
Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
September 11, 2017

ARM Research Summit

Opportunities and Challenges of
Emerging Memory Technologies

The Main Memory System

n Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

2

Processors
and caches

Main Memory Storage (SSD/HDD)

The Main Memory System

n Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

3

Main Memory Storage (SSD/HDD)FPGAs

The Main Memory System

n Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

4

Main Memory Storage (SSD/HDD)GPUs

Memory System: A Shared Resource View

5

Storage

Most of the system is dedicated to storing and moving data

State of the Main Memory System
n Recent technology, architecture, and application trends

q lead to new requirements
q exacerbate old requirements

n DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

n Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

n We need to rethink the main memory system
q to fix DRAM issues and enable emerging technologies
q to satisfy all requirements

6

Major Trends Affecting Main Memory (I)
n Need for main memory capacity, bandwidth, QoS increasing

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending

7

Major Trends Affecting Main Memory (II)
n Need for main memory capacity, bandwidth, QoS increasing

q Multi-core: increasing number of cores/agents
q Data-intensive applications: increasing demand/hunger for data
q Consolidation: cloud computing, GPUs, mobile, heterogeneity

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending

8

Example: The Memory Capacity Gap

n Memory capacity per core expected to drop by 30% every two years
n Trends worse for memory bandwidth per core!

9

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years

Lim et al., ISCA 2009

Major Trends Affecting Main Memory (III)
n Need for main memory capacity, bandwidth, QoS increasing

n Main memory energy/power is a key system design concern
q ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,

IEEE Computer’03] >40% power in DRAM [Ware, HPCA’10][Paul,ISCA’15]
q DRAM consumes power even when not used (periodic refresh)

n DRAM technology scaling is ending

10

Major Trends Affecting Main Memory (IV)
n Need for main memory capacity, bandwidth, QoS increasing

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending
q ITRS projects DRAM will not scale easily below X nm
q Scaling has provided many benefits:

n higher capacity (density), lower cost, lower energy

11

Major Trends Affecting Main Memory (V)
n DRAM scaling has already become increasingly difficult

q Increasing cell leakage current, reduced cell reliability,
increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

q Difficult to significantly improve capacity, energy

n Emerging memory technologies are promising
3D-Stacked DRAM higher bandwidth smaller capacity
Reduced-Latency DRAM
(e.g., RLDRAM, TL-DRAM) lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4) lower power higher latency

higher cost
Non-Volatile Memory (NVM)
(e.g., PCM, STTRAM, ReRAM,
3D Xpoint)

larger capacity
higher latency

higher dynamic power
lower endurance

12

Major Trends Affecting Main Memory (V)
n DRAM scaling has already become increasingly difficult

q Increasing cell leakage current, reduced cell reliability,
increasing manufacturing difficulties [Kim+ ISCA 2014],
[Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]

q Difficult to significantly improve capacity, energy

n Emerging memory technologies are promising
3D-Stacked DRAM higher bandwidth smaller capacity
Reduced-Latency DRAM
(e.g., RLDRAM, TL-DRAM) lower latency higher cost

Low-Power DRAM
(e.g., LPDDR3, LPDDR4) lower power higher latency

higher cost
Non-Volatile Memory (NVM)
(e.g., PCM, STTRAM, ReRAM,
3D Xpoint)

larger capacity
higher latency

higher dynamic power
lower endurance

13

Agenda

n Major Trends Affecting Main Memory
n The Memory Scaling Problem
n Two Complementary Solution Directions

q New Memory (DRAM) Architectures
q Enabling Emerging (NVM) Technologies

n Conclusion

14

Limits of Charge Memory
n Difficult charge placement and control

q Flash: floating gate charge
q DRAM: capacitor charge, transistor leakage

n Reliable sensing becomes difficult as charge
storage unit size reduces

15

The DRAM Scaling Problem
n DRAM stores charge in a capacitor (charge-based memory)

q Capacitor must be large enough for reliable sensing
q Access transistor should be large enough for low leakage and high

retention time
q Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

n DRAM capacity, cost, and energy/power hard to scale
16

As Memory Scales, It Becomes Unreliable
n Data from all of Facebook’s servers worldwide
n Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.

17

Large-Scale Failure Analysis of DRAM Chips
n Analysis and modeling of memory errors found in all of

Facebook’s server fleet

n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.
[Slides (pptx) (pdf)] [DRAM Error Model]

18

Infrastructures to Understand Such Issues

19Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source

github.com/CMU-SAFARI/SoftMC

20

SoftMC

n https://github.com/CMU-SAFARI/SoftMC

21

A Curious Discovery [Kim et al., ISCA 2014]

One can
predictably induce errors

in most DRAM memory chips

22

DRAM RowHammer

A simple hardware failure mechanism
can create a widespread

system security vulnerability

23

Row	of	Cells
Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim	Row

Victim	Row
Hammered	Row

Repeatedly reading a	row	enough	times	(before	memory	gets	
refreshed)	induces	disturbance	errors in	adjacent rows in	
most	real	DRAM	chips	you	can	buy	today

OpenedClosed

24

Modern DRAM is Prone to Disturbance Errors

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)

More on RowHammer Analysis

25

n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

Industry Is Writing Papers About It, Too

26

Industry Is Writing Papers About It, Too

27

n Fix it: Make memory and controllers more intelligent
q New interfaces, functions, architectures: system-mem codesign

n Eliminate or minimize it: Replace or (more likely) augment
DRAM with a different technology
q New technologies and system-wide rethinking of memory &

storage

n Embrace it: Design heterogeneous memories (none of which
are perfect) and map data intelligently across them
q New models for data management and maybe usage

n …
28

Solutions	(to	memory	scaling)	require	
software/hardware/device	cooperation

Microarchitecture
ISA

Programs
Algorithms
Problems

Logic
Devices

Runtime System
(VM, OS, MM)

User

How Do We Solve The Memory Problem?

Agenda

n Major Trends Affecting Main Memory
n The Memory Scaling Problem
n Two Complementary Solution Directions

q New Memory (DRAM) Architectures
q Enabling Emerging (NVM) Technologies

n Conclusion

29

Solution 1: New Memory Architectures
n Overcome memory shortcomings with

q Memory-centric system design
q Novel memory architectures, interfaces, functions
q Better waste management (efficient utilization)

n Key issues to tackle
q Enable reliability at low cost à high capacity
q Reduce energy
q Improve latency and bandwidth
q Reduce waste (capacity, bandwidth, latency)
q Enable computation close to data

30

Solution 1: New Memory Architectures
n Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
n Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
n Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
n Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.
n Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.
n Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.
n Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.
n Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.
n Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.
n Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.
n Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.
n Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.
n Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 2015.
n Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.
n Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.
n Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.
n Ahn+, “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.
n Lee+, “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015.
n Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO 2015.
n Lee+, “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” TACO 2016.
n Hassan+, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality,” HPCA 2016.
n Chang+, “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Migration in DRAM,” HPCA 2016.
n Chang+, “Understanding Latency Variation in Modern DRAM Chips Experimental Characterization, Analysis, and Optimization,” SIGMETRICS 2016.
n Khan+, “PARBOR: An Efficient System-Level Technique to Detect Data Dependent Failures in DRAM,” DSN 2016.
n Hsieh+, “Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems,” ISCA 2016.
n Hashemi+, “Accelerating Dependent Cache Misses with an Enhanced Memory Controller,” ISCA 2016.
n Boroumand+, “LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,” IEEE CAL 2016.
n Pattnaik+, “Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities,” PACT 2016.
n Hsieh+, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation,” ICCD 2016.
n Hashemi+, “Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads,” MICRO 2016.
n Khan+, “A Case for Memory Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM",” IEEE CAL 2016.
n Hassan+, “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” HPCA 2017.
n Mutlu, “The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser,” DATE 2017.
n Lee+, “Design-Induced Latency Variation in Modern DRAM Chips: Characterization, Analysis, and Latency Reduction Mechanisms,” SIGMETRICS 2017.
n Chang+, “Understanding Reduced-Voltage Operation in Modern DRAM Devices: Experimental Characterization, Analysis, and Mechanisms,” SIGMETRICS 2017.
n Patel+, “The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,” ISCA 2017.
n Seshadri and Mutlu, “Simple Operations in Memory to Reduce Data Movement,” ADCOM 2017.
n Liu+, “Concurrent Data Structures for Near-Memory Computing,” SPAA 2017.
n Khan+, “Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content,” MICRO 2017.
n Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM Technology,” MICRO 2017.
n Avoid DRAM:

q Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.
q Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.
q Seshadri+, “The Dirty-Block Index,” ISCA 2014.
q Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.
q Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” ISCA 2015.
q Pekhimenko+, “Toggle-Aware Bandwidth Compression for GPUs,” HPCA 2016.

31

Example: (Truly) In-Memory Computation
n We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
n At low cost
n Using analog computation capability of DRAM

q Idea: activating multiple rows performs computation
n 30-60X performance and energy improvement

q Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

n New memory technologies enable even more opportunities
q Memristors, resistive RAM, phase change mem, STT-MRAM, …
q Can operate on data with minimal movement

32

Performance: In-DRAM Bitwise Operations

33

Energy of In-DRAM Bitwise Operations

34

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

More on Ambit

n Vivek Seshadri et al., “Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

35

Tesseract System for Graph Processing

Crossbar	Network

…
…

…
…

DRAM
	Controller

NI

In-Order	Core

Message	Queue

PF	Buffer

MTP

LP

Host	Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
ee
du

p

>13X Performance Improvement

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms

Tesseract Graph Processing System Energy

0

0.2

0.4

0.6

0.8

1

1.2

HMC-OoO Tesseract	with	Prefetching

Memory	Layers Logic	Layers Cores

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

More on Tesseract
n Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,

and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

39

Accelerating Pointer Chasing with PIM
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

40

Agenda

n Major Trends Affecting Main Memory
n The Memory Scaling Problem
n Two Complementary Solution Directions

q New Memory (DRAM) Architectures
q Enabling Emerging (NVM) Technologies

n Conclusion

41

Limits of Charge Memory
n Difficult charge placement and control

q Flash: floating gate charge
q DRAM: capacitor charge, transistor leakage

n Reliable sensing becomes difficult as charge
storage unit size reduces

42

Solution 2: Emerging Memory Technologies
n Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)

n Example: Phase Change Memory
q Data stored by changing phase of material
q Data read by detecting material’s resistance
q Expected to scale to 9nm (2022 [ITRS 2009])
q Prototyped at 20nm (Raoux+, IBM JRD 2008)
q Expected to be denser than DRAM: can store multiple bits/cell

n But, emerging technologies have (many) shortcomings
q Can they be enabled to replace/augment/surpass DRAM?

43

Solution 2: Emerging Memory Technologies
n Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, IEEE Micro’10.
n Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.
n Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.
n Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.
n Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
n Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.
n Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.
n Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
n Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
n Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.
n Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017.
n Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.

44

Promising Resistive Memory Technologies
n PCM

q Inject current to change material phase
q Resistance determined by phase

n STT-MRAM
q Inject current to change magnet polarity
q Resistance determined by polarity

n Memristors/RRAM/ReRAM
q Inject current to change atomic structure
q Resistance determined by atom distance

45

What is Phase Change Memory?
n Phase change material (chalcogenide glass) exists in two states:

q Amorphous: Low optical reflexivity and high electrical resistivity
q Crystalline: High optical reflexivity and low electrical resistivity

46

PCM is resistive memory: High resistance (0), Low resistance (1)
PCM cell can be switched between states reliably and quickly

How Does PCM Work?
n Write: change phase via current injection

q SET: sustained current to heat cell above Tcryst
q RESET: cell heated above Tmelt and quenched

n Read: detect phase via material resistance
q amorphous/crystalline

47

Large
Current

SET (cryst)
Low resistance

103-104 W

Small
Current

RESET (amorph)
High resistance

Access
Device

Memory
Element

106-107 W
Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM

Opportunity: PCM Advantages
n Scales better than DRAM, Flash

q Requires current pulses, which scale linearly with feature size
q Expected to scale to 9nm (2022 [ITRS])
q Prototyped at 20nm (Raoux+, IBM JRD 2008)

n Can be denser than DRAM
q Can store multiple bits per cell due to large resistance range
q Prototypes with 2 bits/cell in ISSCC’08, 4 bits/cell by 2012

n Non-volatile
q Retain data for >10 years at 85C

n No refresh needed, low idle power
48

Phase Change Memory Properties

n Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI,
ISSCC)

n Derived PCM parameters for F=90nm

n Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

n Lee et al., “Phase Change Technology and the Future of
Main Memory,” IEEE Micro Top Picks 2010.

49

50

Phase Change Memory: Pros and Cons
n Pros over DRAM

q Better technology scaling (capacity and cost)
q Non volatile à Persistent
q Low idle power (no refresh)

n Cons
q Higher latencies: ~4-15x DRAM (especially write)
q Higher active energy: ~2-50x DRAM (especially write)
q Lower endurance (a cell dies after ~108 writes)
q Reliability issues (resistance drift)

n Challenges in enabling PCM as DRAM replacement/helper:
q Mitigate PCM shortcomings
q Find the right way to place PCM in the system

51

PCM-based Main Memory (I)
n How should PCM-based (main) memory be organized?

n Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:
q How to partition/migrate data between PCM and DRAM

52

PCM-based Main Memory (II)
n How should PCM-based (main) memory be organized?

n Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:
q How to redesign entire hierarchy (and cores) to overcome

PCM shortcomings

53

An Initial Study: Replace DRAM with PCM
n Lee, Ipek, Mutlu, Burger, “Architecting Phase Change

Memory as a Scalable DRAM Alternative,” ISCA 2009.
q Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
q Derived “average” PCM parameters for F=90nm

54

Results: Naïve Replacement of DRAM with PCM

n Replace DRAM with PCM in a 4-core, 4MB L2 system
n PCM organized the same as DRAM: row buffers, banks, peripherals
n 1.6x delay, 2.2x energy, 500-hour average lifetime

n Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009.

55

Architecting PCM to Mitigate Shortcomings
n Idea 1: Use multiple narrow row buffers in each PCM chip

à Reduces array reads/writes à better endurance, latency, energy

n Idea 2: Write into array at
cache block or word
granularity
à Reduces unnecessary wear

56

DRAM PCM

Results: Architected PCM as Main Memory
n 1.2x delay, 1.0x energy, 5.6-year average lifetime
n Scaling improves energy, endurance, density

n Caveat 1: Worst-case lifetime is much shorter (no guarantees)
n Caveat 2: Intensive applications see large performance and energy hits
n Caveat 3: Optimistic PCM parameters?

57

More on PCM As Main Memory
n Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger,

"Architecting Phase Change Memory as a Scalable DRAM
Alternative"
Proceedings of the 36th International Symposium on Computer
Architecture (ISCA), pages 2-13, Austin, TX, June 2009. Slides
(pdf)

58

More on PCM As Main Memory (II)
n Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao,

Engin Ipek, Onur Mutlu, and Doug Burger,
"Phase Change Technology and the Future of Main Memory"
IEEE Micro, Special Issue: Micro's Top Picks from 2009 Computer
Architecture Conferences (MICRO TOP PICKS), Vol. 30, No. 1,
pages 60-70, January/February 2010.

59

STT-MRAM as Main Memory
n Magnetic Tunnel Junction (MTJ) device

q Reference layer: Fixed magnetic orientation
q Free layer: Parallel or anti-parallel

n Magnetic orientation of the free layer
determines logical state of device
q High vs. low resistance

n Write: Push large current through MTJ to
change orientation of free layer

n Read: Sense current flow

n Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

Reference Layer

Free Layer
Barrier

Reference Layer

Free Layer
Barrier

Logical 0

Logical 1

Word Line

Bit Line

Access
Transistor

MTJ

Sense Line

STT-MRAM: Pros and Cons
n Pros over DRAM

q Better technology scaling (capacity and cost)
q Non volatile à Persistent
q Low idle power (no refresh)

n Cons
q Higher write latency
q Higher write energy
q Poor density (currently)
q Reliability?

n Another level of freedom
q Can trade off non-volatility for lower write latency/energy (by

reducing the size of the MTJ)
61

Architected STT-MRAM as Main Memory
n 4-core, 4GB main memory, multiprogrammed workloads
n ~6% performance loss, ~60% energy savings vs. DRAM

62

88%
90%
92%
94%
96%
98%

Pe
rf

or
m

an
ce

vs

. D
RA

M

STT-RAM (base) STT-RAM (opt)

0%
20%
40%
60%
80%

100%

En
er

gy

vs
. D

RA
M

ACT+PRE WB RB

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

More on STT-MRAM as Main Memory
n Emre Kultursay, Mahmut Kandemir, Anand

Sivasubramaniam, and Onur Mutlu,
"Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative"
Proceedings of the 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS),
Austin, TX, April 2013. Slides (pptx) (pdf)

63

A More Viable Approach: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Challenge and Opportunity

Providing the Best of
Multiple Metrics

with
Multiple Memory Technologies

65

Challenge and Opportunity

66

Heterogeneous,
Configurable,
Programmable

Memory Systems

Hybrid Memory Systems: Issues
n Cache vs. Main Memory

n Granularity of Data Move/Manage-ment: Fine or Coarse

n Hardware vs. Software vs. HW/SW Cooperative

n When to migrate data?

n How to design a scalable and efficient large cache?

n …

67

Data Placement in Hybrid Memory

n Memory A is fast, but small
n Load should be balanced on both channels
n Page migrations have performance and energy overhead

68

Channel A Channel B

Memory A Memory B
(Fast, Small) (Large, Slow)

Page 1 Page 2

IDLE

Which memory do we place each page in,
to maximize system performance?

Cores/Caches

Memory Controllers

Data Placement Between DRAM and PCM
n Idea: Characterize data access patterns and guide data

placement in hybrid memory

n Streaming accesses: As fast in PCM as in DRAM

n Random accesses: Much faster in DRAM

n Idea: Place random access data with some reuse in DRAM;
streaming data in PCM

n Yoon+, “Row Buffer Locality-Aware Data Placement in
Hybrid Memories,” ICCD 2012 Best Paper Award.

69

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Weighted Speedup Max. Slowdown Perf. per Watt
Normalized Metric

16GB PCM RBLA-Dyn 16GB DRAM

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 M
ax

. S
lo

w
do

w
n

Hybrid vs. All-PCM/DRAM [ICCD’12]

31%	better	performance	than	all	PCM,	
within	29%	of	all	DRAM	performance

31%

29%

Yoon+,	“Row	Buffer	Locality-Aware	Data	Placement	in	Hybrid	Memories,”	ICCD	2012	Best	Paper	Award.

More on Hybrid Memory Data Placement
n HanBin Yoon, Justin Meza, Rachata Ausavarungnirun,

Rachael Harding, and Onur Mutlu,
"Row Buffer Locality Aware Caching Policies for
Hybrid Memories"
Proceedings of the 30th IEEE International Conference on
Computer Design (ICCD), Montreal, Quebec, Canada,
September 2012. Slides (pptx) (pdf)

71

Weaknesses of Existing Solutions
n They are all heuristics that consider only a limited part of

memory access behavior

n Do not directly capture the overall system
performance impact of data placement decisions

n Example: None capture memory-level parallelism (MLP)
q Number of concurrent memory requests from the same

application when a page is accessed
q Affects how much page migration helps performance

72

Importance of Memory-Level Parallelism

73

requests to Page 1

requests to Page 3

requests to Page 1

requests to Page 3

time

Before migration:

After migration:

requests to Page 2

requests to Page 2

time

Before migration:

After migration:

Mem. B

Mem. B

Mem. A

Mem. A

Mem. B

Mem. A

T T

Migrating one page
reduces stall time by T

Must migrate two pages
to reduce stall time by T:
migrating one page alone

does not help

Mem. B

Page migration decisions need to consider MLP

Our Goal [CLUSTER 2017]

A generalized mechanism that

1. Directly estimates the performance benefit
of migrating a page between
any two types of memory

2. Places only the performance-critical data
in the fast memory

74

Utility-Based Hybrid Memory Management
n A memory manager that works for any hybrid memory

q e.g., DRAM-NVM, DRAM-RLDRAM

n Key Idea
q For each page, use comprehensive characteristics to

calculate estimated utility (i.e., performance impact)
of migrating page from one memory to the other in the
system

q Migrate only pages with the highest utility
(i.e., pages that improve system performance the most
when migrated)

n Li+, “Utility-Based Hybrid Memory Management”, CLUSTER 2017.
75

Key Mechanisms of UH-MEM
n For each page, estimate utility using a performance model

q Application stall time reduction
How much would migrating a page benefit the performance of the
application that the page belongs to?

q Application performance sensitivity
How much does the improvement of a single application’s
performance increase the overall system performance?

n Migrate only pages whose utility exceed the migration
threshold from slow memory to fast memory

n Periodically adjust migration threshold

76

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = 	∆𝑆𝑡𝑎𝑙𝑙𝑇𝑖𝑚𝑒0×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦0

Results: System Performance

77

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7

0% 25% 50% 75% 100%

N
or

m
al

iz
ed

W
ei

gh
te

d
Sp

ee
du

p

Workload Memory Intensity Category

ALL FREQ RBLA UH-MEM

14%

5%3%

9%

UH-MEM improves system performance
over the best state-of-the-art hybrid memory manager

Results: Sensitivity to Slow Memory Latency
n We vary 𝑡567 and 𝑡85 of the slow memory

78

1.8

2.2

2.6

3.0

3.4

3.8

x3.0
x3.0

x4.0
x4.0

x4.5
x12

x6.0
x16

x7.5
x20

W
ei

gh
te

d
Sp

ee
du

p

Slow Memory Latency Multiplier

ALL FREQ RBLA UH-MEM

13%13%

8% 6%
14%

UH-MEM improves system performance
for a wide variety of hybrid memory systems

𝑡567:
𝑡85:

More on UH-MEM
n Yang Li, Saugata Ghose, Jongmoo Choi, Jin Sun, Hui Wang,

and Onur Mutlu,
"Utility-Based Hybrid Memory Management"
Proceedings of the 19th IEEE Cluster Conference (CLUSTER),
Honolulu, Hawaii, USA, September 2017.
[Slides (pptx) (pdf)]

79

Challenge and Opportunity

Enabling
an Emerging Technology

to Augment DRAM

Managing Hybrid Memories
80

Another Challenge

81

Designing Effective
Large (DRAM) Caches

One Problem with Large DRAM Caches
n A large DRAM cache requires a large metadata (tag +

block-based information) store
n How do we design an efficient DRAM cache?

82

DRAM PCM

CPU

(small, fast cache) (high capacity)

Mem
Ctlr

Mem
Ctlr

LOAD	X

Access X

Metadata:
X	à DRAM

X

Idea 1: Tags in Memory
n Store tags in the same row as data in DRAM

q Store metadata in same row as their data
q Data and metadata can be accessed together

n Benefit: No on-chip tag storage overhead
n Downsides:

q Cache hit determined only after a DRAM access
q Cache hit requires two DRAM accesses

83

Cache	block	2Cache	block	0 Cache	block	1
DRAM row

Tag
0

Tag
1

Tag
2

Idea 2: Cache Tags in SRAM
n Recall Idea 1: Store all metadata in DRAM

q To reduce metadata storage overhead

n Idea 2: Cache in on-chip SRAM frequently-accessed
metadata
q Cache only a small amount to keep SRAM size small

84

On Large DRAM Cache Design

n Justin Meza, Jichuan Chang, HanBin Yoon, Onur Mutlu, and
Parthasarathy Ranganathan,
"Enabling Efficient and Scalable Hybrid Memories
Using Fine-Granularity DRAM Cache Management"
IEEE Computer Architecture Letters (CAL), February 2012.

85

DRAM Caches: Many Recent Options

86

Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.

Banshee [MICRO 2017]

n Tracks presence in cache using TLB and Page Table
q No tag store needed for DRAM cache
q Enabled by a new lightweight lazy TLB coherence protocol

n New bandwidth-aware frequency-based replacement policy

87

More on Banshee
n Xiangyao Yu, Christopher J. Hughes, Nadathur Satish, Onur

Mutlu, and Srinivas Devadas,
"Banshee: Bandwidth-Efficient DRAM Caching via
Software/Hardware Cooperation"
Proceedings of the 50th International Symposium on
Microarchitecture (MICRO), Boston, MA, USA, October 2017.

88

Other Opportunities with Emerging Technologies

n Merging of memory and storage
q e.g., a single interface to manage all data

n New applications
q e.g., ultra-fast checkpoint and restore

n More robust system design
q e.g., reducing data loss

n Processing tightly-coupled with memory
q e.g., enabling efficient search and filtering

89

TWO-LEVEL	STORAGE	MODEL
CP

U
M
EM

O
RY

ST
O
RA

GE

VOLATILE
FAST

BYTE	ADDR
NONVOLATILE

SLOW
BLOCK	ADDR

Ld/St

FILE	
I/O

DRAM

90

TWO-LEVEL	STORAGE	MODEL
CP

U
M
EM

O
RY

ST
O
RA

GE

VOLATILE
FAST

BYTE	ADDR
NONVOLATILE

SLOW
BLOCK	ADDR

Ld/St

FILE	
I/O

DRAM

91

PCM, STT-RAM
NVM

Non-volatile	memories	combine	
characteristics	of	memory	and	storage

Two-Level Memory/Storage Model
n The traditional two-level storage model is a bottleneck with NVM

q Volatile data in memory à a load/store interface
q Persistent data in storage à a file system interface
q Problem: Operating system (OS) and file system (FS) code to locate, translate,

buffer data become performance and energy bottlenecks with fast NVM stores

92

Two-Level Store

Processor
and caches

Main Memory Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

Persistent (e.g., Phase-Change)
Memory

Unified Memory and Storage with NVM
n Goal: Unify memory and storage management in a single unit to

eliminate wasted work to locate, transfer, and translate data
q Improves both energy and performance
q Simplifies programming model as well

93

Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

The Persistent Memory Manager (PMM)

94

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Load Store

DRAM Flash NVM HDD

Persistent Memory Manager
Hardware

Software
Data Layout, Persistence, Metadata, Security, ...

Hints from SW/OS/runtime

PMM	uses	access	and	hint	information	to	allocate,	locate,	migrate	
and	access	data	in	the	heterogeneous	array	of	devices

Persistent objects

Performance Benefits of a Single-Level Store

95

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

User CPU User Memory Syscall CPU Syscall I/O

0.044
0.009

~5X

~24X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

Energy Benefits of a Single-Level Store

96

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

Fr
ac

tio
n

of
 T

ot
al

En
er

gy

User CPU Syscall CPU DRAM NVM HDD

0.065
0.013

~5X

~16X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

On Persistent Memory Benefits & Challenges
n Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan

Xie, and Onur Mutlu,
"A Case for Efficient Hardware-Software
Cooperative Management of Storage and Memory"
Proceedings of the 5th Workshop on Energy-Efficient
Design (WEED), Tel-Aviv, Israel, June 2013. Slides (pptx)
Slides (pdf)

97

Challenge and Opportunity

Combined
Memory & Storage

98

Challenge and Opportunity

99

A Unified Interface to
All Data

One Key Challenge in Persistent Memory

n How to ensure consistency of system/data if all
memory is persistent?

n Two extremes
q Programmer transparent: Let the system handle it
q Programmer only: Let the programmer handle it

n Many alternatives in-between…

100

CHALLENGE:	CRASH	CONSISTENCY

System	crash	can	result	in	
permanent	data	corruption	in	NVM

101

Persistent	Memory	System

CRASH	CONSISTENCY	PROBLEM

102

Example: Add a node to a linked list

1.	Link	to	next2.	Link	to	prev

System	crash	can	result	in	
inconsistent	memory	state

CURRENT	SOLUTIONS
Explicit	interfaces	to	manage	consistency

– NV-Heaps	[ASPLOS’11],	BPFS	[SOSP’09],	Mnemosyne	[ASPLOS’11]

AtomicBegin {
Insert a new node;

} AtomicEnd;

Limits	adoption	of	NVM
Have	to	rewrite	code	with	clear	partition	
between	volatile	and	non-volatile	data

Burden	on	the	programmers
103

OUR	APPROACH:	ThyNVM

104

Goal:
Software transparent consistency in

persistent memory systems

ThyNVM:	Summary

105

• Checkpoints at	multiple	granularities	to	
reduce	both	checkpointing	latency	and	
metadata	overhead

• Overlaps checkpointing and	execution	to	
reduce	checkpointing	latency

• Adapts to	DRAM	and	NVM	characteristics

Performs	within	4.9% of	an	idealized	DRAM	
with	zero	cost	consistency

A new hardware-based
checkpointing mechanism

More About ThyNVM

106

n Jinglei Ren, Jishen Zhao, Samira Khan, Jongmoo Choi, Yongwei Wu,
and Onur Mutlu,
"ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems"
Proceedings of the 48th International Symposium on
Microarchitecture (MICRO), Waikiki, Hawaii, USA, December 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster
(pptx) (pdf)]
[Source Code]

Another Key Challenge in Persistent Memory

Programming Ease
to Exploit Persistence

107

Tools/Libraries to Help Programmers
n Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric

Schkufza, Onur Mutlu, and Pratap Subrahmanyam,
"NVMove: Helping Programmers Move to Byte-Based
Persistence"
Proceedings of the 4th Workshop on Interactions of NVM/Flash
with Operating Systems and Workloads (INFLOW), Savannah,
GA, USA, November 2016.
[Slides (pptx) (pdf)]

108

Agenda

n Major Trends Affecting Main Memory
n The Memory Scaling Problem
n Two Complementary Solution Directions

q New Memory (DRAM) Architectures
q Enabling Emerging (NVM) Technologies

n Conclusion

109

The Future of Emerging Technologies is Bright

n Regardless of challenges
q in underlying technology and overlying problems/requirements

110

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Can enable:

- Orders of magnitude
improvements

- New applications and
computing systems

Yet, we have to

- Think across the stack

- Design enabling systems

If In Doubt, Refer to Flash Memory
n A very “doubtful” emerging technology

q for at least two decades

111https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
September 11, 2017

ARM Research Summit

Opportunities and Challenges of
Emerging Memory Technologies

Overview Paper on Flash Reliability
n Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and

Onur Mutlu,
"Error Characterization, Mitigation, and Recovery in
Flash Memory Based Solid State Drives"
to appear in Proceedings of the IEEE, 2017.

113

Solution 2: Emerging Memory Technologies
n Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)
n Example: Phase Change Memory

q Expected to scale to 9nm (2022 [ITRS])
q Expected to be denser than DRAM: can store multiple bits/cell

n But, emerging technologies have shortcomings as well
q Can they be enabled to replace/augment/surpass DRAM?

n Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, IEEE Micro’10.
n Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.
n Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.
n Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.
n Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
n Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.
n Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.
n Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
n Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
n Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.
n Li+, “Utility-Based Hybrid Memory Management,” CLUSTER 2017.
n Yu+, “Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation,” MICRO 2017.

114

Combination: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
CtrlDRAM Technology X (e.g., PCM)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

App/Data	A App/Data	B App/Data	C

M
em

or
y	
er
ro
r	v

ul
ne

ra
bi
lit
y

Vulnerable	
data

Tolerant	
data

Exploiting	Memory	Error	Tolerance	
with	Hybrid	Memory	Systems

Heterogeneous-Reliability	Memory	[DSN	2014]

Low-cost	memoryReliable	memory

Vulnerable	
data

Tolerant	
data

Vulnerable	
data

Tolerant	
data

• ECC	protected
• Well-tested	chips

• NoECC or	Parity
• Less-tested	chips

116

On	Microsoft’s	Web	Search	workload
Reduces	server	hardware	cost	by	4.7	%
Achieves	single	server	availability target	of	99.90	%

More on Heterogeneous Reliability Memory
n Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman

Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary]
[Slides (pptx) (pdf)] [Coverage on ZDNet]

117

Challenge and Opportunity

Providing the Best of
Multiple Metrics

with
Multiple Memory Technologies

118

Challenge and Opportunity

119

Heterogeneous,
Configurable,
Programmable

Memory Systems

