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The Main Memory System

n Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits
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Memory System: A Shared Resource View
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Storage

Most of the system is dedicated to storing and moving data 



State of the Main Memory System
n Recent technology, architecture, and application trends

q lead to new requirements
q exacerbate old requirements

n DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements

n Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging

n We need to rethink the main memory system
q to fix DRAM issues and enable emerging technologies 
q to satisfy all requirements
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Major Trends Affecting Main Memory (I)
n Need for main memory capacity, bandwidth, QoS increasing 

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (II)
n Need for main memory capacity, bandwidth, QoS increasing 

q Multi-core: increasing number of cores/agents
q Data-intensive applications: increasing demand/hunger for data
q Consolidation: cloud computing, GPUs, mobile, heterogeneity

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending 
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Example: The Memory Capacity Gap

n Memory capacity per core expected to drop by 30% every two years
n Trends worse for memory bandwidth per core!
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Core count doubling ~ every 2 years 
DRAM DIMM capacity doubling ~ every 3 years

Lim et al., ISCA 2009



Major Trends Affecting Main Memory (III)
n Need for main memory capacity, bandwidth, QoS increasing 

n Main memory energy/power is a key system design concern
q ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 

IEEE Computer’03] >40% power in DRAM [Ware, HPCA’10][Paul,ISCA’15]
q DRAM consumes power even when not used (periodic refresh)

n DRAM technology scaling is ending 
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Major Trends Affecting Main Memory (IV)
n Need for main memory capacity, bandwidth, QoS increasing 

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending 
q ITRS projects DRAM will not scale easily below X nm 
q Scaling has provided many benefits: 

n higher capacity (density), lower cost, lower energy
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Major Trends Affecting Main Memory (V)
n DRAM scaling has already become increasingly difficult

q Increasing cell leakage current, reduced cell reliability, 
increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

q Difficult to significantly improve capacity, energy

n Emerging memory technologies are promising
3D-Stacked DRAM higher bandwidth smaller capacity
Reduced-Latency DRAM
(e.g., RLDRAM, TL-DRAM) lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4) lower power higher latency

higher cost
Non-Volatile Memory (NVM) 
(e.g., PCM, STTRAM, ReRAM, 
3D Xpoint)

larger capacity
higher latency

higher dynamic power 
lower endurance
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Agenda

n Major Trends Affecting Main Memory
n The Memory Scaling Problem 
n Two Complementary Solution Directions

q New Memory (DRAM) Architectures
q Enabling Emerging (NVM) Technologies

n Conclusion
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Limits of Charge Memory
n Difficult charge placement and control

q Flash: floating gate charge
q DRAM: capacitor charge, transistor leakage

n Reliable sensing becomes difficult as charge 
storage unit size reduces
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The DRAM Scaling Problem
n DRAM stores charge in a capacitor (charge-based memory)

q Capacitor must be large enough for reliable sensing
q Access transistor should be large enough for low leakage and high 

retention time
q Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

n DRAM capacity, cost, and energy/power hard to scale
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As Memory Scales, It Becomes Unreliable
n Data from all of Facebook’s servers worldwide
n Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.
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Large-Scale Failure Analysis of DRAM Chips
n Analysis and modeling of memory errors found in all of 

Facebook’s server fleet

n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data 
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 
2015. 
[Slides (pptx) (pdf)] [DRAM Error Model] 
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Infrastructures to Understand Such Issues

19Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
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SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies,” HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source 

github.com/CMU-SAFARI/SoftMC 
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SoftMC

n https://github.com/CMU-SAFARI/SoftMC
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A Curious Discovery [Kim et al., ISCA 2014]

One can 
predictably induce errors 

in most DRAM memory chips
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DRAM RowHammer

A simple hardware failure mechanism 
can create a widespread 

system security vulnerability
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Victim	Row

Victim	Row
Hammered	Row

Repeatedly reading a	row	enough	times	(before	memory	gets	
refreshed)	induces	disturbance	errors in	adjacent rows in	
most	real	DRAM	chips	you	can	buy	today

OpenedClosed
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Modern DRAM is Prone to Disturbance Errors

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)



More on RowHammer Analysis
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n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer 
Architecture (ISCA), Minneapolis, MN, June 2014. 
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code 
and Data]



Industry Is Writing Papers About It, Too
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Industry Is Writing Papers About It, Too
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n Fix it: Make memory and controllers more intelligent
q New interfaces, functions, architectures: system-mem codesign

n Eliminate or minimize it: Replace or (more likely) augment 
DRAM with a different technology
q New technologies and system-wide rethinking of memory & 

storage

n Embrace it: Design heterogeneous memories (none of which 
are perfect) and map data intelligently across them
q New models for data management and maybe usage

n …
28

Solutions	(to	memory	scaling)	require	
software/hardware/device	cooperation

Microarchitecture
ISA

Programs
Algorithms
Problems

Logic
Devices

Runtime System
(VM, OS, MM)

User

How Do We Solve The Memory Problem?



Agenda

n Major Trends Affecting Main Memory
n The Memory Scaling Problem 
n Two Complementary Solution Directions

q New Memory (DRAM) Architectures
q Enabling Emerging (NVM) Technologies

n Conclusion
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Solution 1: New Memory Architectures
n Overcome memory shortcomings with

q Memory-centric system design
q Novel memory architectures, interfaces, functions
q Better waste management (efficient utilization)

n Key issues to tackle
q Enable reliability at low cost à high capacity
q Reduce energy
q Improve latency and bandwidth
q Reduce waste (capacity, bandwidth, latency)
q Enable computation close to data

30



Solution 1: New Memory Architectures
n Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
n Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
n Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
n Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.
n Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.
n Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.
n Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.
n Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.
n Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.
n Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.
n Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.
n Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.
n Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 2015.
n Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.
n Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.
n Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.
n Ahn+, “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.
n Lee+, “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015.
n Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO 2015.
n Lee+, “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” TACO 2016.
n Hassan+, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality,” HPCA 2016.
n Chang+, “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Migration in DRAM,” HPCA 2016.
n Chang+, “Understanding Latency Variation in Modern DRAM Chips Experimental Characterization, Analysis, and Optimization,” SIGMETRICS 2016.
n Khan+, “PARBOR: An Efficient System-Level Technique to Detect Data Dependent Failures in DRAM,” DSN 2016.
n Hsieh+, “Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems,” ISCA 2016.
n Hashemi+, “Accelerating Dependent Cache Misses with an Enhanced Memory Controller,” ISCA 2016.
n Boroumand+, “LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,” IEEE CAL 2016.
n Pattnaik+, “Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities,” PACT 2016.
n Hsieh+, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation,” ICCD 2016.
n Hashemi+, “Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads,” MICRO 2016.
n Khan+, “A Case for Memory Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM",” IEEE CAL 2016.
n Hassan+, “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” HPCA 2017.
n Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser,” DATE 2017.
n Lee+, “Design-Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” SIGMETRICS 2017.
n Chang+, “Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and Mechanisms,” SIGMETRICS 2017.
n Patel+, “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,” ISCA 2017.
n Seshadri and Mutlu, “Simple Operations in Memory to Reduce Data Movement,” ADCOM 2017.
n Liu+, “Concurrent Data Structures for Near-Memory Computing,” SPAA 2017.
n Khan+, “Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content,” MICRO 2017.
n Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology,” MICRO 2017.
n Avoid DRAM:

q Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.
q Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.
q Seshadri+, “The Dirty-Block Index,” ISCA 2014.
q Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.
q Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” ISCA 2015.
q Pekhimenko+, “Toggle-Aware Bandwidth Compression for GPUs,” HPCA 2016.
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Example: (Truly) In-Memory Computation
n We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
n At low cost
n Using analog computation capability of DRAM

q Idea: activating multiple rows performs computation
n 30-60X performance and energy improvement

q Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations 
Using Commodity DRAM Technology,” MICRO 2017.

n New memory technologies enable even more opportunities
q Memristors, resistive RAM, phase change mem, STT-MRAM, …
q Can operate on data with minimal movement
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Performance: In-DRAM Bitwise Operations
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Energy of In-DRAM Bitwise Operations
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Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.



More on Ambit

n Vivek Seshadri et al., “Ambit: In-Memory Accelerator 
for Bulk Bitwise Operations Using Commodity DRAM 
Technology,” MICRO 2017.
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Tesseract System for Graph Processing

Crossbar	Network

…
…

…
…
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	Controller
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In-Order	Core
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Host	Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing Performance
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms



Tesseract Graph Processing System Energy
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



More on Tesseract
n Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, 

and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]
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Accelerating Pointer Chasing with PIM
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer 
Design (ICCD), Phoenix, AZ, USA, October 2016. 
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Agenda
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n Two Complementary Solution Directions
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Limits of Charge Memory
n Difficult charge placement and control

q Flash: floating gate charge
q DRAM: capacitor charge, transistor leakage

n Reliable sensing becomes difficult as charge 
storage unit size reduces
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Solution 2: Emerging Memory Technologies
n Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile)

n Example: Phase Change Memory
q Data stored by changing phase of material 
q Data read by detecting material’s resistance
q Expected to scale to 9nm (2022 [ITRS 2009])
q Prototyped at 20nm (Raoux+, IBM JRD 2008)
q Expected to be denser than DRAM: can store multiple bits/cell

n But, emerging technologies have (many) shortcomings
q Can they be enabled to replace/augment/surpass DRAM?
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Solution 2: Emerging Memory Technologies
n Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, IEEE Micro’10.
n Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.
n Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.
n Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013. 
n Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
n Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.
n Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.
n Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
n Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
n Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.
n Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017.
n Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.
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Promising Resistive Memory Technologies
n PCM

q Inject current to change material phase
q Resistance determined by phase

n STT-MRAM
q Inject current to change magnet polarity
q Resistance determined by polarity

n Memristors/RRAM/ReRAM
q Inject current to change atomic structure
q Resistance determined by atom distance
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What is Phase Change Memory?
n Phase change material (chalcogenide glass) exists in two states:

q Amorphous: Low optical reflexivity and high electrical resistivity
q Crystalline: High optical reflexivity and low electrical resistivity
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PCM is resistive memory:  High resistance (0), Low resistance (1)
PCM cell can be switched between states reliably and quickly



How Does PCM Work?
n Write: change phase via current injection

q SET: sustained current to heat cell above Tcryst
q RESET: cell heated above Tmelt and quenched

n Read: detect phase via material resistance 
q amorphous/crystalline
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Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM



Opportunity: PCM Advantages
n Scales better than DRAM, Flash

q Requires current pulses, which scale linearly with feature size
q Expected to scale to 9nm (2022 [ITRS])
q Prototyped at 20nm (Raoux+, IBM JRD 2008)

n Can be denser than DRAM
q Can store multiple bits per cell due to large resistance range
q Prototypes with 2 bits/cell in ISSCC’08, 4 bits/cell by 2012

n Non-volatile
q Retain data for >10 years at 85C

n No refresh needed, low idle power
48



Phase Change Memory Properties

n Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI, 
ISSCC)

n Derived PCM parameters for F=90nm

n Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 
Memory as a Scalable DRAM Alternative,” ISCA 2009.

n Lee et al., “Phase Change Technology and the Future of 
Main Memory,” IEEE Micro Top Picks 2010.

49



50



Phase Change Memory: Pros and Cons
n Pros over DRAM

q Better technology scaling (capacity and cost)
q Non volatile à Persistent
q Low idle power (no refresh)

n Cons
q Higher latencies: ~4-15x DRAM (especially write)
q Higher active energy: ~2-50x DRAM (especially write)
q Lower endurance (a cell dies after ~108 writes)
q Reliability issues (resistance drift)

n Challenges in enabling PCM as DRAM replacement/helper:
q Mitigate PCM shortcomings
q Find the right way to place PCM in the system
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PCM-based Main Memory (I)
n How should PCM-based (main) memory be organized?

n Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]: 
q How to partition/migrate data between PCM and DRAM
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PCM-based Main Memory (II)
n How should PCM-based (main) memory be organized?

n Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]: 
q How to redesign entire hierarchy (and cores) to overcome 

PCM shortcomings
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An Initial Study: Replace DRAM with PCM
n Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 

Memory as a Scalable DRAM Alternative,” ISCA 2009.
q Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
q Derived “average” PCM parameters for F=90nm
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Results: Naïve Replacement of DRAM with PCM

n Replace DRAM with PCM in a 4-core, 4MB L2 system
n PCM organized the same as DRAM: row buffers, banks, peripherals
n 1.6x delay, 2.2x energy, 500-hour average lifetime

n Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 
Scalable DRAM Alternative,” ISCA 2009.
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Architecting PCM to Mitigate Shortcomings
n Idea 1: Use multiple narrow row buffers in each PCM chip

à Reduces array reads/writes à better endurance, latency, energy

n Idea 2: Write into array at
cache block or word 
granularity
à Reduces unnecessary wear
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DRAM PCM



Results: Architected PCM as Main Memory 
n 1.2x delay, 1.0x energy, 5.6-year average lifetime
n Scaling improves energy, endurance, density

n Caveat 1: Worst-case lifetime is much shorter (no guarantees)
n Caveat 2: Intensive applications see large performance and energy hits
n Caveat 3: Optimistic PCM parameters?
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More on PCM As Main Memory
n Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,

"Architecting Phase Change Memory as a Scalable DRAM 
Alternative"
Proceedings of the 36th International Symposium on Computer 
Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides 
(pdf)
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More on PCM As Main Memory (II)
n Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, 

Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer 
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1, 
pages 60-70, January/February 2010. 
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STT-MRAM as Main Memory
n Magnetic Tunnel Junction (MTJ) device

q Reference layer: Fixed magnetic orientation
q Free layer: Parallel or anti-parallel

n Magnetic orientation of the free layer 
determines logical state of device
q High vs. low resistance

n Write: Push large current through MTJ to 
change orientation of free layer

n Read: Sense current flow

n Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.
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STT-MRAM: Pros and Cons
n Pros over DRAM

q Better technology scaling (capacity and cost)
q Non volatile à Persistent
q Low idle power (no refresh)

n Cons
q Higher write latency
q Higher write energy
q Poor density (currently)
q Reliability?

n Another level of freedom
q Can trade off non-volatility for lower write latency/energy (by 

reducing the size of the MTJ)
61



Architected STT-MRAM as Main Memory
n 4-core, 4GB main memory, multiprogrammed workloads
n ~6% performance loss, ~60% energy savings vs. DRAM
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Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.



More on STT-MRAM as Main Memory
n Emre Kultursay, Mahmut Kandemir, Anand

Sivasubramaniam, and Onur Mutlu,
"Evaluating STT-RAM as an Energy-Efficient Main 
Memory Alternative"
Proceedings of the 2013 IEEE International Symposium on 
Performance Analysis of Systems and Software (ISPASS), 
Austin, TX, April 2013. Slides (pptx) (pdf)
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A More Viable Approach: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



Challenge and Opportunity

Providing the Best of
Multiple Metrics

with
Multiple Memory Technologies
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Challenge and Opportunity
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Heterogeneous,
Configurable,
Programmable 

Memory Systems



Hybrid Memory Systems: Issues
n Cache vs. Main Memory

n Granularity of Data Move/Manage-ment: Fine or Coarse

n Hardware vs. Software vs. HW/SW Cooperative 

n When to migrate data?

n How to design a scalable and efficient large cache?

n …
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Data Placement in Hybrid Memory

n Memory A is fast, but small
n Load should be balanced on both channels
n Page migrations have performance and energy overhead 
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Channel A Channel B

Memory A Memory B
(Fast, Small) (Large, Slow)

Page 1 Page 2

IDLE

Which memory do we place each page in, 
to maximize system performance?
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Data Placement Between DRAM and PCM
n Idea: Characterize data access patterns and guide data 

placement in hybrid memory

n Streaming accesses: As fast in PCM as in DRAM

n Random accesses: Much faster in DRAM

n Idea: Place random access data with some reuse in DRAM; 
streaming data in PCM

n Yoon+, “Row Buffer Locality-Aware Data Placement in 
Hybrid Memories,” ICCD 2012 Best Paper Award.
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31%	better	performance	than	all	PCM,	
within	29%	of	all	DRAM	performance

31%

29%

Yoon+,	“Row	Buffer	Locality-Aware	Data	Placement	in	Hybrid	Memories,”	ICCD	2012	Best	Paper	Award.



More on Hybrid Memory Data Placement
n HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, 

Rachael Harding, and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for 
Hybrid Memories"
Proceedings of the 30th IEEE International Conference on 
Computer Design (ICCD), Montreal, Quebec, Canada, 
September 2012. Slides (pptx) (pdf)
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Weaknesses of Existing Solutions
n They are all heuristics that consider only a limited part of 

memory access behavior

n Do not directly capture the overall system 
performance impact of data placement decisions 

n Example: None capture memory-level parallelism (MLP)
q Number of concurrent memory requests from the same 

application when a page is accessed
q Affects how much page migration helps performance
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Importance of Memory-Level Parallelism
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Our Goal [CLUSTER 2017]

A generalized mechanism that

1. Directly estimates the performance benefit
of migrating a page between
any two types of memory

2. Places only the performance-critical data
in the fast memory
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Utility-Based Hybrid Memory Management
n A memory manager that works for any hybrid memory

q e.g., DRAM-NVM, DRAM-RLDRAM

n Key Idea
q For each page, use comprehensive characteristics to 

calculate estimated utility (i.e., performance impact)
of migrating page from one memory to the other in the 
system

q Migrate only pages with the highest utility
(i.e., pages that improve system performance the most 
when migrated)

n Li+, “Utility-Based Hybrid Memory Management”, CLUSTER 2017.
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Key Mechanisms of UH-MEM
n For each page, estimate utility using a performance model

q Application stall time reduction
How much would migrating a page benefit the performance of the 
application that the page belongs to?

q Application performance sensitivity
How much does the improvement of a single application’s 
performance increase the overall system performance?

n Migrate only pages whose utility exceed the migration 
threshold from slow memory to fast memory

n Periodically adjust migration threshold
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Results: System Performance
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Results: Sensitivity to Slow Memory Latency
n We vary 𝑡567 and 𝑡85 of the slow memory
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More on UH-MEM
n Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang, 

and Onur Mutlu,
"Utility-Based Hybrid Memory Management"
Proceedings of the 19th IEEE Cluster Conference (CLUSTER), 
Honolulu, Hawaii, USA, September 2017.
[Slides (pptx) (pdf)]
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Challenge and Opportunity

Enabling 
an Emerging Technology

to Augment DRAM

Managing Hybrid Memories
80



Another Challenge

81

Designing Effective 
Large (DRAM) Caches



One Problem with Large DRAM Caches
n A large DRAM cache requires a large metadata (tag + 

block-based information) store
n How do we design an efficient DRAM cache?
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Idea 1: Tags in Memory
n Store tags in the same row as data in DRAM

q Store metadata in same row as their data
q Data and metadata can be accessed together

n Benefit: No on-chip tag storage overhead
n Downsides: 

q Cache hit determined only after a DRAM access
q Cache hit requires two DRAM accesses
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Idea 2: Cache Tags in SRAM
n Recall Idea 1: Store all metadata in DRAM 

q To reduce metadata storage overhead

n Idea 2: Cache in on-chip SRAM frequently-accessed 
metadata
q Cache only a small amount to keep SRAM size small
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On Large DRAM Cache Design

n Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and 
Parthasarathy Ranganathan, 
"Enabling Efficient and Scalable Hybrid Memories 
Using Fine-Granularity DRAM Cache Management"
IEEE Computer Architecture Letters (CAL), February 2012. 
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DRAM Caches: Many Recent Options

86

Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.



Banshee [MICRO 2017]

n Tracks presence in cache using TLB and Page Table
q No tag store needed for DRAM cache
q Enabled by a new lightweight lazy TLB coherence protocol

n New bandwidth-aware frequency-based replacement policy
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More on Banshee
n Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur 

Mutlu, and Srinivas Devadas,
"Banshee: Bandwidth-Efficient DRAM Caching via 
Software/Hardware Cooperation"
Proceedings of the 50th International Symposium on 
Microarchitecture (MICRO), Boston, MA, USA, October 2017.
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Other Opportunities with Emerging Technologies

n Merging of memory and storage
q e.g., a single interface to manage all data

n New applications
q e.g., ultra-fast checkpoint and restore

n More robust system design
q e.g., reducing data loss

n Processing tightly-coupled with memory
q e.g., enabling efficient search and filtering
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PCM, STT-RAM
NVM

Non-volatile	memories	combine	
characteristics	of	memory	and	storage



Two-Level Memory/Storage Model
n The traditional two-level storage model is a bottleneck with NVM

q Volatile data in memory à a load/store interface
q Persistent data in storage à a file system interface
q Problem: Operating system (OS) and file system (FS) code to locate, translate, 

buffer data become performance and energy bottlenecks with fast NVM stores
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Unified Memory and Storage with NVM
n Goal: Unify memory and storage management in a single unit to 

eliminate wasted work to locate, transfer, and translate data
q Improves both energy and performance
q Simplifies programming model as well
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Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.



The Persistent Memory Manager (PMM)

94

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5
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Performance Benefits of a Single-Level Store
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Energy Benefits of a Single-Level Store
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On Persistent Memory Benefits & Challenges 
n Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan 

Xie, and Onur Mutlu,
"A Case for Efficient Hardware-Software 
Cooperative Management of Storage and Memory"
Proceedings of the 5th Workshop on Energy-Efficient 
Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
Slides (pdf)
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Challenge and Opportunity

Combined 
Memory & Storage
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Challenge and Opportunity

99

A Unified Interface to 
All Data



One Key Challenge in Persistent Memory

n How to ensure consistency of system/data if all 
memory is persistent? 

n Two extremes
q Programmer transparent: Let the system handle it
q Programmer only: Let the programmer handle it 

n Many alternatives in-between…
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CHALLENGE:	CRASH	CONSISTENCY

System	crash	can	result	in	
permanent	data	corruption	in	NVM

101

Persistent	Memory	System



CRASH	CONSISTENCY	PROBLEM
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Example: Add a node to a linked list

1.	Link	to	next2.	Link	to	prev

System	crash	can	result	in	
inconsistent	memory	state



CURRENT	SOLUTIONS
Explicit	interfaces	to	manage	consistency

– NV-Heaps	[ASPLOS’11],	BPFS	[SOSP’09],	Mnemosyne	[ASPLOS’11]

AtomicBegin {
Insert a new node;

} AtomicEnd;

Limits	adoption	of	NVM
Have	to	rewrite	code	with	clear	partition	
between	volatile	and	non-volatile	data

Burden	on	the	programmers
103



OUR	APPROACH:	ThyNVM

104

Goal: 
Software transparent consistency in 

persistent memory systems



ThyNVM:	Summary

105

• Checkpoints at	multiple	granularities	to	
reduce	both	checkpointing	latency	and	
metadata	overhead

• Overlaps checkpointing and	execution	to	
reduce	checkpointing	latency

• Adapts to	DRAM	and	NVM	characteristics

Performs	within	4.9% of	an	idealized	DRAM	
with	zero	cost	consistency

A new hardware-based 
checkpointing mechanism



More About ThyNVM
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n Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu, 
and Onur Mutlu,
"ThyNVM: Enabling Software-Transparent Crash Consistency 
in Persistent Memory Systems"
Proceedings of the 48th International Symposium on 
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster 
(pptx) (pdf)]
[Source Code]



Another Key Challenge in Persistent Memory

Programming Ease
to Exploit Persistence
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Tools/Libraries to Help Programmers
n Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric 

Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based 
Persistence"
Proceedings of the 4th Workshop on Interactions of NVM/Flash 
with Operating Systems and Workloads (INFLOW), Savannah, 
GA, USA, November 2016.
[Slides (pptx) (pdf)]
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Agenda

n Major Trends Affecting Main Memory
n The Memory Scaling Problem 
n Two Complementary Solution Directions

q New Memory (DRAM) Architectures
q Enabling Emerging (NVM) Technologies

n Conclusion
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The Future of Emerging Technologies is Bright

n Regardless of challenges 
q in underlying technology and overlying problems/requirements 
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SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Can enable:

- Orders of magnitude 
improvements

- New applications and 
computing systems

Yet, we have to
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- Design enabling systems



If In Doubt, Refer to Flash Memory
n A very “doubtful” emerging technology 

q for at least two decades

111https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017



Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
September 11, 2017

ARM Research Summit

Opportunities and Challenges of 
Emerging Memory Technologies



Overview Paper on Flash Reliability
n Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and 

Onur Mutlu,
"Error Characterization, Mitigation, and Recovery in 
Flash Memory Based Solid State Drives"
to appear in Proceedings of the IEEE, 2017.
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Solution 2: Emerging Memory Technologies
n Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile)
n Example: Phase Change Memory

q Expected to scale to 9nm (2022 [ITRS])
q Expected to be denser than DRAM: can store multiple bits/cell

n But, emerging technologies have shortcomings as well
q Can they be enabled to replace/augment/surpass DRAM?

n Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, IEEE Micro’10.
n Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.
n Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.
n Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013. 
n Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
n Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.
n Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.
n Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
n Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
n Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.
n Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017.
n Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.
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Combination: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award.
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On	Microsoft’s	Web	Search	workload
Reduces	server	hardware	cost	by	4.7	%
Achieves	single	server	availability target	of	99.90	%



More on Heterogeneous Reliability Memory
n Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman

Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize 
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary] 
[Slides (pptx) (pdf)] [Coverage on ZDNet] 
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Challenge and Opportunity

Providing the Best of
Multiple Metrics

with
Multiple Memory Technologies
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Challenge and Opportunity
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Memory Systems


