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Rethinking Memory System Design 
 

(and the Platforms We Design Around It) 



The Main Memory System 

 
 

!  Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor 

!  Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits 
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Processors 
and caches 

Main Memory Storage (SSD/HDD) FPGAs GPUs 



Memory System: A Shared Resource View 
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Storage 



State of the Main Memory System 
!  Recent technology, architecture, and application trends 

"  lead to new requirements 
"  exacerbate old requirements 

!  DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements 

!  Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging 

!  We need to rethink the main memory system 
"  to fix DRAM issues and enable emerging technologies  
"  to satisfy all requirements 
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Agenda 

!  Major Trends Affecting Main Memory 
!  The Memory Scaling Problem and Solution Directions 

"  New Memory Architectures 
"  Enabling Emerging Technologies 

!  Cross-Cutting Principles 
!  Summary 
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Major Trends Affecting Main Memory (I) 
!  Need for main memory capacity, bandwidth, QoS increasing  

!  Main memory energy/power is a key system design concern 

!  DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (II) 
!  Need for main memory capacity, bandwidth, QoS increasing  

"  Multi-core: increasing number of cores/agents 
"  Data-intensive applications: increasing demand/hunger for data 
"  Consolidation: cloud computing, GPUs, mobile, heterogeneity 

!  Main memory energy/power is a key system design concern 

 

 
!  DRAM technology scaling is ending  
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Example: The Memory Capacity Gap 

 

!  Memory capacity per core expected to drop by 30% every two years 
!  Trends worse for memory bandwidth per core! 
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Core count doubling ~ every 2 years  
DRAM DIMM capacity doubling ~ every 3 years 

Lim et al., ISCA 2009 



Major Trends Affecting Main Memory (III) 
!  Need for main memory capacity, bandwidth, QoS increasing  

 
!  Main memory energy/power is a key system design concern 

"  ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 
IEEE Computer 2003]  

"  DRAM consumes power even when not used (periodic refresh) 

!  DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (IV) 
!  Need for main memory capacity, bandwidth, QoS increasing  

 
 
!  Main memory energy/power is a key system design concern 

 
!  DRAM technology scaling is ending  

"  ITRS projects DRAM will not scale easily below X nm  
"  Scaling has provided many benefits:  

!  higher capacity (density), lower cost, lower energy 
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Agenda 

!  Major Trends Affecting Main Memory 
!  The Memory Scaling Problem and Solution Directions 

"  New Memory Architectures 
"  Enabling Emerging Technologies 

!  Cross-Cutting Principles 
!  Summary 

11 



The DRAM Scaling Problem 
!  DRAM stores charge in a capacitor (charge-based memory) 

"  Capacitor must be large enough for reliable sensing 
"  Access transistor should be large enough for low leakage and high 

retention time 
"  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] 

!  DRAM capacity, cost, and energy/power hard to scale 
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 Row of Cells
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 Wordline


 VLOW
 VHIGH

 Vic2m Row


 Vic2m Row

 Hammered Row


Repeatedly opening and closing a row enough 2mes within a 
refresh interval induces disturbance errors in adjacent rows in 
most real DRAM chips you can buy today


Opened
Closed
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An Example of  the DRAM Scaling Problem 

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	
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Most DRAM Modules Are at Risk 

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	



DRAM Module
x86 CPU


Y 

X 

loop: 
  mov (X), %eax 
  mov (Y), %ebx 
  clflush (X)   
  clflush (Y) 
  mfence 
  jmp loop 

hLps://github.com/CMU-SAFARI/rowhammer		
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•  A real reliability & security issue 

•  In a more controlled environment, we can 

induce as many as ten million disturbance errors


CPU Architecture
 Errors Access-Rate


Intel Haswell (2013)
 22.9K	 12.3M/sec	

Intel Ivy Bridge (2012)
 20.7K	 11.7M/sec	

Intel Sandy Bridge (2011)
 16.1K	 11.6M/sec	

AMD Piledriver (2012)
 59	 6.1M/sec	
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Kim+, “Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	
DRAM	Disturbance	Errors,” ISCA 2014. 

Observed Errors in Real Systems 
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All modules from 2012–2013 are vulnerable


First

Appearance


Errors vs. Vintage 



Experimental DRAM Testing Infrastructure 
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An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms (Liu et al., ISCA 2013) 
 
The Efficacy of Error Mitigation Techniques 
for DRAM Retention Failures: A 
Comparative Experimental Study  
(Khan et al., SIGMETRICS 2014) 

Flipping Bits in Memory Without Accessing 
Them: An Experimental Study of DRAM 
Disturbance Errors (Kim et al., ISCA 2014) 
 
Adaptive-Latency DRAM: Optimizing DRAM 
Timing for the Common-Case (Lee et al., 
HPCA 2015) 
 
AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems (Qureshi 
et al., DSN 2015) 



Experimental Infrastructure (DRAM) 

22 Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 

Temperature 
Controller 

 

PC 

Heater FPGAs FPGAs 



One Can Take Over an Otherwise-Secure System 
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Exploiting the DRAM rowhammer bug to 
gain kernel privileges  (Seaborn, 2015) 

Flipping Bits in Memory Without Accessing Them: 
An Experimental Study of DRAM Disturbance Errors 
(Kim et al., ISCA 2014) 



RowHammer Security Attack Example 
!  “Rowhammer” is a problem with some recent DRAM devices in which 

repeatedly accessing a row of memory can cause bit flips in adjacent rows 
(Kim et al., ISCA 2014).  
"  Flipping Bits in Memory Without Accessing Them: An Experimental Study of 

DRAM Disturbance Errors (Kim et al., ISCA 2014) 

!  We tested a selection of laptops and found that a subset of them 
exhibited the problem.  

!  We built two working privilege escalation exploits that use this effect.  
"  Exploiting the DRAM rowhammer bug to gain kernel privileges  (Seaborn, 2015) 

!  One exploit uses rowhammer-induced bit flips to gain kernel privileges on 
x86-64 Linux when run as an unprivileged userland process.  

!  When run on a machine vulnerable to the rowhammer problem, the 
process was able to induce bit flips in page table entries (PTEs).  

!  It was able to use this to gain write access to its own page table, and 
hence gain read-write access to all of physical memory. 

24 Exploiting the DRAM rowhammer bug to gain kernel privileges  (Seaborn, 2015) 
 



Security Implications 
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More Security Implications 

26 Source: https://lab.dsst.io/32c3-slides/7197.html  

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript 



More Security Implications 

27 Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/ 

Drammer: Deterministic Rowhammer 
Attacks on Mobile Platforms  



More Security Implications? 
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Apple’s Patch for RowHammer 
!  https://support.apple.com/en-gb/HT204934  

HP and Lenovo released similar patches 



Challenge and Opportunity 

Reliability 
(and Security) 
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Departing From “Business as Usual” 
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More Intelligent 
Memory Controllers 

Online System-Level Tolerance 
of Memory “Issues” 



Large-Scale Failure Analysis of DRAM Chips 
!  Analysis and modeling of memory errors found in all of 

Facebook’s server fleet 

!  Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, 
"Revisiting Memory Errors in Large-Scale Production Data 
Centers: Analysis and Modeling of New Trends from the Field"  
Proceedings of the 
45th Annual IEEE/IFIP International Conference on Dependable 
Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.  
[Slides (pptx) (pdf)] [DRAM Error Model]  
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Intuition: quadratic increase in capacity 

DRAM Reliability Reducing 



Aside: Flash Error Analysis in the Field 
!  First large-scale field study of flash memory errors 

!  Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, 
"A Large-Scale Study of Flash Memory Errors in the Field"  
Proceedings of the 
ACM International Conference on Measurement and Modeling of 
Computer Systems (SIGMETRICS), Portland, OR, June 2015.  
[Slides (pptx) (pdf)] [Coverage at ZDNet] 
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Aside: Experimental Infrastructure (Flash) 
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USB Jack 

Virtex-II Pro 
(USB controller) 

Virtex-V FPGA 
(NAND Controller) 

HAPS-52 Mother Board 

USB Daughter Board 

NAND Daughter Board 

1x-nm 
NAND Flash 

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, 
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017] 



Another Talk: NAND Flash Scaling Challenges 
!  Onur Mutlu, 

"Error Analysis and Management for MLC NAND Flash Memory" 
Technical talk at Flash Memory Summit 2014 (FMS), Santa Clara, CA, August 
2014. Slides (ppt) (pdf)  

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012. 
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD 
2012. 
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE 
2013. 
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013. 
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013. 
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014. 
Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015. 
Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.  
Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST 
2015. 
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015. 
Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE 
JSAC 2016. 
Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation 
Techniques,” HPCA 2017. 
Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.  
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Recap: The DRAM Scaling Problem 
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How Do We Solve The Problem? 
!  Fix it: Make memory and controllers more intelligent 

"  New interfaces, functions, architectures: system-mem codesign 

!  Eliminate or minimize it: Replace or (more likely) augment 
DRAM with a different technology 
"  New technologies and system-wide rethinking of memory & 

storage 

!  Embrace it: Design heterogeneous memories (none of which 
are perfect) and map data intelligently across them 
"  New models for data management and maybe usage 

!  … 
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Solu%ons	(to	memory	scaling)	require		
so5ware/hardware/device	coopera%on	

Microarchitecture 

ISA 

Programs 

Algorithms 
Problems 

Logic 

Devices 

Runtime System 
(VM, OS, MM) 

User 



Solution 1: New Memory Architectures 

!  Overcome memory shortcomings with 
"  Memory-centric system design 
"  Novel memory architectures, interfaces, functions 
"  Better waste management (efficient utilization) 

!  Key issues to tackle 
"  Enable reliability at low cost 
"  Reduce energy 
"  Improve latency and bandwidth 
"  Reduce waste (capacity, bandwidth, latency) 
"  Enable computation close to data 
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Solution 1: New Memory Architectures 
!  Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 
!  Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012. 
!  Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013. 
!  Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013. 
!  Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013. 
!  Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013. 
!  Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014. 
!  Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014. 
!  Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014. 
!  Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 

!  Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015. 
!  Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015. 
!  Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 2015. 
!  Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015. 
!  Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015. 
!  Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015. 
!  Ahn+, “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015. 
!  Lee+, “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015. 
!  Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO 2015. 
!  Lee+, “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” TACO 2016. 
!  Hassan+, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality,” HPCA 2016. 

!  Chang+, “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Migration in DRAM,” HPCA 2016. 
!  Chang+, “Understanding Latency Variation in Modern DRAM Chips Experimental Characterization, Analysis, and Optimization,” SIGMETRICS 2016. 
!  Khan+, “PARBOR: An Efficient System-Level Technique to Detect Data Dependent Failures in DRAM,” DSN 2016. 
!  Hsieh+, “Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems,” ISCA 2016. 
!  Hashemi+, “Accelerating Dependent Cache Misses with an Enhanced Memory Controller,” ISCA 2016. 
!  Boroumand+, “LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,” IEEE CAL 2016. 
!  Pattnaik+, “Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities,” PACT 2016. 
!  Hsieh+, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation,” ICCD 2016. 
!  Hashemi+, “Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads,” MICRO 2016. 
!  Khan+, “A Case for Memory Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM",” IEEE CAL 2016. 
!  Hassan+, “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” HPCA 2017. 

!  Avoid DRAM: 
"  Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012. 
"  Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012. 
"  Seshadri+, “The Dirty-Block Index,” ISCA 2014. 
"  Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015. 
"  Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” ISCA 2015. 
"  Pekhimenko+, “Toggle-Aware Bandwidth Compression for GPUs,” HPCA 2016. 
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Solution 2: Emerging Memory Technologies 
!  Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile) 
!  Example: Phase Change Memory 

"  Expected to scale to 9nm (2022 [ITRS]) 
"  Expected to be denser than DRAM: can store multiple bits/cell 

!  But, emerging technologies have shortcomings as well 
"  Can they be enabled to replace/augment/surpass DRAM? 
 

!  Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, IEEE Micro’10. 
!  Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012. 
!  Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012. 
!  Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.  
!  Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013. 
!  Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014. 
!  Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014. 
!  Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014. 
!  Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015. 
!  Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016. 
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Solution 3: Hybrid Memory Systems 

 

 
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award. 
 

CPU 
DRAM
Ctrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Technology X (e.g., PCM) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 
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data	
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data	

ExploiSng	Memory	Error	Tolerance		
with	Hybrid	Memory	Systems	

Heterogeneous-Reliability	Memory	[DSN	2014]	

Low-cost	memory	Reliable	memory	

Vulnerable	
data	

Tolerant	
data	

Vulnerable	
data	

Tolerant	
data	

•  ECC	protected	
• Well-tested	chips	

•  NoECC	or	Parity	
•  Less-tested	chips	
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On	MicrosoZ’s	Web	Search	workload	
Reduces	server	hardware	cost	by	4.7	%	
Achieves	single	server	availability	target	of	99.90	%	



Challenge and Opportunity 

Providing the Best of 
Multiple Metrics 
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Departing From “Business as Usual” 
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Heterogeneous Memory Systems 

Configurable Memory Systems 



An Orthogonal Issue: Memory Interference 

Main  
Memory 

46 

Core Core 

Core Core 

Cores’ interfere with each other when accessing shared main memory 

This is uncontrolled today # Unpredictable, uncontrollable system 



Goal: Predictable Performance in Complex Systems 

!  Heterogeneous agents: CPUs, GPUs, and HWAs  
!  Main memory interference between CPUs, GPUs, HWAs 
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CPU CPU CPU CPU 

Shared Cache 

GPU 

HWA HWA 

DRAM and Hybrid Memory Controllers 

DRAM and Hybrid Memories 

How to allocate resources to heterogeneous agents 
to mitigate interference and provide predictable performance?  



!  Solution: QoS-Aware Memory Systems 

!  Hardware provides a configurable QoS substrate  
"  Application-aware memory scheduling, partitioning, throttling 

!  Software configures the substrate to satisfy various QoS goals 

!  QoS-aware memory systems provide predictable performance 
and higher efficiency 

Subramanian et al., “MISE: Providing Performance Predictability and Improving Fairness in 
Shared Main Memory Systems,” HPCA 2013. 
Subramanian et al., “The Application Slowdown Model,” MICRO 2015. 

QoS-Aware Memory Systems 



Challenge and Opportunity 

Strong  
Memory Service 

 Guarantees 
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Departing From “Business as Usual” 

50 

Predictable Memory Management 

Programmable Memory Systems 



Some Promising Directions 

!  New memory architectures 
"  Memory-centric system design 

 
 
!  Enabling and exploiting emerging NVM technologies  

"  Hybrid memory systems  
"  Unified interface to all data 

!  System-level QoS and predictability 
"  Predictable systems with configurable QoS 
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Agenda 

!  Major Trends Affecting Main Memory 
!  The Memory Scaling Problem and Solution Directions 

"  New Memory Architectures 
"  Enabling Emerging Technologies 

!  Cross-Cutting Principles 
!  Summary 
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Rethinking Memory Architecture 
!  Compute-capable memory 

!  Refresh 

!  Reliability 

!  Latency 

!  Bandwidth 

!  Energy 

!  Memory Compression 
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Why In-Memory Computation Today? 

!  Push from Technology 
"  DRAM Scaling at jeopardy  
   # Controllers close to DRAM 
   # Industry open to new memory architectures 

!  Pull from Systems and Applications 
"  Data access is a major system and application bottleneck 
"  Systems are energy limited 
"  Data movement much more energy-hungry than computation 

54 

Dally, HiPEAC 2015 



Two Approaches to In-Memory Processing  
!  1. Minimally change DRAM to enable simple yet powerful   

computation primitives 
"  RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data 

(Seshadri et al., MICRO 2013) 
"  Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015) 
"  Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial 

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015) 

 
!  2. Exploit the control logic in 3D-stacked memory to enable 

more comprehensive computation near memory 
"  PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015) 
"  A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing 

(Ahn et al., ISCA 2015) 
"  Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, 

Mechanisms, Evaluation  (Hsieh et al., ICCD 2016) 
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Bulk Copy and Initialization 
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Forking 

00000
00000
00000 

Zero initialization 
(e.g., security) 

VM Cloning 
Deduplication 

Checkpointing 

Page Migration 

Many more 

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15] 



Today’s Memory: Bulk Data Copy 

Memory 
	
 
	
 
	
 
 

MC L3 L2 L1 CPU 

1)	High	latency	

2)	High	bandwidth	uSlizaSon	

3)	Cache	polluSon	

4)	Unwanted	data	movement	

57	1046ns,	3.6uJ				(for	4KB	page	copy	via	DMA)	



Future: RowClone (In-Memory Copy) 

Memory 
	
 
	
 
	
 
 

MC L3 L2 L1 CPU 

1)	Low	latency	

2)	Low	bandwidth	uSlizaSon	

3)	No	cache	polluSon	

4)	No	unwanted	data	movement	

58	1046ns,	3.6uJ	90ns,	0.04uJ	



DRAM Subarray Operation (load one byte) 

Row Buffer (4 Kbytes) 

Data Bus 

8 bits 

DRAM subarray 

4 Kbytes 

Step 1: Activate row 

Transfer    
row 

Step 2: Read   
Transfer byte 
onto bus 



RowClone: In-DRAM Row Copy 

Row Buffer (4 Kbytes) 

Data Bus 

8 bits 

DRAM subarray 

4 Kbytes 

Step 1: Activate row A 

Transfer 
row 

Step 2: Activate row B 

 
Transfer 
row 
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(Use Inter-Bank Copy Twice) 

Generalized RowClone 0.01% area cost 



RowClone: Latency and Energy Savings 
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Baseline	 Intra-Subarray	
Inter-Bank	 Inter-Subarray	

11.6x	 74x	

62	
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013. 



RowClone: Application Performance 
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RowClone: Multi-Core Performance 
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End-to-End System Design 
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	DRAM	(RowClone)	

Microarchitecture	

ISA	

Opera%ng	System	

Applica%on	
How to communicate 
occurrences of bulk copy/
initialization across layers? 

How to maximize latency and 
energy savings? 

How to ensure data coherence? 
 
 

How to handle data reuse? 



Goal: Ultra-Efficient Processing Near Data 

CPU 
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Enabling In-Memory X 

 
▪  What is a flexible and scalable memory interface? 
▪  What is the right partitioning of computation capability? 
▪  What is the right low-cost memory substrate? 
▪  What memory technologies are the best enablers? 
▪  How do we rethink/ease X algorithms/applications? 

Cache 

Processor 
Core 

 Interconnect 

 Memory 
Database 
 
Graphs 
 
Media   

Query 

Results 



In-DRAM AND/OR: Triple Row Activation 
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Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015. 



In-DRAM AND/OR Results 
!  20X improvement in AND/OR throughput vs. Intel AVX 
!  50.5X reduction in memory energy consumption 
!  At least 30% performance improvement in range queries 

69 Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015. 
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Going Forward 

!  A bulk computation model in memory 

!  New memory & software interfaces to 
enable bulk in-memory computation 

!  New programming models, 
algorithms, compilers, and system 
designs that can take advantage of 
the model 
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User 



Gather-Scatter DRAM [MICRO 2015] 

71 Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to  
Improve the Spatial Locality of Non-unit Strided Accesses”, MICRO 2015. 



Challenge and Opportunity 

Primitives and Interfaces  
for 

Computation in Memory 
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Departing From “Business as Usual” 
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Memory No Longer a Dumb Device 



Two Approaches to In-Memory Processing  
!  1. Minimally change DRAM to enable simple yet powerful   

computation primitives 
"  RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data 

(Seshadri et al., MICRO 2013) 
"  Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015) 
"  Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial 

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015) 

 
!  2. Exploit the control logic in 3D-stacked memory to enable 

more comprehensive computation near memory 
"  PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015) 
"  A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing 

(Ahn et al., ISCA 2015) 
"  Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, 

Mechanisms, Evaluation  (Hsieh et al., ICCD 2016) 
75 



Key Bottlenecks in Graph Processing 
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for	(v:	graph.verSces)	{	
				for	(w:	v.successors)	{	
								w.next_rank	+=	weight	*	v.rank;	
				}	
}	

weight * v.rank	

v�

w�

&w�

1. Frequent random memory accesses	

2. Little amount of computation	

w.rank	

w.next_rank	

w.edges	

…	



Tesseract System for Graph Processing 

77 

Crossbar	Network�

…	

…	

…	
…	

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped 
Accelerator Interface 

(Noncacheable, Physically Addressed)	

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 



Tesseract System for Graph Processing 
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Tesseract System for Graph Processing 
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Evaluated Systems 
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 



Workloads	

!  Five graph processing algorithms 
"  Average teenage follower 
"  Conductance 
"  PageRank 
"  Single-source shortest path 
"  Vertex cover 

!  Three real-world large graphs 
"  ljournal-2008 (social network) 
"  enwiki-2003 (Wikipedia) 
"  indochina-0024 (web graph) 
"  4~7M vertices, 79~194M edges 



Tesseract Graph Processing Performance 
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Tesseract Graph Processing Performance 
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Memory Energy Consumption (Normalized) 
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Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 



Challenge and Opportunity 

Memory 
Bandwidth 

and 
Energy 
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Departing From “Business as Usual” 
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Memory No Longer a Dumb Device 
 
 

Autonomous and Self-Managing 
Memory 



More on PIM: PIM-Enabled Instructions 
!  Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi, 

"PIM-Enabled Instructions: A Low-Overhead, 
Locality-Aware Processing-in-Memory Architecture" 
Proceedings of the 
42nd International Symposium on Computer Architecture 
(ISCA), Portland, OR, June 2015.  
[Slides (pdf)] [Lightning Session Slides (pdf)]   
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More on PIM Design: 3D-Stacked GPU I 
!  Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike 

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler, 
"Transparent Offloading and Mapping (TOM): Enabling 
Programmer-Transparent Near-Data Processing in GPU 
Systems" 
Proceedings of the 
43rd International Symposium on Computer Architecture (ISCA), Seoul, 
South Korea, June 2016.  
[Slides (pptx) (pdf)]  
[Lightning Session Slides (pptx) (pdf)]  
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More on PIM Design: 3D-Stacked GPU II 
!  Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K. 

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das, 
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities" 
Proceedings of the 
25th International Conference on Parallel Architectures and Compilation 
Techniques (PACT), Haifa, Israel, September 2016. 
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Key Challenge 1	
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Key Challenge 1	

Logic layer 
SM 

Crossbar switch 

Vault 
Ctrl 

…. Vault 
Ctrl 

Logic layer 

?	

Main GPU 

3D-stacked memory 
(memory stack) 

• Challenge 1: Which operations should be executed 
on the logic layer SMs? 

?	
SM (Streaming Multiprocessor) 



Key Challenge 2 

Logic layer 
SM 

Crossbar switch 

Vault 
Ctrl 

…. Vault 
Ctrl 

Logic layer 

Main GPU 

3D-stacked memory 
(memory stack) 

• Challenge 2: How should data be mapped to 
different 3D memory stacks?  

SM (Streaming Multiprocessor) 



More on PIM Design: Dependent Misses 
!  Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt, 

"Accelerating Dependent Cache Misses with an Enhanced 
Memory Controller" 
Proceedings of the 
43rd International Symposium on Computer Architecture (ISCA), Seoul, 
South Korea, June 2016.  
[Slides (pptx) (pdf)]  
[Lightning Session Slides (pptx) (pdf)]  
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More on PIM: Linked Data Structures 
!  Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali 

Boroumand, Saugata Ghose, and Onur Mutlu, 
"Accelerating Pointer Chasing in 3D-Stacked Memory: 
Challenges, Mechanisms, Evaluation" 
Proceedings of the 
34th IEEE International Conference on Computer Design (ICCD), 
Phoenix, AZ, USA, October 2016.  
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More on PIM Design: Coherence 

!  Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan 
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi, 
Hongzhong Zheng, and Onur Mutlu, 
"LazyPIM: An Efficient Cache Coherence Mechanism 
for Processing-in-Memory" 
IEEE Computer Architecture Letters (CAL), June 2016. 
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An FPGA-based Test-bed for PIM? 

!  Hasan Hassan et al., “SoftMC: A 
Flexible and Practical Open-
Source Infrastructure for 
Enabling Experimental DRAM 
Studies,” HPCA 2017. 

 
 
!  Flexible 
!  Easy to Use (C++ API) 
!  Open-source  
    github.com/CMU-SAFARI/SoftMC  
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Simulation Infrastructures for PIM 

!  Ramulator extended for PIM 
"  Flexible and extensible DRAM simulator 
"  Can model many different memory standards and proposals 
"  Kim+, “Ramulator: A Flexible and Extensible DRAM 

Simulator”, IEEE CAL 2015. 
"  https://github.com/CMU-SAFARI/ramulator  
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Rethinking Memory Architecture 
!  Compute Capable Memory 

!  Refresh 

!  Reliability 

!  Latency 

!  Bandwidth 

!  Energy 

!  Memory Compression 
98 



DRAM Refresh 
!  DRAM capacitor charge leaks over time 

!  The memory controller needs to refresh each row 
periodically to restore charge 
"  Activate each row every N ms 
"  Typical N = 64 ms 

!  Downsides of refresh 
    -- Energy consumption: Each refresh consumes energy 

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed 

-- QoS/predictability impact: (Long) pause times during refresh 
-- Refresh rate limits DRAM capacity scaling  
 99 



Refresh Overhead: Performance 
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8%	

46%	

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Refresh Overhead: Energy 
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15%	

47%	

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Retention Time Profile of DRAM 

102 



RAIDR: Eliminating Unnecessary Refreshes 
!  Observation: Most DRAM rows can be refreshed much less often 

without losing data [Kim+, EDL’09][Liu+ ISCA’13] 

!  Key idea: Refresh rows containing weak cells  
    more frequently, other rows less frequently 

1. Profiling: Profile retention time of all rows 
2. Binning: Store rows into bins by retention time in memory controller 

 Efficient storage with Bloom Filters (only 1.25KB for 32GB memory) 
3. Refreshing: Memory controller refreshes rows in different bins at 
different rates 

!  Results: 8-core, 32GB, SPEC, TPC-C, TPC-H 
"  74.6% refresh reduction @ 1.25KB storage 
"  ~16%/20% DRAM dynamic/idle power reduction 
"  ~9% performance improvement  
"  Benefits increase with DRAM capacity 

103 
Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Experimental DRAM Testing Infrastructure 
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An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms (Liu et al., ISCA 2013) 
 
The Efficacy of Error Mitigation Techniques 
for DRAM Retention Failures: A 
Comparative Experimental Study  
(Khan et al., SIGMETRICS 2014) 

Flipping Bits in Memory Without Accessing 
Them: An Experimental Study of DRAM 
Disturbance Errors (Kim et al., ISCA 2014) 
 
Adaptive-Latency DRAM: Optimizing DRAM 
Timing for the Common-Case (Lee et al., 
HPCA 2015) 
 
AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems (Qureshi 
et al., DSN 2015) 



Experimental Infrastructure (DRAM) 

105 Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 
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More Information [ISCA’13] 
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More Information [SIGMETRICS’14] 
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Op%mize	DRAM	and	mi%gate	errors	online		
without	disturbing	the	system	and	applica%ons	

Ini%ally	protect	DRAM		
with	ECC	 1	

Periodically	test	
	parts	of	DRAM	 2	

Test	
Test	
Test	

Adjust	refresh	rate	and	
reduce	ECC	 3	

Online Profiling of  DRAM In the Field 



Online Profiling of DRAM [DSN’15] 
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Online Profiling of DRAM [DSN’16] 
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Online Profiling of DRAM [IEEE CAL’16] 
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Challenge and Opportunity 

Minimizing Refresh 
(and Other Technology Taxes) 
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Departing From “Business as Usual” 
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Online Detection and  
Management of Memory Errors 

 
(Online Avoidance of Technology Taxes) 



Rethinking Memory Architecture 
!  In-Memory Computation 

!  Refresh 

!  Reliability 

!  Latency 

!  Bandwidth 

!  Energy 

!  Memory Compression 
114 

Many More  
Challenges and Opportunities 



Agenda 

!  Major Trends Affecting Main Memory 
!  The Memory Scaling Problem and Solution Directions 

"  New Memory Architectures 
"  Enabling Emerging Technologies 

!  Cross-Cutting Principles 
!  Summary 
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Limits of Charge Memory 
!  Difficult charge placement and control 

"  Flash: floating gate charge 
"  DRAM: capacitor charge, transistor leakage 

!  Reliable sensing becomes difficult as charge 
storage unit size reduces 

116 



Promising Resistive Memory Technologies 
!  PCM 

"  Inject current to change material phase 
"  Resistance determined by phase 

!  STT-MRAM 
"  Inject current to change magnet polarity 
"  Resistance determined by polarity 

!  Memristors/RRAM/ReRAM 
"  Inject current to change atomic structure 
"  Resistance determined by atom distance 

117 



Emerging Memory Technologies 
!  Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile) 

!  Example: Phase Change Memory 
"  Data stored by changing phase of material  
"  Data read by detecting material’s resistance 
"  Expected to scale to 9nm (2022 [ITRS]) 
"  Prototyped at 20nm (Raoux+, IBM JRD 2008) 
"  Expected to be denser than DRAM: can store multiple bits/cell 

!  But, emerging technologies have (many) shortcomings 
"  Can they be enabled to replace/augment/surpass DRAM? 

118 



Phase Change Memory: Pros and Cons 
!  Pros over DRAM 

"  Better technology scaling (capacity and cost) 
"  Non volatile # Persistent 
"  Low idle power (no refresh) 

!  Cons 
"  Higher latencies: ~4-15x DRAM (especially write) 
"  Higher active energy: ~2-50x DRAM (especially write) 
"  Lower endurance (a cell dies after ~108 writes) 
"  Reliability issues (resistance drift) 

!  Challenges in enabling PCM as DRAM replacement/helper: 
"  Mitigate PCM shortcomings 
"  Find the right way to place PCM in the system 

119 



PCM-based Main Memory (I) 
!  How should PCM-based (main) memory be organized? 

 

!  Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:  
"  How to partition/migrate data between PCM and DRAM 
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PCM-based Main Memory (II) 
!  How should PCM-based (main) memory be organized? 

 
!  Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:  

"  How to redesign entire hierarchy (and cores) to overcome 
PCM shortcomings 

121 



An Initial Study: Replace DRAM with PCM 
!  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 

Memory as a Scalable DRAM Alternative,” ISCA 2009. 
"  Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC) 
"  Derived “average” PCM parameters for F=90nm 
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Results: Naïve Replacement of DRAM with PCM 
!  Replace DRAM with PCM in a 4-core, 4MB L2 system 
!  PCM organized the same as DRAM: row buffers, banks, peripherals 
!  1.6x delay, 2.2x energy, 500-hour average lifetime 

 
!  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 

Scalable DRAM Alternative,” ISCA 2009. 
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Results: Architected PCM as Main Memory  
!  1.2x delay, 1.0x energy, 5.6-year average lifetime 
!  Scaling improves energy, endurance, density 

!  Caveat 1: Worst-case lifetime is much shorter (no guarantees) 
!  Caveat 2: Intensive applications see large performance and energy hits 
!  Caveat 3: Optimistic PCM parameters? 
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A More Viable Approach: Hybrid Memory Systems 

 

 
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award. 
 

CPU 
DRAM
Ctrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



Data Placement Between DRAM and PCM 
!  Idea: Characterize data access patterns and guide data 

placement in hybrid memory 

!  Streaming accesses: As fast in PCM as in DRAM 

!  Random accesses: Much faster in DRAM 

!  Idea: Place random access data with some reuse in DRAM; 
streaming data in PCM 

!  Yoon+, “Row Buffer Locality-Aware Data Placement in 
Hybrid Memories,” ICCD 2012 Best Paper Award. 
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Hybrid vs. All-PCM/DRAM [ICCD’12]

31%	be]er	performance	than	all	PCM,		
within	29%	of	all	DRAM	performance	
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STT-MRAM as Main Memory 
!  Magnetic Tunnel Junction (MTJ) device 

"  Reference layer: Fixed magnetic orientation 
"  Free layer: Parallel or anti-parallel 

!  Magnetic orientation of the free layer 
determines logical state of device 
"  High vs. low resistance 

!  Write: Push large current through MTJ to 
change orientation of free layer 

!  Read: Sense current flow 

!  Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013. 
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STT-MRAM: Pros and Cons 
!  Pros over DRAM 

"  Better technology scaling 
"  Non volatility 
"  Low idle power (no refresh) 

!  Cons 
"  Higher write latency 
"  Higher write energy 
"  Reliability? 

!  Another level of freedom 
"  Can trade off non-volatility for lower write latency/energy (by 

reducing the size of the MTJ) 
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Architected STT-MRAM as Main Memory 
!  4-core, 4GB main memory, multiprogrammed workloads 
!  ~6% performance loss, ~60% energy savings vs. DRAM 
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Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013. 



Challenge and Opportunity 

Enabling an Emerging Technology 
to Replace DRAM 
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Departing From Business As Usual 
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Hybrid Memory 

Persistent Memory 



Other Opportunities with Emerging Technologies 

!  Merging of memory and storage 
"  e.g., a single interface to manage all data 

!  New applications 
"  e.g., ultra-fast checkpoint and restore 

!  More robust system design 
"  e.g., reducing data loss 

!  Processing tightly-coupled with memory 
"  e.g., enabling efficient search and filtering 
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Coordinated Memory and Storage with NVM (I) 
!  The traditional two-level storage model is a bottleneck with NVM 

"  Volatile data in memory # a load/store interface 
"  Persistent data in storage # a file system interface 
"  Problem: Operating system (OS) and file system (FS) code to locate, translate, 

buffer data become performance and energy bottlenecks with fast NVM stores 
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Coordinated Memory and Storage with NVM (II) 

!  Goal: Unify memory and storage management in a single unit to 
eliminate wasted work to locate, transfer, and translate data 
"  Improves both energy and performance 
"  Simplifies programming model as well 
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Unified Memory/Storage 

Processor 
and caches 

Persistent (e.g., Phase-Change) Memory 

Load/Store 

Persistent Memory 
Manager 
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Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013. 



The Persistent Memory Manager (PMM) 

136 

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Load Store

DRAM Flash NVM HDD

Persistent Memory Manager
Hardware
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Data Layout, Persistence, Metadata, Security, ...
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PMM	uses	access	and	hint	informa%on	to	allocate,	locate,	migrate	
and	access	data	in	the	heterogeneous	array	of	devices	

Persistent objects 



The Persistent Memory Manager (PMM) 
!  Exposes a load/store interface to access persistent data 

"  Applications can directly access persistent memory # no conversion, 
translation, location overhead for persistent data  

!  Manages data placement, location, persistence, security 
"  To get the best of multiple forms of storage 

!  Manages metadata storage and retrieval 
"  This can lead to overheads that need to be managed 

!  Exposes hooks and interfaces for system software 
"  To enable better data placement and management decisions 

!  Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013. 
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Performance Benefits of a Single-Level Store 
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Energy Benefits of a Single-Level Store 
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Challenge and Opportunity 

Combined  
Memory & Storage 
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Departing From “Business as Usual” 

141 

A Unified Interface to All Data 



Agenda 

!  Major Trends Affecting Main Memory 
!  The Memory Scaling Problem and Solution Directions 

"  New Memory Architectures 
"  Enabling Emerging Technologies 

!  Cross-Cutting Principles 
!  Summary 
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Principles (So Far) 

!  Better interfaces between layers of the system stack 
"  Expose more information judiciously across the system stack 
"  Design more flexible and efficient interfaces 

!  Better-than-worst-case design 
"  Do not optimize for the worst case 
"  Worst case should not determine the common case 

!  Heterogeneity in design (specialization, asymmetry) 
"  Enables a more efficient design (No one size fits all)  

!  These principles are coupled (and require broad thinking) 

143 
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Agenda 

!  Major Trends Affecting Main Memory 
!  The Memory Scaling Problem and Solution Directions 

"  New Memory Architectures 
"  Enabling Emerging Technologies 

!  Cross-Cutting Principles 
!  Summary 
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Summary 

Business as Usual Opportunity 

RowHammer Memory controller anticipates and fixes errors 

Fixed, frequent refreshes Heterogeneous refresh rate across memory 

Fixed, high latency Heterogeneous latency in time and space 

Slow page copy & initialization Exploit internal connectivity in memory to move data 

Fixed reliability mechanisms Heterogeneous reliability across time and space 

Memory as a dumb device Memory as an accelerator and autonomous agent 

DRAM-only main memory Emerging memory technologies and hybrid memories 

Two-level data storage model Unified interface to all data  

Large timing and error margins Online adaptation of timing and error margins 

Poor performance guarantees Strong service guarantees and configurable QoS 

Fixed policies in controllers Configurable and programmable memory controllers 

… … 
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Summary 
!  Memory problems are a critical bottleneck for system 

performance, efficiency, and usability 
 

!  New memory architectures 
"  Compute capable and autonomous memory 
 
 

!  Enabling emerging NVM technologies  
"  Persistent and hybrid memory 
 
 

!  System-level memory/storage QoS 
"  Predictable systems with configurable QoS 

!  Many opportunities and challenges that will change 
the systems and software we design 
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Some Open Source Tools 
!  Rowhammer  

"  https://github.com/CMU-SAFARI/rowhammer  

!  Ramulator – Fast and Extensible DRAM Simulator 
"  https://github.com/CMU-SAFARI/ramulator  

!  MemSim  
"  https://github.com/CMU-SAFARI/memsim  

!  NOCulator 
"  https://github.com/CMU-SAFARI/NOCulator  

!  DRAM Error Model 
"  http://www.ece.cmu.edu/~safari/tools/memerr/index.html  

!  Other open-source software from my group 
"  https://github.com/CMU-SAFARI/  
"  http://www.ece.cmu.edu/~safari/tools.html  
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Referenced Papers 

!  All are available at 
http://users.ece.cmu.edu/~omutlu/projects.htm 
http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en 
 

!  A detailed accompanying overview paper 

"  Onur Mutlu and Lavanya Subramanian, 
"Research Problems and Opportunities in Memory 
Systems" 
Invited Article in Supercomputing Frontiers and Innovations 
(SUPERFRI), 2015.  
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Related Videos and Course Materials 
!  Undergraduate Computer Architecture Course Lecture 

Videos (2013, 2014, 2015)  
!  Undergraduate Computer Architecture Course 

Materials (2013, 2014, 2015)  

!  Graduate Computer Architecture Lecture Videos 
(2013, 2015)  

!  Graduate Computer Architecture Course Materials 
(2013, 2015)  

!  Parallel Computer Architecture Course Materials 
(Lecture Videos) 

!  Memory Systems Short Course Materials  
    (Lecture Video on Main Memory and DRAM Basics) 
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Thank you. 

 
onur.mutlu@inf.ethz.ch  

https://people.inf.ethz.ch/omutlu 
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Onur Mutlu 
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April 4, 2017 

ARC 2017 Keynote 
 

 

Rethinking Memory System Design 
 

(and the Platforms We Design Around It) 



Backup Slides 
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NAND Flash Memory Scaling 
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Another Talk: NAND Flash Scaling Challenges 
!  Onur Mutlu, 

"Error Analysis and Management for MLC NAND Flash Memory" 
Technical talk at Flash Memory Summit 2014 (FMS), Santa Clara, CA, August 
2014. Slides (ppt) (pdf)  

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012. 
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD 
2012. 
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE 
2013. 
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013. 
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013. 
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014. 
Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015. 
Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.  
Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST 
2015. 
Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015. 
Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE 
JSAC 2016. 
Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation 
Techniques,” HPCA 2017. 
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Experimental Infrastructure (Flash) 

157 

USB Jack 

Virtex-II Pro 
(USB controller) 

Virtex-V FPGA 
(NAND Controller) 

HAPS-52 Mother Board 

USB Daughter Board 

NAND Daughter Board 

3x-nm 
NAND Flash 

[Cai+, DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 
2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015] 



Error Management in MLC NAND Flash 

!  Problem: MLC NAND flash memory reliability/endurance is a key 
challenge for satisfying future storage systems’ requirements 

!  Our Goals: (1) Build reliable error models for NAND flash 
memory via experimental characterization, (2) Develop efficient 
techniques to improve reliability and endurance 

!  This talk provides a “flash” summary of our recent results 
published in the past 3 years: 
"  Experimental error and threshold voltage characterization [DATE’12&13] 

"  Retention-aware error management [ICCD’12] 
"  Program interference analysis and read reference V prediction [ICCD’13] 
"  Neighbor-assisted error correction [SIGMETRICS’14] 
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Ramulator: A Fast and Extensible 
DRAM Simulator  

 [IEEE Comp Arch Letters’15] 
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Ramulator Motivation 
!  DRAM and Memory Controller landscape is changing 
!  Many new and upcoming standards 
!  Many new controller designs 
!  A fast and easy-to-extend simulator is very much needed 
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Ramulator  
!  Provides out-of-the box support for many DRAM standards: 

"  DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP) 

!  ~2.5X faster than fastest open-source simulator 
!  Modular and extensible to different standards 
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Case Study: Comparison of DRAM Standards 
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Across 22 
workloads, 
simple CPU 
model 



Ramulator Paper and Source Code 
!  Yoongu Kim, Weikun Yang, and Onur Mutlu, 

"Ramulator: A Fast and Extensible DRAM Simulator" 
IEEE Computer Architecture Letters (CAL), March 2015.  
[Source Code]  

!  Source code is released under the liberal MIT License 
"  https://github.com/CMU-SAFARI/ramulator  
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DRAM Infrastructure 
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Experimental DRAM Testing Infrastructure 
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An Experimental Study of Data Retention 
Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling 
Mechanisms (Liu et al., ISCA 2013) 
 
The Efficacy of Error Mitigation Techniques 
for DRAM Retention Failures: A 
Comparative Experimental Study  
(Khan et al., SIGMETRICS 2014) 

Flipping Bits in Memory Without Accessing 
Them: An Experimental Study of DRAM 
Disturbance Errors (Kim et al., ISCA 2014) 
 
Adaptive-Latency DRAM: Optimizing DRAM 
Timing for the Common-Case (Lee et al., 
HPCA 2015) 
 
AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems (Qureshi 
et al., DSN 2015) 



Experimental Infrastructure (DRAM) 

166 Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 

Temperature 
Controller 
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ThyNVM 
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One Challenge 

!  How to ensure consistency of system/data if all memory is 
persistent?  

!  Two extremes 
"  Programmer transparent: Let the system handle everything 
"  Programmer only: Let the programmer handle everything 
"  Many alternatives in-between…  
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CHALLENGE:	CRASH	CONSISTENCY	

	
	
	
	
	
	
	
	
	
	

System	crash	can	result	in		
permanent	data	corrup%on	in	NVM	

169	

Persistent	Memory	System	



	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
Explicit	interfaces	to	manage	consistency	

– NV-Heaps	[ASPLOS’11],	BPFS	[SOSP’09],	Mnemosyne	[ASPLOS’11]	

AtomicBegin { 
     Insert a new node; 
} AtomicEnd; 

Limits	adop%on	of	NVM	
Have	to	rewrite	code	with	clear	par%%on		
between	vola%le	and	non-vola%le	data	

Burden	on	the	programmers	
170	



	
	
	
	
	
	
	
	
	
	

OUR	APPROACH:	ThyNVM	

171	

Goal:  
Software transparent consistency in  

persistent memory systems 



	
	
	
	
	
	
	
	
	
	

ThyNVM:	Summary	

172	

•  Checkpoints	at	mul$ple	granulari$es	to	
reduce	both	checkpoinSng	latency	and	
metadata	overhead	

•  Overlaps	checkpoin$ng	and	execu$on	to	
reduce	checkpoinSng	latency	

•  Adapts	to	DRAM	and	NVM	characterisScs	

Performs	within	4.9%	of	an	idealized	DRAM	
with	zero	cost	consistency	

A new hardware-based  
checkpointing mechanism 



More About ThyNVM 

173 

!  Ren+, “ThyNVM: Enabling Software-Transparent Crash 
Consistency in Persistent Memory Systems,” MICRO 2015. 



CHALLENGE:	CRASH	CONSISTENCY	

	
	
	
	
	
	
	
	
	
	

System	crash	can	result	in		
permanent	data	corrup%on	in	NVM	
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Persistent	Memory	System	



	
	
	
	
	
	
	
	
	
	

CURRENT	SOLUTIONS	
Explicit	interfaces	to	manage	consistency	

– NV-Heaps	[ASPLOS’11],	BPFS	[SOSP’09],	Mnemosyne	[ASPLOS’11]	

AtomicBegin { 
     Insert a new node; 
} AtomicEnd; 

Limits	adop%on	of	NVM	
Have	to	rewrite	code	with	clear	par%%on		
between	vola%le	and	non-vola%le	data	

Burden	on	the	programmers	
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OUR	APPROACH:	ThyNVM	
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Goal:  
Software transparent consistency in  

persistent memory systems 



	
	
	
	
	
	
	
	
	
	

ThyNVM:	Summary	
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•  Checkpoints	at	mul$ple	granulari$es	to	
reduce	both	checkpoinSng	latency	and	
metadata	overhead	

•  Overlaps	checkpoin$ng	and	execu$on	to	
reduce	checkpoinSng	latency	

•  Adapts	to	DRAM	and	NVM	characterisScs	

Performs	within	4.9%	of	an	idealized	DRAM	
with	zero	cost	consistency	

A new hardware-based  
checkpointing mechanism 



DRAM Latency 
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Rethinking Memory Architecture 
!  Compute Capable Memory 

!  Refresh 

!  Reliability 

!  Latency 

!  Bandwidth 

!  Energy 

!  Memory Compression 
179 



DRAM Latency vs. Capacity vs. Bandwidth 

DRAM	latency	con$nues	to	be	a	cri$cal	bo=leneck,	
especially	for	response	$me-sensi$ve	workloads	
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A Closer Look … 
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Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental  
Characterization, Analysis, and Optimization",” SIGMETRICS 2016. 



Why the Long Latency? 

!  Design of DRAM uArchitecture 
"  Goal: Maximize capacity/area, not minimize latency 

!  One size fits all approach to latency specification 
"  Same latency parameters for all temperatures 
"  Same latency parameters for all DRAM chips (e.g., rows) 
"  Same latency parameters for all parts of a DRAM chip 
"  Same latency parameters for all supply voltage levels 
"  Same latency parameters for all application data  
"  … 
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Tackling the Fixed Latency Mindset 

!  Reliable operation latency is actually very heterogeneous 
"  Across temperatures, chips, parts of a chip, voltage levels, … 

!  Idea: Dynamically find out and use the lowest latency one 
can reliably access a memory location with 
"  Adaptive-Latency DRAM [HPCA 2015] 
"  Flexible-Latency DRAM [SIGMETRICS 2016] 
"  ... 

!  We would like to find sources of latency heterogeneity and 
exploit them to minimize latency 
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AL-DRAM	

•  Key idea

–  Op2mize DRAM 2ming parameters online


•  Two components

– DRAM manufacturer provides mul2ple sets of 

reliable DRAM 2ming parameters at different 
temperatures for each DIMM


– System monitors DRAM temperature & uses 
appropriate DRAM 2ming parameters


reliable DRAM 2ming parameters


DRAM temperature


Lee+,	“AdapSve-Latency	DRAM:	OpSmizing	DRAM	Timing	for	the	Common-Case,”	HPCA	
2015.	
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Latency	ReducSon	Summary	of	115	DIMMs	
•  Latency reducDon for read & write (55°C)


– Read Latency: 32.7%

– Write Latency: 55.1%


•  Latency reducDon for each Dming 
parameter (55°C) 

– Sensing: 17.3%

– Restore: 37.3% (read), 54.8% (write)

– Precharge: 35.2% 


Lee+,	“AdapSve-Latency	DRAM:	OpSmizing	DRAM	Timing	for	the	Common-Case,”	HPCA	
2015.	
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AL-DRAM:	Real	System	EvaluaSon	
•  System


– CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC)

– DRAM: 4GByte DDR3-1600 (800Mhz Clock)

– OS: Linux

– Storage: 128GByte SSD


•  Workload

– 35 applicaDons from SPEC, STREAM, Parsec, 

Memcached, Apache, GUPS
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AL-DRAM:	Single-Core	EvaluaSon	

AL-DRAM improves single-core performance 
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AL-DRAM:	MulS-Core	EvaluaSon	

AL-DRAM provides higher performance on

mulD-programmed & mulD-threaded workloads
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Heterogeneous Latency within A Chip 
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Chang+, “Understanding Latency Variation in Modern DRAM Chips: Experimental  
Characterization, Analysis, and Optimization",” SIGMETRICS 2016. 



And, What If … 

!  … we can sacrifice reliability of some data to access it with 
even lower latency? 
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ChargeCache   
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ChargeCache:	Executive	Summary	
•  Goal:	Reduce	average	DRAM	access	latency	with	no	
modiHication	to	the	existing	DRAM	chips	

•  Observations:		
1)  A	highly-charged	DRAM	row	can	be	accessed	with	low	latency	
2)  A	row’s	charge	is	restored	when	the	row	is	accessed	
3)  A	recently-accessed	row	is	likely	to	be	accessed	again:		

	Row	Level	Temporal	Locality	(RLTL)	
•  Key	Idea:	Track	recently-accessed	DRAM	rows	and	use	lower	
timing	parameters	if	such	rows	are	accessed	again	

•  ChargeCache:	
–  Low	cost	&	no	modiHications	to	the	DRAM	
–  Higher	performance	(8.6-10.6%	on	average	for	8-core)	
–  Lower	DRAM	energy	(7.9%	on	average)	
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Accessing	Highly-charged	Rows	
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Observation	1	
A	highly-charged	DRAM	row	can	be	
accessed	with	low	latency	
•  tRCD: 44%

•  tRAS: 37%	

How	does	a	row	become	
highly-charged?	
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How	Does	a	Row	Become	Highly-Charged?	

DRAM	cells	lose	charge	over	time	
Two	ways	of	restoring	a	row’s	charge:	
•  Refresh	Operation	
•  Access	

time	Refresh	

ch
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Refresh	Access	
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Observation	2	
A	row’s	charge	is	restored	when	the	row	
is	accessed	
	

How	likely	is	a	recently-accessed	
row	to	be	accessed	again?	



198


0%	
20%	
40%	
60%	
80%	
100%	

Fr
ac
ti
on
	o
f	A
cc
es
se
s	

Row	Level	Temporal	Locality	(RLTL)	

86%	

0%	
20%	
40%	
60%	
80%	
100%	

Fr
ac
ti
on
	o
f	A
cc
es
se
s	

97%	

A	recently-accessed	DRAM	row	is	likely	to	be	
accessed	again.	
•  t-RLTL:	Fraction	of	rows	that	are	accessed	
within	time	t	after	their	previous	access	

8ms	–	RLTL	for	single-core	workloads	8ms	–	RLTL	for	eight-core	workloads	
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Key	Idea	

Track	recently-accessed	DRAM	rows	
and	use	lower	timing	parameters	if	

such	rows	are	accessed	again	
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ChargeCache	Overview	

Memory	Controller	

ChargeCache	
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D	 A	

DRAM	
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ChargeCache	Miss:	Use	Default	Timings	ChargeCache	Hit:	 Use	Lower	Timings	
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Area	and	Power	Overhead	
• Modeled	with	CACTI	

• Area	
– ~5KB	for	128-entry	ChargeCache	
– 0.24%	of	a	4MB	Last	Level	Cache	(LLC)	
area	

	
• Power	Consumption	

– 0.15	mW	on	average	(static	+	dynamic)	
– 0.23%	of	the	4MB	LLC	power	consumption	
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Methodology	
•  Simulator	

–  DRAM	Simulator	(Ramulator	[Kim+,	CAL’15])	
https://github.com/CMU-SAFARI/ramulator	

•  Workloads	
–  22	single-core	workloads	

•  SPEC	CPU2006,	TPC,	STREAM	
–  20	multi-programmed	8-core	workloads	

•  By	randomly	choosing	from	single-core	workloads	
–  Execute	at	least	1	billion	representative	instructions	per	
core	(Pinpoints)	

•  System	Parameters	
–  1/8	core	system	with	4MB	LLC	
–  Default	tRCD/tRAS	of	11/28	cycles	
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Eight-core	Performance	
NUAT	 ChargeCache	

ChargeCache	+	NUAT	 LL-DRAM	(Upperbound)	
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DRAM	Energy	Savings	
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More on ChargeCache 
!  Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar, 

Vivek Seshadri, Donghyuk Lee, Oguz Ergin, and Onur Mutlu, 
"ChargeCache: Reducing DRAM Latency by Exploiting 
Row Access Locality"  
Proceedings of the 
22nd International Symposium on High-Performance 
Computer Architecture (HPCA), Barcelona, Spain, March 
2016.  
[Slides (pptx) (pdf)]  

!  Source code will be released as part of Ramulator (May 2016) 
"  https://github.com/CMU-SAFARI/ramulator  
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Tiered Latency DRAM 

207 
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DRAM	Latency	=	Subarray	Latency	+	I/O	Latency	

			What	Causes	the	Long	Latency?	
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			Why	is	the	Subarray	So	Slow?	
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			Trade-Off:	Area	(Die	Size)	vs.	Latency	
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			Trade-Off:	Area	(Die	Size)	vs.	Latency	
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			Trade-Off:	Area	(Die-Area)	vs.	Latency	
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			Leveraging	Tiered-Latency	DRAM		
•  TL-DRAM	is	a	substrate	that	can	be	leveraged	
by	the	hardware	and/or	soZware	

•  Many	potenSal	uses	
1. Use	near	segment	as	hardware-managed	inclusive	
cache	to	far	segment	

2. Use	near	segment	as	hardware-managed	exclusive	
cache	to	far	segment	

3. Profile-based	page	mapping	by	operaSng	system	
4. Simply	replace	DRAM	with	TL-DRAM	 	
	

Lee+,	“Tiered-Latency	DRAM:	A	Low	Latency	and	Low	Cost	DRAM	Architecture,”	HPCA	2013.	
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Using	near	segment	as	a	cache	improves	
performance	and	reduces	power	consumpPon	

Lee+,	“Tiered-Latency	DRAM:	A	Low	Latency	and	Low	Cost	DRAM	Architecture,”	HPCA	2013.	



Rethinking Memory Architecture 
!  Compute Capable Memory 

!  Refresh 

!  Reliability 

!  Latency 

!  Bandwidth 

!  Energy 

!  Memory Compression 
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Large DRAM Power in Modern Systems 
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>40% in POWER7 (Ware+, HPCA’10) >40% in GPU (Paul+, ISCA’15) 
 



Why Is Power Large? 

!  Design of DRAM uArchitecture 
"  A lot of waste (granularity, latency, …) 

!  High Voltage 
"  Can we scale it down reliably? 

!  High Frequency 
"  Can we scale it down with low performance impact? 

!  DRAM Refresh 

!  … 
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Memory Dynamic Voltage/Freq. Scaling 

!  Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Hanebutte, and 
Onur Mutlu, 
"Memory Power Management via Dynamic Voltage/Frequency 
Scaling" 
Proceedings of the 
8th International Conference on Autonomic Computing (ICAC), 
Karlsruhe, Germany, June 2011. Slides (pptx) (pdf) 
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New Memory Architectures 
!  Compute Capable Memory 

!  Refresh 

!  Reliability 

!  Latency 

!  Bandwidth 

!  Energy 

!  Memory Compression 
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Readings on Memory Compression (I) 
!  Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons, 

Michael A. Kozuch, and Todd C. Mowry, 
"Base-Delta-Immediate Compression: Practical Data 
Compression for On-Chip Caches" 
Proceedings of the 
21st International Conference on Parallel Architectures and Compilation 
Techniques (PACT), Minneapolis, MN, September 2012. Slides (pptx) 
Source Code  
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Readings on Memory Compression (II) 
!  Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur 

Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry, 
"Linearly Compressed Pages: A Low-Complexity, Low-Latency 
Main Memory Compression Framework" 
Proceedings of the 46th International Symposium on Microarchitecture 
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [
Lightning Session Slides (pptx) (pdf)] Poster (pptx) (pdf)]  
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Readings on Memory Compression (III) 
!  Gennady Pekhimenko, Tyler Huberty, Rui Cai, Onur Mutlu, Phillip P. 

Gibbons, Michael A. Kozuch, and Todd C. Mowry, 
"Exploiting Compressed Block Size as an Indicator of Future 
Reuse"  
Proceedings of the 
21st International Symposium on High-Performance Computer 
Architecture (HPCA), Bay Area, CA, February 2015.  
[Slides (pptx) (pdf)]  
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Readings on Memory Compression (IV) 
!  Gennady Pekhimenko, Evgeny Bolotin, Nandita Vijaykumar, Onur Mutlu, 

Todd C. Mowry, and Stephen W. Keckler, 
"A Case for Toggle-Aware Compression for GPU Systems"  
Proceedings of the 
22nd International Symposium on High-Performance Computer 
Architecture (HPCA), Barcelona, Spain, March 2016.  
[Slides (pptx) (pdf)]  
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Readings on Memory Compression (V) 
!  Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek 

Bhowmick, Rachata Ausavarungnirun, Chita Das, Mahmut Kandemir, Todd 
C. Mowry, and Onur Mutlu, 
"A Case for Core-Assisted Bottleneck Acceleration in GPUs: 
Enabling Flexible Data Compression with Assist Warps" 
Proceedings of the 
42nd International Symposium on Computer Architecture (ISCA), 
Portland, OR, June 2015.  
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]  
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Brief Self Introduction 
!  Onur Mutlu 

"  Full Professor @ ETH Zurich CS, since September 2015  
"  Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-… 
"  PhD from UT-Austin, worked @ Google, VMware, Microsoft Research, Intel, AMD 
"  https://people.inf.ethz.ch/omutlu/ 
"  omutlu@gmail.com (Best way to reach me) 
"  https://people.inf.ethz.ch/omutlu/projects.htm  

!  Research, Education, Consulting in 
"  Computer architecture and systems, bioinformatics 
"  Memory and storage systems, emerging technologies 
"  Many-core systems, heterogeneous systems, core design 
"  Interconnects 
"  Hardware/software interaction and co-design (PL, OS, Architecture) 
"  Predictable and QoS-aware systems 
"  Hardware fault tolerance and security 
"  Algorithms and architectures for genome analysis 
"  … 229 


