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The Main Memory System

Processors Main Memory
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Storage (SSD/HDD)

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits
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Memory System: A Shared Resource View
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Most of the system is dedicated to storing and moving data
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State of the Main Memory System

Recent technology, architecture, and application trends
o lead to new requirements
o exacerbate old requirements

DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

We need to rethink the main memory system
o to fix DRAM issues and enable emerging technologies
o to satisfy all requirements
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Major Trends Atfecting Main Memory (I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
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Major Trends Atfecting Main Memory (II)

= Need for main memory capacity, bandwidth, QoS increasing
o Multi-core: increasing number of cores/agents
o Data-intensive applications: increasing demand/hunger for data
o Consolidation: cloud computing, GPUs, mobile, heterogeneity

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
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Example: The Memory Capacity Gap

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years

1000

o #Core Lim et al., ISCA 2009

= DRAM
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Memory capacity per core expected to drop by 30% every two years
Trends worse for memory bandwidth per core!



Major Trends Atfecting Main Memory (I1I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

a ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,
IEEE Computer'03] >40% power in DRAM [Ware, HPCA’10][Paul,ISCA'15]

a DRAM consumes power even when not used (periodic refresh)

= DRAM technology scaling is ending
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Major Trends Atfecting Main Memory (IV)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
o ITRS projects DRAM will not scale easily below X nm

o Scaling has provided many benefits:
= higher capacity (density), lower cost, lower energy

SAFARI 1



Major Trends Atfecting Main Memory (V)

DRAM scaling has already become increasingly difficult

o Increasing cell leakage current, reduced cell reliability,

increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

o Difficult to significantly improve capacity, energy

Emerging memory technologies are promising
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Major Trends Atfecting Main Memory (V)

DRAM scaling has already become increasingly difficult

o Increasing cell leakage current, reduced cell reliability,

increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

o Difficult to significantly improve capacity, energy

Emerging memory technologies are promising

3D-Stacked DRAM

higher bandwidth

smaller capacity

Reduced-Latency DRAM
(e.g.,, RLDRAM, TL-DRAM)

lower latency

higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4)

lower power

higher latency
higher cost

Non-Volatile Memory (NVM)
(e.g., PCM, STTRAM, ReRAM,
3D Xpoint)

larger capacity

higher latency
higher dynamic power
lower endurance

SAFARI
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Agenda

Major Trends Affecting Main Memory
The Memory Scaling Problem

Two Complementary Solution Directions
o New Memory (DRAM) Architectures
o Enabling Emerging (NVM) Technologies

Conclusion
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Limits of Charge Memory

Difficult charge placement and control

a Flash: floating gate charge
o DRAM: capacitor charge, transistor leakage

Reliable sensing becomes difficult as charge
storage unit size reduces

WL BL
] —— GATE I | 4
7 . FLOATING GATE
- SENSE
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The DRAM Scaling Problem

DRAM stores charge in a capacitor (charge-based memory)
o Capacitor must be large enough for reliable sensing

o Access transistor should be large enough for low leakage and high
retention time

o Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

WL BL

= |

CAP —— ;
- SENSE

V

DRAM capacity, cost, and energy/power hard to scale
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As Memory Scales, It Becomes Unreliable

= Data from all of Facebook’s servers worldwide
= Meza+, “"Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN'15.
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Large-Scale Failure Analysis of DRAM Chips

= Analysis and modeling of memory errors found in all of
Facebook's server fleet

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.

[Slides (pptx) (pdf)] [DRAM Error Model]

Revisiting Memory Errors in Large-Scale Production Data Centers:
Analysis and Modeling of New Trends from the Field

Justin Meza Qiang Wu™* Sanjeev Kumar™ Onur Mutlu
Carnegie Mellon University * Facebook, Inc.
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Infrastructures to Understand Such Issues

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An 19
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



SottMC: Open Source DRAM Infrastructure

= Hasan Hassan et al., "SoftMC: A v T"“‘-‘

Flexible and Practical Open- Chamber
Source Infrastructure for \ |
Enabling Experimental DRAM
Studies,” HPCA 2017.

/ : \\,\\,{; »
T m

= Easy to Use (C++ API) ’ conetrgpller "

= Open-source B

github.com/CMU-SAFARI/SoftMC

= Flexible
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SoftMC

= https://github.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies

1,2,3 3 4,3 3

Samira Khan Saugata Ghose® Kevin Chang?
6.3 Oguz Ergin? Onur Mutlu!-3

Hasan Hassan Nandita Vijaykumar
Gennady Pekhimenko®3 Donghyuk Lee

\ETH Ziirich  >TOBB University of Economics & Technology 3Carnegie Mellon University
*University of Virginia > Microsoft Research ~ SNVIDIA Research

SAFARI 21



A Curious Discovery [Kim et al., ISCA 2014]

One can
predictably induce errors
in most DRAM memory chips

SAFARI
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DRAM RowHammer

A simple hardware failure mechanism
can create a widespread
system security vulnerability

WRYR}HD| Forget Software—Now Hackers Are Exploiting Physics
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Modern DRAM 1s Prone to Disturbance Errors
= Row of Cells = Wordline
= Victim Row —
Hammere: i V ioew
= Victim Row —
== Row —

Repeatedly reading a row enough times (before memory gets

refreshed) induces disturbance errors in adjacent rows
most real DRAM chips you can buy today

N

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 24

Disturbance Errors, (Kim et al., ISCA 2014)




More on RowHammer Analysis

= Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors”
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Yoongu Kim'! Ross Daly*  Jeremie Kim' Chris Fallin*  Ji Hye Lee!
Donghyuk Lee! Chris Wilkerson? Konrad Lai  Onur Mutlu!

!Carnegie Mellon University ~ “Intel Labs
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Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

% Refresh
» Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance

» Leakage current of cell access transistors increasing

+ tWR
» Contact resistance between the cell capacitor and access transistor increasing
» On-current of the cell access transistor decreasing

+ Bit-line resistance increasing

+ VRT
* Occurring more frequently with cell capacitance decreasing
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Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

+* Refresh

o Niffictilt ta huild hiadh-asneect ratio cell canacitare decreasina cell canacitance

THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM
to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng,
**John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel
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How Do We Solve The Memory Problem?

PR By

Fix it: Make men

Problems

pllers more intelligent

o New interfaces,

Algorithms

tectures: system-mem codesign

Programs

Eliminate or minimize it\Replace op{more likely) augment

DRAM with a different
o New technologies ant

storage

Runtime System .
(VM, OS, ,\BA/M) ethinking of memory &

ISA

Microarchitecture

Embrace it: Design he Logic
are perfect) and map [ pevices

o New models for data management and maybe usage

nemories (none of which

ly across them

Solutions (to memory scaling) require
software/hardware/device cooperation




Agenda

Major Trends Affecting Main Memory
The Memory Scaling Problem

Two Complementary Solution Directions
o New Memory (DRAM) Architectures
o Enabling Emerging (NVM) Technologies

Conclusion
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Solution 1: New Memory Architectures

= Overcome memory shortcomings with
o Memory-centric system design
o Novel memory architectures, interfaces, functions
o Better waste management (efficient utilization)

= Key issues to tackle

o Enable reliability at low cost = high capacity
Reduce energy
Improve latency and bandwidth
Reduce waste (capacity, bandwidth, latency)
Enable computation close to data

SAFARI
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Solution 1: New Memory Architectures

M Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
M Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
. Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
. Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.
. Seshadri+, “"RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.
M Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.
. Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014,
. Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.
M Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.
. Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.
. Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.
. Qureshi+, "AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.
M Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 2015.
M Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.
. Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.
N Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.
N Ahn+, “"PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.
. Lee+, “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015.
. Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO 2015.
. Lee+, “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” TACO 2016.
M Hassan+, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality,” HPCA 2016.
M Chang+, “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Migration in DRAM,” HPCA 2016.
. Chang+, “Understanding Latency Variation in Modern DRAM Chips Experimental Characterization, Analysis, and Optimization,” SIGMETRICS 2016.
. Khan+, "PARBOR: An Efficient System-Level Technique to Detect Data Dependent Failures in DRAM,” DSN 2016.
. Hsieh+, “Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems,” ISCA 2016.
. Hashemi+, “Accelerating Dependent Cache Misses with an Enhanced Memory Controller,” ISCA 2016.
= Boroumand+, “LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,” IEEE CAL 2016.
. Pattnaik+, “Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities,” PACT 2016.
M Hsieh+, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation,” ICCD 2016.
. Hashemi+, “Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads,” MICRO 2016.
. Khan+, “A Case for Memory Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM",” IEEE CAL 2016.
. Hassan+, “"SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” HPCA 2017.
. Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser,” DATE 2017.
M Lee+, “Design-Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” SIGMETRICS 2017.
. Chang+, “Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and Mechanisms,” SIGMETRICS 2017.
. Patel+, “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,” ISCA 2017.
] Seshadri and Mutlu, “Simple Operations in Memory to Reduce Data Movement,” ADCOM 2017.
. Liu+, “Concurrent Data Structures for Near-Memory Computing,” SPAA 2017.
. Khan+, “Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content,” MICRO 2017.
. Seshadri+, “"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology,” MICRO 2017.
. Avoid DRAM:
=) Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.
a Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.
=} Seshadri+, “The Dirty-Block Index,” ISCA 2014.
o Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.
a Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” ISCA 2015.

Pekhimenko+.,Toggle-Aware.Bandwidth.Compression.for.GPUs,” HPCA.2016.

SAFARI



Example: (Truly) In-Memory Computation

We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
At low cost

Using analog computation capability of DRAM

o Idea: activating multiple rows performs computation

30-60X performance and energy improvement

o Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

New memory technologies enable even more opportunities
o Memristors, resistive RAM, phase change mem, STT-MRAM, ...
o Can operate on data with minimal movement
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Performance: In-DRAM Bitwise Operations

Figure 9: Throughput of bitwise operations on various systems.
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Energy of In-DRAM Bitwise Operations

Design not and/or nand/nor xor/xnor

DRAM & DDR3 93.7 137.9 137.9 137.9
Channel Energy ~ Ambit 1.6 3.2 4.0 5.5
(nJ/KB) (}) 595X 439X 35.1X 25.1X

Table 3: Energy of bitwise operations. (|) indicates energy
reduction of Ambit over the traditional DDR3-based design.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.
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More on Ambit

= Vivek Seshadri et al., "Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee*®> Thomas Mullins®® Hasan Hassan® Amirali Boroumand®
Jeremie Kim*®> Michael A. Kozuch® Onur Mutlu*®  Phillip B. Gibbons®> Todd C. Mowry?®

'!Microsoft Research India 2NVIDIA Research 3Intel ZETH Ziirich °Carnegie Mellon University
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Tesseract System tor Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped
Accelerator Interface

Noncacheable, Physically Addressed)

~ _ i BRE
q -~ /
hat! dl [
. » . ]
o 4 & A
N, i gLt ',
-\ | |
s Uasiny. 1| : 1
s U B
¢ 1
1 h )
1 N 1 ,
| 1 /
1 ! ’
1 1 ’
1 1 ’
| [
/ n-vrader core
/
/
7 /7
7 7
’

=)
P
>
| | o [/ =
0
II " Ean g
; 2o T ' Y

1] [ ; . LP PF Buffer =
' Crossbar Network > o
' S % S 1] G )

O | | | = | MTP
~ L BN BN \\\\ ¢
y Message Queue NI
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Tesseract Graph Processing Performance

>13X Performance Improvement

16
On five graph processing algorithms 13.8x
14
1 11.6x
o 10 9.0x
>
o 8
()
(@}
“ 6
4
5 +56% 4259
, = N e
DDR3-000 HMC-000 HMC-MC Tesseract Tesseract- Tesseract-

LP LP-MTP

SAFARI| Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Tesseract Graph Processing System Energy

M Memory Layers M Logic Layers [1Cores
1.2

0.8
0.6
0.4

> 8X Energy Reduction

HMC-000 Tesseract with Prefetching

0.2

SAFAR/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”

Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn  Sungpack Hong® Sungjoo Yoo Onur Mutlu’ Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo @ gmail.com, onur@cmu.edu, kchoi@snu.ac.kr

Seoul National University $Oracle Labs fCarnegie Mellon University
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Accelerating Pointer Chasing with PIM

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich
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Agenda

Major Trends Affecting Main Memory
The Memory Scaling Problem

Two Complementary Solution Directions
o New Memory (DRAM) Architectures
o Enabling Emerging (NVM) Technologies

Conclusion
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Limits of Charge Memory

Difficult charge placement and control

a Flash: floating gate charge
o DRAM: capacitor charge, transistor leakage

Reliable sensing becomes difficult as charge
storage unit size reduces

WL BL
] —— GATE I | 4
7 . FLOATING GATE
- SENSE
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Solution 2: Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory oL
o Data stored by changing phase of material
Data read by detecting material’s resistance ;
Expected to scale to 9nm (2022 [ITRS 2009]) w SENSE
Prototyped at 20nm (Raoux+, IBM JRD 2008) M vV
Expected to be denser than DRAM: can store multiple bits/cell

PCM

Q
Q
Q
Q

But, emerging technologies have (many) shortcomings
a Can they be enabled to replace/augment/surpass DRAM?

SAFARI +



Solution 2: Emerging Memory Technologies

=  Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM'10, IEEE Micro’10.

=  Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

=  Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

=  Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

=  Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
=  Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.

=  Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

=  Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
= Ren+, "ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
=  Chauhan+, "NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.

=  Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017.

=  Yu+, “"Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.

SAFARI 4



Promising Resistive Memory Technologies

PCM

o Inject current to change material phase
o Resistance determined by phase

STT-MRAM
o Inject current to change magnet polarity
o Resistance determined by polarity

Memristors/RRAM/ReRAM
o Inject current to change atomic structure
o Resistance determined by atom distance

SAFARI *



What 1s Phase Change Memory?

Phase change material (chalcogenide glass) exists in two states:
o Amorphous: Low optical reflexivity and high electrical resistivity
o Crystalline: High optical reflexivity and low electrical resistivity

BITLINE

METAL (bitline) I

I -----

CHALCOGENIDE ! :
|

|

|

|

7/

HEATER Neop -

WORDLINE

/%

METAL (access)

ACCESS DEV

\'%4

PCM is resistive memory: High resistance (0), Low resistance (1)
PCM cell can be switched between states reliably and quickly
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How Does PCM Work?

= Write: change phase via current injection o ! RESET
o SET: sustained current to heat cell above Tcryst 3
o RESET: cell heated above Tmelt and quenched g Tme
= Read: detect phase via material resistance qé.; -
o amorphous/crystalline = el
Tim: [ns]

Large
Current

Small
Current

|

Memory
Element

—
SET (cryst) Access

Low resistance Device

RESET (amorph)
High resistance

103-104Q

Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM 47




Opportunity: PCM Advantages

Scales better than DRAM, Flash

o Requires current pulses, which scale linearly with feature size
o Expected to scale to 9nm (2022 [ITRS])

o Prototyped at 20nm (Raoux+, IBM JRD 2008)

Can be denser than DRAM
o Can store multiple bits per cell due to large resistance range
o Prototypes with 2 bits/cell in ISSCC’ 08, 4 bits/cell by 2012

Non-volatile
o Retain data for >10 years at 85C

No refresh needed, low idle power

48



Phase Change Memory Properties

Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI,
ISSCC)

Derived PCM parameters for F=90nm

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 20009.

Lee et al., "Phase Change Technology and the Future of
Main Memory,” IEEE Micro Top Picks 2010.
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Table 1. Technology survey.

Published prototype

Parameter* Horri® Ahn'? Bedeschi'®> Oh' Pellizer'® Chen® Kang™ Bedeschi® Lee'® Lee®
Year 2003 2004 2004 2005 2006 2006 2006 2008 2008 -
Process, F(nm) v 120 180 120 a0 - 100 a0 a0 a0
Array size (Mbyles)  ** 64 8 64 - - 256 256 512 o
Material GST,Nd GST.Nd  GST GST GST GS,Nd  GST GST GST GST, Nd
Cell size (pm°) - 0.290 0290 - 0097 60rm®  0.166 0097 0047 0.085 ©

0097
Cell size, F? = 20.1 90 - 12.0 o 166 12.0 58 90to

120
Access device = - BJT FET BIT o FET BT Diode BT
Read time (ns) - 70 48 68 - - 62 - 55 48
Hed ot () ™ -- 40 -- - - = - - 40
Read voitage (V) e 3.0 10 18 16 o 18 - 18 1.0
Read power (1W)  ** -- 40 -- - - - - - 40
Hedewny (o) -- 20 -- = - - - - 20
Set fime (ns) 100 150 150 180 = 80 300 - 400 150
Set current (nA) 200 ~ 300 200 - 55 o - - 150
Set voitage (V) = = 20 o - 125 " - - 1.2
Set power (uW) - - 300 " - 344 o - - a0
Set energy (pJ) = - 45 - - 28 " - - 135
Reset time (ns) 50 10 40 10 - 60 50 - 50 40
Resstcurent (gA) 600 800 600 600 400 90 800 300 600 300
Reset voltage (V) - o 27 o 18 16 o 16 - 16
Resetpower (uW)  ** - 1620 - - 804 " - - 480
Reset energy (pJ)  ** o 648 o - 48 - - - 192
Write endurance 107 10° 10° == 107 10* - 10° 10° 108

* BJ'T: bipolar junction trnsistor; FET: field-effect wansistor; GST: GexSbyTes; MLC: muliilevel cells; N-d: nitrogen doped.

** This information i not available in the publication cited.
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Phase Change Memory: Pros and Cons

= Pros over DRAM
o Better technology scaling (capacity and cost)
a Non volatile > Persistent
a Low idle power (no refresh)

= Cons
o Higher latencies: ~4-15x DRAM (especially write)
o Higher active energy: ~2-50x DRAM (especially write)
a Lower endurance (a cell dies after ~108 writes)
a Reliability issues (resistance drift)

= Challenges in enabling PCM as DRAM replacement/helper:
o Mitigate PCM shortcomings
o Find the right way to place PCM in the system

SAFARI 2



PCM-based Main Memory (1)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
IcipdiciRgicsh
G- | - CE | @D
Q-G | - CE | ©@- D

= Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC'09]:
o How to partition/migrate data between PCM and DRAM
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PCM-based Main Memory (11)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
o)~ L)~
Q-G - —c | @D
Q-G -G | @

= Pure PCM main memory [Lee et al., ISCA’'09, Top Picks’10]:

o How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings
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An Initial Study: Replace DRAM with PCM

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

o Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
o Derived “average” PCM parameters for F=90nm

Density Latency
> 9-12F? using BJT > 50ns Rd, 150ns Wr
> 1.5x DRAM \

Endurance Energy

> 40A Rd, 150A Wr
> 1E-08x DRAM \
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Results: Naive Replacement of DRAM with PCM

= Replace DRAM with PCM in a 4-core, 4MB L2 system
= PCM organized the same as DRAM: row buffers, banks, peripherals
= 1.6x delay, 2.2x energy, 500-hour average lifetime

PCM Performance :: 2048Bx1 Buffer PCM Endurance :: 2048Bx1 Buffer
0.2
3 4 I Delay

- EnergyMem
0.14

0.16
012
0.08
0.06
0.04
0.0

cg Is mg rad oce art equ swi avg 1S mg rad oce art equ swu avg

0.18]

NN
< o W

e NN
Years
o

Normalized to DRAM
Ao S

co =
R )
(s2]

oo
N b
N

(=
o

= Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 20009.
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Architecting PCM to Mitigate Shortcomings

Idea 1: Use multiple narrow row buffers in each PCM chip
- Reduces array reads/writes - better endurance, latency, energy

Idea 2: Write into array at
cache block or word

granularity DRAM PCM
- Reduces unnecessary wear { data array { data array J
sense amplifiers - ( 3
(buffer) sense amplifiers
o
l I/O l
latches
(buffer)
l I/0
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Results: Architected PCM as Main Memory

= 1.2x delay, 1.0x energy, 5.6-year average lifetime
= Scaling improves energy, endurance, density

PCM Performance .. 512Bx4 Buffer PCM Endurance .. 512Bx4 Buffer
1.8 A I I 16
Il Delay
1.6 I EnergyMem

- lefL ne (648)

14 12

cg is mg rad oce art equ swi avg cg is mg rad oce art equ swn avg

-
- N

Normalized to DRAM
o
o
Years
0’) @

o
»

°
'
I

©
(¥
)

o
o

= Caveat 1: Worst-case lifetime is much shorter (no guarantees)
= Caveat 2: Intensive applications see large performance and energy hits

= Caveat 3: Optimistic PCM parameters?
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More on PCM As Main Memory

= Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,
"Architecting Phase Change Memory as a Scalable DRAM

Alternative"”
Proceedings of the 36th International Symposium on Computer

Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides
(pdf)

Architecting Phase Change Memory as a
Scalable DRAM Alternative

Benjamin C. Leet Engin Ipeki Onur Mutlu: Doug Burgers

tComputer Architecture Group tComputer Architecture Laboratory
Microsoft Research Carnegie Mellon University
Redmond, WA Pittsburgh, PA
{blee, ipek, dburger}@microsoft.com onur@cmu.edu
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More on PCM As Main Memory (1I)

= Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao,
Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1,
pages 60-70, January/February 2010.

PHASE-CHANGE TECHNOLOGY AND THE
FUTURE OF MAIN MEMORY
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STT-MRAM as Main Memory

Magnetic Tunnel Junction (MTJ) device
o Reference layer: Fixed magnetic orientation
o Free layer: Parallel or anti-parallel

Magnetic orientation of the free layer
determines logical state of device

o High vs. low resistance

Write: Push large current through MTJ to
change orientation of free layer

Read: Sense current flow

Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

SAFARI
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STT-MRAM: Pros and Cons

= Pros over DRAM
o Better technology scaling (capacity and cost)
a Non volatile > Persistent
a Low idle power (no refresh)

= Cons
a Higher write latency
o Higher write energy
a Poor density (currently)
o Reliability?

= Another level of freedom

a Can trade off non-volatility for lower write latency/energy (by
reducing the size of the MT)J)

SAFARI
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Architected STT-MRAM as Main Memory

= 4-core, 4GB main memory, multiprogrammed workloads
= ~6% performance loss, ~60% energy savings vs. DRAM

OSTT-RAM (base) B STT-RAM (opt)

98%
96% -

949% -
92% -
Q 5905 - —I—
gss% e fe T - NN N BN .
U C R S ’

SIS
LR & LS LSS &S

Performance

BEACT+PRE OWB HERB

0% -

N
TSI

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.
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More on STT-MRAM as Main Memory

= Emre Kultursay, Mahmut Kandemir, Anand
Sivasubramaniam, and Onur Mutlu,
"Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative"
Proceedings of the 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
Austin, TX, April 2013. Slides (pptx) (pdf)

Evaluating STT-RAM as an
Energy-Efficient Main Memory Alternative

Emre Kiiltiirsay*, Mahmut Kandemir*, Anand Sivasubramaniam*, and Onur Mutluf
*The Pennsylvania State University and TCarnegie Mellon University
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A More Viable Approach: Hybrid Memory Systems

CPU
DRAM  PCM

DRAM Ctrl Ctrl

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

SAFARI




Challenge and Opportunity

Providing the Best of
Multiple Metrics
with
Multiple Memory Technologies

SAFARI



Challenge and Opportunity

Heterogeneous,
Configurable,
Programmable

Memory Systems

SAFARI
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Hybrid Memory Systems: Issues

Cache vs. Main Memory

Granularity of Data Move/Manage-ment: Fine or Coarse
Hardware vs. Software vs. HW/SW Cooperative

When to migrate data?

How to design a scalable and efficient large cache?
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Data Placement in Hybrid Memory

Memory Controllers

Channel A | IDLE|Channel B

Memory A
(Fast, Small)

Memory B
(Large, Slow)

Which memory do we place each page in,
to maximize system performance?

= Memory A is fast, but small
= Load should be balanced on both channels

= Page migrations have performance and energy overhead
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Data Placement Between DRAM and PCM

Idea: Characterize data access patterns and guide data
placement in hybrid memory

Streaming accesses: As fast in PCM as in DRAM
Random accesses: Much faster in DRAM

Idea: Place random access data with some reuse in DRAM;
streaming data in PCM

Yoon+, “"Row Buffer Locality-Aware Data Placement in
Hybrid Memories,” ICCD 2012 Best Paper Award.
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Hybrid vs. All-PCM/DRAM [iccp’12]

®16GB PCM BRBLA-Dyn 0O16GB DRAM

2 1.2
1.8 - -
g 1.6 29% - E b
C%l 4 — =
T % 0.8 -
=12 319 [ o
= | | &
§ 1 2 0.6 -
208 | - I
'TE 31% better performance than all PCM,
5 within 29% of all DRAM performance
Z. 0.

A P B

Yoon+, “Row Buffer Locality-Aware Data Placement in Hybrid Memories,” ICCD 2012 Best Paper Award.
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More on Hybrid Memory Data Placement

= HanBin Yoon, Justin Meza, Rachata Ausavarungnirun,
Rachael Harding, and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for
Hybrid Memories"
Proceedings of the 30th IEEE International Conference on
Computer Design (ICCD), Montreal, Quebec, Canada,
September 2012. Slides (pptx) (pdf)

Row Buffer Locality Aware Caching Policies
for Hybrid Memories

HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael A. Harding and Onur Mutlu
Carnegie Mellon University
{hanbinyoon,meza,rachata,onur} @cmu.edu, rhardin@mit.edu
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Weaknesses of Existing Solutions

= They are all heuristics that consider only a limited part of
memory access behavior

= Do not directly capture the overall system
performance impact of data placement decisions

= Example: None capture memory-level parallelism (MLP)

o Number of concurrent memory requests from the same
application when a page is accessed

o Affects how much page migration helps performance
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Importance of Memory-Level Parallelism

Before migration: Before migration:

requests to Page 1 ( Mem. B

requests to Page 2( Mem. B )
|

requests to Page 3( Mem. B j
| |

|
I
|
|
I
|
|
l
|
I
I
I
I
I
I
I
I
|
I
I
|
-
I
|
I
|
|
I
|
|
l
|
I
I
I
I
I
I
I
I
1
I
I
|
1
I

After migration:

requests to Page 1 QYIS RVAN

|
I
|
requests to Page 2 :
1

I
T requests to Page 3( Mem. B
ﬁ > ( R—E >
time Migrating one page time Must migrate two pages

reduces stall time by T to reduce stall time by T:
migrating one page alone

does not help

Page migration decisions need to consider MLP




Our Goal [CLUSTER 2017]

A generalized mechanism that

1. Directly estimates the performance benefit
of migrating a page between
any two types of memory

2. Places only the performance-critical data
in the fast memory
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Utility-Based Hybrid Memory Management

A memory manager that works for any hybrid memory
o e.g., DRAM-NVM, DRAM-RLDRAM

Key Idea

o For each page, use comprehensive characteristics to
calculate estimated utility (i.e., performance impact)
of migrating page from one memory to the other in the
system

o Migrate only pages with the highest utility
(i.e., pages that improve system performance the most
when migrated)

Li+, “Utility-Based Hybrid Memory Management”, CLUSTER 2017.
SAFARI 75



Key Mechanisms of UH-MEM

For each page, estimate utility using a performance model
o Application stall time reduction

How much would migrating a page benefit the performance of the
application that the page belongs to?

o Application performance sensitivity

How much does the improvement of a single application’s
performance increase the overall system performance?

Utility = AStallTime;XSensitivity;

Migrate only pages whose utility exceed the migration
threshold from slow memory to fast memory

Periodically adjust migration threshold
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Results: System Performance

BALL OFREQ DRBLA MUH-MEM

Normalized
S
2
>
—>

0% 25% 50% 75% 100%
Workload Memory Intensity Category

UH-MEM improves system performance

over the best state-of-the-art hybrid memory manager
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Results: Sensitivity to Slow Memory Latency

= We vary tpcp and tyr of the slow memory
28 ALL OFREQ CORBLA ®UH-MEM
3.4
3.0
2.6 1 | (- | — i S — N
2.2

5 B

trep:  X3.0 x4.0 x4.5 x6.0 X7.5
twr: X3.0 x4.0 x12 X16 x20

Slow Memory Latency Multiplier

Weighted Speedup
|

UH-MEM improves system performance

for a wide variety of hybrid memory systems




More on UH-MEM

= Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang,
and Onur Mutluy,

"Utility-Based Hybrid Memory Management”

Proceedings of the 19th IEEE Cluster Conference (CLUSTER),
Honolulu, Hawaii, USA, September 2017.

[Slides (pptx) (pdf)]

Utility-Based Hybrid Memory Management

Yang Li' Saugata Ghose! Jongmoo Choi? Jin Sun' Hui Wang* Onur Mutlu™ T
[ Carnegie Mellon University  Dankook University *Beihang University TETH Ziirich
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Challenge and Opportunity

Enabling
an Emerging Technology
to Augment DRAM

Managing Hybrid Memories
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Another Challenge

Designing Effective
Large (DRAM) Caches
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One Problem with L.arge DRAM Caches

= A large DRAM cache requires a large metadata (tag +
block-based information) store

= How do we design an efficient DRAM cache?

Metadata:
X = DRAM

N

Access X
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Idea 1: Tags in Memory

Store tags in the same row as data in DRAM
o Store metadata in same row as their data
o Data and metadata can be accessed together

€ DRAM row >

Cache block OJ Cache block 1 tCache block 2 ng Tig ng

Benefit: No on-chip tag storage overhead

Downsides:
o Cache hit determined only after a DRAM access
o Cache hit requires two DRAM accesses
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Idea 2: Cache Tags in SRAM

Recall Idea 1: Store all metadata in DRAM
o To reduce metadata storage overhead

Idea 2: Cache in on-chip SRAM frequently-accessed
metadata

o Cache only a small amount to keep SRAM size small

SAFARI
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On Large DRAM Cache Design

= Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan,

"Enabling Efficient and Scalable Hybrid Memories
Using Fine-Granularity DRAM Cache Management”
IEEE Computer Architecture Letters (CAL), February 2012.

Enabling Efficient and Scalable Hybrid Memories Using
Fine-Granularity DRAM Cache Management

Justin Meza* Jichuan Chang® HanBin Yoon® Onur Mutlu® Parthasarathy Ranganathant
*Carnegie Mellon University fHewlett-Packard Labs
{meza,hanbinyoon,onur}@cmu.edu {jichuan.chang,partha.ranganathan}@hp.com
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DRAM Caches: Many Recent Options

Table 1: Summary of Operational Characteristics of Different State-of-the-Art DRAM Cache Designs - We assume perfect way
prediction for Unison Cache. Latency is relative to the access time of the off-package DRAM (see Section 6 for baseline latencies). We use
different colors to indicate the high (dark red), medium (white), and low (light green) overhead of a characteristic.

| Scheme || DRAM CacheHit | DRAM CacheMiss || Replacement Traffic | Replacement Decision | Large Page Caching |
Unison [32] In-package traffic: 128 B In-package traffic: 96 B On every miss Hardware managed, Yes
(data + tag read and up- | (spec. data + tag read) Footprint size [31] set-associative,
date) Latency: ~2x LRU
Latency: ~1x
Alloy [50] In-package traffic: 96 B In-package traffic: 96 B On some misses Hardware managed, Yes
(data + tag read) (spec. data + tag read) Cacheline size (64 B) direct-mapped,
Latency: ~1x Latency: ~2x stochastic [20]
TDC [38] In-package traffic: 64 B In-package traffic: 0 B On every miss Hardware managed, No
Latency: ~1x Latency: ~1x Footprint size [28] fully-associative,
TLB coherence TLB coherence FIFO
HMA [44] In-package traffic: 64 B In-package traffic: 0 B Software managed, high replacement cost Yes
Latency: ~1x Latency: ~1x
Banshee In-package traffic: 64 B In-package traffic: 0 B Only for hot pages Hardware managed, Yes
(This work) Latency: ~1x Latency: ~1x Page size (4 KB) set-associative,
frequency based

Yu+, “"Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.
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Banshee [MICRO 2017]

= Tracks presence in cache using TLB and Page Table
o No tag store needed for DRAM cache
o Enabled by a new lightweight lazy TLB coherence protocol

= New bandwidth-aware frequency-based replacement policy

2.0

(@ O 2.0} 1
‘.——-
A A A
15F &
= = e - S 157 \-A\! |
© ©
o) . o)
2, ol - " 2
o» 1.0} » 10} .
£ o=@ Banshee £ o=@ Banshee
205_ A==h  Alloy | 205 Ae=p Alloy
' m=m TDC “m=m TDC
=3¢ Unison =3 Unison
0.0 0.0
|1 00%| 66% 50% 8X 4X| 2X

DRAM Cache Latenc DRAM Caéhe Bandwidth
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More on Banshee

= Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur
Mutlu, and Srinivas Devadas,

"Banshee: Bandwidth-Efficient DRAM Caching via
Software/Hardware Cooperation”

Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.

Banshee: Bandwidth-Efficient DRAM Caching
via Software/Hardware Cooperation

Xiangyao Yu' Christopher J. Hughes® Nadathur Satish® Onur Mutlu®  Srinivas Devadas!
IMIT “Intel Labs SETH Ziirich
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Other Opportunities with Emerging Technologies

=| Merging of memory and storage

o e.g., a single interface to manage all data

= New applications
o e.g., ultra-fast checkpoint and restore

= More robust system design
o e.g., reducing data loss

= Processing tightly-coupled with memory
o e.g., enabling efficient search and filtering
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TWO-LEVEL STORAGE MODEL

5

> PR A VOLATILE
o

= BYTE ADDR
NONVOLATILE

S SLOW

n BLOCK ADDR
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TWO-LEVEL STORAGE MODEL

CPU

VOLATILE

&

S FAST

= BYTE ADDR
G NONVOLATILE
-

7

BLOCK ADDR

Non-volatile memories combine

characteristics of memory and storage




Two-Level Memory/Storage Model

= The traditional two-level storage model is a bottleneck with NVM
o Volatile data in memory - a load/store interface
o Persistent data in storage = a file system interface

o Problem: Operating system (OS) and file system (FS) code to locate, translate,
buffer data become performance and energy bottlenecks with fast NVM stores

__ Two-Level Store
Load/Store L fopgn, fread, fwrite, ...

Processor
and caches

........
........
........

Persistent (676 Phase-Change)
Main Memory Stofegeo($SD/HDD)
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Unified Memory and Storage with NVM

= Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
o Improves both energy and performance
o Simplifies programming model as well

__ Unified Memory/Storage

Persistent Memory
Manager
Processor
and caches

Load/Store Feedback

Ut

PersistentK(é.g., Phase-Change) Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 93
SAFARI Storage and Memory,” WEED 2013.



The Persistent Memory Manager (PMM)

int main (void) {
// data in file.dat 1is persistent
FILE myData = "file.dat";
myData = new int[64];

Persistent objects

}

void updateValue (int n, int value) {
FILE myData = "file.dat";
myData [n] = value; // value is persistent

O 00 1O\ N Wi

Store l Hints from SW/OS/runtime

Software Persistent Memory Manager
Hardware Data Layout, Persistence, Metadata, Security, ..

I

| DRaM | Fiash | Nvm |[ HDD ]

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices




Performance Benefits ot a Single-l.evel Store

M User CPU [ User Memory B Syscall CPU [ Syscall I/O

1.0 ~24X
£ 0.8 \
|_
5 \
n
3 04
\
=
0 e

HDD 2-level NVM 2-level  Persistent Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 95
SAFARI Storage and Memory,” WEED 2013.



Energy Benefits of a Single-level Store

M User CPU [ Syscall CPFU m DRAM [] NVM @ HDD

o o o
N o) N e o

Fraction of Total Energy

©
N

HDD 2-level NVM 2-level  Persistent Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
SAFARI Storage and Memory,” WEED 2013.
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On Persistent Memory Benefits & Challenges

= Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan
Xie, and Onur Mutluy,
"A Case for Efficient Hardware-Software
Cooperative Management of Storage and Memory"”
Proceedings of the 5th Workshop on Energy-Efficient

Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
Slides (pdf)

A Case for Efficient Hardware/Software Cooperative Management of Storage and Memory

Justin Meza*  Yixin Luo* Samira Khan** Jishen Zhao' Yuan Xie'® Onur Mutlu*
*Carnegie Mellon University ~ Pennsylvania State University ~ *Intel Labs ~ SAMD Research
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Challenge and Opportunity

Combined
Memory & Storage
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Challenge and Opportunity

A Unified Interface to
All Data

SAFARI



One Key Challenge in Persistent Memory

How to ensure consistency of system/data if all
memory is persistent?

Two extremes
o Programmer transparent: Let the system handle it
o Programmer only: Let the programmer handle it

Many alternatives in-between...
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CHALLENGE: CRASH CONSISTENCY

UL 10 e

Persistent Memory System

System crash can result in

permanent data corruption in NVM
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CRASH CONSISTENCY PROBLEM

Example: Add a node to a linked list

2. Link to pre# 1. Link to next

System crash can result in

inconsistent memory state



CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-Heaps asros111, BPFS 1sosp05, MNEMOSYNE (aspiosny

AtomicBegin ({
Insert a new node;

} AtomicEnd;

Limits adoption of NVM

Have to rewrite code with clear partition
between volatile and non-volatile data

Burden on the programmers
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OUR APPROACH: ThyNVM

Goal:
Software transparent consistency In

persistent memory systems




ThyNVM: Summary

A new hardware-based

checkpointing mechanism

 Checkpoints at multiple granularities to
reduce both checkpointing latency and
metadata overhead

* Overlaps checkpointing and execution to
reduce checkpointing latency

 Adapts to DRAM and NVM characteristics
Performs within 4.9% of an idealized DRAM

with zero cost consistency



More About ThyNVM

= Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutluy,

"ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems"

Proceedings of the 48th International Symposium on
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]

[Source Code]

ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems

Jinglei Ren*™ Jishen Zhao* Samira Khan™ Jongmoo Choi*" Yongwei Wu* Onur Mutlu”

TCarnegie Mellon University *Tsinghua University
*University of California, Santa Cruz 'University of Virginia TDankook University
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Another Key Challenge 1n Persistent Memory

Programming Ease
to Exploit Persistence

SAFARI



Tools/Libraries to Help Programmers

= Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric
Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based
Persistence”
Proceedings of the 4th Workshop on Interactions of NVM/Flash
with Operating Systems and Workloads (INFLOW), Savannah,
GA, USA, November 2016.

[Slides (pptx) (pdf)]

NVMOVE: Helping Programmers Move to Byte-Based Persistence

Himanshu Chauhan * Irina Calciu Vijay Chidambaram
UT Austin VMware Research Group UT Austin
Eric Schkufza Onur Mutlu Pratap Subrahmanyam
VMware Research Group ETH Ziirich VMware
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Agenda

Major Trends Affecting Main Memory
The Memory Scaling Problem

Two Complementary Solution Directions
o New Memory (DRAM) Architectures
o Enabling Emerging (NVM) Technologies

Conclusion
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The Future of |

“merging Technologies 1s Bright

= Regardless of challenges
o in underlying technology and overlying problems/requirements

Can enable:

- Orders of magnitude
improvements

- New applications and
computing systems

Problem

Program/Language

System Software

SW/HW Interface

Yet, we have to
- Think across the stack

- Design enabling systems

SAFARI
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It In Doubt, Refer to Flash Memory

= A very “doubtful” emerging technology
o for at least two decades

% SArEn Proceedings of the IEEE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

By Yu Cai, Saucata GHosg, EricH F. HaratscH, Yixin Luo, anp ONUR MuTLU

ABSTRACT | wane flash memory is ubiguitous in everyday life KEYWORDS | Data storage systems:; error recovery; fault
today because its capacity has continuously increased and tolerance; flash memory; reliability; solid-state drives

SAFARI https://arxiv.org/pdf/1706.08642 H




Opportunities and Challenges of

Emerging Memory Technologies

Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
September 11, 2017

m ARM Research Summit

Systems @ ETHu ETH:zurich
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Overview Paper on Flash Reliability

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and
Onur Mutluy,

"Error Characterization, Mitigation, and Recovery in
Flash Memory Based Solid State Drives"

to appear in Proceedings of the IEEE, 2017.

Error Characterization, Mitigation, and Recovery
in Flash Memory Based Solid State Drives

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu
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Solution 2: Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory
o Expected to scale to 9nm (2022 [ITRS])
o Expected to be denser than DRAM: can store multiple bits/cell

But, emerging technologies have shortcomings as well
a Can they be enabled to replace/augment/surpass DRAM?

Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA'09, CACM'10, IEEE Micro'10.
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

Yoon, Meza+, “"Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.

Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
Chauhan+, “"NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.

Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017.

Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.
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Combination: Hybrid Memory Systems

-

DRAM\ [ PCM \
Ctrl

DRAM cul § Technology X (e.g., PCM)

\_ AN /

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon, Meza et al., “"Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.
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Exploiting Memory Error Tolerance
with Hybrid Memory Systems

Vulnerable
data

Reliable memory

On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %

Heterogeneous-Reliability Memory [psn 2014]
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More on Heterogeneous Reliability Memory

= Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman
Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary]
[Slides (pptx) (pdf)] [Coverage on ZDNet]

Characterizing Application Memory Error Vulnerability to
Optimize Datacenter Cost via Heterogeneous-Reliability Memory

Yixin Luo  Sriram Govindan® Bikash Sharma® Mark Santaniello” Justin Meza
Aman Kansal® Jie Liu® Badriddine Khessib® Kushagra Vaid® Onur Mutlu

Carnegie Mellon University, yixinluo@cs.cmu.edu, {meza, onur}@cmu.edu
“Microsoft Corporation, {srgovin, bsharma, marksan, kansal, jie.liu, bkhessib, kvaid}@microsoft.com
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Challenge and Opportunity

Providing the Best of
Multiple Metrics
with
Multiple Memory Technologies
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Challenge and Opportunity

Heterogeneous,
Configurable,
Programmable

Memory Systems
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