
Onur Mutlu 
onur.mutlu@inf.ethz.ch  

https://people.inf.ethz.ch/omutlu 
June 18, 2017 

Design Automation Summer School @ DAC 2017 
 
 

Memory Reliability, Security & Beyond 
 

Three Key Issues in Modern Systems 



Brief Self Introduction 
!  Onur Mutlu 

"  Full Professor @ ETH Zurich CS, since September’15, started May’16  
"  Strecker Professor @ Carnegie Mellon University ECE (CS), 2009-2016, 2016-… 
"  PhD from UT-Austin, worked @ Google, VMware, Microsoft Research, Intel, AMD 
"  https://people.inf.ethz.ch/omutlu/ 
"  omutlu@gmail.com (Best way to reach me)  
"  Publications: https://people.inf.ethz.ch/omutlu/projects.htm  

!  Research, Education, Consulting in 
"  Computer architecture and systems, bioinformatics 
"  Memory and storage systems, emerging technologies 
"  Many-core systems, heterogeneous systems, core design 
"  Interconnects 
"  Hardware/software interaction and co-design (PL, OS, Architecture) 
"  Predictable and QoS-aware systems 
"  Hardware fault tolerance and security 
"  Algorithms and architectures for genome analysis 
"  … 2 



Research Focus: Computer architecture, HW/SW, bioinformatics 
•  Memory, memory, memory, storage, interconnects 
•  Parallel and heterogeneous architectures, GPUs 
•  System/architecture interaction, new execution models 
•  Energy efficiency, fault tolerance, hardware security  
•  Genome sequence analysis & assembly algorithms and architectures 

General	Purpose	GPUs	

Heterogeneous 
Processors and  

Accelerators 

Hybrid Main Memory 

Persistent Memory/Storage 

Broad research  
spanning apps, systems, logic 
with architecture at the center 

Current Research Focus Areas 



•  Rethinking Memory System Design for Data-Intensive Computing 
•  All aspects of DRAM, Flash Memory, Emerging Technologies 

•  Single-Level Stores: Merging Memory and Storage with Fast NVM 

•  GPUs as First-Class Computing Engines 
  

•  In-memory Computing: Enabling Near-Data Processing 

•  Predictable Systems: QoS Everywhere in the System 

•  Secure and Easy-to-Program/Manage Memories: DRAM, Flash, NVM 

•  Heterogeneous Systems: Architecting and Exploiting Asymmetry 

•  Efficient and Scalable Interconnects 

•  Genome Sequence Analysis & Assembly: Algorithms and Architectures 

 

Current Research Focus Areas (II) 



The Main Memory System 

 
 

!  Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor 

!  Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits 

5 

Processors 
and caches 

Main Memory Storage (SSD/HDD) 



The Main Memory System 

 
 

!  Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor 

!  Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits 

6 

Main Memory Storage (SSD/HDD) FPGAs 



The Main Memory System 

 
 

!  Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor 

!  Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits 

7 

Main Memory Storage (SSD/HDD) GPUs 



Memory System: A Shared Resource View 

8 

Storage 

Most of the system is dedicated to storing and moving data  



State of the Main Memory System 
!  Recent technology, architecture, and application trends 

"  lead to new requirements 
"  exacerbate old requirements 

!  DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements 

!  Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging 

!  We need to rethink the main memory system 
"  to fix DRAM issues and enable emerging technologies  
"  to satisfy all requirements 

 

9 



Agenda 

!  Major Trends Affecting Main Memory 
!  The Memory Scaling Problem and Solution Directions 

"  New Memory Architectures 
"  Enabling Emerging Technologies 

!  Cross-Cutting Principles 
!  Summary 

10 



Major Trends Affecting Main Memory (I) 
!  Need for main memory capacity, bandwidth, QoS increasing  

!  Main memory energy/power is a key system design concern 

!  DRAM technology scaling is ending  
 

11 



Major Trends Affecting Main Memory (II) 
!  Need for main memory capacity, bandwidth, QoS increasing  

"  Multi-core: increasing number of cores/agents 
"  Data-intensive applications: increasing demand/hunger for data 
"  Consolidation: cloud computing, GPUs, mobile, heterogeneity 

!  Main memory energy/power is a key system design concern 

 

 
!  DRAM technology scaling is ending  
 

12 



Example: The Memory Capacity Gap 

 

!  Memory capacity per core expected to drop by 30% every two years 
!  Trends worse for memory bandwidth per core! 

13 

Core count doubling ~ every 2 years  
DRAM DIMM capacity doubling ~ every 3 years 

Lim et al., ISCA 2009 



Major Trends Affecting Main Memory (III) 
!  Need for main memory capacity, bandwidth, QoS increasing  

 
!  Main memory energy/power is a key system design concern 

"  ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 
IEEE Computer’03] >40% power in DRAM [Ware, HPCA’10][Paul, ISCA’15] 

"  DRAM consumes power even when not used (periodic refresh) 

!  DRAM technology scaling is ending  
 

14 



Major Trends Affecting Main Memory (IV) 
!  Need for main memory capacity, bandwidth, QoS increasing  

 
 
!  Main memory energy/power is a key system design concern 

 
!  DRAM technology scaling is ending  

"  ITRS projects DRAM will not scale easily below X nm  
"  Scaling has provided many benefits:  

!  higher capacity (density), lower cost, lower energy 

 
15 



Agenda 

!  Major Trends Affecting Main Memory 
!  The Memory Scaling Problem and Solution Directions 

"  New Memory Architectures 
"  Enabling Emerging Technologies 

!  Cross-Cutting Principles 
!  Summary 

16 



Three Key Issues in Future Platforms 

!  Fundamentally Secure/Reliable/Safe Architectures 

!  Fundamentally Energy-Efficient Architectures 
"  Memory-centric (Data-centric) Architectures 

!  Fundamentally Low Latency Architectures 

17 



Maslow’s (Human) Hierarchy of Needs 

 
 
 
 
 
 
 
 
 
!  We need to start with reliability and security… 

18 

Maslow, “A Theory of Human Motivation,”  
Psychological Review, 1943.  

Source:	h2ps://www.simplypsychology.org/maslow.html	



19 Source:	h2p://www.technologystudent.com/struct1/tacom1.png	



20 Source:	AP	



21 Source:	h2ps://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg	

Security is about preventing unforeseen consequences 



The DRAM Scaling Problem 
!  DRAM stores charge in a capacitor (charge-based memory) 

"  Capacitor must be large enough for reliable sensing 
"  Access transistor should be large enough for low leakage and high 

retention time 
"  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] 

!  DRAM capacity, cost, and energy/power hard to scale 
 

22 



As Memory Scales, It Becomes Unreliable 
!  Data from all of Facebook’s servers worldwide 
!  Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15. 

23 

Intuition: quadratic increase 
in 

capacity 



Infrastructures to Understand Such Issues 

24 

An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms (Liu et al., ISCA 2013) 
 
The Efficacy of Error Mitigation Techniques 
for DRAM Retention Failures: A 
Comparative Experimental Study  
(Khan et al., SIGMETRICS 2014) 

Flipping Bits in Memory Without Accessing 
Them: An Experimental Study of DRAM 
Disturbance Errors (Kim et al., ISCA 2014) 
 
Adaptive-Latency DRAM: Optimizing DRAM 
Timing for the Common-Case (Lee et al., 
HPCA 2015) 
 
AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems (Qureshi 
et al., DSN 2015) 



Infrastructures to Understand Such Issues 

25 Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 

Temperature 
Controller 

 

PC 

Heater FPGAs FPGAs 



A Curious Discovery [Kim et al., ISCA 2014] 

 

One can  
predictably induce errors  

in most DRAM memory chips 

26 



DRAM RowHammer 

A simple hardware failure mechanism  
can create a widespread  

system security vulnerability 

27 



 Row of Cells
 Row
 Row
 Row
 Row

 Wordline

 VLOW VHIGH
 Vic2m Row

 Vic2m Row
 Hammered Row

Repeatedly reading a row enough 2mes (before memory gets 
refreshed) induces disturbance errors in adjacent rows in 
most real DRAM chips you can buy today

OpenedClosed

28

Modern DRAM is Prone to Disturbance Errors 

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	



86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C company

Up to
1.0×107 �

errors 

Up to
2.7×106�

errors 

Up to
3.3×105 �

errors 

29

Most DRAM Modules Are at Risk 

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	



30

Recent DRAM Is More Vulnerable 



31

First
Appearance

Recent DRAM Is More Vulnerable 



32
All modules from 2012–2013 are vulnerable

First
Appearance

Recent DRAM Is More Vulnerable 



CPU

loop: 
  mov (X), %eax 
  mov (Y), %ebx 
  clflush (X)   
  clflush (Y) 
  mfence 
  jmp loop 

Download	from:	h2ps://github.com/CMU-SAFARI/rowhammer		

DRAM Module

A Simple Program Can Induce Many Errors 

Y 

X 



CPU

Download	from:	h2ps://github.com/CMU-SAFARI/rowhammer		

DRAM Module

A Simple Program Can Induce Many Errors 

Y 

X 1. Avoid cache hits
–  Flush X from cache

2. Avoid row hits to X 
–  Read Y in another row



CPU

loop: 
  mov (X), %eax 
  mov (Y), %ebx 
  clflush (X)   
  clflush (Y) 
  mfence 
  jmp loop 

Download	from:	h2ps://github.com/CMU-SAFARI/rowhammer		

DRAM Module

A Simple Program Can Induce Many Errors 

 

 

Y 

X 



CPU

loop: 
  mov (X), %eax 
  mov (Y), %ebx 
  clflush (X)   
  clflush (Y) 
  mfence 
  jmp loop 

Download	from:	h2ps://github.com/CMU-SAFARI/rowhammer		

DRAM Module

A Simple Program Can Induce Many Errors 

 

 

Y 

X 



CPU

 

 

loop: 
  mov (X), %eax 
  mov (Y), %ebx 
  clflush (X)   
  clflush (Y) 
  mfence 
  jmp loop 

Y 

X 

Download	from:	h2ps://github.com/CMU-SAFARI/rowhammer		

DRAM Module

A Simple Program Can Induce Many Errors 










A real reliability & security issue 

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K	 12.3M/sec	

Intel Ivy Bridge (2012) 20.7K	 11.7M/sec	

Intel Sandy Bridge (2011) 16.1K	 11.6M/sec	

AMD Piledriver (2012) 59	 6.1M/sec	

38Kim+, “Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	
DRAM	Disturbance	Errors,” ISCA 2014. 

Observed Errors in Real Systems 



One Can Take Over an Otherwise-Secure System 

39 

Exploiting the DRAM rowhammer bug to 
gain kernel privileges  (Seaborn+, 2015) 

Flipping Bits in Memory Without Accessing Them: 
An Experimental Study of DRAM Disturbance Errors 
(Kim et al., ISCA 2014) 



RowHammer Security Attack Example 
!  “Rowhammer” is a problem with some recent DRAM devices in which 

repeatedly accessing a row of memory can cause bit flips in adjacent rows 
(Kim et al., ISCA 2014).  
"  Flipping Bits in Memory Without Accessing Them: An Experimental Study of 

DRAM Disturbance Errors (Kim et al., ISCA 2014) 

!  We tested a selection of laptops and found that a subset of them 
exhibited the problem.  

!  We built two working privilege escalation exploits that use this effect.  
"  Exploiting the DRAM rowhammer bug to gain kernel privileges  (Seaborn+, 2015) 

!  One exploit uses rowhammer-induced bit flips to gain kernel privileges on 
x86-64 Linux when run as an unprivileged userland process.  

!  When run on a machine vulnerable to the rowhammer problem, the 
process was able to induce bit flips in page table entries (PTEs).  

!  It was able to use this to gain write access to its own page table, and 
hence gain read-write access to all of physical memory. 

40 Exploiting the DRAM rowhammer bug to gain kernel privileges  (Seaborn & Dullien, 2015) 
 



Security Implications 

41 



More Security Implications 

42 Source: https://lab.dsst.io/32c3-slides/7197.html  

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16) 

“We can gain unrestricted access to systems of website visitors.” 



More Security Implications 

43 Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/ 

Drammer: Deterministic Rowhammer 
Attacks on Mobile Platforms, CCS’16  

“Can gain control of a smart phone deterministically” 



More Security Implications? 

44 



Selected Readings on RowHammer (I) 
!  Our first detailed study: Rowhammer analysis and solutions (June 2014) 

!  Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, 
Chris Wilkerson, Konrad Lai, and Onur Mutlu, 
"Flipping Bits in Memory Without Accessing Them: An Experimental 
Study of DRAM Disturbance Errors" 
Proceedings of the 41st International Symposium on Computer Architecture 
(ISCA), Minneapolis, MN, June 2014. [Slides (pptx) (pdf)] [
Lightning Session Slides (pptx) (pdf)] [Source Code and Data]  

 

!  Our Source Code to Induce Errors in Modern DRAM Chips (June 2014) 
!  https://github.com/CMU-SAFARI/rowhammer 

!  Google Project Zero’s Attack to Take Over a System (March 2015) 
!  Exploiting the DRAM rowhammer bug to gain kernel privileges  (Seaborn+, 2015) 

!  https://github.com/google/rowhammer-test  
!  Double-sided Rowhammer 

45 



Selected Readings on RowHammer (II) 
!  Remote RowHammer Attacks via JavaScript (July 2015) 

!  http://arxiv.org/abs/1507.06955  
!  https://github.com/IAIK/rowhammerjs  
!  Gruss et al., DIMVA 2016. 
!  CLFLUSH-free Rowhammer 
!  “A fully automated attack that requires nothing but a website with 

JavaScript to trigger faults on remote hardware.”  
!  “We can gain unrestricted access to systems of website visitors.” 

!  ANVIL: Software-Based Protection Against Next-Generation 
Rowhammer Attacks (March 2016) 
"  http://dl.acm.org/citation.cfm?doid=2872362.2872390  
"  Aweke et al., ASPLOS 2016 
"  CLFLUSH-free Rowhammer 
"  Software based monitoring for rowhammer detection 

46 



Selected Readings on RowHammer (III) 
!  Flip Feng Shui: Hammering a Needle in the Software Stack (August 2016) 

!  https://www.usenix.org/system/files/conference/usenixsecurity16/
sec16_paper_razavi.pdf  

!  Razavi et al., USENIX Security 2016. 
!  Combines memory deduplication and RowHammer 
!  “A malicious VM can gain unauthorized access to a co-hosted VM 

running OpenSSH.” 
!  Breaks OpenSSH public key authentication  

!  Drammer: Deterministic Rowhammer Attacks on Mobile Platforms 
(October 2016) 
"  http://dl.acm.org/citation.cfm?id=2976749.2978406  
"  Van Der Veen et al., CCS 2016 
"  Can take over an ARM-based Android system deterministically 
"  Exploits predictable physical memory allocator behavior 

!  Can deterministically place security-sensitive data (e.g., page table) in an attacker-
chosen, vulnerable location in memory 

47 



Apple’s Patch for RowHammer 
!  https://support.apple.com/en-gb/HT204934  

HP, Lenovo, and other vendors released similar patches 



Better Solution Directions: Principled Designs 

 
 

Design fundamentally secure 
computing architectures  

 
Predict and prevent such safety issues 

 

49 



How Do We Keep Memory Secure? 

!  Understand: Methodologies for failure modeling and discovery 
"  Modeling and prediction based on real (device) data  

 
!  Architect: Principled co-architecting of system and memory 

"  Good partitioning of duties across the stack 

!  Design & Test: Principled design, automation, testing 
"  High coverage and good interaction with system reliability methods 

 
50 



51 Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 

Temperature 
Controller 

 

PC 

Heater FPGAs FPGAs 

Understand and Model with Experiments (DRAM) 



Understand and Model with Experiments (Flash) 

USB Jack 

Virtex-II Pro 
(USB controller) 

Virtex-V FPGA 
(NAND Controller) 

HAPS-52 Mother Board 

USB Daughter Board 

NAND Daughter Board 

1x-nm 
NAND Flash 

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, 
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017] 

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017. 



If Time Permits: NAND Flash Vulnerabilities 
!  Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu, 

"Error Characterization, Mitigation, and Recovery in Flash Memory Based 
Solid State Drives" 
to appear in Proceedings of the IEEE, 2017.  

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012. 
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD 
2012. 
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE 
2013. 
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013. 
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013. 
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014. 
Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015. 
Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.  
Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST 
2015. 
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015. 
Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE 
JSAC 2016. 
Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation 
Techniques,” HPCA 2017. 
Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.  

 
Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017. 



There are Two Other Solution Directions 
!  New Technologies: Replace or (more likely) augment DRAM 

with a different technology 
"  Non-volatile memories 

!  Embracing Un-reliability:  
    Design memories with different reliability 
    and store data intelligently across them 
 
 
!  … 

54 

Fundamental	solu-ons	to	security	
require	co-design	across	the	hierarchy	

Micro-architecture 

SW/HW Interface 

Program/Language 

Algorithm 

Problem 

Logic 
 Devices 

System Software 

Electrons 



App/Data	A	 App/Data	B	 App/Data	C	

M
em

or
y	
er
ro
r	v

ul
ne

ra
bi
lit
y	

Vulnerable	
data	

Tolerant	
data	

Exploi]ng	Memory	Error	Tolerance		
with	Hybrid	Memory	Systems	

Heterogeneous-Reliability	Memory	[DSN	2014]	

Low-cost	memory	Reliable	memory	

Vulnerable	
data	

Tolerant	
data	

Vulnerable	
data	

Tolerant	
data	

•  ECC	protected	
• Well-tested	chips	

•  NoECC	or	Parity	
•  Less-tested	chips	

55	

On	Microsob’s	Web	Search	workload	
Reduces	server	hardware	cost	by	4.7	%	
Achieves	single	server	availability	target	of	99.90	%	



More on Heterogeneous-Reliability Memory 
!  Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman 

Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu, 
"Characterizing Application Memory Error Vulnerability to Optimize 
Data Center Cost via Heterogeneous-Reliability Memory"  
Proceedings of the 
44th Annual IEEE/IFIP International Conference on Dependable Systems and 
Networks (DSN), Atlanta, GA, June 2014. [Summary] [Slides (pptx) (pdf)] 
[Coverage on ZDNet]  

56 



A Deeper Dive into  
  DRAM Reliability Issues 

57 



Root Causes of Disturbance Errors
• Cause 1: ElectromagneDc coupling

–  Toggling the wordline voltage briefly increases the 
voltage of adjacent wordlines

–  Slightly opens adjacent rows # Charge leakage

• Cause 2: ConducDve bridges
• Cause 3: Hot-carrier injecDon





Confirmed by at least one manufacturer

58



1. Most Modules Are at Risk
2. Errors vs. Vintage
3. Error = Charge Loss
4. Adjacency: Aggressor & Vic2m
5. Sensi2vity Studies

6. Other Results in Paper
7. Solu2on Space

59

RowHammer Characterization Results 

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	



4. Adjacency: Aggressor & Vic2m

Most aggressors & vicDms are adjacent
60

Note: For three modules with the most errors (only first bank)

Ad
ja

ce
nt



Ad
ja

ce
nt


Ad

ja
ce

nt


Non-AdjacentNon-Adjacent



Note: For three modules with the most errors (only first bank)

N
ot

 A
llo

w
ed



Less frequent accesses à Fewer errors

    
  5

5n
s

    
  5

00
ns



61

❶ Access Interval (Aggressor)



Note: Using three modules with the most errors (only first bank)

More frequent refreshes à Fewer errors

~7x frequent

    
  6

4m
s

62

❷ Refresh Interval



RowStripe

~RowStripe

❸ Data Pa`ern

111111 
111111 
111111 
111111 

000000 
000000 
000000 
000000 

000000 
111111 
000000 
111111 

111111 
000000 
111111 
000000 

Solid

~Solid 10x Errors

Errors affected by data stored in other cells 
63



6. Other Results (in Paper)
•  VicDm Cells ≠ Weak Cells (i.e., leaky cells)

– Almost no overlap between them

•  Errors not strongly affected by temperature
– Default temperature: 50°C
– At 30°C and 70°C, number of errors changes <15%

•  Errors are repeatable
– Across ten itera2ons of tes2ng, >70% of vic2m cells 

had errors in every itera2on

64



6. Other Results (in Paper) cont’d
•  As many as 4 errors per cache-line

–  Simple ECC (e.g., SECDED) cannot prevent all errors

•  Number of cells & rows affected by aggressor
–  Vic2ms cells per aggressor:  ≤110
–  Vic2ms rows per aggressor:  ≤9

•  Cells affected by two aggressors on either side
–  Very small frac2on of vic2m cells (<100) have an 

error when either one of the aggressors is toggled

65



Some Potential Solutions 

66  

Cost	• Make be`er DRAM chips

Cost,	Power	•  Sophis2cated ECC

Power,	Performance	•  Refresh frequently

Cost,	Power,	Complexity	•  Access counters 



Naive Solu2ons
❶ ThroWle accesses to same row

–  Limit access-interval: ≥500ns
–  Limit number of accesses: ≤128K (=64ms/500ns)

❷ Refresh more frequently
–  Shorten refresh-interval by ~7x

Both naive soluDons introduce significant 
overhead in performance and power

67



Apple’s Patch for RowHammer 
!  https://support.apple.com/en-gb/HT204934  

HP and Lenovo released similar patches 



Our Solu2on to RowHammer
• PARA: ProbabilisDc Adjacent Row AcDvaDon

• Key Idea 
– Afer closing a row, we ac2vate (i.e., refresh) one of 

its neighbors with a low probability: p = 0.005

• Reliability Guarantee
– When p=0.005, errors in one year: 9.4×10-14
–  By adjus2ng the value of p, we can vary the strength 

of protec2on against errors

69



Advantages of PARA
•  PARA refreshes rows infrequently

–  Low power
–  Low performance-overhead

• Average slowdown: 0.20% (for 29 benchmarks)
• Maximum slowdown: 0.75% 

•  PARA is stateless
–  Low cost
–  Low complexity

•  PARA is an effecDve and low-overhead soluDon 
to prevent disturbance errors

70



Requirements for PARA
•  If implemented in DRAM chip

–  Enough slack in 2ming parameters
–  Plenty of slack today: 

•  Lee et al., “Adap2ve-Latency DRAM: Op2mizing DRAM Timing for the Common Case,” HPCA 
2015.

•  Chang et al., “Understanding Latency Varia2on in Modern DRAM Chips,” SIGMETRICS 2016.
•  Lee et al., “Design-Induced Latency Varia2on in Modern DRAM Chips,” SIGMETRICS 2017.

•  Chang et al., “Understanding Reduced-Voltage Opera2on in Modern DRAM Devices,” 
SIGMETRICS 2017.

•  If implemented in memory controller
–  Be`er coordina2on between memory controller and 

DRAM
– Memory controller should know which rows are 

physically adjacent



71



More on RowHammer Analysis 

72 

!  Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk 
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu, 
"Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors" 
Proceedings of the 
41st International Symposium on Computer Architecture (ISCA), 
Minneapolis, MN, June 2014.  
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [
Source Code and Data] 



Retrospective on RowHammer & Future 

73 https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf  

!  Onur Mutlu, 
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"  
Invited Paper in Proceedings of the 
Design, Automation, and Test in Europe Conference (DATE), Lausanne, 
Switzerland, March 2017.  
[Slides (pptx) (pdf)]  



Challenge and Opportunity for Future 

Fundamentally 
Secure, Reliable, Safe 

Computing Architectures 

74 



Future of Main Memory 
!  DRAM is becoming less reliable # more vulnerable 

75 



Large-Scale Failure Analysis of DRAM Chips 
!  Analysis and modeling of memory errors found in all of 

Facebook’s server fleet 

!  Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, 
"Revisiting Memory Errors in Large-Scale Production Data 
Centers: Analysis and Modeling of New Trends from the Field"  
Proceedings of the 
45th Annual IEEE/IFIP International Conference on Dependable 
Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.  
[Slides (pptx) (pdf)] [DRAM Error Model]  

76 



Intuition: quadratic increase in capacity 

DRAM Reliability Reducing 



Aside: SSD Error Analysis in the Field 

!  First large-scale field study of flash memory errors 

!  Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, 
"A Large-Scale Study of Flash Memory Errors in the Field"  
Proceedings of the 
ACM International Conference on Measurement and Modeling of 
Computer Systems (SIGMETRICS), Portland, OR, June 2015.  
[Slides (pptx) (pdf)] [Coverage at ZDNet] 

78 



Future of Main Memory 
!  DRAM is becoming less reliable # more vulnerable 

!  Due to difficulties in DRAM scaling, other problems may 
also appear (or they may be going unnoticed) 

!  Some errors may already be slipping into the field 
"  Read disturb errors (Rowhammer) 
"  Retention errors 
"  Read errors, write errors 
"  … 

!  These errors can also pose security vulnerabilities 

79 



DRAM Data Retention Time Failures 

!  Determining the data retention time of a cell/row is getting 
more difficult 

!  Retention failures may already be slipping into the field 

80 



!  Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, 
"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms" 
Proceedings of the 40th International Symposium on Computer Architecture 
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf) 

81 

Analysis of Retention Failures [ISCA’13] 



Two Challenges to Retention Time Profiling 
!  Data Pattern Dependence (DPD) of retention time 

 
!  Variable Retention Time (VRT) phenomenon 

82 



Two Challenges to Retention Time Profiling 
!  Challenge 1: Data Pattern Dependence (DPD) 

"  Retention time of a DRAM cell depends on its value and the 
values of cells nearby it 

"  When a row is activated, all bitlines are perturbed simultaneously 

83 



!  Electrical noise on the bitline affects reliable sensing of a DRAM cell 
!  The magnitude of this noise is affected by values of nearby cells via 

"  Bitline-bitline coupling # electrical coupling between adjacent bitlines 
"  Bitline-wordline coupling # electrical coupling between each bitline and 

the activated wordline 

Data Pattern Dependence 

84 



!  Electrical noise on the bitline affects reliable sensing of a DRAM cell 
!  The magnitude of this noise is affected by values of nearby cells via 

"  Bitline-bitline coupling # electrical coupling between adjacent bitlines 
"  Bitline-wordline coupling # electrical coupling between each bitline and 

the activated wordline 

!  Retention time of a cell depends on data patterns stored in 
nearby cells  

    # need to find the worst data pattern to find worst-case retention time 
    # this pattern is location dependent 

Data Pattern Dependence 

85 



Two Challenges to Retention Time Profiling 
!  Challenge 2: Variable Retention Time (VRT) 

"  Retention time of a DRAM cell changes randomly over time        
!  a cell alternates between multiple retention time states 

"  Leakage current of a cell changes sporadically due to a charge 
trap in the gate oxide of the DRAM cell access transistor 

"  When the trap becomes occupied, charge leaks more readily from 
the transistor’s drain, leading to a short retention time 
!  Called Trap-Assisted Gate-Induced Drain Leakage 

"  This process appears to be a random process [Kim+ IEEE TED’11] 

"  Worst-case retention time depends on a random process  
# need to find the worst case despite this 

86 



Modern DRAM Retention Time Distribution 

87 

0 1 2 3 4 5 6 7
Retention Time (s)

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008
Fr

ac
tio

n 
of

 C
el

ls
 w

ith
 R

et
en

tio
n 

Ti
m

e
<

X-
Ax

is 
Va

lu
e

C 2Gb

D 1Gb

D 2Gb

A 2Gb

A 1Gb

E 2Gb

B 2Gb

Newer	device	families	have	more	weak	cells	than	older	ones	
Likely	a	result	of	technology	scaling	

OLDER 

NEWER 

OLDER 

NEWER 



An Example VRT Cell 

88 

0 2 4 6 8 10
Time (Hours)

0

1

2

3

4

5

6

7
Re

te
nt

io
n 

Ti
m

e 
(s

)

A cell from E 2Gb chip family 



Variable Retention Time 

89 

0 1 2 3 4 5 6 7
Minimum Retention Time (s)

0

1

2

3

4

5

6

7
M

ax
im

um
 R

et
en

tio
n 

Ti
m

e 
(s

)

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g1

0(
Fr

ac
tio

n 
of

 C
el

ls
)

A 2Gb chip family 

Min ret time = Max ret time 
Expected if no VRT 

Most failing cells  
exhibit VRT 

Many failing cells jump from  
very high retention time to very low 



More on DRAM Retention Analysis 
!  Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, 

"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms" 
Proceedings of the 40th International Symposium on Computer Architecture 
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf) 

90 



Industry Is Writing Papers About It, Too 

91 



Industry Is Writing Papers About It, Too 

92 



!  Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, 
and Onur Mutlu, 
"The Efficacy of Error Mitigation Techniques for DRAM Retention 
Failures: A Comparative Experimental Study"  
Proceedings of the 
ACM International Conference on Measurement and Modeling of Computer 
Systems (SIGMETRICS), Austin, TX, June 2014. [Slides (pptx) (pdf)] [
Poster (pptx) (pdf)] [Full data sets]  

93 

Mitigation of Retention Issues [SIGMETRICS’14] 



Handling Data-Dependent Failures [DSN’16]   

94 

!  Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, 
and Onur Mutlu, 
"The Efficacy of Error Mitigation Techniques for DRAM Retention 
Failures: A Comparative Experimental Study"  
Proceedings of the 
ACM International Conference on Measurement and Modeling of Computer 
Systems (SIGMETRICS), Austin, TX, June 2014. [Slides (pptx) (pdf)] [
Poster (pptx) (pdf)] [Full data sets]  



Handling Data-Dependent Failures [CAL’16]   

95 

!  Samira Khan, Chris Wilkerson, Donghyuk Lee, Alaa R. Alameldeen, and Onur 
Mutlu, 
"A Case for Memory Content-Based Detection and Mitigation of Data-
Dependent Failures in DRAM" 
IEEE Computer Architecture Letters (CAL), November 2016.  



!  Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and 
Onur Mutlu, 
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for 
DRAM Systems"  
Proceedings of the 
45th Annual IEEE/IFIP International Conference on Dependable 
Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.  
[Slides (pptx) (pdf)]  

96 

Handling Variable Retention Time [DSN’15]  



Handling Both DPD and VRT [ISCA’17] 

97 

!  Minesh Patel, Jeremie S. Kim, and Onur Mutlu, 
"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM 
Retention Failures via Profiling at Aggressive Conditions" 
Proceedings of the 44th International Symposium on Computer Architecture 
(ISCA), Toronto, Canada, June 2017.  

!  First experimental analysis of (mobile) LPDDR4 chips 
!  Analyzes the complex tradeoff space of retention time profiling 
!  Key idea: enable fast and robust profiling at higher refresh intervals & temp. 



Summary: Memory Reliability and Security 
!  Memory reliability is reducing 
!  Reliability issues open up security vulnerabilities 

"  Very hard to defend against 

!  Rowhammer is an example  
"  Its implications on system security research are tremendous & exciting 

!  Good news: We have a lot more to do. 
!  Understand: Solid methodologies for failure modeling and discovery 

"  Modeling based on real device data – small scale and large scale 

!  Architect: Principled co-architecting of system and memory 
"  Good partitioning of duties across the stack 

!  Design & Test: Principled electronic design, automation, testing 
"  High coverage and good interaction with system reliability methods 

 98 



If Time Permits: NAND Flash Vulnerabilities 
!  Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu, 

"Error Characterization, Mitigation, and Recovery in Flash Memory Based 
Solid State Drives" 
to appear in Proceedings of the IEEE, 2017.  

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012. 
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD 
2012. 
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE 
2013. 
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013. 
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013. 
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014. 
Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015. 
Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.  
Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST 
2015. 
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015. 
Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE 
JSAC 2016. 
Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation 
Techniques,” HPCA 2017. 
Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.  

 
Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017. 



Overview Paper on Flash Reliability 

!  Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and 
Onur Mutlu, 
"Error Characterization, Mitigation, and Recovery in 
Flash Memory Based Solid State Drives" 
to appear in Proceedings of the IEEE, 2017. 

100 



Challenge and Opportunity for Future 

Fundamentally 
Secure, Reliable, Safe 

Computing Architectures 

101 



Three Key Issues in Future Platforms 

!  Fundamentally Secure/Reliable/Safe Architectures 

!  Fundamentally Energy-Efficient Architectures 
"  Memory-centric (Data-centric) Architectures 

!  Fundamentally Low Latency Architectures 

102 



103 Source:	V.	Milu]novic	



104 Source:	V.	Milu]novic	



Maslow’s (Human) Hierarchy of Needs, Revisited 

 
 
 
 
 
 
 
 
 

105 

Maslow, “A Theory of Human Motivation,”  
Psychological Review, 1943.  

Everlasting battery life 

Source:	h2ps://www.simplypsychology.org/maslow.html	



Challenge and Opportunity for Future 

Sustainable 
and 

Energy Efficient 

106 



The Problem 

Data access is the major performance and energy bottleneck 

 

Our current 
design principles  

cause great energy waste 

107 



The Problem 

Processing of data  
is performed  

far away from the data 

108 



A Computing System 
!  Three key components 
!  Computation  
!  Communication 
!  Storage/memory 

109 

Burks, Goldstein, von Neumann, “Preliminary discussion of the 
logical design of an electronic computing instrument,” 1946. 



A Computing System 
!  Three key components 
!  Computation  
!  Communication 
!  Storage/memory 

110 

Burks, Goldstein, von Neumann, “Preliminary discussion of the 
logical design of an electronic computing instrument,” 1946. 



Today’s Computing Systems 
!  Are overwhelmingly processor centric 
!  All data processed in the processor # at great system cost 
!  Processor is heavily optimized and is considered the master 
!  Data storage units are dumb slaves and are largely 

unoptimized (except for some that are on the processor die) 

111 



Yet … 
!  “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996) 

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003. 



Perils of Processor-Centric Design 

!  Grossly-imbalanced systems 
"  Processing done only in one place 
"  Everything else just stores and moves data: data moves a lot 
# Energy inefficient  
# Low performance 
# Complex 

 
!  Overly complex and bloated processor (and accelerators) 

"  To tolerate data access from memory 
"  Complex hierarchies and mechanisms  
# Energy inefficient  
# Low performance 
# Complex 

113 



Perils of Processor-Centric Design 

114 

Most of the system is dedicated to storing and moving data  



Three Key Systems Trends 

1. Data access is a major bottleneck 
"  Applications are increasingly data hungry 

2. Energy consumption is a key limiter 

3. Data movement energy dominates compute 
"  Especially true for off-chip to on-chip movement 
 

115 



Data Movement vs. Computation Energy 

116 

Dally, HiPEAC 2015 



Data Movement vs. Computation Energy 

117 

Dally, HiPEAC 2015 

A memory access consumes ~1000X  
the energy of a complex addition  



We Need A Paradigm Shift To … 

!  Enable computation with minimal data movement 

!  Compute where it makes sense (where data resides) 

!  Make computing architectures more data-centric 

118 



Goal: In-Memory Computation Engine 

 

!  Many questions … How do we design the: 
"  compute-capable memory? 
"  processor chip? 
"  software interface? 
"  system software and languages? 
"  algorithms? 

Cache 

Processor 
Core 

 Interconnect 

 Memory 
Database 
 
Graphs 
 
Media   

Query 

Results 

Micro-architecture 

SW/HW Interface 

Program/Language 

Algorithm 

Problem 

Logic 
 Devices 

System Software 

Electrons 



Starting Simple: Data Copy and Initialization 

120 

Forking 

00000
00000
00000 

Zero initialization 
(e.g., security) 

VM Cloning 
Deduplication 

Checkpointing 

Page Migration 

Many more 

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15] 



Today’s Systems: Bulk Data Copy 

Memory 
	
 
	
 
	
 
 

MC L3 L2 L1 CPU 

1)	High	latency	

2)	High	bandwidth	u]liza]on	

3)	Cache	pollu]on	

4)	Unwanted	data	movement	

121	1046ns,	3.6uJ				(for	4KB	page	copy	via	DMA)	



Future Systems: In-Memory Copy 

Memory 
	
 
	
 
	
 
 

MC L3 L2 L1 CPU 

1)	Low	latency	

2)	Low	bandwidth	u]liza]on	

3)	No	cache	pollu]on	

4)	No	unwanted	data	movement	

122	1046ns,	3.6uJ	 #			90ns,	0.04uJ	



RowClone: In-DRAM Row Copy 

Row Buffer (4 Kbytes) 

Data Bus 

8 bits 

DRAM subarray 

4 Kbytes 

Step 1: Activate row A 

Transfer 
row 

Step 2: Activate row B 

 
Transfer 
row 

Negligible HW cost 
Idea: Two consecutive ACTivates 



RowClone: Latency and Energy Savings 

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Latency	 Energy	

N
or
m
al
iz
ed

	S
av
in
gs
	

Baseline	 Intra-Subarray	
Inter-Bank	 Inter-Subarray	

11.6x	 74x	

124	
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013. 



More on RowClone 
!  Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata 

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. 
Kozuch, Phillip B. Gibbons, and Todd C. Mowry, 
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and 
Initialization" 
Proceedings of the 46th International Symposium on Microarchitecture 
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [
Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]  

125 



(Truly) In-Memory Computation 
!  Similarly, we can support in-DRAM AND, OR, NOT, MAJ 
!  At low cost 
!  Using analog behavior of memory 
!  30-60X performance and energy improvement 

"  Seshadri+, “In-DRAM Bulk Bitwise AND and OR,” CAL 2016. 
"  Seshadri+, “Buddy-RAM: Improving the Performance and Efficiency of 

Bulk Bitwise Operations Using DRAM,” arxiv 2016. 

!  New memory technologies enable even more opportunities 
"  Memristors, resistive RAM, phase change mem, STT-MRAM, … 
"  Can operate on data with minimal movement 

126 



In-DRAM AND/OR: Triple Row Activation 

127 

½VDD	

½VDD	

dis	

A	

B	

C	

Final	State	
AB	+	BC	+	AC	

½VDD+δ	

C(A	+	B)	+	
~C(AB)	en	

0	

VDD	

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015. 



In-DRAM Bulk Bitwise AND/OR Operation 

!  BULKAND A, B # C  
!  Semantics: Perform a bitwise AND of two rows A and B and 

store the result in row C 

!  R0 – reserved zero row, R1 – reserved one row 
!  D1, D2, D3 – Designated rows for triple activation 

1. RowClone  A  into  D1    
2. RowClone  B  into  D2    
3. RowClone  R0  into  D3    
4. ACTIVATE  D1,D2,D3    
5. RowClone  Result  into  C 

128 



In-DRAM AND/OR Results 
!  20X improvement in AND/OR throughput vs. Intel AVX 
!  50.5X reduction in memory energy consumption 
!  At least 30% performance improvement in range queries 

129 Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015. 

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

8K
B"

16
KB
"
32
KB
"
64
KB
"

12
8K
B"

25
6K
B"

51
2K
B"

1M
B"

2M
B"

4M
B"

8M
B"

16
MB
"

32
MB
"

Size of Vectors to be ANDed 

In-DRAM AND (2 banks) 

In-DRAM AND (1 bank) 

Intel AVX 



Bitmap	Index	
•  Alterna]ve	to	B-tree	and	its	variants	
•  Efficient	for	performing	range	queries	and		joins	
	

130	

Bi
tm

ap
	1
	

Bi
tm

ap
	2
	

Bi
tm

ap
	4
	

Bi
tm

ap
	3
	

age	<	18	 18	<	age	<	25	 25	<	age	<	60	 age	>	60	



Performance	Evalua-on	

131	

0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
1.2	
1.4	

3	 9	 20	 45	 98	 118	 128	

N
or
m
al
iz
ed

	P
er
fo
rm

an
ce
	

Number	of	OR	bins	

Conserva-ve	(1	Bank)	 Aggressive	(1	Bank)	

Conserva-ve	(4	Banks)	 Aggressive	(4	Banks)	



More on In-DRAM Bulk AND/OR 

!  Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk 
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and 
Todd C. Mowry, 
"Fast Bulk Bitwise AND and OR in DRAM" 
IEEE Computer Architecture Letters (CAL), April 2015.  

132 



In-DRAM NOT: Dual Contact Cell 

133 

Seshadri+, “Buddy-RAM: Improving the Performance and Efficiency of Bulk Bitwise Operations Using DRAM,” arxiv 2016. 

Idea: Feed the negated  
value in the sense amplifier 
into a special row 



In-DRAM NOT Operation 

134 

Seshadri+, “Buddy-RAM: Improving the Performance and Efficiency of Bulk Bitwise Operations Using DRAM,” arxiv 2016. 



Energy of In-DRAM Bitwise Operations 

135 

Seshadri+, “Buddy-RAM: Improving the Performance and Efficiency of Bulk Bitwise Operations Using DRAM,” arxiv 2016. 



An Example Result 

136 

Seshadri+, “Buddy-RAM: Improving the Performance and Efficiency of Bulk Bitwise Operations Using DRAM,” arxiv 2016. 



Buddy-RAM: In-DRAM Bitwise Operations 

!  Vivek Seshadri et al., “Buddy-RAM: Improving the 
Performance and Efficiency of Bulk Bitwise Operations 
Using DRAM,” arxiv.org, Nov 2016. 
"  https://arxiv.org/pdf/1611.09988.pdf  

137 



Another Example: In-Memory Graph Processing 

138 

!  Large graphs are everywhere (circa 2015) 

 

!  Scalable large-scale graph processing is challenging	

36 Million  
Wikipedia Pages 

1.4 Billion 
Facebook Users 

300 Million 
Twitter Users 

30 Billion 
Instagram Photos 

+42% 

0 1 2 3 4 

128 
Cores 

32 Cores 

Speedup 



Key Bottlenecks in Graph Processing 

139 

for	(v:	graph.ver]ces)	{	
				for	(w:	v.successors)	{	
								w.next_rank	+=	weight	*	v.rank;	
				}	
}	

weight * v.rank	

v�

w�

&w�

1. Frequent random memory accesses	

2. Little amount of computation	

w.rank	

w.next_rank	

w.edges	

…	



Tesseract System for Graph Processing 

Crossbar	Network�

…	
…	

…	
…	

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped 
Accelerator Interface 

(Noncacheable, Physically Addressed)	

Interconnected set of 3D-stacked memory+logic chips with simple cores 

Logic 

Memory 

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 



Logic 

Memory 

Tesseract System for Graph Processing 

141 

Crossbar	Network�

…	
…	

…	
…	

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped 
Accelerator Interface 

(Noncacheable, Physically Addressed)	

Communica]ons	via	
Remote	Func]on	Calls�



Logic 

Memory 

Tesseract System for Graph Processing 

142 

Crossbar	Network�

…	
…	

…	
…	

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped 
Accelerator Interface 

(Noncacheable, Physically Addressed)	

Prefetching�



Evaluated Systems 

HMC-MC	

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

102.4GB/s	 640GB/s	 640GB/s	 8TB/s	

HMC-OoO	

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

DDR3-OoO	 Tesseract	

32	
Tesseract	
Cores�

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 



Tesseract Graph Processing Performance 

+56%	 +25%	

9.0x	

11.6x	

13.8x	

0	

2	

4	

6	

8	

10	

12	

14	

16	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

Sp
ee
du

p�

>13X Performance Improvement	

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 

On five graph processing algorithms 



Tesseract Graph Processing Performance 

145 

+56%	 +25%	

9.0x	

11.6x	

13.8x	

0	

2	

4	

6	

8	

10	

12	

14	

16	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

Sp
ee
du

p�

80GB/s	 190GB/s	 243GB/s	

1.3TB/s	

2.2TB/s	

2.9TB/s	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

M
em

or
y	
Ba

nd
w
id
th
	(T

B/
s)
	

Memory	Bandwidth	Consump-on	



Tesseract Graph Processing System Energy 

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

HMC-OoO	 Tesseract	with	Prefetching	

Memory	Layers	 Logic	Layers	 Cores	

> 8X Energy Reduction	

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 



More on Tesseract 
!  Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, 

and Kiyoung Choi, 
"A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing" 
Proceedings of the 
42nd International Symposium on Computer Architecture 
(ISCA), Portland, OR, June 2015.  
[Slides (pdf)] [Lightning Session Slides (pdf)] 

147 



Challenge and Opportunity for Future 

Fundamentally 
Energy-Efficient 
(Data-Centric) 

Computing Architectures 
148 



PEI: PIM-Enabled Instructions (Ideas) 
!  Goal: Develop mechanisms to get the most out of near-data 

processing with minimal cost, minimal changes to the system, no 
changes to the programming model 

!  Key Idea 1: Expose each PIM operation as a cache-coherent, 
virtually-addressed host processor instruction (called PEI) that 
operates on only a single cache block 
"  e.g., __pim_add(&w.next_rank,	value)	#	pim.add	r1,	(r2)�
"  No changes sequential execution/programming model 
"  No changes to virtual memory 
"  Minimal changes to cache coherence 
"  No need for data mapping: Each PEI restricted to a single memory module 

!  Key Idea 2: Dynamically decide where to execute a PEI (i.e., the 
host processor or PIM accelerator) based on simple locality 
characteristics and simple hardware predictors 
"  Execute each operation at the location that provides the best performance 

149 



PEI: PIM-Enabled Instructions (Example) 

150 

!  Executed either in memory or in the processor: dynamic decision 
"  Low-cost locality monitoring for a single instruction 

!  Cache-coherent, virtually-addressed, single cache block only 
!  Atomic between different PEIs 
!  Not atomic with normal instructions (use pfence for ordering) 

for	(v:	graph.ver]ces)	{	
				value	=	weight	*	v.rank;	
				for	(w:	v.successors)	{	
								__pim_add(&w.next_rank,	value);	
				}	
}	
pfence();	

pim.add	r1,	(r2)�

pfence�



Example (Abstract) PEI uArchitecture 

151 

Out-Of-Order	
Core�

L1
	C
ac
he
�

L2
	C
ac
he
�

La
st
-L
ev
el
	

Ca
ch
e�

HM
C	
Co

nt
ro
lle
r�

N
et
w
or
k�

DRAM	
Controller�

DRAM	
Controller�

DRAM	
Controller�

Host Processor	 3D-stacked Memory 	
…

PCU	(PEI	
Computa]on	Unit)�

PCU�

PCU�

PCU�

PIM	
Directory�

Locality	
Monitor�

PMU (PEI 
Mgmt Unit)	

Example PEI uArchitecture	



PEI: Initial Evaluation Results 
!  Initial evaluations with 10 emerging data-intensive workloads 

"  Large-scale graph processing 
"  In-memory data analytics 
"  Machine learning and data mining 
"  Three input sets (small, medium, large)                                                  

for each workload to analyze the impact                                            
of data locality 

!  Pin-based cycle-level x86-64 simulation	
 

!  Performance Improvement and Energy Reduction:  
!  47% average speedup with large input data sets 
!  32% speedup with small input data sets 
!  25% avg. energy reduction in a single node with large input data sets 

152 



More on PIM-Enabled Instructions 
!  Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, 

"PIM-Enabled Instructions: A Low-Overhead, 
Locality-Aware Processing-in-Memory Architecture" 
Proceedings of the 
42nd International Symposium on Computer Architecture 
(ISCA), Portland, OR, June 2015.  
[Slides (pdf)] [Lightning Session Slides (pdf)]   



More on PIM Design: 3D-Stacked GPU I 
!  Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler, 
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems" 
Proceedings of the 
43rd International Symposium on Computer Architecture (ISCA), Seoul, 
South Korea, June 2016.  
[Slides (pptx) (pdf)]  
[Lightning Session Slides (pptx) (pdf)]  

154 



Key Challenge 1	

Logic layer 
SM 

Crossbar switch 

Vault 
Ctrl 

…. Vault 
Ctrl 

Logic layer 

Main GPU 

3D-stacked memory 
(memory stack) SM (Streaming Multiprocessor) 



Key Challenge 1	

Logic layer 
SM 

Crossbar switch 

Vault 
Ctrl 

…. Vault 
Ctrl 

Logic layer 

?	

Main GPU 

3D-stacked memory 
(memory stack) 

• Challenge 1: Which operations should be executed 
on the logic layer SMs? 

?	
SM (Streaming Multiprocessor) 



Key Challenge 2 

Logic layer 
SM 

Crossbar switch 

Vault 
Ctrl 

…. Vault 
Ctrl 

Logic layer 

Main GPU 

3D-stacked memory 
(memory stack) 

• Challenge 2: How should data be mapped to 
different 3D memory stacks?  

SM (Streaming Multiprocessor) 



More on PIM Design: 3D-Stacked GPU II 
!  Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das, 
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities" 
Proceedings of the 
25th International Conference on Parallel Architectures and Compilation 
Techniques (PACT), Haifa, Israel, September 2016. 

158 



More on PIM Design: Dependent Misses 
!  Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt, 

"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller" 
Proceedings of the 
43rd International Symposium on Computer Architecture (ISCA), Seoul, 
South Korea, June 2016.  
[Slides (pptx) (pdf)]  
[Lightning Session Slides (pptx) (pdf)]  

159 



More on PIM: Linked Data Structures 
!  Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 

Boroumand, Saugata Ghose, and Onur Mutlu, 
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation" 
Proceedings of the 
34th IEEE International Conference on Computer Design (ICCD), 
Phoenix, AZ, USA, October 2016.  

160 



More on PIM Design: Coherence 

!  Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan 
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu, 
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory" 
IEEE Computer Architecture Letters (CAL), June 2016. 

161 



SoftMC: An FPGA-based Testbed for PIM? 

!  Hasan Hassan et al., “SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies,” HPCA 2017. 

 
 
!  Flexible 
!  Easy to Use (C++ API) 
!  Open-source  
    github.com/CMU-SAFARI/SoftMC  

162 



SoftMC: Open Source DRAM Infrastructure 

!  https://github.com/CMU-SAFARI/SoftMC  

 

163 



Simulation Infrastructures for PIM 

!  Ramulator extended for PIM 
"  Flexible and extensible DRAM simulator 
"  Can model many different memory standards and proposals 
"  Kim+, “Ramulator: A Flexible and Extensible DRAM 

Simulator”, IEEE CAL 2015. 
"  https://github.com/CMU-SAFARI/ramulator  

164 



Ramulator: A Fast and Extensible 
DRAM Simulator  

 [IEEE Comp Arch Letters’15] 

165 



Ramulator Motivation 
!  DRAM and Memory Controller landscape is changing 
!  Many new and upcoming standards 
!  Many new controller designs 
!  A fast and easy-to-extend simulator is very much needed 

166 



Ramulator  

!  Provides out-of-the box support for many DRAM standards: 
"  DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 

proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP) 

!  ~2.5X faster than fastest open-source simulator 
!  Modular and extensible to different standards 

167 



Case Study: Comparison of DRAM Standards 

168 

Across 22 
workloads, 
simple CPU 
model 



Ramulator Paper and Source Code 

!  Yoongu Kim, Weikun Yang, and Onur Mutlu, 
"Ramulator: A Fast and Extensible DRAM Simulator" 
IEEE Computer Architecture Letters (CAL), March 2015.  
[Source Code]  

!  Source code is released under the liberal MIT License 
"  https://github.com/CMU-SAFARI/ramulator  

169 



Challenge and Opportunity for Future 

Fundamentally 
Energy-Efficient 
(Data-Centric) 

Computing Architectures 
170 



Three Key Issues in Future Platforms 

!  Fundamentally Secure/Reliable/Safe Architectures 

!  Fundamentally Energy-Efficient Architectures 
"  Memory-centric (Data-centric) Architectures 

!  Fundamentally Low Latency Architectures 

171 



172 Source:	h2p://spectrum.ieee.org/image/MjYzMzAyMg.jpeg	



Maslow’s Hierarchy of Needs, A Third Time 

 
 
 
 
 
 
 
 
 

173 

Maslow, “A Theory of Human Motivation,”  
Psychological Review, 1943.  

Speed 

Speed 

Speed 
Speed 

Speed 

Source:	h2ps://www.simplypsychology.org/maslow.html	



1 

10 

100 

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017 

D
R

A
M

 Im
pr

ov
em

en
t 

(lo
g)

 Capacity Bandwidth Latency 

Main Memory Latency Lags Behind 

128x 

20x 

1.3x 

Memory latency remains almost constant 



A Closer Look … 

175 

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental  
Characterization, Analysis, and Optimization",” SIGMETRICS 2016. 



DRAM Latency Is Critical for Performance 

In-Memory Data Analytics  
[Clapp+ (Intel), IISWC’15;   
 Awan+, BDCloud’15] 

Datacenter Workloads  
[Kanev+ (Google), ISCA’15] 

In-memory Databases  
[Mao+, EuroSys’12;  
Clapp+ (Intel), IISWC’15] 

Graph/Tree Processing  
[Xu+, IISWC’12; Umuroglu+, FPL’15] 



DRAM Latency Is Critical for Performance 

In-Memory Data Analytics  
[Clapp+ (Intel), IISWC’15;   
 Awan+, BDCloud’15] 

Datacenter Workloads  
[Kanev+ (Google), ISCA’15] 

In-memory Databases  
[Mao+, EuroSys’12;  
Clapp+ (Intel), IISWC’15] 

Graph/Tree Processing  
[Xu+, IISWC’12; Umuroglu+, FPL’15] 

Long memory latency → performance bottleneck



Why the Long Latency? 

!  Design of DRAM uArchitecture 
"  Goal: Maximize capacity/area, not minimize latency 

!  One size fits all approach to latency specification 
"  Same latency parameters for all temperatures 
"  Same latency parameters for all DRAM chips (e.g., rows) 
"  Same latency parameters for all parts of a DRAM chip 
"  Same latency parameters for all supply voltage levels 
"  Same latency parameters for all application data  
"  … 

178 



Latency Variation in Memory Chips 

179 

High Low 
DRAM Latency 

DRAM B DRAM A DRAM C 

Slow cells 

Heterogeneous manufacturing & operating conditions → �
latency variation in timing parameters 



Tackling the Fixed Latency Mindset 

!  Reliable operation latency is actually very heterogeneous 
"  Across temperatures, chips, parts of a chip, voltage levels, … 

!  Idea: Dynamically find out and use the lowest latency one 
can reliably access a memory location with 
"  Adaptive-Latency DRAM [HPCA 2015] 
"  Flexible-Latency DRAM [SIGMETRICS 2016] 
"  Design-Induced Variation-Aware DRAM [SIGMETRICS 2017] 
"  ... 

!  We would like to find sources of latency heterogeneity and 
exploit them to minimize latency 

180 



181

Adap]ve-Latency	DRAM	

•  Key idea
–  Op2mize DRAM 2ming parameters online

•  Two components
– DRAM manufacturer provides mul2ple sets of 

reliable DRAM 2ming parameters at different 
temperatures for each DIMM

– System monitors DRAM temperature & uses 
appropriate DRAM 2ming parameters

reliable DRAM 2ming parameters

DRAM temperature

Lee+,	“Adap]ve-Latency	DRAM:	Op]mizing	DRAM	Timing	for	the	Common-Case,”	HPCA	
2015.	



182

Latency	Reduc]on	Summary	of	115	DIMMs	
•  Latency reducDon for read & write (55°C)

– Read Latency: 32.7%
– Write Latency: 55.1%

•  Latency reducDon for each Dming 
parameter (55°C) 
– Sensing: 17.3%
– Restore: 37.3% (read), 54.8% (write)
– Precharge: 35.2% 

Lee+,	“Adap]ve-Latency	DRAM:	Op]mizing	DRAM	Timing	for	the	Common-Case,”	HPCA	
2015.	



183

AL-DRAM:	Real	System	Evalua]on	
•  System

– CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC)
– DRAM: 4GByte DDR3-1600 (800Mhz Clock)
– OS: Linux
– Storage: 128GByte SSD

•  Workload
– 35 applicaDons from SPEC, STREAM, Parsec, 

Memcached, Apache, GUPS



184

0%
5%

10%
15%
20%
25%

so
pl

ex


m
cf



m
ilc



lib
q

lb
m



ge
m

s

co
py



s.
cl

us
te

r

gu
ps



no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds



Single Core Mul2 Core

0%
5%

10%
15%
20%
25%

so
pl

ex


m
cf



m
ilc



lib
q

lb
m



ge
m

s

co
py



s.
cl

us
te

r

gu
ps



no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds



Single Core Mul2 Core

1.4%
6.7%

0%
5%

10%
15%
20%
25%

so
pl

ex


m
cf



m
ilc



lib
q

lb
m



ge
m

s

co
py



s.
cl

us
te

r

gu
ps



no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds



Single Core Mul2 Core

5.0%

AL-DRAM:	Single-Core	Evalua]on	

AL-DRAM improves single-core performance 
on a real system

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t Average

Improvement


al
l-3

5-
w

or
kl

oa
d



185

0%
5%

10%
15%
20%
25%

so
pl

ex


m
cf



m
ilc



lib
q

lb
m



ge
m

s

co
py



s.
cl

us
te

r

gu
ps



no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds



Single Core Mul2 Core

0%
5%

10%
15%
20%
25%

so
pl

ex


m
cf



m
ilc



lib
q

lb
m



ge
m

s

co
py



s.
cl

us
te

r

gu
ps



no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds



Single Core Mul2 Core

0%
5%

10%
15%
20%
25%

so
pl

ex


m
cf



m
ilc



lib
q

lb
m



ge
m

s

co
py



s.
cl

us
te

r

gu
ps



no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds



Single Core Mul2 Core
14.0%

2.9%
0%
5%

10%
15%
20%
25%

so
pl

ex


m
cf



m
ilc



lib
q

lb
m



ge
m

s

co
py



s.
cl

us
te

r

gu
ps



no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds



Single Core Mul2 Core

10.4%

AL-DRAM:	Mul]-Core	Evalua]on	

AL-DRAM provides higher performance on
mulD-programmed & mulD-threaded workloads

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t Average    

Improvement

al
l-3

5-
w

or
kl

oa
d



More on AL-DRAM 
!  Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan, 

Vivek Seshadri, Kevin Chang, and Onur Mutlu, 
"Adaptive-Latency DRAM: Optimizing DRAM Timing for 
the Common-Case"  
Proceedings of the 
21st International Symposium on High-Performance Computer 
Architecture (HPCA), Bay Area, CA, February 2015.  
[Slides (pptx) (pdf)] [Full data sets]  

186 



Heterogeneous Latency within A Chip 

187 

0.9 

0.95 

1 

1.05 

1.1 

1.15 

1.2 

1.25 
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce
 

40 Workloads 

Baseline (DDR3) 
FLY-DRAM (D1) 
FLY-DRAM (D2) 
FLY-DRAM (D3) 
Upper Bound 

17.6% 
19.5% 

19.7% 

13.3% 

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental  
Characterization, Analysis, and Optimization",” SIGMETRICS 2016. 



Analysis of Latency Variation in DRAM Chips (I) 
!  Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh, 

Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and 
Onur Mutlu, 
"Understanding Latency Variation in Modern DRAM Chips: 
Experimental Characterization, Analysis, and Optimization"  
Proceedings of the 
ACM International Conference on Measurement and Modeling of Computer 
Systems (SIGMETRICS), Antibes Juan-Les-Pins, France, June 2016.  
[Slides (pptx) (pdf)]  
[Source Code]  

188 



Analysis of Latency Variation in DRAM Chips (II) 
!  Donghyuk Lee, Samira Khan, Lavanya Subramanian, Saugata Ghose, 

Rachata Ausavarungnirun, Gennady Pekhimenko, Vivek Seshadri, and 
Onur Mutlu, 
"Design-Induced Latency Variation in Modern DRAM Chips: 
Characterization, Analysis, and Latency Reduction Mechanisms"  
Proceedings of the 
ACM International Conference on Measurement and Modeling of Computer 
Systems (SIGMETRICS), Urbana-Champaign, IL, USA, June 2017.  

189 



Analysis of Latency-Voltage in DRAM Chips (I) 
!  Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish 

Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan 
Hassan, and Onur Mutlu, 
"Understanding Reduced-Voltage Operation in Modern DRAM 
Devices: Experimental Characterization, Analysis, and 
Mechanisms"  
Proceedings of the 
ACM International Conference on Measurement and Modeling of Computer 
Systems (SIGMETRICS), Urbana-Champaign, IL, USA, June 2017.  

190 



And, What If … 

!  … we can sacrifice reliability of some data to access it with 
even lower latency? 

191 



Challenge and Opportunity for Future 

Fundamentally 
Low Latency 

Computing Architectures 

192 



 Concluding Remarks 

193 



A Quote from A Famous Architect 
!  “architecture […] based upon principle, and not upon 

precedent” 

194 



Precedent-Based Design? 
!  “architecture […] based upon principle, and not upon 

precedent” 

195 



Principled Design 
!  “architecture […] based upon principle, and not upon 

precedent” 

196 



Another Example: Precedent-Based Design 

197 Source: http://cookiemagik.deviantart.com/art/Train-station-207266944 



Principled Design 

198 Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256 



Principle Applied to Another Structure 

199 
Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/ 
Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0,  
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava 



Concluding Remarks 
!  It is time to design principled system architectures to solve 

the memory scaling problem 

!  Discover design principles for fundamentally secure and 
reliable computer architectures 

!  Design complete systems to be balanced and energy-efficient, 
i.e., data-centric (or memory-centric) and low latency 

!  Enable new and emerging memory architectures  

!  This can 
"  Lead to orders-of-magnitude improvements  
"  Enable new applications & computing platforms 
"  … 

200 



The Future is Very Bright 

!  Regardless of challenges  
"  in underlying technology and overlying problems/requirements  

201 

Micro-architecture 

SW/HW Interface 

Program/Language 

Algorithm 

Problem 

Logic 
 Devices 

System Software 

Electrons 



For More Open Problems, See (I) 
!  Onur Mutlu and Lavanya Subramanian, 

"Research Problems and Opportunities in Memory 
Systems" 
Invited Article in Supercomputing Frontiers and Innovations 
(SUPERFRI), 2014/2015.  

202 



For More Open Problems, See (II) 

203 https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf  

!  Onur Mutlu, 
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"  
Invited Paper in Proceedings of the 
Design, Automation, and Test in Europe Conference (DATE), Lausanne, 
Switzerland, March 2017.  
[Slides (pptx) (pdf)]  



For More Open Problems, See (III) 
!  Onur Mutlu, 

"Memory Scaling: A Systems Architecture 
Perspective" 
Technical talk at MemCon 2013 (MEMCON), Santa Clara, 
CA, August 2013. [Slides (pptx) (pdf)] 
[Video] [Coverage on StorageSearch]  

204 



For More Open Problems, See (IV) 

!  Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and 
Onur Mutlu, 
"Error Characterization, Mitigation, and Recovery in 
Flash Memory Based Solid State Drives" 
to appear in Proceedings of the IEEE, 2017. 

205 



Onur Mutlu 
onur.mutlu@inf.ethz.ch  

https://people.inf.ethz.ch/omutlu 
June 18, 2017 

Design Automation Summer School @ DAC 2017 
 

 

Memory Reliability, Security & Beyond 
 

Three Key Issues in Modern Systems 



NAND Flash Memory 
     Reliability and Security 

207 



Upcoming Overview Paper 

!  Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and 
Onur Mutlu, 
"Error Characterization, Mitigation, and Recovery in 
Flash Memory Based Solid State Drives" 
to appear in Proceedings of the IEEE, 2017. 

208 



Evolution of NAND Flash Memory 

!  Flash memory is widening its range of applications 
"  Portable consumer devices, laptop PCs and enterprise servers 

Seaung Suk Lee, “Emerging Challenges in NAND Flash Technology”, Flash Summit 2011 (Hynix) 

CMOS scaling 
More bits per Cell 

209 



Flash Challenges: Reliability and Endurance 

E. Grochowski et al., “Future technology challenges for NAND flash and HDD products”, 
Flash Memory Summit 2012 

$  P/E cycles 
(required) 

$  P/E cycles 
(provided) 

A few thousand 

Writing  
the full capacity  

of the drive  
10 times per day  

for 5 years  
(STEC) 

> 50k P/E cycles 

210 



NAND Flash Memory is Increasingly Noisy 

Noisy NAND Write Read 

211 



Future NAND Flash-based Storage Architecture 

Memory 
Signal  

Processing 

Error 
Correction 

Raw Bit  
Error Rate 

Uncorrectable  
BER < 10-15 Noisy 

High Lower 

212 

Build reliable error models for NAND flash memory  
Design efficient reliability mechanisms based on the model 

Our Goals: 

Better 



NAND Flash Error Model 

Noisy NAND Write Read 

Experimentally characterize and model dominant errors 

$  Neighbor page 
prog/read (c-to-c 
interference) 

$  Retention $  Erase block 
$  Program page 

Write Read 

Cai et al., “Threshold voltage 
distribution in MLC NAND Flash 
Memory: Characterization, Analysis, 
and Modeling”, DATE 2013 
 
Cai et al., “Vulnerabilities in MLC 
NAND Flash Memory Programming: 
Experimental Analysis, Exploits, and 
Mitigation Techniques”, HPCA 2017 
 

Cai et al., “Flash Correct-and-Refresh: 
Retention-aware error management for 
increased flash memory lifetime”, ICCD 2012 

213 

Cai et al., “Program Interference in MLC 
NAND Flash Memory: Characterization, 
Modeling, and Mitigation”, ICCD 2013 
 

Cai et al., “Neighbor-Cell Assisted Error 
Correction in MLC NAND Flash 
Memories”, SIGMETRICS 2014 
 

Cai et al., “Read Disturb Errors in MLC 
NAND Flash Memory: Characterization 
and Mitigation”, DSN 2015 
 

Cai et al., “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis””, DATE 2012 

Cai et al., “Error Analysis and Retention-
Aware Error Management for NAND Flash 
Memory, ITJ 2013 

Cai et al., “Data Retention in MLC NAND 
Flash Memory: Characterization, 
Optimization and Recovery" , HPCA 2015 

Luo et al., “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory”, JSAC 2016 



Our Goals and Approach 

!  Goals: 
"  Understand error mechanisms and develop reliable predictive 

models for MLC NAND flash memory errors 
"  Develop efficient error management techniques to mitigate 

errors and improve flash reliability and endurance 

!  Approach: 
"  Solid experimental analyses of errors in real MLC NAND flash 

memory # drive the understanding and models 
"  Understanding, models, and creativity # drive the new 

techniques 

214 



Experimental Testing Platform 

215 

USB Jack 

Virtex-II Pro 
(USB controller) 

Virtex-V FPGA 
(NAND Controller) 

HAPS-52 Mother Board 

USB Daughter Board 

NAND Daughter Board 

1x-nm 
NAND Flash 

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, 
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017] 

Cai et al., FPGA-based Solid-State Drive prototyping platform, FCCM 2011. 



NAND Flash Error Types 

!  Four types of errors [Cai+, DATE 2012] 

!  Caused by common flash operations 
"  Read errors 
"  Erase errors 
"  Program (interference) errors 

!  Caused by flash cell losing charge over time 
"  Retention errors 

!  Whether an error happens depends on required retention time 
!  Especially problematic in MLC flash because threshold voltage 

window to determine stored value is smaller 

216 



retention errors 

!  Raw bit error rate increases exponentially with P/E cycles 
!  Retention errors are dominant (>99% for 1-year ret. time) 
!  Retention errors increase with retention time requirement 

Observations: Flash Error Analysis 

217 

P/E Cycles 

Cai et al., Error Patterns in MLC NAND Flash Memory, DATE 2012. 



More on Flash Error Analysis 

!  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Error Patterns in MLC NAND Flash Memory: 
Measurement, Characterization, and Analysis"  
Proceedings of the 
Design, Automation, and Test in Europe Conference 
(DATE), Dresden, Germany, March 2012. Slides (ppt) 

218 



Solution to Retention Errors 

!  Refresh periodically 
!  Change the period based on P/E cycle wearout 

"  Refresh more often at higher P/E cycles 

!  Use a combination of in-place and remapping-based refresh 

219 



One Issue: Read Disturb in Flash Memory 
!  All scaled memories are prone to read disturb errors 

220 



NAND	Flash	Memory	Background	

Flash	Memory	

Page	1	

Page	0	

Page	2	

Page	255	

…
…
	

Page	257	

Page	256	

Page	258	

Page	511	

…
…
	 ……	

Page	M+1	

Page	M	

Page	M+2	

Page	M+255	

…
…
	

Flash	
Controller	

221	

Block	0	 Block	1	 Block	N	

Read	
Pass	
Pass	

…	

Pass	



Sense	Amplifiers	

Flash	Cell	Array	

Block	X	

Page	Y	

Sense	Amplifiers	

222	

Row	

Co
lu
m
n	



Flash	Cell	

Floa]ng	
Gate	

Gate	

Drain	

Source	

Floa]ng	Gate	Transistor	
(Flash	Cell)	

Vth	=	
2.5	V	

223	



Flash	Read	

Vread	=	2.5	V	 Vth	=	
3	V	

Vth	=	
2	V	

1	 0	

Vread	=	2.5	V	

224	

Gate	



Flash	Pass-Through	

Vpass	=	5	V	 Vth	=	
2	V	

1	

Vpass	=	5	V	

225	

Gate	

1	

Vth	=	
3	V	



Read	from	Flash	Cell	Array	

3.0V	 3.8V	 3.9V	 4.8V	

3.5V	 2.9V	 2.4V	 2.1V	

2.2V	 4.3V	 4.6V	 1.8V	

3.5V	 2.3V	 1.9V	 4.3V	

Vread	=	2.5	V	

Vpass	=	5.0	V	

Vpass	=	5.0	V	

Vpass	=	5.0	V	

1	 1	0	0	Correct	values	
for	page	2:	 226	

Page	1	

Page	2	

Page	3	

Page	4	

Pass	(5V)	

Read	(2.5V)	

Pass	(5V)	

Pass	(5V)	



Read	Disturb	Problem:	“Weak	Programming”	Effect	

3.0V	 3.8V	 3.9V	 4.8V	

3.5V	 2.9V	 2.4V	 2.1V	

2.2V	 4.3V	 4.6V	 1.8V	

3.5V	 2.3V	 1.9V	 4.3V	

Repeatedly	read	page	3	(or	any	page	other	than	page	2)	 227	

Read	(2.5V)	

Pass	(5V)	

Pass	(5V)	

Pass	(5V)	

Page	1	

Page	2	

Page	3	

Page	4	



Vread	=	2.5	V	

Vpass	=	5.0	V	

Vpass	=	5.0	V	

Vpass	=	5.0	V	

0	 1	0	0	

Read	Disturb	Problem:	“Weak	Programming”	Effect	

High	pass-through	voltage	induces	“weak-programming”	effect	

3.0V	 3.8V	 3.9V	 4.8V	

3.5V	 2.9V	 2.1V	

2.2V	 4.3V	 4.6V	 1.8V	

3.5V	 2.3V	 1.9V	 4.3V	

Incorrect	values	
from	page	2:		

228	

2.4V	2.6V	

Page	1	

Page	2	

Page	3	

Page	4	



Execu]ve	Summary	
• Read	disturb	errors	limit	flash	memory	life]me	today	
– Apply	a	high	pass-through	voltage	(Vpass)	to	mul]ple	pages	on	a	read	
– Repeated	applica]on	of	Vpass	can	alter	stored	values	in	unread	pages	

• We	characterize	read	disturb	on	real	NAND	flash	chips	
– Slightly	lowering	Vpass	greatly	reduces	read	disturb	errors	
– Some	flash	cells	are	more	prone	to	read	disturb	

• Technique	1:	Mi]gate	read	disturb	errors	online	
– Vpass	Tuning	dynamically	finds	and	applies	a	lowered	Vpass	per	block	
– Flash	memory	life]me	improves	by	21%	

• Technique	2:	Recover	aber	failure	to	prevent	data	loss	
– Read	Disturb	Oriented	Error	Recovery	(RDR)	selec]vely	corrects	
cells	more	suscep]ble	to	read	disturb	errors	

– Reduces	raw	bit	error	rate	(RBER)	by	up	to	36%	
229	



More on Flash Read Disturb Errors 
!  Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai, 

and Onur Mutlu, 
"Read Disturb Errors in MLC NAND Flash Memory: 
Characterization and Mitigation"  
Proceedings of the 
45th Annual IEEE/IFIP International Conference on Dependable 
Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.  

230 



Large-Scale Flash SSD Error Analysis 
!  First large-scale field study of flash memory errors 

!  Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, 
"A Large-Scale Study of Flash Memory Errors in the Field"  
Proceedings of the 
ACM International Conference on Measurement and Modeling of 
Computer Systems (SIGMETRICS), Portland, OR, June 2015.  
[Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The Register] 
[Coverage on TechSpot] [Coverage on The Tech Report]  

231 



Another Time: NAND Flash Vulnerabilities 
!  Onur Mutlu, 

"Error Analysis and Management for MLC NAND Flash Memory" 
Technical talk at Flash Memory Summit 2014 (FMS), Santa Clara, CA, August 
2014. Slides (ppt) (pdf)  

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012. 
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD 
2012. 
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE 
2013. 
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013. 
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013. 
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014. 
Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015. 
Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.  
Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST 
2015. 
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015. 
Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE 
JSAC 2016. 
Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation 
Techniques,” HPCA 2017. 
Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.  

 232 



Flash Memory Programming Vulnerabilities 

233 

!  Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F. 
Haratsch, 
"Vulnerabilities in MLC NAND Flash Memory Programming: 
Experimental Analysis, Exploits, and Mitigation Techniques"  
Proceedings of the 
23rd International Symposium on High-Performance Computer 
Architecture (HPCA) Industrial Session, Austin, TX, USA, February 2017.  
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]  



Other Works on Flash Memory 

234 



NAND Flash Error Model 

Noisy NAND Write Read 

Experimentally characterize and model dominant errors 

$  Neighbor page 
prog/read (c-to-c 
interference) 

$  Retention $  Erase block 
$  Program page 

Write Read 

Cai et al., “Threshold voltage 
distribution in MLC NAND Flash 
Memory: Characterization, Analysis, 
and Modeling”, DATE 2013 
 
Cai et al., “Vulnerabilities in MLC 
NAND Flash Memory Programming: 
Experimental Analysis, Exploits, and 
Mitigation Techniques”, HPCA 2017 
 

Cai et al., “Flash Correct-and-Refresh: 
Retention-aware error management for 
increased flash memory lifetime”, ICCD 2012 

235 

Cai et al., “Program Interference in MLC 
NAND Flash Memory: Characterization, 
Modeling, and Mitigation”, ICCD 2013 
 

Cai et al., “Neighbor-Cell Assisted Error 
Correction in MLC NAND Flash 
Memories”, SIGMETRICS 2014 
 

Cai et al., “Read Disturb Errors in MLC 
NAND Flash Memory: Characterization 
and Mitigation”, DSN 2015 
 

Cai et al., “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis””, DATE 2012 

Cai et al., “Error Analysis and Retention-
Aware Error Management for NAND Flash 
Memory, ITJ 2013 

Cai et al., “Data Retention in MLC NAND 
Flash Memory: Characterization, 
Optimization and Recovery" , HPCA 2015 

Luo et al., “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory”, JSAC 2016 



Threshold Voltage Distribution 
!  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 

"Threshold Voltage Distribution in MLC NAND Flash 
Memory: Characterization, Analysis and Modeling"  
Proceedings of the 
Design, Automation, and Test in Europe Conference 
(DATE), Grenoble, France, March 2013. Slides (ppt) 

236 



Program Interference and Vref Prediction 
!  Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai, 

"Program Interference in MLC NAND Flash Memory: 
Characterization, Modeling, and Mitigation" 
Proceedings of the 
31st IEEE International Conference on Computer Design 
(ICCD), Asheville, NC, October 2013. Slides (pptx) (pdf) 
Lightning Session Slides (pdf)  

237 



Neighbor-Assisted Error Correction 
!  Yu Cai, Gulay Yalcin, Onur Mutlu, Eric Haratsch, Osman Unsal, 

Adrian Cristal, and Ken Mai, 
"Neighbor-Cell Assisted Error Correction for MLC NAND 
Flash Memories"  
Proceedings of the 
ACM International Conference on Measurement and Modeling of 
Computer Systems (SIGMETRICS), Austin, TX, June 2014. 
Slides (ppt) (pdf)  

238 



Data Retention 
!  Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu, 

"Data Retention in MLC NAND Flash Memory: Characterization, 
Optimization and Recovery"  
Proceedings of the 
21st International Symposium on High-Performance Computer 
Architecture (HPCA), Bay Area, CA, February 2015.  
[Slides (pptx) (pdf)]  

239 



SSD Error Analysis in the Field 
!  First large-scale field study of flash memory errors 
!  Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, 

"A Large-Scale Study of Flash Memory Errors in the Field"  
Proceedings of the 
ACM International Conference on Measurement and Modeling of 
Computer Systems (SIGMETRICS), Portland, OR, June 2015.  
[Slides (pptx) (pdf)] [Coverage at ZDNet] [
Coverage on The Register] [Coverage on TechSpot] [
Coverage on The Tech Report]  

240 



Flash Memory Programming Vulnerabilities 

241 

!  Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F. 
Haratsch, 
"Vulnerabilities in MLC NAND Flash Memory Programming: 
Experimental Analysis, Exploits, and Mitigation Techniques"  
Proceedings of the 
23rd International Symposium on High-Performance Computer 
Architecture (HPCA) Industrial Session, Austin, TX, USA, February 2017.  
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]  



Accurate and Online Channel Modeling 

242 

!  Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu, 
"Enabling Accurate and Practical Online Flash Channel Modeling 
for Modern MLC NAND Flash Memory" 
to appear in IEEE Journal on Selected Areas in Communications (JSAC), 
2016.  



More on DRAM Refresh 

243 



Tackling Refresh: Solutions 

!  Parallelize refreshes with accesses [Chang+ HPCA’14] 

!  Eliminate unnecessary refreshes [Liu+ ISCA’12] 

"  Exploit device characteristics  
"  Exploit data and application characteristics 

 
!  Reduce refresh rate and detect+correct errors that occur 

[Khan+ SIGMETRICS’14] 

!  Understand retention time behavior in DRAM [Liu+ ISCA’13] 

244 



Summary:	Refresh-Access	Paralleliza-on	
•  DRAM	refresh	interferes	with	memory	accesses		

–  Degrades	system	performance	and	energy	efficiency	
–  Becomes	exacerbated	as	DRAM	density	increases	

•  Goal:	Serve	memory	accesses	in	parallel	with	refreshes	to	
reduce	refresh	interference	on	demand	requests	

•  Our	mechanisms:	
–  1.	Enable	more	paralleliza]on	between	refreshes	and	accesses	across	

different	banks	with	new	per-bank	refresh	scheduling	algorithms	
–  2.	Enable	serving	accesses	concurrently	with	refreshes	in	the	same	bank	

by	exploi]ng	parallelism	across	DRAM	subarrays	

•  Improve	system	performance	and	energy	efficiency	for	a	wide	
variety	of	different	workloads	and	DRAM	densi]es	
–  20.2%	and	9.0%	for	8-core	systems	using	32Gb	DRAM	at	low	cost	
–  Very	close	to	the	ideal	scheme	without	refreshes	
	 245	

Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014. 



Refresh	Penalty	

Processor	

M
em

or
y	

Co
nt
ro
lle
r	

246	

DRAM	Refresh	Read	
Data	

Capacitor	

Access	
transistor	

Refresh	delays	requests	by	100s	of	ns	
Refresh	in

terferes	w
ith	memory	acces

ses	



Time	

Per-bank	refresh	in	mobile	DRAM	(LPDDRx)	

Exis-ng	Refresh	Modes	

247	

Time	

All-bank	refresh	in	commodity	DRAM	(DDRx)	

Bank	7	

Bank	1	
Bank	0	

…
	

Bank	7	

Bank	1	
Bank	0	

…
	

Refresh	

Round-robin	order	

Per-bank	refresh	allows	accesses	to	other	
banks	while	a	bank	is	refreshing	



Shortcomings	of	Per-Bank	Refresh	
•  Problem	1:	Refreshes	to	different	banks	are	scheduled	
in	a	strict	round-robin	order		
–  The	sta]c	ordering	is	hardwired	into	DRAM	chips	
–  Refreshes	busy	banks	with	many	queued	requests	when	
other	banks	are	idle	

•  Key	idea:	Schedule	per-bank	refreshes	to	idle	banks	
opportunis]cally	in	a	dynamic	order		

248	



Our	First	Approach:	DARP	
•  Dynamic	Access-Refresh	Paralleliza-on	(DARP)	

–  An	improved	scheduling	policy	for	per-bank	refreshes	
–  Exploits	refresh	scheduling	flexibility	in	DDR	DRAM	

•  Component	1:	Out-of-order	per-bank	refresh	
–  Avoids	poor	sta]c	scheduling	decisions	
–  Dynamically	issues	per-bank	refreshes	to	idle	banks	

•  Component	2:	Write-Refresh	Paralleliza-on	
–  Avoids	refresh	interference	on	latency-cri]cal	reads	
–  Parallelizes	refreshes	with	a	batch	of	writes	

249 



Shortcomings	of	Per-Bank	Refresh	
•  Problem	2:	Banks	that	are	being	refreshed	cannot	
concurrently	serve	memory	requests	

250	

Time	
Bank	0	RD	

Delayed	by	refresh	

Per-Bank	Refresh	



Shortcomings	of	Per-Bank	Refresh	
•  Problem	2:	Refreshing	banks	cannot	concurrently	serve	
memory	requests	

•  Key	idea:	Exploit	subarrays	within	a	bank	to	parallelize	
refreshes	and	accesses	across	subarrays	

251	

Time	 Bank	0	
Subarray	1	

Subarray	0	

RD	

Subarray	Refresh	 Time	

Parallelize	



Methodology	

	

•  100	workloads:	SPEC	CPU2006,	STREAM,	TPC-C/H,	random	access	

•  System	performance	metric:	Weighted	speedup	

252	

DDR3	Rank	

Simulator	configura-ons	

M
em

or
y	

Co
nt
ro
lle
r	

8-core	
processor	

M
em

or
y	

Co
nt
ro
lle
r	

Bank	7	

Bank	1	

Bank	0	

…
	

L1	$:	32KB	
L2	$:	512KB/core	



Comparison	Points	
•  All-bank	refresh	[DDR3,	LPDDR3,	…]	

•  Per-bank	refresh	[LPDDR3]	

•  Elas-c	refresh	[Stuecheli	et	al.,	MICRO	‘10]:	
–  Postpones	refreshes	by	a	]me	delay	based	on	the	predicted	
rank	idle	]me	to	avoid	interference	on	memory	requests	

–  Proposed	to	schedule	all-bank	refreshes	without	exploi]ng	
per-bank	refreshes	

–  Cannot	parallelize	refreshes	and	accesses	within	a	rank	
	

•  Ideal	(no	refresh)	
253	



0	

1	

2	

3	

4	

5	

6	

8Gb	 16Gb	 32Gb	

W
ei
gh
te
d	
Sp
ee
du

p	
(G
eo

M
ea
n)
	

DRAM	Chip	Density	

All-Bank	

Per-Bank	

Elas]c	

DARP	

SARP	

DSARP	

Ideal	

System	Performance	

254	

7.9%	 12.3%	 20.2%	

1.	Both	DARP	&	SARP	provide	performance	gains	and	
combining	them	(DSARP)	improves	even	more	
2.	Consistent	system	performance	improvement	across	
DRAM	densiKes	(within	0.9%,	1.2%,	and	3.8%	of	ideal)	



Energy	Efficiency	

255	

3.0%	 5.2%	 9.0%	

Consistent	reducKon	on	energy	consumpKon	

0	
5	
10	
15	
20	
25	
30	
35	
40	
45	

8Gb	 16Gb	 32Gb	

En
er
gy
	p
er
	A
cc
es
s	(
nJ
)	

DRAM	Chip	Density	

All-Bank	

Per-Bank	

Elas]c	

DARP	

SARP	

DSARP	

Ideal	



More Information on Refresh-Access Parallelization 

!  Kevin Chang, Donghyuk Lee, Zeshan Chishti, Alaa Alameldeen, Chris 
Wilkerson, Yoongu Kim, and Onur Mutlu, 
"Improving DRAM Performance by Parallelizing Refreshes with 
Accesses"  
Proceedings of the 
20th International Symposium on High-Performance Computer 
Architecture (HPCA), Orlando, FL, February 2014. [Summary] [
Slides (pptx) (pdf)]  

256 



Tackling Refresh: Solutions 

!  Parallelize refreshes with accesses [Chang+ HPCA’14] 

!  Eliminate unnecessary refreshes [Liu+ ISCA’12] 

"  Exploit device characteristics  
"  Exploit data and application characteristics 

 
!  Reduce refresh rate and detect+correct errors that occur 

[Khan+ SIGMETRICS’14] 

!  Understand retention time behavior in DRAM [Liu+ ISCA’13] 

257 



Most Refreshes Are Unnecessary 
!  Retention Time Profile of DRAM looks like this: 

258 



1. Profiling: Profile the retention time of all DRAM rows 
 
 
 
2. Binning: Store rows into bins by retention time 
   # use Bloom Filters for efficient and scalable storage 
 
 
 
3. Refreshing: Memory controller refreshes rows in different 
bins at different rates 
   # probe Bloom Filters to determine refresh rate of a row 

259 

1.25KB storage in controller for 32GB DRAM memory 

Can reduce refreshes by ~75%  
# reduces energy consumption and improves performance 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 

RAIDR: Eliminating Unnecessary Refreshes 



RAIDR: Baseline Design 

260 

Refresh control is in DRAM in today’s auto-refresh systems 

RAIDR can be implemented in either the controller or DRAM 



RAIDR in Memory Controller: Option 1 

261 

Overhead of RAIDR in DRAM controller: 
1.25 KB Bloom Filters, 3 counters, additional commands    
issued for per-row refresh (all accounted for in evaluations) 



RAIDR in DRAM Chip: Option 2 

262 

Overhead of RAIDR in DRAM chip: 
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip) 

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM) 



RAIDR: Results and Takeaways 
!  System: 32GB DRAM, 8-core; SPEC, TPC-C, TPC-H workloads 

!  RAIDR hardware cost: 1.25 kB (2 Bloom filters) 
!  Refresh reduction: 74.6% 
!  Dynamic DRAM energy reduction: 16% 
!  Idle DRAM power reduction: 20% 
!  Performance improvement: 9% 

!  Benefits increase as DRAM scales in density 

263 



DRAM Device Capacity Scaling: Performance 

264 

RAIDR performance benefits increase with DRAM chip capacity 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



DRAM Device Capacity Scaling: Energy 

265 

RAIDR energy benefits increase with DRAM chip capacity 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



RAIDR: Eliminating Unnecessary Refreshes 
!  Observation: Most DRAM rows can be refreshed much less often 

without losing data [Kim+, EDL’09][Liu+ ISCA’13] 

!  Key idea: Refresh rows containing weak cells  
    more frequently, other rows less frequently 

1. Profiling: Profile retention time of all rows 
2. Binning: Store rows into bins by retention time in memory controller 

 Efficient storage with Bloom Filters (only 1.25KB for 32GB memory) 
3. Refreshing: Memory controller refreshes rows in different bins at 
different rates 

!  Results: 8-core, 32GB, SPEC, TPC-C, TPC-H 
"  74.6% refresh reduction @ 1.25KB storage 
"  ~16%/20% DRAM dynamic/idle power reduction 
"  ~9% performance improvement  
"  Benefits increase with DRAM capacity 

266 
Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



More on RAIDR 
!  Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu, 

"RAIDR: Retention-Aware Intelligent DRAM Refresh" 
Proceedings of the 
39th International Symposium on Computer Architecture 
(ISCA), Portland, OR, June 2012. Slides (pdf) 

267 



Tackling Refresh: Solutions 

!  Parallelize refreshes with accesses [Chang+ HPCA’14] 

!  Eliminate unnecessary refreshes [Liu+ ISCA’12] 

"  Exploit device characteristics  
"  Exploit data and application characteristics 

 
!  Reduce refresh rate and detect+correct errors that occur 

[Khan+ SIGMETRICS’14] 

!  Understand retention time behavior in DRAM [Liu+ ISCA’13] 

268 



Motivation: Understanding Retention 
!  Past works require accurate and reliable measurement of 

retention time of each DRAM row 
"  To maintain data integrity while reducing refreshes 

!  Assumption: worst-case retention time of each row can be 
determined and stays the same at a given temperature 
"  Some works propose writing all 1’s and 0’s to a row, and 

measuring the time before data corruption 

!  Question: 
"  Can we reliably and accurately determine retention times of all 

DRAM rows? 

269 



Two Challenges to Retention Time Profiling 
!  Data Pattern Dependence (DPD) of retention time 

 
!  Variable Retention Time (VRT) phenomenon 

270 



An Example VRT Cell 

271 

0 2 4 6 8 10
Time (Hours)

0

1

2

3

4

5

6

7
Re

te
nt

io
n 

Ti
m

e 
(s

)

A cell from E 2Gb chip family 



VRT: Implications on Profiling Mechanisms 
!  Problem 1: There does not seem to be a way of 

determining if a cell exhibits VRT without actually observing 
a cell exhibiting VRT 
"  VRT is a memoryless random process [Kim+ JJAP 2010] 

!  Problem 2: VRT complicates retention time profiling by 
DRAM manufacturers 
"  Exposure to very high temperatures can induce VRT in cells that 

were not previously susceptible  
    # can happen during soldering of DRAM chips 
    # manufacturer’s retention time profile may not be accurate 

!  One option for future work: Use ECC to continuously profile 
DRAM online while aggressively reducing refresh rate 
"  Need to keep ECC overhead in check 

272 



More on DRAM Retention Analysis 
!  Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, 

"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms" 
Proceedings of the 40th International Symposium on Computer Architecture 
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf) 

273 



Tackling Refresh: Solutions 

!  Parallelize refreshes with accesses [Chang+ HPCA’14] 

!  Eliminate unnecessary refreshes [Liu+ ISCA’12] 

"  Exploit device characteristics  
"  Exploit data and application characteristics 

 
!  Reduce refresh rate and detect+correct errors that occur 

[Khan+ SIGMETRICS’14] 

!  Understand retention time behavior in DRAM [Liu+ ISCA’13] 

274 



			Key	Observa[ons:	
•  Tes-ng	alone	cannot	detect	all	possible	failures	
•  Combina-on	of	ECC	and	other	mi-ga-on	
techniques	is	much	more	effec-ve	
– But	degrades	performance	

•  Tes-ng	can	help	to	reduce	the	ECC	strength	
– Even	when	star-ng	with	a	higher	strength	ECC	

	

Towards	an	Online	Profiling	System	

Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative 
Experimental Study,” SIGMETRICS 2014. 



Run	tests	periodically	aier	a	short	interval		
at	smaller	regions	of	memory		

Towards	an	Online	Profiling	System	
Ini-ally	Protect	DRAM		

with	Strong	ECC	 1	
Periodically	Test	
	Parts	of	DRAM	 2	

Test	
Test	
Test	

Mi-gate	errors	and	
reduce	ECC	 3	



More on Online Profiling of DRAM 
!  Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, 

and Onur Mutlu, 
"The Efficacy of Error Mitigation Techniques for DRAM Retention 
Failures: A Comparative Experimental Study"  
Proceedings of the 
ACM International Conference on Measurement and Modeling of Computer 
Systems (SIGMETRICS), Austin, TX, June 2014. [Slides (pptx) (pdf)] [
Poster (pptx) (pdf)] [Full data sets]  

277 



How Do We Make RAIDR Work in the 
Presence of the VRT Phenomenon? 

 
 
 
 



Making RAIDR Work w/ Online Profiling & ECC 
!  Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and 

Onur Mutlu, 
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for 
DRAM Systems"  
Proceedings of the 
45th Annual IEEE/IFIP International Conference on Dependable 
Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.  
[Slides (pptx) (pdf)]  

279 



AVATAR 

Insight: Avoid retention failures % Upgrade row on ECC error 
Observation: Rate of VRT >> Rate of soft error (50x-2500x) 

280 

A 
B 
C 
D 
E 
F 
G 
H 

DRAM Rows 

RETENTION 
PROFILING 

Weak Cell 
0 
0 
1 
0 
0 
0 
1 
0 

Ref. Rate Table 

ECC 

ECC 

ECC 

ECC 

ECC 

ECC 

ECC 

ECC 1 

AVATAR	mi-gates	VRT	by	increasing	refresh	rate	on	error	

Scrub  
(15 min) 

 

Row protected from 
future 

retention failures 



RESULTS: REFRESH SAVINGS 

281 

AVATAR 
No VRT 

AVATAR	reduces	refresh	by	60%-70%,	similar	to	mul-	rate	
refresh	but	with	VRT	tolerance	

Reten-on	Tes-ng	Once	a	Year	can	revert	refresh	saving	
from	60%	to	70%	



SPEEDUP 

282 

S
pe

ed
up

 

1.00	

1.10	

1.20	

1.30	

1.40	

1.50	

1.60	

8Gb	 16Gb	 32Gb	 64Gb	

AVATAR	(1yr)	 NoRefresh	

AVATAR	gets	2/3rd	the	performance	of	NoRefresh.	More	
gains	at	higher	capacity	nodes	



0.0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1.0	

8Gb	 16Gb	 32Gb	 64Gb	

AVATAR	(1yr)	 NoRefresh	

ENERGY DELAY PRODUCT 

283 

E
ne

rg
y 

D
el

ay
 P

ro
du

ct
 

AVATAR	reduces	EDP,		
Significant	reduc-on	at	higher	capacity	nodes	



Making RAIDR Work w/ Online Profiling & ECC 
!  Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and 

Onur Mutlu, 
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for 
DRAM Systems"  
Proceedings of the 
45th Annual IEEE/IFIP International Conference on Dependable 
Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.  
[Slides (pptx) (pdf)]  

284 



DRAM Refresh: Summary and Conclusions 
!  DRAM refresh is a critical challenge  

"  in scaling DRAM technology efficiently to higher capacities 

!  Discussed several promising solution directions 
"  Parallelize refreshes with accesses [Chang+ HPCA’14] 
"  Eliminate unnecessary refreshes [Liu+ ISCA’12] 
"  Reduce refresh rate and detect+correct errors that occur [Khan+ 

SIGMETRICS’14] 

!  Examined properties of retention time behavior [Liu+ ISCA’13] 

"  Enable realistic VRT-Aware refresh techniques [Qureshi+ DSN’15] 

!  Many avenues for overcoming DRAM refresh challenges 
"  Handling DPD/VRT phenomena  
"  Enabling online retention time profiling and error mitigation 
"  Exploiting application behavior 

285 



Other Backup Slides 

286 



Acknowledgments 

!  My current and past students and postdocs 
"  Rachata Ausavarungnirun, Abhishek Bhowmick, Amirali 

Boroumand, Rui Cai, Yu Cai, Kevin Chang, Saugata Ghose, Kevin 
Hsieh, Tyler Huberty, Ben Jaiyen, Samira Khan, Jeremie Kim, 
Yoongu Kim, Yang Li, Jamie Liu, Lavanya Subramanian, 
Donghyuk Lee, Yixin Luo, Justin Meza, Gennady Pekhimenko, 
Vivek Seshadri, Lavanya Subramanian, Nandita Vijaykumar, 
HanBin Yoon, Jishen Zhao, … 

!  My collaborators 
"  Can Alkan, Chita Das, Phil Gibbons, Sriram Govindan, Norm 

Jouppi, Mahmut Kandemir, Mike Kozuch, Konrad Lai, Ken Mai, 
Todd Mowry, Yale Patt, Moinuddin Qureshi, Partha Ranganathan, 
Bikash Sharma, Kushagra Vaid, Chris Wilkerson, … 

287 



Funding Acknowledgments 

!  NSF 
!  GSRC 
!  SRC 
!  CyLab 
!  AMD, Google, Facebook, HP Labs, Huawei, IBM, Intel, 

Microsoft, Nvidia, Oracle, Qualcomm, Rambus, Samsung, 
Seagate, VMware 

288 



Solving the Memory Scaling Problem 
!  Fix it: Make memory and controllers more intelligent 

"  New interfaces, functions, architectures: system-mem codesign 

!  Eliminate or minimize it: Replace or (more likely) augment 
DRAM with a different technology 
"  New technologies and system-wide rethinking of memory & 

storage 

!  Embrace it: Design heterogeneous memories (none of which 
are perfect) and map data intelligently across them 
"  New models for data management and maybe usage 

!  … 

289 

Solu-ons	(to	memory	scaling)	require		
soiware/hardware/device	coopera-on	

Microarchitecture 

ISA 

Programs 

Algorithms 
Problems 

Logic 

Devices 

Runtime System 
(VM, OS, MM) 

User 



Principles (So Far) 

!  Better interfaces between layers of the system stack 
"  Expose more information judiciously across the system stack 
"  Design more flexible and efficient interfaces 

!  Better-than-worst-case design 
"  Do not optimize for the worst case 
"  Worst case should not determine the common case 

!  Heterogeneity in design (specialization, asymmetry) 
"  Enables a more efficient design (No one size fits all)  

!  These principles are coupled (and require broad thinking) 

290 

Microarchitecture 

ISA 

Programs 

Algorithms 
Problems 

Logic 

Devices 

Runtime System 
(VM, OS, MM) 

User 



Summary 

Business as Usual Opportunity 

RowHammer Memory controller anticipates and fixes errors 

Fixed, frequent refreshes Heterogeneous refresh rate across memory 

Fixed, high latency Heterogeneous latency in time and space 

Slow page copy & initialization Exploit internal connectivity in memory to move data 

Fixed reliability mechanisms Heterogeneous reliability across time and space 

Memory as a dumb device Memory as an accelerator and autonomous agent 

DRAM-only main memory Emerging memory technologies and hybrid memories 

Two-level data storage model Unified interface to all data  

Large timing and error margins Online adaptation of timing and error margins 

Poor performance guarantees Strong service guarantees and configurable QoS 

Fixed policies in controllers Configurable and programmable memory controllers 

… … 

291 



Some Open Source Tools 
!  Rowhammer  

"  https://github.com/CMU-SAFARI/rowhammer  

!  Ramulator – Fast and Extensible DRAM Simulator 
"  https://github.com/CMU-SAFARI/ramulator  

!  MemSim  
"  https://github.com/CMU-SAFARI/memsim  

!  NOCulator 
"  https://github.com/CMU-SAFARI/NOCulator  

!  DRAM Error Model 
"  http://www.ece.cmu.edu/~safari/tools/memerr/index.html  

!  Other open-source software from my group 
"  https://github.com/CMU-SAFARI/  
"  http://www.ece.cmu.edu/~safari/tools.html  

292 



Referenced Papers 

!  All are available at 
http://users.ece.cmu.edu/~omutlu/projects.htm 
http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en 
 

!  A detailed accompanying overview paper 

"  Onur Mutlu and Lavanya Subramanian, 
"Research Problems and Opportunities in Memory 
Systems" 
Invited Article in Supercomputing Frontiers and Innovations 
(SUPERFRI), 2015.  

293 



Related Videos and Course Materials 
!  Undergraduate Computer Architecture Course Lecture 

Videos (2013, 2014, 2015)  
!  Undergraduate Computer Architecture Course 

Materials (2013, 2014, 2015)  

!  Graduate Computer Architecture Lecture Videos 
(2013, 2015)  

!  Graduate Computer Architecture Course Materials 
(2013, 2015)  

!  Parallel Computer Architecture Course Materials 
(Lecture Videos) 

!  Memory Systems Short Course Materials  
    (Lecture Video on Main Memory and DRAM Basics) 

294 


