A Good Idea

126

-20%
-10%
0%
10%
20%
30%
40%
50%
60%

p2
p-
Gn

u
te
lla
31

so
c-
Sl
as
h

do
t0
81
1

w
eb

-
St
an
fo
rd

am
az
on

-
20
08

fr
w
ik
i-

20
13 w
ik
i-

Ta
lk

ci
t-

Pa
te
nt
s

so
c-
Li
ve

Jo
ur
na
l1

ljo
ur
na
l-

20
08

Sp
ee
du

p

More	Vertices

Increased
Memory	Bandwidth	

Consumption	
Caching	very	effective

Reduced	Memory	Bandwidth	
Consumption	due	to
In-Memory	Computation

PEI: PIM-Enabled Instructions: Examples

127

n Executed either in memory or in the processor: dynamic decision
q Low-cost locality monitoring for a single instruction

n Cache-coherent, virtually-addressed, single cache block only
n Atomic between different PEIs
n Not atomic with normal instructions (use pfence for ordering)

PIM-Enabled Instructions

n Key to practicality: single-cache-block restriction
q Each PEI can access at most one last-level cache block
q Similar restrictions exist in atomic instructions

n Benefits
q Localization: each PEI is bounded to one memory module
q Interoperability: easier support for cache coherence and

virtual memory
q Simplified locality monitoring: data locality of PEIs can be

identified simply by the cache control logic

Example PEI Microarchitecture

129

Out-Of-Order	
Core

L1
	C
ac
he

L2
	C
ac
he

La
st
-L
ev
el
	

Ca
ch
e

HM
C	
Co

nt
ro
lle
r

N
et
w
or
k

DRAM	
Controller

DRAM	
Controller

DRAM	
Controller

Host Processor 3D-stacked Memory
…

PCU	(PEI	
Computation	Unit)

PCU

PCU

PCU

PIM	
Directory

Locality	
Monitor

PMU (PEI
Mgmt Unit)

Example PEI uArchitecture

Evaluated Data-Intensive Applications

n Ten emerging data-intensive workloads
q Large-scale graph processing

n Average teenage follower, BFS, PageRank, single-source shortest
path, weakly connected components

q In-memory data analytics
n Hash join, histogram, radix partitioning

q Machine learning and data mining
n Streamcluster, SVM-RFE

n Three input sets (small, medium, large) for each workload
to show the impact of data locality

PEI Performance Delta: Large Data Sets

131

0%

10%

20%

30%

40%

50%

60%

70%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Large Inputs, Baseline: Host-Only)

PEI Energy Consumption

132

0

0.5

1

1.5

Small Medium Large

Cache HMC	Link DRAM
Host-side	PCU Memory-side	PCU PMU

Host-Only
PIM-Only
Locality-Aware

More on PIM-Enabled Instructions
n Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion

134

Barriers to Adoption of PIM

1. Functionality of and applications for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,
access/sharing control

5. Infrastructures to assess benefits and feasibility

135

Key Challenge 1:	Code	Mapping

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

?

Main GPU

3D-stacked memory
(memory stack)

• Challenge 1: Which operations should be executed
in memory vs. in CPU?

?
SM (Streaming Multiprocessor)

Key Challenge 2: Data Mapping

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack)

• Challenge 2: How should data be mapped to
different 3D memory stacks?

SM (Streaming Multiprocessor)

How to Do the Code and Data Mapping?
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

138

How to Schedule Code?
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

139

How to Maintain Coherence?

n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

140

How to Support Virtual Memory?
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

141

How to Design Data Structures for PIM?
n Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,

"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

142

Simulation Infrastructures for PIM

n Ramulator extended for PIM
q Flexible and extensible DRAM simulator
q Can model many different memory standards and proposals
q Kim+, “Ramulator: A Flexible and Extensible DRAM

Simulator”, IEEE CAL 2015.
q https://github.com/CMU-SAFARI/ramulator

143

An FPGA-based Test-bed for PIM?

n Hasan Hassan et al., SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source

github.com/CMU-SAFARI/SoftMC

144

Agenda

n Major Trends Affecting Main Memory
n The Need for Intelligent Memory Controllers

q Bottom Up: Push from Circuits and Devices
q Top Down: Pull from Systems and Applications

n Processing in Memory: Two Directions
q Minimally Changing Memory Chips
q Exploiting 3D-Stacked Memory

n How to Enable Adoption of Processing in Memory
n Conclusion

145

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures
146

Challenge and Opportunity for Future

Fundamentally
Low-Latency

(Data-Centric)
Computing Architectures

147

A Quote from A Famous Architect
n “architecture […] based upon principle, and not upon

precedent”

148

Precedent-Based Design?
n “architecture […] based upon principle, and not upon

precedent”

149

Principled Design
n “architecture […] based upon principle, and not upon

precedent”

150

Another Example: Precedent-Based Design

151Source: http://cookiemagik.deviantart.com/art/Train-station-207266944

Principled Design

152Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256

Principle Applied to Another Structure

153
Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/
Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0,
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava

Concluding Remarks

n It is time to design principled system architectures to solve
the memory problem

n Design complete systems to be balanced, high-performance,
and energy-efficient, i.e., data-centric (or memory-centric)

n Enable computation capability inside and close to memory

n This can
q Lead to orders-of-magnitude improvements
q Enable new applications & computing platforms
q …

154

The Future of Processing in Memory is Bright

n Regardless of challenges
q in underlying technology and overlying problems/requirements

155

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Can enable:

- Orders of magnitude
improvements

- New applications and
computing systems

Yet, we have to

- Think across the stack

- Design enabling systems

If In Doubt, See Other Doubtful Technologies
n A very “doubtful” emerging technology

q for at least two decades

156https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
October 27, 2017

MST Workshop Keynote (Milan)

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Open Problems

158

For More Open Problems, See (I)
n Onur Mutlu and Lavanya Subramanian,

"Research Problems and Opportunities in Memory
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2014/2015.

159https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf

For More Open Problems, See (II)

160https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

n Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

For More Open Problems, See (III)
n Onur Mutlu,

"Memory Scaling: A Systems Architecture
Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara,
CA, August 2013. [Slides (pptx) (pdf)]
[Video] [Coverage on StorageSearch]

161https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

For More Open Problems, See (IV)
n Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and

Onur Mutlu,
"Error Characterization, Mitigation, and Recovery in
Flash Memory Based Solid State Drives"
to appear in Proceedings of the IEEE, 2017.
[Preliminary arxiv.org version]

162https://arxiv.org/pdf/1706.08642.pdf

Reducing Memory Latency

163

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

D
R

A
M

 Im
pr

ov
em

en
t

(lo
g)

Capacity Bandwidth Latency

Main Memory Latency Lags Behind

128x

20x

1.3x

Memory latency remains almost constant

A Closer Look …

165

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

DRAM Latency Is Critical for Performance

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Long memory latency → performance bottleneck

Why the Long Latency?

n Design of DRAM uArchitecture
q Goal: Maximize capacity/area, not minimize latency

n “One size fits all” approach to latency specification
q Same latency parameters for all temperatures
q Same latency parameters for all DRAM chips (e.g., rows)
q Same latency parameters for all parts of a DRAM chip
q Same latency parameters for all supply voltage levels
q Same latency parameters for all application data
q …

168

Latency Variation in Memory Chips

169

HighLow
DRAM Latency

DRAM BDRAM A DRAM C

Slow cells

Heterogeneous manufacturing & operating conditions→	
latency variation in timing parameters

DRAM Characterization Infrastructure

170Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

DRAM Characterization Infrastructure

n Hasan Hassan et al., SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies, HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source

github.com/CMU-SAFARI/SoftMC

171

SoftMC: Open Source DRAM Infrastructure

n https://github.com/CMU-SAFARI/SoftMC

172

Tackling the Fixed Latency Mindset
n Reliable operation latency is actually very heterogeneous

q Across temperatures, chips, parts of a chip, voltage levels, …

n Idea: Dynamically find out and use the lowest latency one
can reliably access a memory location with
q Adaptive-Latency DRAM [HPCA 2015]
q Flexible-Latency DRAM [SIGMETRICS 2016]
q Design-Induced Variation-Aware DRAM [SIGMETRICS 2017]
q Voltron [SIGMETRICS 2017]
q ...

n We would like to find sources of latency heterogeneity and
exploit them to minimize latency

173

174

Adaptive-Latency	DRAM

• Key	idea
– Optimize	DRAM	timing	parameters	online

• Two	components
– DRAM	manufacturer	provides	multiple	sets	of	
reliable	DRAM	timing	parameters	at	different	
temperatures	for	each	DIMM

– System	monitors	DRAM	temperature	&	uses	
appropriate	DRAM	timing	parameters

reliable	DRAM	timing	parameters

DRAM	temperature

Lee+,	“Adaptive-Latency	DRAM:	Optimizing	DRAM	Timing	for	the	Common-Case,”	HPCA	
2015.

175

Latency	Reduction	Summary	of	115	DIMMs
• Latency	reduction	for	read	&	write	(55°C)

– Read	Latency:	32.7%
–Write	Latency:	55.1%

• Latency	reduction	for	each	timing	
parameter	(55°C)	
– Sensing:	17.3%
– Restore:	37.3% (read),	54.8% (write)
– Precharge:	35.2%

Lee+,	“Adaptive-Latency	DRAM:	Optimizing	DRAM	Timing	for	the	Common-Case,”	HPCA	
2015.

176

AL-DRAM:	Real	System	Evaluation
• System

– CPU:	AMD	4386	(8	Cores,	3.1GHz,	8MB	LLC)
– DRAM:	4GByte	DDR3-1600	(800Mhz	Clock)
– OS:	Linux
– Storage:	128GByte	SSD

• Workload
– 35	applications	from	SPEC,	STREAM,	Parsec,	
Memcached,	Apache,	GUPS

177

0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core

0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core

1.4%
6.7%

0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core

5.0%

AL-DRAM:	Single-Core	Evaluation

AL-DRAM	improves	single-core	performance	
on	a	real	system

Pe
rf
or
m
an
ce
	Im

pr
ov
em

en
t Average

Improvement

al
l-3

5-
w
or
kl
oa
d

178

0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core

0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core

0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core
14.0%

2.9%
0%
5%

10%
15%
20%
25%

so
pl
ex

m
cf

m
ilc

lib
q

lb
m

ge
m
s

co
py

s.
cl
us
te
r

gu
ps

no
n-
in
te
ns
iv
e

in
te
ns
iv
e

al
l-w

or
kl
oa
ds

Single	Core Multi	Core

10.4%

AL-DRAM:	Multi-Core	Evaluation

AL-DRAM	provides	higher	performance	on
multi-programmed	&	multi-threaded	workloads

Pe
rf
or
m
an
ce
	Im

pr
ov
em

en
t Average				

Improvement

al
l-3

5-
w
or
kl
oa
d

Reducing Latency Also Reduces Energy

n AL-DRAM reduces DRAM power consumption by 5.8%

n Major reason: reduction in row activation time

179

More on Adaptive-Latency DRAM
n Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,

Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA,
February 2015.
[Slides (pptx) (pdf)] [Full data sets]

180

Heterogeneous Latency within A Chip

181

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

40 Workloads

Baseline (DDR3)
FLY-DRAM (D1)
FLY-DRAM (D2)
FLY-DRAM (D3)
Upper Bound

17.6%
19.5%19.7%

13.3%

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

Analysis of Latency Variation in DRAM Chips
n Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh,

Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and
Onur Mutlu,
"Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins,
France, June 2016.
[Slides (pptx) (pdf)]
[Source Code]

182

183

Inherently	fast

inherently	slow

What	Is	Design-Induced	Variation?
slowfast

slow
fast

Systematic	variation in	cell	access	times
caused	by	the	physical	organization of	DRAM

sense	amplifiers

w
ordline

drivers

across	row
distance	from	
sense	amplifier

across	column

distance	from	
wordline driver

184

DIVA Online	Profiling
inherently	slow

Profile	only slow	regions	to	determine	min.	latency
àDynamic&	low	cost	latency	optimization

sense	amplifier

w
ordline

driver

Design-Induced-Variation-Aware

185

inherently	slow

DIVA Online	Profiling
slow	cells		

design-induced
variation

process
variation

localized	errorrandom	error

online	profilingerror-correcting	
code

Combine	error-correcting	codes	& online	profiling
à Reliably reduce	DRAM	latency

sense	amplifier

w
ordline

driver

Design-Induced-Variation-Aware

186

DIVA-DRAM	Reduces	Latency
Read Write

31.2%
25.5%

35.1%34.6%36.6%35.8%

0%

10%

20%

30%

40%

50%

55°C 85°C 55°C 85°C 55°C 85°C

AL-DRAM AVA	Profiling AVA	Profiling	
+	Shuffling

La
te
nc
y	
Re
du

ct
io
n

DIVADIVA

36.6%

27.5%

39.4%38.7%
41.3%40.3%

0%

10%

20%

30%

40%

50%

55°C 85°C 55°C 85°C 55°C 85°C

AL-DRAM AVA	Profiling AVA	Profiling	
+	Shuffling

DIVADIVA

DIVA-DRAM	reduces	latency	more	aggressively
and	uses	ECC	to	correct	random	slow	cells

Design-Induced Latency Variation in DRAM
n Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose,

Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and
Onur Mutlu,
"Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

187

Voltron: Exploiting the
Voltage-Latency-Reliability

Relationship

188

Executive Summary
• DRAM (memory) power is significant in today’s systems

– Existing low-voltage DRAM reduces voltage conservatively

• Goal: Understand and exploit the reliability and latency behavior of
real DRAM chips under aggressive reduced-voltage operation

• Key experimental observations:
– Huge voltage margin -- Errors occur beyond some voltage
– Errors exhibit spatial locality
– Higher operation latency mitigates voltage-induced errors

• Voltron: A new DRAM energy reduction mechanism
– Reduce DRAM voltage without introducing errors
– Use a regression model to select voltage that does not degrade

performance beyond a chosen target à 7.3% system energy reduction

189

Analysis of Latency-Voltage in DRAM Chips
n Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish

Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and Onur Mutlu,
"Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and
Mechanisms"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

190

And, What If …

n … we can sacrifice reliability of some data to access it with
even lower latency?

191

Challenge and Opportunity for Future

Fundamentally
Low Latency

Computing Architectures

192

