
Onur Mutlu
onur.mutlu@inf.ethz.ch

https://people.inf.ethz.ch/omutlu
April 4, 2017

ARC 2017 Keynote

Rethinking Memory System Design

(and the Platforms We Design Around It)

The Main Memory System

!  Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

!  Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

2

Processors
and caches

Main Memory Storage (SSD/HDD) FPGAs GPUs

Memory System: A Shared Resource View

3

Storage

State of the Main Memory System
!  Recent technology, architecture, and application trends

"  lead to new requirements
"  exacerbate old requirements

!  DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

!  Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

!  We need to rethink the main memory system
"  to fix DRAM issues and enable emerging technologies
"  to satisfy all requirements

4

Agenda

!  Major Trends Affecting Main Memory
!  The Memory Scaling Problem and Solution Directions

"  New Memory Architectures
"  Enabling Emerging Technologies

!  Cross-Cutting Principles
!  Summary

5

Major Trends Affecting Main Memory (I)
!  Need for main memory capacity, bandwidth, QoS increasing

!  Main memory energy/power is a key system design concern

!  DRAM technology scaling is ending

6

Major Trends Affecting Main Memory (II)
!  Need for main memory capacity, bandwidth, QoS increasing

"  Multi-core: increasing number of cores/agents
"  Data-intensive applications: increasing demand/hunger for data
"  Consolidation: cloud computing, GPUs, mobile, heterogeneity

!  Main memory energy/power is a key system design concern

!  DRAM technology scaling is ending

7

Example: The Memory Capacity Gap

!  Memory capacity per core expected to drop by 30% every two years
!  Trends worse for memory bandwidth per core!

8

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years

Lim et al., ISCA 2009

Major Trends Affecting Main Memory (III)
!  Need for main memory capacity, bandwidth, QoS increasing

!  Main memory energy/power is a key system design concern

"  ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,
IEEE Computer 2003]

"  DRAM consumes power even when not used (periodic refresh)

!  DRAM technology scaling is ending

9

Major Trends Affecting Main Memory (IV)
!  Need for main memory capacity, bandwidth, QoS increasing

!  Main memory energy/power is a key system design concern

!  DRAM technology scaling is ending

"  ITRS projects DRAM will not scale easily below X nm
"  Scaling has provided many benefits:

!  higher capacity (density), lower cost, lower energy

10

Agenda

!  Major Trends Affecting Main Memory
!  The Memory Scaling Problem and Solution Directions

"  New Memory Architectures
"  Enabling Emerging Technologies

!  Cross-Cutting Principles
!  Summary

11

The DRAM Scaling Problem
!  DRAM stores charge in a capacitor (charge-based memory)

"  Capacitor must be large enough for reliable sensing
"  Access transistor should be large enough for low leakage and high

retention time
"  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

!  DRAM capacity, cost, and energy/power hard to scale

12

 Row of Cells

 Row

 Row

 Row

 Row

 Wordline

 VLOW
 VHIGH

 Vic2m Row

 Vic2m Row

 Hammered Row

Repeatedly opening and closing a row enough 2mes within a
refresh interval induces disturbance errors in adjacent rows in
most real DRAM chips you can buy today

Opened
Closed

13

An Example of the DRAM Scaling Problem

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	

86%

(37/43)

83%

(45/54)

88%

(28/32)

A company
 B company
 C company

Up to

1.0×107 �

errors

Up to

2.7×106�

errors

Up to

3.3×105 �

errors

14

Most DRAM Modules Are at Risk

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	

DRAM Module
x86 CPU

Y

X

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

hLps://github.com/CMU-SAFARI/rowhammer		

DRAM Module
x86 CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Y

X

hLps://github.com/CMU-SAFARI/rowhammer		

DRAM Module
x86 CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Y

X

hLps://github.com/CMU-SAFARI/rowhammer		

DRAM Module
x86 CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Y

X

hLps://github.com/CMU-SAFARI/rowhammer		

•  A real reliability & security issue

•  In a more controlled environment, we can

induce as many as ten million disturbance errors

CPU Architecture
 Errors Access-Rate

Intel Haswell (2013)
 22.9K	 12.3M/sec	

Intel Ivy Bridge (2012)
 20.7K	 11.7M/sec	

Intel Sandy Bridge (2011)
 16.1K	 11.6M/sec	

AMD Piledriver (2012)
 59	 6.1M/sec	

19
Kim+, “Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	
DRAM	Disturbance	Errors,” ISCA 2014.

Observed Errors in Real Systems

20

All modules from 2012–2013 are vulnerable

First

Appearance

Errors vs. Vintage

Experimental DRAM Testing Infrastructure

21

An Experimental Study of Data Retention
Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

Experimental Infrastructure (DRAM)

22 Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

Heater FPGAs FPGAs

One Can Take Over an Otherwise-Secure System

23

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

RowHammer Security Attack Example
!  “Rowhammer” is a problem with some recent DRAM devices in which

repeatedly accessing a row of memory can cause bit flips in adjacent rows
(Kim et al., ISCA 2014).
"  Flipping Bits in Memory Without Accessing Them: An Experimental Study of

DRAM Disturbance Errors (Kim et al., ISCA 2014)

!  We tested a selection of laptops and found that a subset of them
exhibited the problem.

!  We built two working privilege escalation exploits that use this effect.
"  Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

!  One exploit uses rowhammer-induced bit flips to gain kernel privileges on
x86-64 Linux when run as an unprivileged userland process.

!  When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTEs).

!  It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

24 Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

Security Implications

25

More Security Implications

26 Source: https://lab.dsst.io/32c3-slides/7197.html

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript

More Security Implications

27 Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms

More Security Implications?

28

Apple’s Patch for RowHammer
!  https://support.apple.com/en-gb/HT204934

HP and Lenovo released similar patches

Challenge and Opportunity

Reliability
(and Security)

30

Departing From “Business as Usual”

31

More Intelligent
Memory Controllers

Online System-Level Tolerance
of Memory “Issues”

Large-Scale Failure Analysis of DRAM Chips
!  Analysis and modeling of memory errors found in all of

Facebook’s server fleet

!  Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the
45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.
[Slides (pptx) (pdf)] [DRAM Error Model]

32

Intuition: quadratic increase in capacity

DRAM Reliability Reducing

Aside: Flash Error Analysis in the Field
!  First large-scale field study of flash memory errors

!  Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the
ACM International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Coverage at ZDNet]

34

Aside: Experimental Infrastructure (Flash)

35

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm
NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014,
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017]

Another Talk: NAND Flash Scaling Challenges
!  Onur Mutlu,

"Error Analysis and Management for MLC NAND Flash Memory"
Technical talk at Flash Memory Summit 2014 (FMS), Santa Clara, CA, August
2014. Slides (ppt) (pdf)

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD
2012.
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE
2013.
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.
Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.
Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.
Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST
2015.
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.
Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE
JSAC 2016.
Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation
Techniques,” HPCA 2017.
Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.

 36

Recap: The DRAM Scaling Problem

37

How Do We Solve The Problem?
!  Fix it: Make memory and controllers more intelligent

"  New interfaces, functions, architectures: system-mem codesign

!  Eliminate or minimize it: Replace or (more likely) augment
DRAM with a different technology
"  New technologies and system-wide rethinking of memory &

storage

!  Embrace it: Design heterogeneous memories (none of which
are perfect) and map data intelligently across them
"  New models for data management and maybe usage

!  …

38

Solu%ons	(to	memory	scaling)	require		
so5ware/hardware/device	coopera%on	

Microarchitecture

ISA

Programs

Algorithms
Problems

Logic

Devices

Runtime System
(VM, OS, MM)

User

Solution 1: New Memory Architectures

!  Overcome memory shortcomings with
"  Memory-centric system design
"  Novel memory architectures, interfaces, functions
"  Better waste management (efficient utilization)

!  Key issues to tackle
"  Enable reliability at low cost
"  Reduce energy
"  Improve latency and bandwidth
"  Reduce waste (capacity, bandwidth, latency)
"  Enable computation close to data

39

Solution 1: New Memory Architectures
!  Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
!  Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
!  Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
!  Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.
!  Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.
!  Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.
!  Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.
!  Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.
!  Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.
!  Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

!  Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.
!  Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.
!  Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 2015.
!  Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.
!  Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.
!  Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.
!  Ahn+, “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.
!  Lee+, “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015.
!  Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO 2015.
!  Lee+, “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” TACO 2016.
!  Hassan+, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality,” HPCA 2016.

!  Chang+, “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Migration in DRAM,” HPCA 2016.
!  Chang+, “Understanding Latency Variation in Modern DRAM Chips Experimental Characterization, Analysis, and Optimization,” SIGMETRICS 2016.
!  Khan+, “PARBOR: An Efficient System-Level Technique to Detect Data Dependent Failures in DRAM,” DSN 2016.
!  Hsieh+, “Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems,” ISCA 2016.
!  Hashemi+, “Accelerating Dependent Cache Misses with an Enhanced Memory Controller,” ISCA 2016.
!  Boroumand+, “LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,” IEEE CAL 2016.
!  Pattnaik+, “Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities,” PACT 2016.
!  Hsieh+, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation,” ICCD 2016.
!  Hashemi+, “Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads,” MICRO 2016.
!  Khan+, “A Case for Memory Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM",” IEEE CAL 2016.
!  Hassan+, “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” HPCA 2017.

!  Avoid DRAM:
"  Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.
"  Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.
"  Seshadri+, “The Dirty-Block Index,” ISCA 2014.
"  Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.
"  Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” ISCA 2015.
"  Pekhimenko+, “Toggle-Aware Bandwidth Compression for GPUs,” HPCA 2016.

40

Solution 2: Emerging Memory Technologies
!  Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)
!  Example: Phase Change Memory

"  Expected to scale to 9nm (2022 [ITRS])
"  Expected to be denser than DRAM: can store multiple bits/cell

!  But, emerging technologies have shortcomings as well
"  Can they be enabled to replace/augment/surpass DRAM?

!  Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, IEEE Micro’10.
!  Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.
!  Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.
!  Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.
!  Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
!  Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.
!  Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.
!  Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
!  Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
!  Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.

41

Solution 3: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Technology X (e.g., PCM)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

App/Data	A	 App/Data	B	 App/Data	C	

M
em

or
y	
er
ro
r	v

ul
ne

ra
bi
lit
y	

Vulnerable	
data	

Tolerant	
data	

ExploiSng	Memory	Error	Tolerance		
with	Hybrid	Memory	Systems	

Heterogeneous-Reliability	Memory	[DSN	2014]	

Low-cost	memory	Reliable	memory	

Vulnerable	
data	

Tolerant	
data	

Vulnerable	
data	

Tolerant	
data	

•  ECC	protected	
• Well-tested	chips	

•  NoECC	or	Parity	
•  Less-tested	chips	

43	

On	MicrosoZ’s	Web	Search	workload	
Reduces	server	hardware	cost	by	4.7	%	
Achieves	single	server	availability	target	of	99.90	%	

Challenge and Opportunity

Providing the Best of
Multiple Metrics

44

Departing From “Business as Usual”

45

Heterogeneous Memory Systems

Configurable Memory Systems

An Orthogonal Issue: Memory Interference

Main
Memory

46

Core Core

Core Core

Cores’ interfere with each other when accessing shared main memory

This is uncontrolled today # Unpredictable, uncontrollable system

Goal: Predictable Performance in Complex Systems

!  Heterogeneous agents: CPUs, GPUs, and HWAs
!  Main memory interference between CPUs, GPUs, HWAs

47

CPU CPU CPU CPU

Shared Cache

GPU

HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance?

!  Solution: QoS-Aware Memory Systems

!  Hardware provides a configurable QoS substrate
"  Application-aware memory scheduling, partitioning, throttling

!  Software configures the substrate to satisfy various QoS goals

!  QoS-aware memory systems provide predictable performance
and higher efficiency

Subramanian et al., “MISE: Providing Performance Predictability and Improving Fairness in
Shared Main Memory Systems,” HPCA 2013.
Subramanian et al., “The Application Slowdown Model,” MICRO 2015.

QoS-Aware Memory Systems

Challenge and Opportunity

Strong
Memory Service

 Guarantees

49

Departing From “Business as Usual”

50

Predictable Memory Management

Programmable Memory Systems

Some Promising Directions

!  New memory architectures
"  Memory-centric system design

!  Enabling and exploiting emerging NVM technologies

"  Hybrid memory systems
"  Unified interface to all data

!  System-level QoS and predictability
"  Predictable systems with configurable QoS

51

Agenda

!  Major Trends Affecting Main Memory
!  The Memory Scaling Problem and Solution Directions

"  New Memory Architectures
"  Enabling Emerging Technologies

!  Cross-Cutting Principles
!  Summary

52

Rethinking Memory Architecture
!  Compute-capable memory

!  Refresh

!  Reliability

!  Latency

!  Bandwidth

!  Energy

!  Memory Compression
53

Why In-Memory Computation Today?

!  Push from Technology
"  DRAM Scaling at jeopardy
 # Controllers close to DRAM
 # Industry open to new memory architectures

!  Pull from Systems and Applications
"  Data access is a major system and application bottleneck
"  Systems are energy limited
"  Data movement much more energy-hungry than computation

54

Dally, HiPEAC 2015

Two Approaches to In-Memory Processing
!  1. Minimally change DRAM to enable simple yet powerful

computation primitives
"  RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)
"  Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
"  Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

!  2. Exploit the control logic in 3D-stacked memory to enable

more comprehensive computation near memory
"  PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015)
"  A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

(Ahn et al., ISCA 2015)
"  Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,

Mechanisms, Evaluation (Hsieh et al., ICCD 2016)
55

Bulk Copy and Initialization

56

Forking

00000
00000
00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration

Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

Today’s Memory: Bulk Data Copy

Memory
	

	

	

MC L3 L2 L1 CPU

1)	High	latency	

2)	High	bandwidth	uSlizaSon	

3)	Cache	polluSon	

4)	Unwanted	data	movement	

57	1046ns,	3.6uJ				(for	4KB	page	copy	via	DMA)	

Future: RowClone (In-Memory Copy)

Memory
	

	

	

MC L3 L2 L1 CPU

1)	Low	latency	

2)	Low	bandwidth	uSlizaSon	

3)	No	cache	polluSon	

4)	No	unwanted	data	movement	

58	1046ns,	3.6uJ	90ns,	0.04uJ	

DRAM Subarray Operation (load one byte)

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row

Transfer
row

Step 2: Read
Transfer byte
onto bus

RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row

M
em

or
y

C
ha

nn
el

Ch
ip
	I/
O
	 Bank	 Bank	I/O	

Subarray	

Intra Subarray
Copy (2 ACTs)

Inter Bank Copy
(Pipelined

Internal RD/WR)

Inter Subarray Copy
(Use Inter-Bank Copy Twice)

Generalized RowClone 0.01% area cost

RowClone: Latency and Energy Savings

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Latency	 Energy	

N
or
m
al
iz
ed

	S
av
in
gs
	

Baseline	 Intra-Subarray	
Inter-Bank	 Inter-Subarray	

11.6x	 74x	

62	
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

RowClone: Application Performance

63	

0

10

20

30

40

50

60

70

80

bootup compile forkbench mcached mysql shell

%
 C

om
pa

re
d

to
 B

as
el

in
e IPC Improvement Energy Reduction

RowClone: Multi-Core Performance

64	

0.9

1

1.1

1.2

1.3

1.4

1.5

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p

50 Workloads (4-core)

Baseline RowClone

End-to-End System Design

65	

	DRAM	(RowClone)	

Microarchitecture	

ISA	

Opera%ng	System	

Applica%on	
How to communicate
occurrences of bulk copy/
initialization across layers?

How to maximize latency and
energy savings?

How to ensure data coherence?

How to handle data reuse?

Goal: Ultra-Efficient Processing Near Data

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core
GPU

(throughput)
core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memory imaging
core

Memory Bus

Memory similar to a “conventional” accelerator

Enabling In-Memory X

▪  What is a flexible and scalable memory interface?
▪  What is the right partitioning of computation capability?
▪  What is the right low-cost memory substrate?
▪  What memory technologies are the best enablers?
▪  How do we rethink/ease X algorithms/applications?

Cache

Processor
Core

 Interconnect

 Memory
Database

Graphs

Media

Query

Results

In-DRAM AND/OR: Triple Row Activation

68

½VDD	

½VDD	

dis	

A	

B	

C	

Final	State	
AB	+	BC	+	AC	

½VDD+δ	

C(A	+	B)	+	
~C(AB)	en	

0	

VDD	

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.

In-DRAM AND/OR Results
!  20X improvement in AND/OR throughput vs. Intel AVX
!  50.5X reduction in memory energy consumption
!  At least 30% performance improvement in range queries

69 Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

8K
B"

16
KB
"
32
KB
"
64
KB
"

12
8K
B"

25
6K
B"

51
2K
B"

1M
B"

2M
B"

4M
B"

8M
B"

16
MB
"

32
MB
"

Size of Vectors to be ANDed

In-DRAM AND (2 banks)

In-DRAM AND (1 bank)

Intel AVX

Going Forward

!  A bulk computation model in memory

!  New memory & software interfaces to
enable bulk in-memory computation

!  New programming models,
algorithms, compilers, and system
designs that can take advantage of
the model

70

Microarchitecture

ISA

Programs

Algorithms
Problems

Logic

Devices

Runtime System
(VM, OS, MM)

User

Gather-Scatter DRAM [MICRO 2015]

71 Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to
Improve the Spatial Locality of Non-unit Strided Accesses”, MICRO 2015.

Challenge and Opportunity

Primitives and Interfaces
for

Computation in Memory

72

73

Departing From “Business as Usual”

74

Memory No Longer a Dumb Device

Two Approaches to In-Memory Processing
!  1. Minimally change DRAM to enable simple yet powerful

computation primitives
"  RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)
"  Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
"  Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

!  2. Exploit the control logic in 3D-stacked memory to enable

more comprehensive computation near memory
"  PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015)
"  A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

(Ahn et al., ISCA 2015)
"  Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,

Mechanisms, Evaluation (Hsieh et al., ICCD 2016)
75

Key Bottlenecks in Graph Processing

76

for	(v:	graph.verSces)	{	
				for	(w:	v.successors)	{	
								w.next_rank	+=	weight	*	v.rank;	
				}	
}	

weight * v.rank	

v�

w�

&w�

1. Frequent random memory accesses	

2. Little amount of computation	

w.rank	

w.next_rank	

w.edges	

…	

Tesseract System for Graph Processing

77

Crossbar	Network�

…	

…	

…	
…	

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)	

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract System for Graph Processing

78

Crossbar	Network�

…	

…	

…	
…	

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)	

CommunicaSon	via	
Remote	FuncSon	Calls�

Tesseract System for Graph Processing

79

Crossbar	Network�

…	

…	

…	
…	

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)	

Prefetching�

Evaluated Systems

80

HMC-MC	

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

102.4GB/s	 640GB/s	 640GB/s	 8TB/s	

HMC-OoO	

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

(with FDP)	

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

DDR3-OoO	
(with FDP)	

Tesseract	

32	
Tesseract	
Cores�

(32-entry MQ, 4KB PF Buffer)	

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Workloads	

!  Five graph processing algorithms
"  Average teenage follower
"  Conductance
"  PageRank
"  Single-source shortest path
"  Vertex cover

!  Three real-world large graphs
"  ljournal-2008 (social network)
"  enwiki-2003 (Wikipedia)
"  indochina-0024 (web graph)
"  4~7M vertices, 79~194M edges

Tesseract Graph Processing Performance

82

+56%	 +25%	

9.0x	

11.6x	

13.8x	

0	

2	

4	

6	

8	

10	

12	

14	

16	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

Sp
ee
du

p�

>13X Performance Improvement	

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

83

+56%	 +25%	

9.0x	

11.6x	

13.8x	

0	

2	

4	

6	

8	

10	

12	

14	

16	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

Sp
ee
du

p�

80GB/s	 190GB/s	 243GB/s	

1.3TB/s	

2.2TB/s	

2.9TB/s	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

M
em

or
y	
Ba

nd
w
id
th
	(T

B/
s)
	

Memory	Bandwidth	Consump%on	

Memory Energy Consumption (Normalized)

84

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

HMC-OoO	 Tesseract	with	Prefetching	

Memory	Layers	 Logic	Layers	 Cores	

8X Energy Reduction	

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Challenge and Opportunity

Memory
Bandwidth

and
Energy

85

Departing From “Business as Usual”

86

Memory No Longer a Dumb Device

Autonomous and Self-Managing
Memory

More on PIM: PIM-Enabled Instructions
!  Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the
42nd International Symposium on Computer Architecture
(ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

87

More on PIM Design: 3D-Stacked GPU I
!  Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the
43rd International Symposium on Computer Architecture (ISCA), Seoul,
South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

88

More on PIM Design: 3D-Stacked GPU II
!  Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the
25th International Conference on Parallel Architectures and Compilation
Techniques (PACT), Haifa, Israel, September 2016.

89

Key Challenge 1	

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack) SM (Streaming Multiprocessor)

Key Challenge 1	

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

?	

Main GPU

3D-stacked memory
(memory stack)

• Challenge 1: Which operations should be executed
on the logic layer SMs?

?	
SM (Streaming Multiprocessor)

Key Challenge 2

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack)

• Challenge 2: How should data be mapped to
different 3D memory stacks?

SM (Streaming Multiprocessor)

More on PIM Design: Dependent Misses
!  Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller"
Proceedings of the
43rd International Symposium on Computer Architecture (ISCA), Seoul,
South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

93

More on PIM: Linked Data Structures
!  Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation"
Proceedings of the
34th IEEE International Conference on Computer Design (ICCD),
Phoenix, AZ, USA, October 2016.

94

More on PIM Design: Coherence

!  Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

95

An FPGA-based Test-bed for PIM?

!  Hasan Hassan et al., “SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

!  Flexible
!  Easy to Use (C++ API)
!  Open-source
 github.com/CMU-SAFARI/SoftMC

96

Simulation Infrastructures for PIM

!  Ramulator extended for PIM
"  Flexible and extensible DRAM simulator
"  Can model many different memory standards and proposals
"  Kim+, “Ramulator: A Flexible and Extensible DRAM

Simulator”, IEEE CAL 2015.
"  https://github.com/CMU-SAFARI/ramulator

97

Rethinking Memory Architecture
!  Compute Capable Memory

!  Refresh

!  Reliability

!  Latency

!  Bandwidth

!  Energy

!  Memory Compression
98

DRAM Refresh
!  DRAM capacitor charge leaks over time

!  The memory controller needs to refresh each row
periodically to restore charge
"  Activate each row every N ms
"  Typical N = 64 ms

!  Downsides of refresh
 -- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM capacity scaling
 99

Refresh Overhead: Performance

100

8%	

46%	

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Refresh Overhead: Energy

101

15%	

47%	

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Retention Time Profile of DRAM

102

RAIDR: Eliminating Unnecessary Refreshes
!  Observation: Most DRAM rows can be refreshed much less often

without losing data [Kim+, EDL’09][Liu+ ISCA’13]

!  Key idea: Refresh rows containing weak cells
 more frequently, other rows less frequently

1. Profiling: Profile retention time of all rows
2. Binning: Store rows into bins by retention time in memory controller

 Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)
3. Refreshing: Memory controller refreshes rows in different bins at
different rates

!  Results: 8-core, 32GB, SPEC, TPC-C, TPC-H
"  74.6% refresh reduction @ 1.25KB storage
"  ~16%/20% DRAM dynamic/idle power reduction
"  ~9% performance improvement
"  Benefits increase with DRAM capacity

103
Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Experimental DRAM Testing Infrastructure

104

An Experimental Study of Data Retention
Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

Experimental Infrastructure (DRAM)

105 Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

Heater FPGAs FPGAs

More Information [ISCA’13]

106

More Information [SIGMETRICS’14]

107

Op%mize	DRAM	and	mi%gate	errors	online		
without	disturbing	the	system	and	applica%ons	

Ini%ally	protect	DRAM		
with	ECC	 1	

Periodically	test	
	parts	of	DRAM	 2	

Test	
Test	
Test	

Adjust	refresh	rate	and	
reduce	ECC	 3	

Online Profiling of DRAM In the Field

Online Profiling of DRAM [DSN’15]

109

Online Profiling of DRAM [DSN’16]

110

Online Profiling of DRAM [IEEE CAL’16]

111

Challenge and Opportunity

Minimizing Refresh
(and Other Technology Taxes)

112

Departing From “Business as Usual”

113

Online Detection and
Management of Memory Errors

(Online Avoidance of Technology Taxes)

Rethinking Memory Architecture
!  In-Memory Computation

!  Refresh

!  Reliability

!  Latency

!  Bandwidth

!  Energy

!  Memory Compression
114

Many More
Challenges and Opportunities

Agenda

!  Major Trends Affecting Main Memory
!  The Memory Scaling Problem and Solution Directions

"  New Memory Architectures
"  Enabling Emerging Technologies

!  Cross-Cutting Principles
!  Summary

115

Limits of Charge Memory
!  Difficult charge placement and control

"  Flash: floating gate charge
"  DRAM: capacitor charge, transistor leakage

!  Reliable sensing becomes difficult as charge
storage unit size reduces

116

Promising Resistive Memory Technologies
!  PCM

"  Inject current to change material phase
"  Resistance determined by phase

!  STT-MRAM
"  Inject current to change magnet polarity
"  Resistance determined by polarity

!  Memristors/RRAM/ReRAM
"  Inject current to change atomic structure
"  Resistance determined by atom distance

117

Emerging Memory Technologies
!  Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)

!  Example: Phase Change Memory
"  Data stored by changing phase of material
"  Data read by detecting material’s resistance
"  Expected to scale to 9nm (2022 [ITRS])
"  Prototyped at 20nm (Raoux+, IBM JRD 2008)
"  Expected to be denser than DRAM: can store multiple bits/cell

!  But, emerging technologies have (many) shortcomings
"  Can they be enabled to replace/augment/surpass DRAM?

118

Phase Change Memory: Pros and Cons
!  Pros over DRAM

"  Better technology scaling (capacity and cost)
"  Non volatile # Persistent
"  Low idle power (no refresh)

!  Cons
"  Higher latencies: ~4-15x DRAM (especially write)
"  Higher active energy: ~2-50x DRAM (especially write)
"  Lower endurance (a cell dies after ~108 writes)
"  Reliability issues (resistance drift)

!  Challenges in enabling PCM as DRAM replacement/helper:
"  Mitigate PCM shortcomings
"  Find the right way to place PCM in the system

119

PCM-based Main Memory (I)
!  How should PCM-based (main) memory be organized?

!  Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:
"  How to partition/migrate data between PCM and DRAM

120

PCM-based Main Memory (II)
!  How should PCM-based (main) memory be organized?

!  Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:

"  How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

121

An Initial Study: Replace DRAM with PCM
!  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change

Memory as a Scalable DRAM Alternative,” ISCA 2009.
"  Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
"  Derived “average” PCM parameters for F=90nm

122

Results: Naïve Replacement of DRAM with PCM
!  Replace DRAM with PCM in a 4-core, 4MB L2 system
!  PCM organized the same as DRAM: row buffers, banks, peripherals
!  1.6x delay, 2.2x energy, 500-hour average lifetime

!  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a

Scalable DRAM Alternative,” ISCA 2009.
123

Results: Architected PCM as Main Memory
!  1.2x delay, 1.0x energy, 5.6-year average lifetime
!  Scaling improves energy, endurance, density

!  Caveat 1: Worst-case lifetime is much shorter (no guarantees)
!  Caveat 2: Intensive applications see large performance and energy hits
!  Caveat 3: Optimistic PCM parameters?

124

A More Viable Approach: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Data Placement Between DRAM and PCM
!  Idea: Characterize data access patterns and guide data

placement in hybrid memory

!  Streaming accesses: As fast in PCM as in DRAM

!  Random accesses: Much faster in DRAM

!  Idea: Place random access data with some reuse in DRAM;
streaming data in PCM

!  Yoon+, “Row Buffer Locality-Aware Data Placement in
Hybrid Memories,” ICCD 2012 Best Paper Award.

126

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Weighted Speedup Max. Slowdown Perf. per Watt
Normalized Metric

16GB PCM RBLA-Dyn 16GB DRAM

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 M
ax

. S
lo

w
do

w
n

Hybrid vs. All-PCM/DRAM [ICCD’12]

31%	be]er	performance	than	all	PCM,		
within	29%	of	all	DRAM	performance	

31%	

29%	

Yoon+,	“Row	Buffer	Locality-Aware	Data	Placement	in	Hybrid	Memories,”	ICCD	2012	Best	Paper	Award.	

STT-MRAM as Main Memory
!  Magnetic Tunnel Junction (MTJ) device

"  Reference layer: Fixed magnetic orientation
"  Free layer: Parallel or anti-parallel

!  Magnetic orientation of the free layer
determines logical state of device
"  High vs. low resistance

!  Write: Push large current through MTJ to
change orientation of free layer

!  Read: Sense current flow

!  Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

Reference Layer

Free Layer

Barrier

Reference Layer

Free Layer

Barrier

Logical 0

Logical 1

Word Line

Bit Line

Access
Transistor

MTJ

Sense Line

STT-MRAM: Pros and Cons
!  Pros over DRAM

"  Better technology scaling
"  Non volatility
"  Low idle power (no refresh)

!  Cons
"  Higher write latency
"  Higher write energy
"  Reliability?

!  Another level of freedom
"  Can trade off non-volatility for lower write latency/energy (by

reducing the size of the MTJ)

129

Architected STT-MRAM as Main Memory
!  4-core, 4GB main memory, multiprogrammed workloads
!  ~6% performance loss, ~60% energy savings vs. DRAM

130

88%

90%

92%

94%

96%

98%

P
er

fo
rm

an
ce

vs

.
D

R
A

M

STT-RAM (base) STT-RAM (opt)

0%

20%

40%

60%

80%

100%

E
n

er
g

y

vs
.

D
R

A
M

ACT+PRE WB RB

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

Challenge and Opportunity

Enabling an Emerging Technology
to Replace DRAM

131

Departing From Business As Usual

132

Hybrid Memory

Persistent Memory

Other Opportunities with Emerging Technologies

!  Merging of memory and storage
"  e.g., a single interface to manage all data

!  New applications
"  e.g., ultra-fast checkpoint and restore

!  More robust system design
"  e.g., reducing data loss

!  Processing tightly-coupled with memory
"  e.g., enabling efficient search and filtering

133

Coordinated Memory and Storage with NVM (I)
!  The traditional two-level storage model is a bottleneck with NVM

"  Volatile data in memory # a load/store interface
"  Persistent data in storage # a file system interface
"  Problem: Operating system (OS) and file system (FS) code to locate, translate,

buffer data become performance and energy bottlenecks with fast NVM stores

134

Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

Persistent (e.g., Phase-Change)
Memory

Coordinated Memory and Storage with NVM (II)

!  Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
"  Improves both energy and performance
"  Simplifies programming model as well

135

Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

The Persistent Memory Manager (PMM)

136

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Load Store

DRAM Flash NVM HDD

Persistent Memory Manager
Hardware

Software
Data Layout, Persistence, Metadata, Security, ...

Hints from SW/OS/runtime

PMM	uses	access	and	hint	informa%on	to	allocate,	locate,	migrate	
and	access	data	in	the	heterogeneous	array	of	devices	

Persistent objects

The Persistent Memory Manager (PMM)
!  Exposes a load/store interface to access persistent data

"  Applications can directly access persistent memory # no conversion,
translation, location overhead for persistent data

!  Manages data placement, location, persistence, security
"  To get the best of multiple forms of storage

!  Manages metadata storage and retrieval
"  This can lead to overheads that need to be managed

!  Exposes hooks and interfaces for system software
"  To enable better data placement and management decisions

!  Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

137

Performance Benefits of a Single-Level Store

138

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

User CPU User Memory Syscall CPU Syscall I/O

0.044
0.009

~5X

~24X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

Energy Benefits of a Single-Level Store

139

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

Fr
ac

tio
n

of
 T

ot
al

En
er

gy

User CPU Syscall CPU DRAM NVM HDD

0.065
0.013

~5X

~16X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

Challenge and Opportunity

Combined
Memory & Storage

140

Departing From “Business as Usual”

141

A Unified Interface to All Data

Agenda

!  Major Trends Affecting Main Memory
!  The Memory Scaling Problem and Solution Directions

"  New Memory Architectures
"  Enabling Emerging Technologies

!  Cross-Cutting Principles
!  Summary

142

Principles (So Far)

!  Better interfaces between layers of the system stack
"  Expose more information judiciously across the system stack
"  Design more flexible and efficient interfaces

!  Better-than-worst-case design
"  Do not optimize for the worst case
"  Worst case should not determine the common case

!  Heterogeneity in design (specialization, asymmetry)
"  Enables a more efficient design (No one size fits all)

!  These principles are coupled (and require broad thinking)

143

Microarchitecture

ISA

Programs

Algorithms
Problems

Logic

Devices

Runtime System
(VM, OS, MM)

User

Agenda

!  Major Trends Affecting Main Memory
!  The Memory Scaling Problem and Solution Directions

"  New Memory Architectures
"  Enabling Emerging Technologies

!  Cross-Cutting Principles
!  Summary

144

Summary

Business as Usual Opportunity

RowHammer Memory controller anticipates and fixes errors

Fixed, frequent refreshes Heterogeneous refresh rate across memory

Fixed, high latency Heterogeneous latency in time and space

Slow page copy & initialization Exploit internal connectivity in memory to move data

Fixed reliability mechanisms Heterogeneous reliability across time and space

Memory as a dumb device Memory as an accelerator and autonomous agent

DRAM-only main memory Emerging memory technologies and hybrid memories

Two-level data storage model Unified interface to all data

Large timing and error margins Online adaptation of timing and error margins

Poor performance guarantees Strong service guarantees and configurable QoS

Fixed policies in controllers Configurable and programmable memory controllers

… …

145

Summary
!  Memory problems are a critical bottleneck for system

performance, efficiency, and usability

!  New memory architectures
"  Compute capable and autonomous memory

!  Enabling emerging NVM technologies
"  Persistent and hybrid memory

!  System-level memory/storage QoS
"  Predictable systems with configurable QoS

!  Many opportunities and challenges that will change
the systems and software we design

146

Acknowledgments

!  My current and past students and postdocs
"  Rachata Ausavarungnirun, Abhishek Bhowmick, Amirali

Boroumand, Rui Cai, Yu Cai, Kevin Chang, Saugata Ghose, Kevin
Hsieh, Tyler Huberty, Ben Jaiyen, Samira Khan, Jeremie Kim,
Yoongu Kim, Yang Li, Jamie Liu, Lavanya Subramanian,
Donghyuk Lee, Yixin Luo, Justin Meza, Gennady Pekhimenko,
Vivek Seshadri, Lavanya Subramanian, Nandita Vijaykumar,
HanBin Yoon, Jishen Zhao, …

!  My collaborators
"  Can Alkan, Chita Das, Phil Gibbons, Sriram Govindan, Norm

Jouppi, Mahmut Kandemir, Mike Kozuch, Konrad Lai, Ken Mai,
Todd Mowry, Yale Patt, Moinuddin Qureshi, Partha Ranganathan,
Bikash Sharma, Kushagra Vaid, Chris Wilkerson, …

147

Funding Acknowledgments
!  NSF
!  GSRC
!  SRC
!  CyLab
!  AMD, Google, Facebook, HP Labs, Huawei, IBM, Intel,

Microsoft, Nvidia, Oracle, Qualcomm, Rambus, Samsung,
Seagate, VMware

148

Some Open Source Tools
!  Rowhammer

"  https://github.com/CMU-SAFARI/rowhammer

!  Ramulator – Fast and Extensible DRAM Simulator
"  https://github.com/CMU-SAFARI/ramulator

!  MemSim
"  https://github.com/CMU-SAFARI/memsim

!  NOCulator
"  https://github.com/CMU-SAFARI/NOCulator

!  DRAM Error Model
"  http://www.ece.cmu.edu/~safari/tools/memerr/index.html

!  Other open-source software from my group
"  https://github.com/CMU-SAFARI/
"  http://www.ece.cmu.edu/~safari/tools.html

149

Referenced Papers

!  All are available at
http://users.ece.cmu.edu/~omutlu/projects.htm
http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en

!  A detailed accompanying overview paper

"  Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2015.

150

Related Videos and Course Materials
!  Undergraduate Computer Architecture Course Lecture

Videos (2013, 2014, 2015)
!  Undergraduate Computer Architecture Course

Materials (2013, 2014, 2015)

!  Graduate Computer Architecture Lecture Videos
(2013, 2015)

!  Graduate Computer Architecture Course Materials
(2013, 2015)

!  Parallel Computer Architecture Course Materials
(Lecture Videos)

!  Memory Systems Short Course Materials
 (Lecture Video on Main Memory and DRAM Basics)

151

Thank you.

onur.mutlu@inf.ethz.ch

https://people.inf.ethz.ch/omutlu

152

Onur Mutlu
onur.mutlu@inf.ethz.ch

https://people.inf.ethz.ch/omutlu
April 4, 2017

ARC 2017 Keynote

Rethinking Memory System Design

(and the Platforms We Design Around It)

Backup Slides

154

NAND Flash Memory Scaling

155

Another Talk: NAND Flash Scaling Challenges
!  Onur Mutlu,

"Error Analysis and Management for MLC NAND Flash Memory"
Technical talk at Flash Memory Summit 2014 (FMS), Santa Clara, CA, August
2014. Slides (ppt) (pdf)

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD
2012.
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE
2013.
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.
Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.
Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.
Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST
2015.
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.
Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE
JSAC 2016.
Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation
Techniques,” HPCA 2017.

156

Experimental Infrastructure (Flash)

157

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

3x-nm
NAND Flash

[Cai+, DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD
2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015]

Error Management in MLC NAND Flash

!  Problem: MLC NAND flash memory reliability/endurance is a key
challenge for satisfying future storage systems’ requirements

!  Our Goals: (1) Build reliable error models for NAND flash
memory via experimental characterization, (2) Develop efficient
techniques to improve reliability and endurance

!  This talk provides a “flash” summary of our recent results
published in the past 3 years:
"  Experimental error and threshold voltage characterization [DATE’12&13]

"  Retention-aware error management [ICCD’12]
"  Program interference analysis and read reference V prediction [ICCD’13]
"  Neighbor-assisted error correction [SIGMETRICS’14]

158

Ramulator: A Fast and Extensible
DRAM Simulator

 [IEEE Comp Arch Letters’15]

159

Ramulator Motivation
!  DRAM and Memory Controller landscape is changing
!  Many new and upcoming standards
!  Many new controller designs
!  A fast and easy-to-extend simulator is very much needed

160

Ramulator
!  Provides out-of-the box support for many DRAM standards:

"  DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

!  ~2.5X faster than fastest open-source simulator
!  Modular and extensible to different standards

161

Case Study: Comparison of DRAM Standards

162

Across 22
workloads,
simple CPU
model

Ramulator Paper and Source Code
!  Yoongu Kim, Weikun Yang, and Onur Mutlu,

"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

!  Source code is released under the liberal MIT License
"  https://github.com/CMU-SAFARI/ramulator

163

DRAM Infrastructure

164

Experimental DRAM Testing Infrastructure

165

An Experimental Study of Data Retention
Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

Experimental Infrastructure (DRAM)

166 Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

Heater FPGAs FPGAs

ThyNVM

167

One Challenge

!  How to ensure consistency of system/data if all memory is
persistent?

!  Two extremes
"  Programmer transparent: Let the system handle everything
"  Programmer only: Let the programmer handle everything
"  Many alternatives in-between…

168

CHALLENGE:	CRASH	CONSISTENCY	

	
	
	
	
	
	
	
	
	
	

System	crash	can	result	in		
permanent	data	corrup%on	in	NVM	

169	

Persistent	Memory	System	

	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
Explicit	interfaces	to	manage	consistency	

– NV-Heaps	[ASPLOS’11],	BPFS	[SOSP’09],	Mnemosyne	[ASPLOS’11]	

AtomicBegin {
 Insert a new node;
} AtomicEnd;

Limits	adop%on	of	NVM	
Have	to	rewrite	code	with	clear	par%%on		
between	vola%le	and	non-vola%le	data	

Burden	on	the	programmers	
170	

	
	
	
	
	
	
	
	
	
	

OUR	APPROACH:	ThyNVM	

171	

Goal:
Software transparent consistency in

persistent memory systems

	
	
	
	
	
	
	
	
	
	

ThyNVM:	Summary	

172	

•  Checkpoints	at	mul$ple	granulari$es	to	
reduce	both	checkpoinSng	latency	and	
metadata	overhead	

•  Overlaps	checkpoin$ng	and	execu$on	to	
reduce	checkpoinSng	latency	

•  Adapts	to	DRAM	and	NVM	characterisScs	

Performs	within	4.9%	of	an	idealized	DRAM	
with	zero	cost	consistency	

A new hardware-based
checkpointing mechanism

More About ThyNVM

173

!  Ren+, “ThyNVM: Enabling Software-Transparent Crash
Consistency in Persistent Memory Systems,” MICRO 2015.

CHALLENGE:	CRASH	CONSISTENCY	

	
	
	
	
	
	
	
	
	
	

System	crash	can	result	in		
permanent	data	corrup%on	in	NVM	

174	

Persistent	Memory	System	

	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
Explicit	interfaces	to	manage	consistency	

– NV-Heaps	[ASPLOS’11],	BPFS	[SOSP’09],	Mnemosyne	[ASPLOS’11]	

AtomicBegin {
 Insert a new node;
} AtomicEnd;

Limits	adop%on	of	NVM	
Have	to	rewrite	code	with	clear	par%%on		
between	vola%le	and	non-vola%le	data	

Burden	on	the	programmers	
175	

	
	
	
	
	
	
	
	
	
	

OUR	APPROACH:	ThyNVM	

176	

Goal:
Software transparent consistency in

persistent memory systems

	
	
	
	
	
	
	
	
	
	

ThyNVM:	Summary	

177	

•  Checkpoints	at	mul$ple	granulari$es	to	
reduce	both	checkpoinSng	latency	and	
metadata	overhead	

•  Overlaps	checkpoin$ng	and	execu$on	to	
reduce	checkpoinSng	latency	

•  Adapts	to	DRAM	and	NVM	characterisScs	

Performs	within	4.9%	of	an	idealized	DRAM	
with	zero	cost	consistency	

A new hardware-based
checkpointing mechanism

DRAM Latency

178

Rethinking Memory Architecture
!  Compute Capable Memory

!  Refresh

!  Reliability

!  Latency

!  Bandwidth

!  Energy

!  Memory Compression
179

DRAM Latency vs. Capacity vs. Bandwidth

DRAM	latency	con$nues	to	be	a	cri$cal	bo=leneck,	
especially	for	response	$me-sensi$ve	workloads	

180

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015

Im
pr

ov
em

en
t

Capacity Bandwidth Latency
64x

16x

1.2x

A Closer Look …

181

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

Why the Long Latency?

!  Design of DRAM uArchitecture
"  Goal: Maximize capacity/area, not minimize latency

!  One size fits all approach to latency specification
"  Same latency parameters for all temperatures
"  Same latency parameters for all DRAM chips (e.g., rows)
"  Same latency parameters for all parts of a DRAM chip
"  Same latency parameters for all supply voltage levels
"  Same latency parameters for all application data
"  …

182

Tackling the Fixed Latency Mindset

!  Reliable operation latency is actually very heterogeneous
"  Across temperatures, chips, parts of a chip, voltage levels, …

!  Idea: Dynamically find out and use the lowest latency one
can reliably access a memory location with
"  Adaptive-Latency DRAM [HPCA 2015]
"  Flexible-Latency DRAM [SIGMETRICS 2016]
"  ...

!  We would like to find sources of latency heterogeneity and
exploit them to minimize latency

183

184

AL-DRAM	

•  Key idea

–  Op2mize DRAM 2ming parameters online

•  Two components

– DRAM manufacturer provides mul2ple sets of

reliable DRAM 2ming parameters at different
temperatures for each DIMM

– System monitors DRAM temperature & uses
appropriate DRAM 2ming parameters

reliable DRAM 2ming parameters

DRAM temperature

Lee+,	“AdapSve-Latency	DRAM:	OpSmizing	DRAM	Timing	for	the	Common-Case,”	HPCA	
2015.	

185

Latency	ReducSon	Summary	of	115	DIMMs	
•  Latency reducDon for read & write (55°C)

– Read Latency: 32.7%

– Write Latency: 55.1%

•  Latency reducDon for each Dming
parameter (55°C)

– Sensing: 17.3%

– Restore: 37.3% (read), 54.8% (write)

– Precharge: 35.2%

Lee+,	“AdapSve-Latency	DRAM:	OpSmizing	DRAM	Timing	for	the	Common-Case,”	HPCA	
2015.	

186

AL-DRAM:	Real	System	EvaluaSon	
•  System

– CPU: AMD 4386 (8 Cores, 3.1GHz, 8MB LLC)

– DRAM: 4GByte DDR3-1600 (800Mhz Clock)

– OS: Linux

– Storage: 128GByte SSD

•  Workload

– 35 applicaDons from SPEC, STREAM, Parsec,

Memcached, Apache, GUPS

187

0%

5%

10%

15%

20%

25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core
 Mul2 Core

0%

5%

10%

15%

20%

25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core
 Mul2 Core

1.4%

6.7%

0%

5%

10%

15%

20%

25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core
 Mul2 Core

5.0%

AL-DRAM:	Single-Core	EvaluaSon	

AL-DRAM improves single-core performance

on a real system

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t
 Average

Improvement

al
l-3

5-
w

or
kl

oa
d

188

0%

5%

10%

15%

20%

25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core
 Mul2 Core

0%

5%

10%

15%

20%

25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core
 Mul2 Core

0%

5%

10%

15%

20%

25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core
 Mul2 Core

14.0%

2.9%

0%

5%

10%

15%

20%

25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core
 Mul2 Core

10.4%

AL-DRAM:	MulS-Core	EvaluaSon	

AL-DRAM provides higher performance on

mulD-programmed & mulD-threaded workloads

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t
 Average

Improvement

al
l-3

5-
w

or
kl

oa
d

Heterogeneous Latency within A Chip

189

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25
N

or
m

al
iz

ed
 P

er
fo

rm
an

ce

40 Workloads

Baseline (DDR3)
FLY-DRAM (D1)
FLY-DRAM (D2)
FLY-DRAM (D3)
Upper Bound

17.6%
19.5%

19.7%

13.3%

Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.

And, What If …

!  … we can sacrifice reliability of some data to access it with
even lower latency?

190

ChargeCache

191

ChargeCache:	Executive	Summary	
•  Goal:	Reduce	average	DRAM	access	latency	with	no	
modiHication	to	the	existing	DRAM	chips	

•  Observations:		
1)  A	highly-charged	DRAM	row	can	be	accessed	with	low	latency	
2)  A	row’s	charge	is	restored	when	the	row	is	accessed	
3)  A	recently-accessed	row	is	likely	to	be	accessed	again:		

	Row	Level	Temporal	Locality	(RLTL)	
•  Key	Idea:	Track	recently-accessed	DRAM	rows	and	use	lower	
timing	parameters	if	such	rows	are	accessed	again	

•  ChargeCache:	
–  Low	cost	&	no	modiHications	to	the	DRAM	
–  Higher	performance	(8.6-10.6%	on	average	for	8-core)	
–  Lower	DRAM	energy	(7.9%	on	average)	

193

Data	0	

Data	1	
Cell	

time	

ch
ar
ge
	

Sense-AmpliKier	

DRAM	Charge	over	Time	

Sensing	 Restore	

Cell	

Sense	
Ampli5ier	

Precharge	

R/W	ACT	 PRE	

Ready	to	Access	
Charge	Level	

tRCD	

tRAS	

Ready	to	Access	 Ready	to		
Precharge	

194

Accessing	Highly-charged	Rows	

Data	0	

Data	1	

Cell	

time	

ch
ar
ge
	

Sense-AmpliKier	

Sensing	 Restore	 Precharge	

R/W	ACT	 PRE	tRCD	

tRAS	
R/W	 PRE	

Ready	to	Access	 Ready	to	
Precharge	

195

Observation	1	
A	highly-charged	DRAM	row	can	be	
accessed	with	low	latency	
•  tRCD: 44%

•  tRAS: 37%	

How	does	a	row	become	
highly-charged?	

196

How	Does	a	Row	Become	Highly-Charged?	

DRAM	cells	lose	charge	over	time	
Two	ways	of	restoring	a	row’s	charge:	
•  Refresh	Operation	
•  Access	

time	Refresh	

ch
ar
ge
	

Refresh	Access	

197

Observation	2	
A	row’s	charge	is	restored	when	the	row	
is	accessed	
	

How	likely	is	a	recently-accessed	
row	to	be	accessed	again?	

198

0%	
20%	
40%	
60%	
80%	
100%	

Fr
ac
ti
on
	o
f	A
cc
es
se
s	

Row	Level	Temporal	Locality	(RLTL)	

86%	

0%	
20%	
40%	
60%	
80%	
100%	

Fr
ac
ti
on
	o
f	A
cc
es
se
s	

97%	

A	recently-accessed	DRAM	row	is	likely	to	be	
accessed	again.	
•  t-RLTL:	Fraction	of	rows	that	are	accessed	
within	time	t	after	their	previous	access	

8ms	–	RLTL	for	single-core	workloads	8ms	–	RLTL	for	eight-core	workloads	

199

Key	Idea	

Track	recently-accessed	DRAM	rows	
and	use	lower	timing	parameters	if	

such	rows	are	accessed	again	

200

ChargeCache	Overview	

Memory	Controller	

ChargeCache	

A	

:B	

:D	
:C	

:E	
:F	

Requests:		

:A	

D	 A	

DRAM	

A	
D	

ChargeCache	Miss:	Use	Default	Timings	ChargeCache	Hit:	 Use	Lower	Timings	

201

Area	and	Power	Overhead	
• Modeled	with	CACTI	

• Area	
– ~5KB	for	128-entry	ChargeCache	
– 0.24%	of	a	4MB	Last	Level	Cache	(LLC)	
area	

	
• Power	Consumption	

– 0.15	mW	on	average	(static	+	dynamic)	
– 0.23%	of	the	4MB	LLC	power	consumption	

202

Methodology	
•  Simulator	

–  DRAM	Simulator	(Ramulator	[Kim+,	CAL’15])	
https://github.com/CMU-SAFARI/ramulator	

•  Workloads	
–  22	single-core	workloads	

•  SPEC	CPU2006,	TPC,	STREAM	
–  20	multi-programmed	8-core	workloads	

•  By	randomly	choosing	from	single-core	workloads	
–  Execute	at	least	1	billion	representative	instructions	per	
core	(Pinpoints)	

•  System	Parameters	
–  1/8	core	system	with	4MB	LLC	
–  Default	tRCD/tRAS	of	11/28	cycles	

203

0%	

4%	

8%	

12%	

16%	

Sp
ee
du
p	

Single-core	Performance	
NUAT	 ChargeCache	

ChargeCache	+	NUAT	 LL-DRAM	(Upper	bound)	

ChargeCache	improves		
single-core	performance	

204

Eight-core	Performance	
NUAT	 ChargeCache	

ChargeCache	+	NUAT	 LL-DRAM	(Upperbound)	

2.5%	 9%	

0%	
4%	
8%	
12%	
16%	

Sp
ee
du
p	

13%	

ChargeCache	significantly	improves	
mul%-core	performance	

205

DRAM	Energy	Savings	

0%	

5%	

10%	

15%	

Single-core	 Eight-core	

DR
AM

	E
ne
rg
y	

Re
du
ct
io
n	

Average	 Maximum	

ChargeCache	reduces	DRAM	energy	

More on ChargeCache
!  Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar,

Vivek Seshadri, Donghyuk Lee, Oguz Ergin, and Onur Mutlu,
"ChargeCache: Reducing DRAM Latency by Exploiting
Row Access Locality"
Proceedings of the
22nd International Symposium on High-Performance
Computer Architecture (HPCA), Barcelona, Spain, March
2016.
[Slides (pptx) (pdf)]

!  Source code will be released as part of Ramulator (May 2016)
"  https://github.com/CMU-SAFARI/ramulator

206

Tiered Latency DRAM

207

208	

DRAM	Latency	=	Subarray	Latency	+	I/O	Latency	

			What	Causes	the	Long	Latency?	
DRAM	Chip	

channel	

cell	array	

I/O	

DRAM	Chip	

channel	

I/O	

subarray	

DRAM	Latency	=	Subarray	Latency	+	I/O	Latency	

Dominant	
Su
ba

rr
ay
	

I/
O
	

209	

			Why	is	the	Subarray	So	Slow?	
Subarray	

ro
w
	d
ec
od

er
	

sense	amplifier	

ca
pa
ci
to
r	

access	
transistor	

wordline	

bi
tli
ne

	

Cell	

large	sense	amplifier	

bi
tli
ne

:	5
12
	c
el
ls
	cell	

•  Long	bitline	
– Amor%zes	sense	amplifier	cost	à	Small	area	
– Large	bitline	capacitance	à	High	latency	&	power	

se
ns
e	
am

pl
ifi
er
	

ro
w
	d
ec
od

er
	

210	

			Trade-Off:	Area	(Die	Size)	vs.	Latency	

Faster	

Smaller	

Short	Bitline	
	

Long	Bitline	
	

Trade-Off:	Area	vs.	Latency	

211	

			Trade-Off:	Area	(Die	Size)	vs.	Latency	

0	

1	

2	

3	

4	

0	 10	 20	 30	 40	 50	 60	 70	

N
or
m
al
iz
ed

	D
RA

M
	A
re
a	

Latency	(ns)	

64	

32	

128	
256	 512	cells/bitline	

Commodity	
DRAM	

Long	Bitline	

Ch
ea
pe

r	

Faster	

Fancy	DRAM	
Short	Bitline	

212	

Short	Bitline	

Low	Latency		

			Approxima%ng	the	Best	of	Both	Worlds	
Long	Bitline	

Small	Area		

Long	Bitline	

Low	Latency		

Short	Bitline	Our	Proposal	
Small	Area		

Short	Bitline	è	Fast	
Need	

IsolaPon	
Add	IsolaPon	
Transistors	

High	Latency	

Large	Area		

213	

			Approxima%ng	the	Best	of	Both	Worlds	

Low	Latency		

Our	Proposal	
Small	Area		

Long	Bitline	
Small	Area		

Long	Bitline	

High	Latency	

Short	Bitline	

Low	Latency		

Short	Bitline	
Large	Area		

Tiered-Latency	DRAM	

Low	Latency	

Small	area	
using	long	
bitline	

214	

0%	

50%	

100%	

150%	

0%	

50%	

100%	

150%	

	Commodity	DRAM	vs.	TL-DRAM	[HPCA	2013]		
La
te
nc
y	

Po
w
er
	

–56%	

+23%	

–51%	

+49%	
•  DRAM	Latency	(tRC)	•  DRAM	Power	

•  DRAM	Area	Overhead	
~3%:	mainly	due	to	the	isolaSon	transistors	

TL-DRAM	
Commodity	

DRAM	
Near							Far	 Commodity	

DRAM	
Near							Far	
TL-DRAM	

	(52.5ns)	

215	

			Trade-Off:	Area	(Die-Area)	vs.	Latency	

0	

1	

2	

3	

4	

0	 10	 20	 30	 40	 50	 60	 70	

N
or
m
al
iz
ed

	D
RA

M
	A
re
a	

Latency	(ns)	

64	

32	

128	
256	 			512	cells/bitline		

				

Ch
ea
pe

r	

Faster	

Near	Segment	 Far	Segment	

216	

			Leveraging	Tiered-Latency	DRAM		
•  TL-DRAM	is	a	substrate	that	can	be	leveraged	
by	the	hardware	and/or	soZware	

•  Many	potenSal	uses	
1. Use	near	segment	as	hardware-managed	inclusive	
cache	to	far	segment	

2. Use	near	segment	as	hardware-managed	exclusive	
cache	to	far	segment	

3. Profile-based	page	mapping	by	operaSng	system	
4. Simply	replace	DRAM	with	TL-DRAM	 	
	

Lee+,	“Tiered-Latency	DRAM:	A	Low	Latency	and	Low	Cost	DRAM	Architecture,”	HPCA	2013.	

217	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

1	(1-ch)	 2	(2-ch)	 4	(4-ch)	
0%	

20%	

40%	

60%	

80%	

100%	

120%	

1	(1-ch)	 2	(2-ch)	 4	(4-ch)	

			Performance	&	Power	Consump%on			
11.5%	

	

N
or
m
al
iz
ed

	P
er
fo
rm

an
ce
	

Core-Count	(Channel)	
N
or
m
al
iz
ed

	P
ow

er
	
Core-Count	(Channel)	

10.7%	
	

12.4%	
	 –23%	

	
–24%	
	

–26%	
	

Using	near	segment	as	a	cache	improves	
performance	and	reduces	power	consumpPon	

Lee+,	“Tiered-Latency	DRAM:	A	Low	Latency	and	Low	Cost	DRAM	Architecture,”	HPCA	2013.	

Rethinking Memory Architecture
!  Compute Capable Memory

!  Refresh

!  Reliability

!  Latency

!  Bandwidth

!  Energy

!  Memory Compression
218

Large DRAM Power in Modern Systems

219

>40% in POWER7 (Ware+, HPCA’10) >40% in GPU (Paul+, ISCA’15)

Why Is Power Large?

!  Design of DRAM uArchitecture
"  A lot of waste (granularity, latency, …)

!  High Voltage
"  Can we scale it down reliably?

!  High Frequency
"  Can we scale it down with low performance impact?

!  DRAM Refresh

!  …

220

Memory Dynamic Voltage/Freq. Scaling

!  Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Hanebutte, and
Onur Mutlu,
"Memory Power Management via Dynamic Voltage/Frequency
Scaling"
Proceedings of the
8th International Conference on Autonomic Computing (ICAC),
Karlsruhe, Germany, June 2011. Slides (pptx) (pdf)

221

New Memory Architectures
!  Compute Capable Memory

!  Refresh

!  Reliability

!  Latency

!  Bandwidth

!  Energy

!  Memory Compression
222

Readings on Memory Compression (I)
!  Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons,

Michael A. Kozuch, and Todd C. Mowry,
"Base-Delta-Immediate Compression: Practical Data
Compression for On-Chip Caches"
Proceedings of the
21st International Conference on Parallel Architectures and Compilation
Techniques (PACT), Minneapolis, MN, September 2012. Slides (pptx)
Source Code

223

Readings on Memory Compression (II)
!  Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur

Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"Linearly Compressed Pages: A Low-Complexity, Low-Latency
Main Memory Compression Framework"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [
Lightning Session Slides (pptx) (pdf)] Poster (pptx) (pdf)]

224

Readings on Memory Compression (III)
!  Gennady Pekhimenko, Tyler Huberty, Rui Cai, Onur Mutlu, Phillip P.

Gibbons, Michael A. Kozuch, and Todd C. Mowry,
"Exploiting Compressed Block Size as an Indicator of Future
Reuse"
Proceedings of the
21st International Symposium on High-Performance Computer
Architecture (HPCA), Bay Area, CA, February 2015.
[Slides (pptx) (pdf)]

225

Readings on Memory Compression (IV)
!  Gennady Pekhimenko, Evgeny Bolotin, Nandita Vijaykumar, Onur Mutlu,

Todd C. Mowry, and Stephen W. Keckler,
"A Case for Toggle-Aware Compression for GPU Systems"
Proceedings of the
22nd International Symposium on High-Performance Computer
Architecture (HPCA), Barcelona, Spain, March 2016.
[Slides (pptx) (pdf)]

226

Readings on Memory Compression (V)
!  Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek

Bhowmick, Rachata Ausavarungnirun, Chita Das, Mahmut Kandemir, Todd
C. Mowry, and Onur Mutlu,
"A Case for Core-Assisted Bottleneck Acceleration in GPUs:
Enabling Flexible Data Compression with Assist Warps"
Proceedings of the
42nd International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

227

End of Backup Slides

228

Brief Self Introduction
!  Onur Mutlu

"  Full Professor @ ETH Zurich CS, since September 2015
"  Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-…
"  PhD from UT-Austin, worked @ Google, VMware, Microsoft Research, Intel, AMD
"  https://people.inf.ethz.ch/omutlu/
"  omutlu@gmail.com (Best way to reach me)
"  https://people.inf.ethz.ch/omutlu/projects.htm

!  Research, Education, Consulting in
"  Computer architecture and systems, bioinformatics
"  Memory and storage systems, emerging technologies
"  Many-core systems, heterogeneous systems, core design
"  Interconnects
"  Hardware/software interaction and co-design (PL, OS, Architecture)
"  Predictable and QoS-aware systems
"  Hardware fault tolerance and security
"  Algorithms and architectures for genome analysis
"  … 229

