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The Main Memory System

Processors Main Memory
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Storage (SSD/HDD)

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits
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Memory System: A Shared Resource View
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Most of the system is dedicated to storing and moving data
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State of the Main Memory System

Recent technology, architecture, and application trends
o lead to new requirements
o exacerbate old requirements

DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

We need to rethink the main memory system
o to fix DRAM issues and enable emerging technologies
o to satisfy all requirements

SAFARI



Major Trends Atfecting Main Memory (I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending

SAFARI 7



Major Trends Atfecting Main Memory (II)

= Need for main memory capacity, bandwidth, QoS increasing
o Multi-core: increasing number of cores/agents
o Data-intensive applications: increasing demand/hunger for data
o Consolidation: cloud computing, GPUs, mobile, heterogeneity

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending

SAFARI 8



Example: The Memory Capacity Gap

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years

1000

o #Core Lim et al., ISCA 2009

= DRAM
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Memory capacity per core expected to drop by 30% every two years
Trends worse for memory bandwidth per core!



Example: Memory Bandwidth & Latency
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Memory latency remains almost constant
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DRAM Latency Is Critical tor Performance

In-memory Databases
[Mao+, EuroSys’[2;
Clapp+ (Intel), ISWC’15]

SAPACHE&

oark

In-Memory Data Analytics
[Clapp+ (Intel), ISWC’|5;
Awan+, BDCloud’15]

SAFARI

Graph/Tree Processing
[Xu+, ISWC’12; Umuroglu+, FPL15]

Datacenter Workloads
[Kanev+ (Google), ISCA’|5]



DRAM Latency Is Critical for Performance

In-memory Databases Graph/Tree Processing

Long memory latency — performance bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]
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Major Trends Atfecting Main Memory (I1I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

a ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,
IEEE Computer'03] >40% power in DRAM [Ware, HPCA’10][Paul,ISCA'15]

a DRAM consumes power even when not used (periodic refresh)

= DRAM technology scaling is ending

SAFARI 13



Major Trends Atfecting Main Memory (IV)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
o ITRS projects DRAM will not scale easily below X nm

o Scaling has provided many benefits:
= higher capacity (density), lower cost, lower energy

SAFARI 14



Major Trends Atfecting Main Memory (V)

DRAM scaling has already become increasingly difficult

o Increasing cell leakage current, reduced cell reliability,

increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

o Difficult to significantly improve capacity, energy

Emerging memory technologies are promising

SAFARI 15



Major Trends Atfecting Main Memory (V)

DRAM scaling has already become increasingly difficult

o Increasing cell leakage current, reduced cell reliability,

increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

o Difficult to significantly improve capacity, energy

Emerging memory technologies are promising

3D-Stacked DRAM higher bandwidth smaller capacity
Reduced-Latency DRAM lower latenc higher cost
(e.g., RL/TL-DRAM, FLY-RAM) y J
Low-Power DRAM IOWer DOwer higher latency
(e.g., LPDDR3, LPDDR4, Voltron) P higher cost
Non-Volatile Memory (NVM) higher latency
(e.g., PCM, STTRAM, ReRAM, 3D larger capacity | higher dynamic power
Xpoint) lower endurance

SAFARI 16



Major Trend: Hybrid Main Memory

DRAM

PCM

Ll Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.
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Foreshadowing

Main Memory Needs
Intelligent Controllers
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Agenda

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers

a Bottom Up: Push from Circuits and Devices

o Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI
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Last Time I Was Here ...

Rethinking Memory System Design
Business As Usual in the Next Decade?

20




The DRAM Scaling Problem

DRAM stores charge in a capacitor (charge-based memory)
o Capacitor must be large enough for reliable sensing

o Access transistor should be large enough for low leakage and high
retention time

o Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]
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= |
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- SENSE

V

DRAM capacity, cost, and energy/power hard to scale
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As Memory Scales, It Becomes Unreliable

= Data from all of Facebook’s servers worldwide
= Meza+, “"Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN'15.
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Large-Scale Failure Analysis of DRAM Chips

= Analysis and modeling of memory errors found in all of
Facebook's server fleet

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.

[Slides (pptx) (pdf)] [DRAM Error Model]

Revisiting Memory Errors in Large-Scale Production Data Centers:
Analysis and Modeling of New Trends from the Field

Justin Meza Qiang Wu™* Sanjeev Kumar™ Onur Mutlu
Carnegie Mellon University * Facebook, Inc.
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Infrastructures to Understand Such Issues

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An A
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



SottMC: Open Source DRAM Infrastructure

= Hasan Hassan et al., "SoftMC: A v T"“‘-‘

Flexible and Practical Open- Chamber
Source Infrastructure for \ |
Enabling Experimental DRAM
Studies,” HPCA 2017.

/ : \\,\\,{; »
T m

= Easy to Use (C++ API) ’ conetrgpller "

= Open-source B

github.com/CMU-SAFARI/SoftMC

= Flexible

SAFARI 25



SoftMC

= https://github.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies

1,2,3 3 4,3 3

Samira Khan Saugata Ghose® Kevin Chang?
6.3 Oguz Ergin? Onur Mutlu!-3

Hasan Hassan Nandita Vijaykumar
Gennady Pekhimenko®3 Donghyuk Lee

\ETH Ziirich  >TOBB University of Economics & Technology 3Carnegie Mellon University
*University of Virginia > Microsoft Research ~ SNVIDIA Research
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A Curious Discovery [Kim et al., ISCA 2014]

One can
predictably induce errors
in most DRAM memory chips

SAFARI
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DRAM RowHammer

A simple hardware failure mechanism
can create a widespread
system security vulnerability

WRYR}HD| Forget Software—Now Hackers Are Exploiting Physics

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

ik FORGET SOFTWARE—NOW
- MACKERS ARE EXPLOITING
PHYSICS




Modern DRAM is Prone to Disturbance Errors

= Row of Cells = Wordline

= Victim Row —
Hammere: i V ioew

= Victim Row —

== ROw —

Repeatedly reading a row enough times (before memory gets
refreshed) induces disturbance errors in adjacent rows in
most real DRAM chips you can buy today

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 29
Disturbance Errors, (Kim et al., ISCA 2014)




Most DRAM Modules Are Vulnerable

A company B company C company

Up to Up to Up to
1.0x107 2.7x10° 3.3x10°
errors errors errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM

Disturbance Errors, (Kim et al., ISCA 2014)




Recent DRAM Is More Vulnerable

e A Modules = B Modules ¢ C Modules
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Recent DRAM Is More Vulnerable

e A Modules = B Modules ¢ C Modules
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Recent DRAM Is More Vulnerable
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A Simple Program Can Induce Many Errors

RAM Module

¢
-M HH HH
Ine. .

loop:

mov (), %eax
mov (), %Tebx
clflush ()
clflush ()
mfence

Jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer
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A Simple Program Can Induce Many Errors

RAM Module
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Observed Errors in Real Systems

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel vy Bridge (2012) 20.7K 11.7M/sec
Intel Sandy Bridge (2011) 16.1K 11.6M/sec
AMD Piledriver (2012) 59 6.1M/sec

A real reliability & security issue

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 38
DRAM Disturbance Errors,” ISCA 2014.



One Can Take Over an Otherwise-Secure System

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable
and secure computing system — an access to one memory ad-
dress should not have unintended side effects on data stored
in other addresses. However, as DRAM process technology

Flipping Bits in Memory Without Accessing Them:

P r'Oj ect Ze ro An Experimental Study of DRAM Disturbance Errors

(Kim et al., ISCA 2014)

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Exploiting the DRAM rowhammer bug to gain kernel privileges



Security Implications
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It's like breaking into an apartment by
repeatedly slamming a neighbor’s door until |
the vibrations open the door you were after



More Security Implications

“"We can gain unrestricted access to systems of website visitors.”

Not there yet, but ...

Y OWHAMMER)S

ROQOT privileges for web apps!

Daniel Gruss (@lavados), Clémentine Maurice (@BloodyTangerine),
December 28, 2015 — 32¢3, Hamburg, Germany

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA'16)

41
Source: https://lab.dsst.io/32c3-slides/7197.html




More Security Implications

“Can gain control of a smart phone deterministically”

Hammer And Root

Mllllons of Androids

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS'16 42

Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/



More Security Implications?

43



More on RowHammer Analysis

= Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors”
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Yoongu Kim'! Ross Daly*  Jeremie Kim' Chris Fallin*  Ji Hye Lee!
Donghyuk Lee! Chris Wilkerson? Konrad Lai  Onur Mutlu!

!Carnegie Mellon University ~ “Intel Labs
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Future of Memory Reliability

=  Onur Mutluy,

"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"

Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

The RowHammer Problem
and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu
ETH Ziirich
onur.mutlu @inf.ethz.ch
https://people.inf.ethz.ch/omutlu

SAFAR]| https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues datel7.pdf 45




Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

% Refresh
» Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance

» Leakage current of cell access transistors increasing

+ tWR
» Contact resistance between the cell capacitor and access transistor increasing
» On-current of the cell access transistor decreasing

+ Bit-line resistance increasing

+ VRT
* Occurring more frequently with cell capacitance decreasing
WIL
"o . . - .BLO - E
|r CcsL |r g 1' ) 4r p g 4
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Forum
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Call for Intelligent Memory Controllers

DRAM Process Scaling Challenges

+* Refresh

o Niffictilt ta huild hiadh-asneect ratio cell canacitare decreasina cell canacitance

THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM
to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng,
**John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel
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Aside: Intelligent Controller for NAND Flash

~ virtex:|l Pro
»Z(USB ¢d htroller)
= e (=8 T ocong
Virex-VeFPGA “NAND Flash
(NAND.-Controller) .« e ]|

- NARRI e ¢

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, NAND Daughter Board
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE'17]

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.




Aside: NAND Flash & SSD Scaling Issues

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu,

"Error Characterization, Mitigation, and Recovery in Flash Memory Based
Solid State Drives”

to appear in Proceedings of the IEEE, 2017.

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.

Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD
2012.

Cai+, "Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE
2013.

Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.

Cai+,"Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.

Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.

Luo+, "WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST
2015.

Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.

Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE
JSAC 2016.

Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation
Techniques,” HPCA 2017.

Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.



Aside: Intelligent Controller for NAND Flash
I - | Opw0

Proceedings of the IEEE, Sept. 2017 a'pk
--ﬂ 'l _r'-.

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error
characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Car, SaucaTta GHOSE, EricH F. HARATSCH, YiXIN Luo, AND ONUR MUTLU

https://arxiv.org/pdf/1706.08642
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Takeaway

Main Memory Needs
Intelligent Controllers




Agenda

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices

o Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion
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Three Key Systems Trends

1. Data access is a major bottleneck
o Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
o Especially true for off-chip to on-chip movement

53



The Need for More Memory Performance

=

—

In-memory Databases Graph/Tree Processing
[Mao+, EuroSys’12; [Xu+, ISWC’12; Umuroglu+, FPL’15]
Clapp+ (Intel), ISWC’|5]

et N
Spark

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]
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The Pertformance Perspective

= “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)
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B Full-window stall time

Normalized Execution Time

128-entry window Data from Runahead Execution [HPCA 2003]

Mutlu+, “"Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Pertformance Perspective

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February
2003. Slides (pdf)

Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark  Chris Wilkerson 1 Yale N. Patt §

S§ECE Department TMicroprocessor Research IDesktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation

{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson @intel.com
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The Energy Perspective

Communication Dominates Arithmetic

256-bit access
8 kB SRAM

SAFARI

Dally, HIPEAC 2015

256 pJ

— M
16 nJ I- Rd/Wr

Efficient
>00pJ ] off-chip link




Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP

256-bit buses

Efficient
>00p. off-chip link

256-bit access
8 kB SRAM
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Challenge and Opportunity for Future

High Performance
and
Energy Efficient

SAFARI



The Problem

Data access is the major performance and energy bottleneck

Our current
design principles
cause great energy waste

(and great performance loss)

SAFARI 60



The Problem

Processing of data
iSs performed
far away from the data

SAFARI
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A Computing System

= Three key components

= Computation
= Communication
= Storage/memory

Computing System

Burks, Goldstein, von Neumann, “Preliminary discussion of the

logical design of an electronic computing instrument,” 1946.

Computing
Unit

>

Communication E a

Unit

Memory/Storage
Unit

T
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Memory System

Storage System
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A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Communication




Today’s Computing Systems

Are overwhelmingly processor centric
All data processed in the processor - at great system cost
Processor is heavily optimized and is considered the master

Data storage units are dumb and are largely unoptimized
(except for some that are on the processor die)

Computing System
4 )

Computing E a Communication E 3 Memory/Storage
Unit Unit Unit
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Memory System Storage System
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Yet ...

= “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)
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@ Non-stall (compute) time

B Full-window stall time

Normalized Execution Time

128-entry window Data from Runahead Execution [HPCA 2003]

Mutlu+, “"Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



Perils of Processor-Centric Design

Grossly-imbalanced systems

o Processing done only in one place

o Everything else just stores and moves data: data moves a lot
- Energy inefficient

- Low performance

- Complex

Overly complex and bloated processor (and accelerators)
o To tolerate data access from memory

o Complex hierarchies and mechanisms

- Energy inefficient

- Low performance

- Complex
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Perils of Processor-Centric Design

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
\
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Shared Shared
Memory Memory
Control Control
Shared Memory

Most of the system is dedicated to storing and moving data




We Do Not Want to Move Datal

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP

256-bit buses

Efficient
>00p. off-chip link

256-bit access
8 kB SRAM
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We Need A Paradigm Shift To ...

Enable computation with minimal data movement
Compute where it makes sense (where data resides)

Make computing architectures more data-centric

09



Goal: Processing Inside Memory

Processor

Core

Results

Many questions ... How do we design the:

Q

o o O o

compute-capable memory & controllers?
processor chip?

software and hardware interfaces?
system software and languages?
algorithms?

) ]
Interconnect

t Database

Graphs

| Media

Problem

Program/Language

System Software

SW/HW Interface

Micro-architecture

Logic

Electrons




Why In-Memory Computation Today?

= Pull from Systems and Applications
o Data access is a major system and application bottleneck
o Systems are energy limited
o Data movement much more energy-hungry than computation

SAFARI 71



Agenda

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices

o Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion
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Approach 1: Minimally Changing DRAM

= DRAM has great capability to perform bulk data movement and
computation internally with small changes

o Can exploit internal bandwidth to move data
o Can exploit analog computation capability

Q ...

= Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM

o RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data
(Seshadri et al., MICRO 2013)

o Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

a Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

o "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology” (Seshadri et al., MICRO 2017)
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Starting Simple: Data Copy and Initialization

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

- Zero initialization ' '

Forking (e.g., security) Checkpointing

I. eo o
‘;li‘> Many more

VM Cloning  page Migration
Deduplication
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Today’s Systems: Bulk Data Copy

1) High latency
3) Cache pollution \

2) High bandwidth utilization

4) Unwanted data movement

1046ns, 3.6ul (for 4KB page copy via DMA)
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Future Systems: In-Memory Copy

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement

1046ns, 3.6u] -2 90ns, 0.04u)
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RowClone: In-DRAM Row Copy

Transfer
row

Transfer|
row

4 Kbytes

Idea: Two consecutive ACTivates

Negligible HW cost

Step 1: Activate row A

Step 2: Activate row B

DRAM subarray

Row Buffer (4 Kbytes)

Data Bus



RowClone: Latency and Energy Savings

1.2 M Baseline M Intra-Subarray

W Inter-Bank M [nter-Subarray
A

_
|

74x

o
oo
|

o
H
|

Normalized Savings
o
(@)

o
N
|

Latency Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.
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More on RowClone

= Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization”
Proceedings of the 46th International Symposium on Microarchitecture

(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin™ Donghyuk Lee
vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu
Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo

rachata@cmu.edu gpekhime@cs.cmu.edu  yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbonst Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University fIntel Pittsburgh



Memory as an Accelerator

miniCPU| 1| GPU GPU |
CPU CPU core : | (throughput) | | (throughput) | :
core core core core :
video
core
cPU PU :| GpPU GPU |i
; _ : | (throughput) | | (throughput) | : :
core core imagingl | core core | Memory
LLC
N Specialized
Memory Controller compute-capability
1N memory

Memory Bus

Memory similar to a "conventional” accelerator



In-Memory Bulk Bitwise Operations

We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
At low cost

Using analog computation capability of DRAM

o Idea: activating multiple rows performs computation

30-60X performance and energy improvement

o Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

New memory technologies enable even more opportunities
o Memristors, resistive RAM, phase change mem, STT-MRAM, ...
o Can operate on data with minimal movement
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In-DRAM AND/OR: Triple Row Activation

YV 10
A‘l'l/). bp

I s Final State
BV AB + BC + AC

wl/"‘

A

dis

| %,

SAFARI Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.
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In-DRAM Bulk Bitwise AND/OR Operation

BULKAND A, B> C

Semantics: Perform a bitwise AND of two rows A and B and
store the result in row C

RO — reserved zero row, R1 — reserved one row
D1, D2, D3 — Designated rows for triple activation

. RowClone A into D1

. RowClone B into D2

. RowClone RO into D3

. ACTIVATE D1,D2,D3

5. RowClone Result into C
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In-DRAM AND/OR Resu.

IR

= 20X improvement in AND/OR through

out vs. Intel AVX

= 50.5X reduction in memory energy consumption

= At least 30% performance improvement in range queries

90
80
70
60
50
40
30
20
10

0

Throughput of AND operations (GB/s)

In-DRAM AND (2 banks)

\ In-DRAM AND (1 bank)
' =iz

A

v A Intel AVX
I R I I I I R I I I I R

Size of Vectors to be ANDed

SAFARI

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM", IEEE CAL 2015.
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More on In-DRAM Bulk AND/OR

= Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk

Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuch', Onur Mutlu*, Phillip B. Gibbons', Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh
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In-DRAM NOT: Dual Contact Cell

d-wordline o
dual-contact »: T 5
cell (DCC) | | i | .
n-wordline :__%I_ | Idea .
sense i J Feed the
amplifier —\ <7 negated value

in the sense amplifier
into a special row

bitline
Figure 5: A dual-contact

cell connected to both
ends of a sense amplifier

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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In-DRAM NOT Operation

0 I sVoD ! T sVpp +0

source |II 1 source Iﬂ 1

3VpD c 3VoD e

Initial State After Charge Sharing

Figure 5: Bitwise NOT using a dual contact capacitor

1 -

source |!l 1

Vbbb

Activated d-wordline

0 - -

source III 1

Vbbb

Activated n-wordline

Seshadri+, “"Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Performance: In-DRAM Bitwise Operations

Figure 9: Throughput of bitwise operations on various systems.
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Energy of In-DRAM Bitwise Operations

Design not and/or nand/nor xor/xnor

DRAM & DDR3 93.7 137.9 137.9 137.9
Channel Energy ~ Ambit 1.6 3.2 4.0 5.5
(nJ/KB) (}) 595X 439X 35.1X 25.1X

Table 3: Energy of bitwise operations. (|) indicates energy
reduction of Ambit over the traditional DDR3-based design.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Example Data Structure: Bitmap Index

Alternative to B-tree and its variants
Efficient for performing range queries and joins
Many bitwise operations to perform a query

age <18 18<age<25 25<age<60 age>60
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Performance: Bitmap Index on Ambit

~~ 110 4] — L Jeeeeeeeeee T e
GE) g 100 < Baseline I Ambit el b,
c <o o0A4b—— ] f
= S, 80 e L L
- GL) TO e L L
c_) - 60_ ..............................................................................................................
.51 O‘ 50 et Y ! I PO I A I AR
8 _GC) 318_ ............................................................................................
b sssnnnsnnnssnnnsannnsnnnd fesssswnnsennnsa]  beriesscinnnsnaf 0 |isssssennsanas .e ..6.6X
LI>J< : %8 _ 54X 6.3X - 5.7X 6.2X | |9
O —....] [|..7: e [ AR N PP D SRR B .

2-weeks 3-weeks 4-weeks 2-weeks 3-weeks 4-weeks
8 million users 16 million users

Figure 10: Bitmap index performance. The value above each
bar indicates the reduction in execution time due to Ambit.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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Performance: BitWeaving on Ambit

‘select count(*) from T where cl <= val <= c2’

13 _ ROW count (r) _ D 1m . 2m D 4m . 8m ..................................

Speedup offered by Ambit

4 12 16 20 24 28 32
Number of Bits per Column (b)

Figure 11: Speedup offered by Ambit over baseline CPU with
SIMD for BitWeaving

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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More on Ambit

= Vivek Seshadri et al., "Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee*®> Thomas Mullins®® Hasan Hassan® Amirali Boroumand®
Jeremie Kim*®> Michael A. Kozuch® Onur Mutlu*®  Phillip B. Gibbons®> Todd C. Mowry?®

'!Microsoft Research India 2NVIDIA Research 3Intel ZETH Ziirich °Carnegie Mellon University
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Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement
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Challenge: Intelligent Memory Device

Does memory

have to be
dumb?
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Agenda

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices

o Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI
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Opportunity: 3D-Stacked Logic+Memory

Hybrid Memory Cube

Logic
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DRAM Landscape (circa 2015)

Segment DRAM Standards & Architectures
Commodity DDR3 (2007) [14]; DDR4 (2012) [1¥]
Low-Power  LPDDR3 (2012) [17]; LPDDR4 (2014) [20]
Graphics GDDRS5 (2009) [15]

Performance eDRAM [2£], [32]; RLDRAM3 (2011) [29]

SBA/SSA (2010) [38]; Staged Reads (2012) [3]; RAIDR (2012) [27];
SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];
Half-DRAM (2014) [39]; Row-Bufter Decoupling (2014) [33];

SARP (2014) [6]; AL-DRAM (2015) [25]

Academic

Table 1. Landscape of DRAM-based memory

Kim+, "Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.
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Two Key Questions in 3D-Stacked PIM

3D-stacked memory as a coarse-grained accelerator?
o what is the architecture and programming model?
o what are the mechanisms for acceleration?

What is the minimal processing-in-memory support we can
provide?

o without changing the system significantly

o while achieving significant benefits

SAFARI 7



Graph Processing

= Large graphs are everywhere (circa 2015)

oo [ L

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages  Facebook Users Twitter Users  Instagram Photos

= Scalable large-scale graph processing is challenging

128... _ +420/0—

0 1 2 3 4
Speedup

100



Key Bottlenecks in Graph Processing

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

1. Frequent random memory accesses

w.rank

w.next_rank

w.edges

2. Little amount of computation
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Tesseract System tor Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped
Accelerator Interface

Noncacheable, Physically Addressed)

~ _ i BRE
q -~ /
hat! dl [
. » . ]
o 4 & A
N, i gLt ',
-\ | |
s Uasiny. 1| : 1
s U B
¢ 1
1 h )
1 N 1 ,
| 1 /
1 ! ’
1 1 ’
1 1 ’
| [
/ n-vrader core
/
/
7 /7
7 7
’

=)
P
>
| | o [/ =
0
II " Ean g
; 2o T ' Y

1] [ ; . LP PF Buffer =
' Crossbar Network > o
' S % S 1] G )

O | | | = | MTP
~ L BN BN \\\\ ¢
y Message Queue NI

SAFAR]/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Communications via

Remote Function Calls

Message Queue




Communications In Tesseract (I)

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

}
}
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Communications In Tesseract (1)

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

Vault #1 Vault #2
- ——»
\V; > &w
// | \
- \
«—= \
\\
\\\\\\\ — — >
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Communications In Tesseract (111)

for (v: graph.vertices) {

for (w: v.successors) { Non-blocking Remote Function Call
put(w.id, function() { w.next_rank += weight * v.rank; });
J Can be delayed
} until the nearest barrier
barrier();
Vault #1 Vault #2
put ~
Y > &w
4-——-”/// ‘\
put \\\
S~ put
TS » W
put |
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Remote Function Call (Non-Blocking)

1. Send function address & args to the remote core

2. Store the incoming message to the message queue
3. Flush the message queue when it is full or a

synchronization barrier is reached

Local
Core

g

NI

&func, &w, value

NI

_>

Remote
Core b
MQ -

put(w.id, function() { w.next_rank +=value; })

SAFARI
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Prefetching

LP PF Buffer

MTP




Evaluated Systems

DDR3-000 HMC-Oo0 HMC-MC Tesseract

| | | | | | | | | | |
| | | | | | | ! [ [
I I * I - I * I I ! v\ v\ y\ X ! v\ y\ y\ X ! 32
| I | I 1 I | I | . . Tesseract
z x X X X X ' X X X X ' Cores
v v v v i YY VYV \AJR A/ i \A 2R A \ A 2R A | |
128 128
- e B R L B o o
i y y | y y | ¢ ¢ ¢ ¢
4 v i v v i v v i o PN
! ! 128 128 !
8000 8000 | 8000 8000 : .ol So i ¥
y x ' R ¥ S ¥ ' W S Y Y i v v v v
v v v v \ v \ \ ! v \ v v ! ol ol R
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| l | | l | l | | l |
I I I I \ 4 v v v v v \ 4 \ 4
| | | | | | |
[ [ [ [
| | | | | | |
102.4GB/s 640GB/s 640GB/s 8TB/s

SAFAR]/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing Performance

>13X Performance Improvement

16
On five graph processing algorithms 13.8x
14
1 11.6x
o 10 9.0x
>
o 8
()
(@}
“ 6
4
5 +56% 4259
, = N e
DDR3-000 HMC-000 HMC-MC Tesseract Tesseract- Tesseract-

LP LP-MTP

SAFARI| Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Memory Bandwidth Consumption

2.9TB/s

Memory Bandwidth (TB/s)

2.2TB/s
1.3TB/s
190GB/s 243GB/s
80GB/s
T

DDR3-000 HMC-000 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP




Ettect of Bandwidth & Programming Model

] HMC-MC Bandwidth (640GB/s) ] Tesseract Bandwidth (8TB/s)
7 6.5x

3.0x

Speedup

- E
0
HMC-MC HMC-MC + Tesseract + Tesseract
PIM BW Conventional BW (No Prefetching)
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Tesseract Graph Processing System Energy

M Memory Layers M Logic Layers [1Cores
1.2

0.8
0.6
0.4

> 8X Energy Reduction

HMC-000 Tesseract with Prefetching

0.2

SAFAR/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”

Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn  Sungpack Hong® Sungjoo Yoo Onur Mutlu’ Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo @ gmail.com, onur@cmu.edu, kchoi@snu.ac.kr

Seoul National University $Oracle Labs fCarnegie Mellon University

SAFARI 4




Accelerating GPU Execution with PIM

__global__

void applyScaleFactorsKernel( uint8_ T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols )

// Work out which pixel we are working on.

const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if( rowIdx >= numRows ) return;

// Compute the index of my element

3 D-staCked memory size_t linearIdx = rowIdx + colIdx*numRows +

sliceIdx*numRows*numCols;

(memory stack) SM (Streaming Multiprocessor)

<+ Logic layer

Logic layer
SM
’ l

Crossbar switch
[ [

Vault| .... |Vault
Ctrl Ctrl

Main GPU




Accelerating GPU Execution with PIM (I)

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim*  Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

fCarnegie Mellon University NVIDIA *KAIST SETH Ziirich



Accelerating GPU Execution with PIM (1I)

= Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik®  Xulong Tang*  Adwait Jog>  Onur Kayiran?
Asit K. Mishra* Mahmut T. Kandemir! Onur Mutlu®® Chita R. Das!

'Pennsylvania State University =~ *College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich ¢Carnegie Mellon University
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Accelerating Linked Data Structures

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich
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Result = Microbenchmark Performance

M Baseline + extra 128KB L2 HEIMPICA

1.9X

2.0
2 15 I 1.3X 1.2X
; .
Q10 —— - - -
Q
o
m 0.5 l

0.0

Linked List Hash Table B-Tree
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Result — Database Performance

1.20 +16%

1.10
1.00
0.90

Throughput

Database

Baseline + extra Baseline + extra
128KB L2 1MB L2

1.00 = =
0.95
0.90
0.85
0.80

Database
Latency

Baseline + extra Baseline + extra IMPICA
128KB L2 1MB L2
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System Energy Consumption

M Baseline + extra 128KB L2 = IMPICA

=
o

Normalized Energy
S G

Linked List Hash B-Tree DBx1000
Table
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Two Key Questions in 3D-Stacked PIM

How can we accelerate important applications if we use
3D-stacked memory as a coarse-grained accelerator?

o what is the architecture and programming model?
o what are the mechanisms for acceleration?

What is the minimal processing-in-memory support we can
provide?

o without changing the system significantly
o while achieving significant benefits
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PEI: PIM-Enabled Instructions (Ideas)

Goal: Develop mechanisms to get the most out of near-data
processing with minimal cost, minimal changes to the system, no
changes to the programming model

Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block

a

o 0O O O

e.g., _ pim_add(&w.next_rank, value) = pim.add r1, (r2)

No changes sequential execution/programming model

No changes to virtual memory

Minimal changes to cache coherence

No need for data mapping: Each PEI restricted to a single memory module

Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors

a

Execute each operation at the location that provides the best performance

SAFARI 123



Simple PIM Operations as ISA Extensions (I)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;

Main Memory

64 bytes in
64 bytes out

Conventional Architecture
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Simple PIM Operations as ISA Extensions (II)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
__pim_add(&w.next_rank, value);

pim.add r1, (r2)

Main Memory

8 bytes in
0 bytes out

In-Memory Addition
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Always Executing in Memory? Not A Good Idea

60%
50%
(o)
40% Increased
30%  Memory Bandwidth
_%' 20% Consumption
O Caching very effective
g 10% /
(Vg
O% — (|
-10% | | \—l Reduced Memory Bandwidth
220% Consumption due to

2= o 2 cé) o In-Memory Computation

s = V9 2c =9 2 =7 T g L5 50
oN _,q_), Q 0o 4(3 £ N o O o o N
Q o 5 v  © n 2 =

More Vertices

—
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PEIL: PIM-Enabled Instructions: Examples

Table 1: Summary of Supported PIM Operations

Operation R W Input Output Applications

Obytes Obytes AT
8 bytes Obytes BES, SP, WCC
8 bytes Obytes PR
8 bytes 9bytes HJ
1 byte 16bytes HG, RP
64 bytes 4bytes SC
32bytes 8bytes SVM

8-byte integer increment
8-byte integer min
Floating-point add

Hash table probing
Histogram bin index
Euclidean distance

Dot product

OO O0OOO0OO0OO0
X XXX OOO

Executed either in memory or in the processor: dynamic decision
o Low-cost locality monitoring for a single instruction

Cache-coherent, virtually-addressed, single cache block only

Atomic between different PEIs

Not atomic with normal instructions (use pfence for ordering)
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PIM-Enabled Instructions

Key to practicality: single-cache-block restriction
o Each PEI can access at most one last-level cache block
o Similar restrictions exist in atomic instructions

Benefits
o Localization: each PEI is bounded to one memory module

o Interoperability: easier support for cache coherence and
virtual memory

o Simplified locality monitoring: data locality of PEIs can be
identified simply by the cache control logic
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Example PEI Microarchitecture

Host Processor

Out-Of-Order

() ) K]
Core S S o
© (4] — O
(@) @) 4+ (@O
— ~ n e
PCU (pel = - —
Computation Unit)
PMU (PEI—
Mgmt Umt) Directory
Locality
Monitor

HMC Controller

3D-stacked Memory

DRAM
PCU Controller

DRAM
PCU Controller

Network

DRAM
PCU Controller

Example PEI uArchitecture
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Evaluated Data-Intensive Applications

Ten emerging data-intensive workloads

o Large-scale graph processing

Average teenage follower, BFS, PageRank, single-source shortest
path, weakly connected components

o In-memory data analytics
Hash join, histogram, radix partitioning
o Machine learning and data mining
Streamcluster, SVM-RFE

Three input sets (small, medium, large) for each workload
to show the impact of data locality

SAFARI



PEI Performance Delta: Large Data Sets

(Large Inputs, Baseline: Host-Only)
70%

60%

50%
40%
30%
20%
10% '
0%
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SVM GM

B PIM-Only [ Locality-Aware
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PEI Energy Consumption

15 Host-Only
PIM-Only
Locality-Aware
1
0.5
0
Small Medium Large
B Cache B HMC Link E DRAM
[ Host-side PCU [JMemory-side PCU [IPMU
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More on PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University *Carnegie Mellon University
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Agenda

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices

o Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion
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Barriers to Adoption ot PIM

1. Functionality of and applications for PIM
2. Ease of programming (interfaces and compiler/HW support)
3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,
access/sharing control

5. Infrastructures to assess benefits and feasibility
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Key Challenge 1: Code Mapping

* Challenge 1: Which operations should be executed
in memory vs.in CPU!? ey

void applyScaleFactorsKernel( uint8_ T * const out,

?

{

3D-stacked memory
(memory stack)

SM (Streaming Multiprocessor)

uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols )

// Work out which pixel we are working on.

const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if( rowIdx >= numRows ) return;

// Compute the index of my element

size_t linearIdx = rowIdx + colIdx*numRows +
sliceIdx*numRows*numCols;

?

JIIIIIIIIIIII

Main GPU

<+ Logic layer

\ 4

Logic layer
SM
I

Crossbar switch
[ [

Vault| .... |Vault
Ctrl Ctrl




Key Challenge 2: Data Mapping

* Challenge 2: How should data be mapped to
different 3D memory stacks!?

3D-stacked memory
(memory stack) SM (Streaming Multiprocessor)

SM

Logic layer

I

Crossbar switch

[
Vault
Ctrl

Vault
Ctrl




How to Do the Code and Data Mapping?

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim*  Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

fCarnegie Mellon University NVIDIA *KAIST SETH Ziirich



How to Schedule Code?

= Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik®  Xulong Tang*  Adwait Jog>  Onur Kayiran?
Asit K. Mishra* Mahmut T. Kandemir! Onur Mutlu®® Chita R. Das!

'Pennsylvania State University =~ *College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich ¢Carnegie Mellon University
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How to Maintain Coherence?

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,

"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"

IEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'$, Brandon Lucia’,
Kevin Hsieht, Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f

t Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich
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How to Support Virtual Memory?

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich

SAFARI 4



How to Design Data Structures tor PIM?

= Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
"Concurrent Data Structures for Near-Memory Computing”
Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

Concurrent Data Structures for Near-Memory Computing

Zhiyu Liu Irina Calciu
Computer Science Department VMware Research Group
Brown University icalciu@vmware.com
zhiyu_liu@brown.edu
Maurice Herlihy Onur Mutlu
Computer Science Department Computer Science Department
Brown University ETH Zirich
mph@cs.brown.edu onur.mutlu@inf.ethz.ch
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Simulation Infrastructures for PIM

Ramulator extended for PIM
o Flexible and extensible DRAM simulator
o Can model many different memory standards and proposals

o Kim+, "Ramulator: A Flexible and Extensible DRAM
Simulator”, IEEE CAL 2015.

o https://qgithub.com/CMU-SAFARI/ramulator

Ramulator: A Fast and Extensible DRAM Simulator

Yoongu Kim!  Weikun Yang!-?  Onur Mutlu®
ICarnegie Mellon University ~ 2Peking University
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An FPGA-based Test-bed for PIM?

= Hasan Hassan et al., SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies HPCA 2017.

|

/ ‘ \\,\\\’{; »
T m

= Easy to Use (C++ API) ’ conetropller "

= Open-source B

github.com/CMU-SAFARI/SoftMC

= Flexible
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Agenda

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices

o Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion
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Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures
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Challenge and Opportunity for Future

Fundamentally
Low-Latency
(Data-Centric)
Computing Architectures
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A Quote from A Famous Architect

= ‘architecture [...] based upon principle, and not upon
precedent”

148



Precedent-Based Design?

= ‘architecture [...] based upon principle, and not upon
precedent”

-

S PIE = LT




Principled Design

= architecture [...] based upon principle, and not upon
precedent”




Another Example: Precedent-Based Design

Source: http://cookiemagik.deviantart.com/art/Train-station-207266944



Principled Design

Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256
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Concluding Remarks

= It is time to design principled system architectures to solve
the memory problem

= Design complete systems to be balanced, high-performance,
and energy-efficient, i.e., data-centric (or memory-centric)

= Enable computation capability inside and close to memory

= This can
o Lead to orders-of-magnitude improvements
o Enable new applications & computing platforms

D EEnR
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The Future of Processing in Memory 1s Bright

= Regardless of challenges
o in underlying technology and overlying problems/requirements

Problem
Can enable: Yet, we have to
- Orders of magnitude Program/Language - Think across the stack
improvements System Software

SW/HW Interface - Design enabling systems

- New applications and
computing systems
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If In Doubt, See Other Doubttul Technologies

= A very “doubtful” emerging technology
o for at least two decades

% SArEn Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

By Yu Cai, Saucata GHosg, EricH F. HaratscH, Yixin Luo, anp ONUR MuTLU

ABSTRACT | wane flash memory is ubiguitous in everyday life KEYWORDS | Data storage systems:; error recovery; fault
today because its capacity has continuously increased and tolerance; flash memory; reliability; solid-state drives

SAFARI https://arxiv.org/pdf/1706.08642 120




Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
October 27, 2017

ﬁ MST Workshop Keynote (Milan)

Systems @ ETHu ETH:zurich
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Open Problems




For More Open Problems, See (I)

= Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory
Systems"

Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2014/2015.

Research Problems and Opportunities in Memory Systéms

Onur Mutlu', Lavanya Subramanian'

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research superfril4.pdf 159




For More Open Problems, See (1)

=  Onur Mutluy,

"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"

Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

The RowHammer Problem
and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu
ETH Ziirich
onur.mutlu @inf.ethz.ch
https://people.inf.ethz.ch/omutlu

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues datel7.pdf 160




For More Open Problems, See (11I)

= Onur Mutluy,

"Memory Scaling: A Systems Architecture
Perspective”

Technical talk at MemCon 2013 (MEMCON), Santa Clara,
CA, August 2013. [Slides (pptx) (pdf)]

[Video] [Coverage on StorageSearch]

Memory Scaling: A Systems Architecture Perspective

Onur Mutlu
Carnegie Mellon University
onur @cmu.edu
http://users.ece.cmu.edu/~omutlu/

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf 161




For More Open Problems, See (IV)

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and
Onur Mutluy,

"Error Characterization, Mitigation, and Recovery in
Flash Memory Based Solid State Drives”

to appear in Proceedings of the IEEE, 2017.
[Preliminary arxiv.org version]

Error Characterization, Mitigation, and Recovery
in Flash Memory Based Solid State Drives

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu

https://arxiv.org/pdf/1706.08642.pdf 162




Reducing Memory Latency




Main Memory Latency LLags Behind

#Capacity #Bandwidth  @latency 128X
Ej
= 100
5
z 20X
>
2
é? |0
2
< 1.3x
- —o—o0—0—0 0009
| O

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

Memory latency remains almost constant
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A Closer Look ...

50 @ Activation » Precharge A Restoration
’g +21% 2704
S 40 —
LC>; 30 17% 0
-17% N
% 20 R 12%

1999 2003 2006 2008 2011 2013 2014 2015

Year
Figure 1: DRAM latency trends over time [20, 21, 23, 51].

Chang+, "Understanding Latency Variation in Modern DRAM Chips: Experimental

Characterization, Analysis, and Optimization",” SIGMETRICS 2016.
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DRAM Latency Is Critical tor Performance

In-memory Databases
[Mao+, EuroSys’[2;
Clapp+ (Intel), ISWC’15]

SAPACHE&

oark

In-Memory Data Analytics
[Clapp+ (Intel), ISWC’|5;
Awan+, BDCloud’15]

SAFARI

Graph/Tree Processing
[Xu+, ISWC’12; Umuroglu+, FPL15]

Datacenter Workloads
[Kanev+ (Google), ISCA’|5]



DRAM Latency Is Critical for Performance

In-memory Databases Graph/Tree Processing

Long memory latency — performance bottleneck

APACHE

Spark

In-Memory Data Analytics Datacenter Workloads
[Clappt (Intel), ISWC’I5; [Kanev+ (Google), ISCA’|5]
Awan+, BDCloud’ | 5]

SAFARI




Why the Long Latency?

Design of DRAM uArchitecture
o Goal: Maximize capacity/area, not minimize latency

“One size fits all” approach to latency specification
Same latency parameters for all temperatures

Same latency parameters for all DRAM chips (e.g., rows)
Same latency parameters for all parts of a DRAM chip
Same latency parameters for all supply voltage levels
Same latency parameters for all application data

o 0o o o0 O O
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Latency Variation in Memory Chips

Heterogeneous manufacturing & operating conditions —
latency variation in timing parameters

DRAM A DRAM B DRAM C

. lSIow cells

Low High

DRAM Latency
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DRAM Characterization Infrastructure

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An 170
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



DRAM Characterization Infrastructure

= Hasan Hassan et al., SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies, HPCA 2017.

|

/ ‘ \\ d N \\Z; »
=% Tem

= Easy to Use (C++ API) ’ Contropller "

= Open-source b

github.com/CMU-SAFARI/SoftMC

= Flexible

SAFARI i



SofttMC: Open Source DRAM Infrastructure

= https://github.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies

1,2,3 3 4,3 3

Samira Khan Saugata Ghose® Kevin Chang?
6.3 Oguz Ergin? Onur Mutlu!-3

Hasan Hassan Nandita Vijaykumar
Gennady Pekhimenko®3 Donghyuk Lee

\ETH Ziirich  2TOBB University of Economics & Technology  >Carnegie Mellon University
*University of Virginia > Microsoft Research ~ SNVIDIA Research
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Tackling the Fixed Latency Mindset

Reliable operation latency is actually very heterogeneous
o Across temperatures, chips, parts of a chip, voltage levels, ...

Idea: Dynamically find out and use the lowest latency one
can reliably access a memory location with

o Adaptive-Latency DRAM [HPCA 2015]

Flexible-Latency DRAM [SIGMETRICS 2016]
Design-Induced Variation-Aware DRAM [SIGMETRICS 2017]
Voltron [SIGMETRICS 2017]

o o o o

We would like to find sources of latency heterogeneity and
exploit them to minimize latency
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Adaptive-Latency DRAM

e Key idea
— Optimize DRAM timing parameters online

* Jwo components
— DRAM manufacturer provides multiple sets of

reliable DRAM timing parameters ElNsIiEL=Ial

temperatures for each DIMM

— System monitors [BRYAWRTEIIEEINIEE & uses

appropriate DRAM timing parameters

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 174
2015.



Latency Reduction Summary of 115 DIMMSs

e [atency reduction for read & write (55°C)
— Read Latency: 32.7%
— Write Latency: 55.1%

e [atency reduction for each timing
parameter (55°C)
— Sensing: 17.3%
— Restore: 37.3% (read), 54.8% (write)
— Precharge: 35.2%

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA
2015.



AL-DRAM: Real System Evaluation

System
— CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC)

D18F2x200 dct[0] mp[1:0] DDR3 DRAM Timing 0
Reset: 0F05_0505h. See 2.9.3 [DCT Configuration Registers].

Bits

Description

31:30

Reserved.

29:24

Tras: row active strobe. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Specifies
the minimum time in memory clock cycles from an activate command to a precharge command. both

to the same chip select bank.
Bits Description
07h-00h Reserved
2Ah-08h <Tras> clocks
3Fh-2Bh Reserved

Reserved.

Trp: row precharge time. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Speci-
fies the minimum time in memory clock cycles from a precharge command to an activate command or
auto refresh command. both to the same bank.




AL-DRAM: Single-Core Evaluation

- Average
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AL-DRAM improves single-core performance

on a real system
SAFARI 177



AL-DRAM: Multi-Core Evaluation

Average

25%
20%
15%
10%
5%
0%

mcf
milc
libg
lbm
gems
copy

Performance Improvement
soplex

s.cluster

gups
non-intensive
Intensive

all-35-workload

AL-DRAM provides higher performance on

multi-programmed & multi-threaded workloads
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Reducing Latency Also Reduces Energy

AL-DRAM reduces DRAM power consumption by 5.8%

Major reason: reduction in row activation time
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More on Adaptive-Latency DRAM

= Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,
Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for
the Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA,
February 2015.
[Slides (pptx) (pdf)] [Full data sets]

Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case

Donghyuk Lee ~ Yoongu Kim  Gennady Pekhimenko
Samira Khan  Vivek Seshadri ~ Kevin Chang  Onur Mutlu

Carnegie Mellon University
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Heterogeneous Latency within A Chip

.25
0 |9 19.5% " *°
g . 17.6
£ LIS 13.3
§ . : B Baseline (DDR3)
T .1 B FLY-DRAM (DI)
> .05 ® FLY-DRAM (D2)
N m FLY.DRAM (D3)
= B Upper Bound
£ 095
@)
< 09

40 Workloads
Chang+, "Understanding Latency Variation in Modern DRAM Chips: Experimental

Characterization, Analysis, and Optimization",” SIGMETRICS 2016.
SAFARI 18l




Analysts of Latency Variation in DRAM Chips

= Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh,
Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and
Onur Mutlu,
"Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization”
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins,
France, June 2016.
[Slides (pptx) (pdf)]
[Source Code]

Understanding Latency Variation in Modern DRAM Chips:
Experimental Characterization, Analysis, and Optimization

Kevin K. Chang* Abhijith Kashyap* Hasan Hassan'?
Saugata Ghose* Kevin Hsieh' Donghyuk Lee' Tianshi Li*?
Gennady Pekhimenko' Samira Khan* Onur Mutlu®!

LCarnegie Mellon University 2TOBB ETU *Peking University *University of Virginia °ETH Zirich
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What Is Design-Induced Variation?

fast slow

—/—ﬂnherently slow

across column

distance from =
wordline driver @

@
@
@
@
(
e
MO|S

dCross row

distance from
sense amplifier

SIDALIP BUI|P

158

Inherently fast

sense amplifiers

Systematic variation in cell access times

caused by the physical organization of DRAM
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DIVA Online Profiling

Design-Induced-Variation-Aware

inherently slow

J9AIIP aul|pJOMm

sense amplifier

Profile only slow regions to determine min. latency
—> Dynamic & low cost latency optimization
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DIVA Online Profiling

Design-Induced-Variation-Aware

slow cells inherently slow
process design-induced
variation variation

localized error

random error

8

: 2

online profiling

error-correcting
code

sense amplifier

Combine error-correcting codes & online profiling
— Reliably reduce DRAM latency
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Read
50% oo 50%
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4
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o
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55°C 85°C| 55°C 85°C|55°C 85°C 55°C 85°C|55°C 85°C|55°C 85°C
AL-DRAM |DIVA Profiling|DIVA Profiling AL-DRAM |DIVA Profiling [DIVA Profiling
+ Shuffling + Shuffling

DIVA-DRAM reduces latency more aggressively

and uses ECC to correct random slow cells
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Design-Induced Latency Variation in DRAM

= Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose,
Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and
Onur Mutluy,
"Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Design-Induced Latency Variation in Modern DRAM Chips:
Characterization, Analysis, and Latency Reduction Mechanisms

Donghyuk Lee, NVIDIA and Carnegie Mellon University

Samira Khan, University of Virginia

Lavanya Subramanian, Saugata Ghose, Rachata Ausavarungnirun, Carnegie Mellon University
Gennady Pekhimenko, Vivek Seshadri, Microsoft Research

Onur Mutlu, ETH Ziirich and Carnegie Mellon University
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Voltron: Exploiting the
Voltage-Latency-Reliability
Relationship




Executive Summary

* DRAM (memory) power is significant in today’s systems
— Existing low-voltage DRAM reduces voltage conservatively

* Goal: Understand and exploit the reliability and latency behavior of
real DRAM chips under aggressive reduced-voltage operation

* Key experimental observations:

— Huge voltage margin -- Errors occur beyond some voltage
— Errors exhibit spatial locality
— Higher operation latency mitigates voltage-induced errors

* Voltron:A new DRAM energy reduction mechanism

— Reduce DRAM voltage without introducing errors

— Use a regression model to select voltage that does not degrade
performance beyond a chosen target = 7.3% system energy reduction

SAFARI 1%



Analysis of Latency-Voltage in DRAM Chips

= Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish
Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan
Hassan, and Onur Mutly,
"Understanding Reduced-Voltage Operation in Modern DRAM
Devices: Experimental Characterization, Analysis, and
Mechanisms"”
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL,
USA, June 2017.

Understanding Reduced-Voltage Operation in Modern DRAM Chips:
Characterization, Analysis, and Mechanisms

Kevin K. Chang'  Abdullah Giray Yaghke' Saugata Ghose”  Aditya Agrawall Niladrish Chatterjee
Abhijith Kashyap' Donghyuk Lee! Mike O’Connor®* Hasan Hassan®  Onur Mutlu®'

TCarnegie Mellon University INVIDIA *The University of Texas at Austin SETH Ziirich
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And, What If ...

= ... we can sacrifice reliability of some data to access it with
even lower latency?

SAFARI 1



Challenge and Opportunity for Future

Fundamentally
Low Latency
Computing Architectures
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