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The Main Memory System

Main Memory Storage (SSD/HDD)

\_ J

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits
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Memory System: A Shared Resonrce View
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State of the Main Memory System

Recent technology, architecture, and application trends
o lead to new requirements
o exacerbate old requirements

DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

We need to rethink the main memory system
o to fix DRAM issues and enable emerging technologies
o to satisfy all requirements
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Agenda

Major Trends Affecting Main Memory

The Memory Scaling Problem and Solution Directions
o New Memory Architectures

o Enabling Emerging Technologies

Cross-Cutting Principles

Summary
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Major Trends Atfecting Main Memory (I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
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Major Trends Attecting Main Memory (II)

= Need for main memory capacity, bandwidth, QoS increasing
o Multi-core: increasing number of cores/agents
o Data-intensive applications: increasing demand/hunger for data
o Consolidation: cloud computing, GPUs, mobile, heterogeneity

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
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Example: The Memory Capacity Gap

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years
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o #Core Lim et al., ISCA 2009
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Memory capacity per core expected to drop by 30% every two years
Trends worse for memory bandwidth per core!



Major Trends Attecting Main Memory (I1I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

o ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,
IEEE Computer 2003]

o DRAM consumes power even when not used (periodic refresh)

= DRAM technology scaling is ending
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Major Trends Attecting Main Memory (IV)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
o ITRS projects DRAM will not scale easily below X nm

o Scaling has provided many benefits:
= higher capacity (density), lower cost, lower energy
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Agenda

Major Trends Affecting Main Memory

The Memory Scaling Problem and Solution Directions
o New Memory Architectures

o Enabling Emerging Technologies

Cross-Cutting Principles

Summary
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The DRAM Scaling Problem

DRAM stores charge in a capacitor (charge-based memory)
o Capacitor must be large enough for reliable sensing

o Access transistor should be large enough for low leakage and high
retention time

o Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]
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DRAM capacity, cost, and energy/power hard to scale
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An Example of the DRAM Scaling Problem

= Row of Cells = \Wordline

=1 Victim Row —_—
Hammer@.57 0 V

=1 Victim Row —_—

= Row -

Repeatedly opening and closing a row enough times within a
refresh interval induces disturbance errors in adjacent rows in
most real DRAM chips you can buy today

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 13
Disturbance Errors, (Kim et al., ISCA 2014)




Most DRAM Modules Are at Risk

A company B company C company

Up to Up to Up to
1.0x107 2.7x10® 3.3x10°
errors errors errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM

Disturbance Errors, (Kim et al., ISCA 2014)
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loop:
mov ( ), %eax

mov ( ), %ebx
clflush ( )
clflush ()

mfence
Jmp loop

https://github.com/CMU-SAFARI/rowhammer
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Observed Errors in Real Systems

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel lvy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M /sec

* A real reliability & security issue

* In a more controlled environment, we can
induce as many as ten million disturbance errors

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 19
DRAM Disturbance Errors,” ISCA 2014.



Errors vs. Vintage
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All modules from 2012-2013 are vulnerable
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Experimental DRAM Testing Infrastructure

P An Experimental Study of Data Retention
R T Behavior in Modern DRAM Devices:
“fan over Implications for Retention Time Profiling
o8 & Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A
Comparative Experimental Study

(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing

o ‘-,,xumx Board

| '.9’
SN -

Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)
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Experimental Infrastructure (DRAM)

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An I
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



One Can Take Over an Otherwise-Secure System

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable
and secure computing system — an access to one memory ad-
dress should not have unintended side effects on data stored
in other addresses. However, as DRAM process technology

Flipping Bits in Memory Without Accessing Them:

P rOj ect Ze ro An Experimental Study of DRAM Disturbance Errors

(Kim et al., ISCA 2014)

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Exploiting the DRAM rowhammer bug to gain kernel privileges



RowHammer Security Attack Example

= "Rowhammer” is a problem with some recent DRAM devices in which
repeatedly accessing a row of memory can cause bit flips in adjacent rows
(Kim et al., ISCA 2014).

o Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors (Kim et al., ISCA 2014)

= We tested a selection of laptops and found that a subset of them
exhibited the problem.

= We built two working privilege escalation exploits that use this effect.
o Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

= One exploit uses rowvhammer-induced bit flips to gain kernel privileges on
x86-64 Linux when run as an unprivileged userland process.

= When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTES).

= It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015) 24




Security Implications
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It's like breaking into an apartment by
repeatedly slamming a neighbor’s door until |
the vibrations open the door you were after



More Security Implications

Not there yet, but ...

Y OWHAMMER)S

ROQOT privileges for web apps!

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript
26

Source: https://lab.dsst.io/32c3-slides/7197.html




More Security Implications

Hammer And Root

MI/honrs of Androids

Drammer: Deterministic Rowhammer

Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/ AttaCkS on MObIIe Platforms 27



More Security Implications?
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Apple’s Patch for RowHammer

s https://support.apple.com/en-gb/HT204934

Available for: OS X Mountain Lion v10.8.5, OS X Mavericks v10.9.5
Impact: A malicious application may induce memory corruption to escalate privileges

Description: A disturbance error, also known as Rowhammer, exists with some DDR3 RAM that could
have led to memory corruption]This issue was mitigated by increasing memory refresh rates.

CVE-ID

CVE-2015-3693 : Mark Seaborn and Thomas Dullien of Google, working from original research by
Yoongu Kim et al (2014)

HP and Lenovo released similar patches




Challenge and Opportunity

Reliability
(and Security)

30



Departing From “Business as Usual”

More Intelligent
Memory Controllers

Online System-Level Tolerance
of Memory “Issues”
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Large-Scale Failure Analysis of DRAM Chips

= Analysis and modeling of memory errors found in all of
Facebook's server fleet

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the
45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.
[Slides (pptx) (pdf)] [DRAM Error Model]

Revisiting Memory Errors in Large-Scale Production Data Centers:
Analysis and Modeling of New Trends from the Field

Justin Meza Qiang Wu™* Sanjeev Kumar™ Onur Mutlu
Carnegie Mellon University * Facebook, Inc.
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DRAM Reliability Reducing
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Aside: Flash Error Analysis in the Field

= First large-scale field study of flash memory errors

= Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"A Large-Scale Study of Flash Memory Errors in the Field"
Proceedings of the
ACM International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Coverage at ZDNet]

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu
Carnegie Mellon University Facebook, Inc. Facebook, Inc. Carnegie Mellon University
meza@cmu.edu gwu@fb.com skumar@fb.com onur@cmu.edu

SAFARI 34



Aside: Experimental Infrastructure (Flash)

‘USB Jack
/

" vVirtex-1l Pro

S s /-/(USB cotroller)
RO =20 4x-nm
‘A Virtex-VEFPGA D

“NAND Flash
(NAND.-Controller) . )

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, NAND Daughter Board
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017]
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Another Talk: NAND Flash Scaling Challenges

= Onur Mutluy,
"Error Analysis and Management for MLC NAND Flash Memory"
Technical talk at Flash Memory Summit 2014 (FMS), Santa Clara, CA, August
2014. Slides (ppt) (pdf)

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.

Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD
2012.

Cai+, “"Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE
2013.

Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.

Cai+,"Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.

Cai+, “"Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.

Luo+, "WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST
2015.

Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.

Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE
JSAC 2016.

Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation
Techniques,” HPCA 2017.

Fukami+, “Improving the Reliability of Chip-Off Forensic Analysis of NAND Flash Memory Devices,” DFRWS EU 2017.
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Recap: The DRAM Scaling Problem

DRAM Process Scaling Challenges

+» Refresh

o Niffictilt ta huild hiadh-asneect ratio cell canacitare decreasina cell canacitance

THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM
to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng,
**John Halbert, **Kuljit Bains, SeongdJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel
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How Do We Solve The Problem?

= Fix it: Make menpgrraasaants

pllers more intelligent

_ Problems
a New interfaces, lEeriTE

tectures: system-mem codesign

Programs

= Eliminate or minimize it\Replace or{more likely) augment

DRAM with a different

Runtime System

o New technologies an{ wm os, mmy  pthinking of memory &

storage

ISA

= Embrace it: Design h
are perfect) and map

emories (none of which
ly across them

a New models for data management and maybe usage

Solutions (to memo

ry scaling) require

software/hardware/device cooperation




Solution 1: New Memory Architectures

= Overcome memory shortcomings with
o Memory-centric system design
o Novel memory architectures, interfaces, functions
o Better waste management (efficient utilization)

= Key issues to tackle
a Enable reliability at low cost
o Reduce energy
a Improve latency and bandwidth
o Reduce waste (capacity, bandwidth, latency)
o Enable computation close to data

SAFARI
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Solution 1: New Memory Architectures

" Liu+, "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
" Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
. Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
" Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.
. Seshadri+, “"RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.
. Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.
" Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.
" Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.
. Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.
" Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.
" Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.
" Qureshi+, "AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.
" Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 2015.
" Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.
] Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.
. Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.
" Ahn+, "PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.
" Lee+, “Decoupled Direct Memory Access: Isolating CPU and 10 Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015.
" Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO 2015.
" Lee+, “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” TACO 2016.
" Hassan+, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality,” HPCA 2016.
" Chang+, “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Migration in DRAM,” HPCA 2016.
. Chang+, “Understanding Latency Variation in Modern DRAM Chips Experimental Characterization, Analysis, and Optimization,” SIGMETRICS 2016.
" Khan+, "PARBOR: An Efficient System-Level Technique to Detect Data Dependent Failures in DRAM,” DSN 2016.
" Hsieh+, “Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems,” ISCA 2016.
" Hashemi+, “Accelerating Dependent Cache Misses with an Enhanced Memory Controller,” ISCA 2016.
" Boroumand+, “LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,” IEEE CAL 2016.
" Pattnaik+, “Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities,” PACT 2016.
. Hsieh+, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation,” ICCD 2016.
" Hashemi+, “Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads,” MICRO 2016.
" Khan+, “A Case for Memory Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM",” IEEE CAL 2016.
" Hassan+, “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” HPCA 2017.
" Avoid DRAM:
&) Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.

Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.

Seshadri+, “The Dirty-Block Index,” ISCA 2014.

Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.

Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” ISCA 2015.
Pekhimenko+, “Toggle-Aware Bandwidth Compression for GPUs,” HPCA 2016.

SAFARI 40
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Solution 2: Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory

o Expected to scale to 9nm (2022 [ITRS])
o Expected to be denser than DRAM: can store multiple bits/cell

But, emerging technologies have shortcomings as well
a Can they be enabled to replace/augment/surpass DRAM?

Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, IEEE Micro'10.

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

Yoon, Meza+, “"Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.

Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.

Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
Ren+, "ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.
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Solution 3: Hybrid Memory Systems

-

DRAM

\2

Ctrl

Ctrl

/

\_

Technology X (e.g., PCM)

~

/

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD

2012 Best Paper Award.
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Exploiting Memory Error Tolerance
with Hybrid Memory Systems

Vulnerable
data

Reliable memory

On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %

Heterogeneous-Reliability Memory [psn 2014]
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Challenge and Opportunity

Providing the Best of
Multiple Metrics

SAFARI
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Departing From “Business as Usual”

Heterogeneous Memory Systems

Configurable Memory Systems

SAFARI
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An Orthogonal Issue: Memory Interference

Core

Core

Core

Core

<

>

Main
Memory

Cores’ interfere with each other when accessing shared main memory
This is uncontrolled today - Unpredictable, uncontrollable system

SAFARI
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Goal: Predictable Performance in Complex Systems

Shared Cache HWA HWA

TR
DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

= Heterogeneous agents: CPUs, GPUs, and HWAs
= Main memory interference between CPUs, GPUs, HWAs

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance?

SAFARI 47



QoS-Aware Memory Systems

Solution: QoS-Aware Memory Systems

Hardware provides a configurable QoS substrate
o Application-aware memory scheduling, partitioning, throttling

Software configures the substrate to satisfy various QoS goals

QoS-aware memory systems provide predictable performance
and higher efficiency

Subramanian et al., “"MISE: Providing Performance Predictability and Improving Fairness in
Shared Main Memory Systems,” HPCA 2013.

Subramanian et al., “"The Application Slowdown Model,” MICRO 2015.

SAFARI



Challenge and Opportunity

Strong
Memory Service
Guarantees

SAFARI
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Departing From “Business as Usual”

Predictable Memory Management

Programmable Memory Systems

SAFARI
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Some Promising Directions
= New memory architectures

o Memory-centric system design

= Enabling and exploiting emerging NVM technologies
o Hybrid memory systems
a Unified interface to all data

= System-level QoS and predictability

o Predictable systems with configurable QoS

SAFARI
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The Memory Scaling Problem and Solution Directions
o New Memory Architectures

o Enabling Emerging Technologies

Cross-Cutting Principles

Summary

SAFARI
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Rethinking Memory Architecture
= | Compute-capable memory

= Refresh
= Reliability
= Latency
= Bandwidth
= Energy

= Memory Compression
SAFARI
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Why In-Memory Computat1on TodayD

ommunication es Arithmetic
Dally, HIPEAC 2015

64-bit DP DRAM
20pJ 256pJ 16nJ M 4 W,

256-bit buses
Efficient

>00p) e off-chip link
| 256-bit access

Pull from Systems and Applications

o Data access is a major system and application bottleneck
o Systems are energy limited
o Data movement much more energy-hungry than computation

SAFARI >



Two Approaches to In-Memory Processing

=| 1. Minimally change DRAM to enable simple yet powerful
computation primitives

o RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data
(Seshadri et al., MICRO 2013)

o Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

o Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

= 2. Exploit the control logic in 3D-stacked memory to enable

more comprehensive computation near memory

o PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-
Memory Architecture (Ahn et al., ISCA 2015)

o A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing
(Ahn et al., ISCA 2015)

o Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,
Mechanisms, Evaluation (Hsieh et al., ICCD 2016)

SAFARI >




Bulk Copy and Initialization

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’I5]

00000
00000
00000 - —-

._Zero initialization S
FOrklng (e.g., security) ChECprlntlng

Many more

VM Cloning  page Migration
Deduplication
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Today’s Memory: Bulk Data Copy

1) High latency
3) Cache pollution \

2) High bandwidth utilization

4) Unwanted data movement

1046ns, 3.6u) (for 4KB page copy via DMA) .



Future: RowClone (In-Memory Copy)

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement

10068s03)8ul
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DRAM Subarray Operation (load one byte)

Transfer
row

4 Kbytes
EEEEEEER Step 1: Activate row
DRAM subarray
EEEEEEEEEENEEEEEEEEEEEEEREEEEER Row Buffer (4 Kbytes)
Step 2: Read
Transfer byte
onto bus

Data Bus



RowClone: In-DRAM Row Copy

Transfer
row

4 Kbytes

Step 1: Activate row A

Step 2: Activate row B

DRAM subarray

Row Buffer (4 Kbytes)

Data Bus



Generalized RowClone

Inter Subarray Copy )
(Use Inter-Bank Copy Twice) —
FC)A 4 /\/
© [ J [Bank}

L O

O ~ | | -
> | |

O

2 v \. v J

Inter Bank Copy

(Pipelined

Internal RD/WR)

Intra Subarray
Copy (2 ACTS)

0.01% area cost




RowClone: Latency and Energy Savings

1.2 W Baseline ¥ Intra-Subarray
¥ Inter-Subarray

A

"~ Inter-Bank

=
|

74X

o
0e]
|

Normalized Savings
o o
IN o

o
N
|

Latency Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013. v



RowClone: Application Performance

¥ [PC Improvement ® Energy Reduction

% Compared to Baseline

bootup compile forkbench mcached mysql shell
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RowClone: Multi-Core Performance

-
@)}

==Baseline *=RowClone

—
AN

RN
w

—
—

Normalized Weighted Speedup
R o

O
©

50 Workloads (4-core)
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End-to-End System Design

- How to communicate
Application occurrences of bulk copy/
initialization across layers?

Operating System

How to ensure data coherence?

How to maximize latency and
Microarchitecture energy savings?

DRAM (RowClone) How to handle data reuse?
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Goal: Ultra-Eftticient Processing Near Data

[ pp
:| GPU GPU |[:
CPU CPU core : |(throughput)| |(throughput)] :
core core core core :
video |
core
CPU CPU iaoun| o
- | : |(throughpu roughput)| } :
core core imagingl :| core core | Memory
LLC
. Specialized
Memory Controller compute-capability
in memory

Memory Bus

Memory similar to a "conventional” accelerator



Enabling In-Memory X

Processor 1 Database

Core

Graphs

{ Media

Interconnect
Results

nat is a flexible and scalable memory interface?

nat is the right partitioning of computation capability?
nat is the right low-cost memory substrate?

nat memory technologies are the best enablers?

= How do we rethink/ease X algorithms/applications?

= ===




In-DRAM AND/OR: Triple Row Activation
YV, ,+0
A l Loy Hoe?

Final State
AB + BC + AC

| %WDD

SAFARI Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015. 63



In-DRAM AND/OR Results

= 20X improvement in AND/OR throughput vs. Intel AVX
= 50.5X reduction in memory energy consumption

= At least 30% performance improvement in range queries
90

In-DRAM AND (2 banks)
I e

70 '\
60 \
50

\ In-DRAM AND (1 bank)

40 b '\t * * * * = i =i * * * A

30 )

80

Throughput of AND operations (GB/s)

20 \

10 v A Intel AVX

0 1 1 1 1 1 1 1 1 1 1 1 1 1
L LRI PR PRPW®

Size of Vectors to be ANDed

SAFARI Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.



Going Forward

= A bulk computation model in memory
Problems
Algorithms
= New memory & software interfaces to |Programs ~— User |
enable bulk in-memory computation \ /
_ Runtime System
= New programming models, (VM, OS, MM)
algorithms, compilers, and system ISA

designs that can take advantage of
the model

SAFARI 70



Gather-Scatter DRAM [MICRO 2015]

\N ________

Problem: Non-unit strided accesses
Today’s DRAM

\~_—’ \5__¢ \\__a

ki H H
/,’/”——

Vi L’L’é(’ -
Inefficiency: High latency, wasted bandwidth and cache space

Pattern 0

her-Scatt AM BRrEEErS

Example In-memory Best of both row store and
result databases column store layouts

S A FA R l Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to
Improve the Spatial Locality of Non-unit Strided Accesses”, MICRO 2015.
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Challenge and Opportunity

Primitives and Interfaces
for
Computation in Memory

SAFARI
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SAFARI
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Departing From “Business as Usual”

Memory No Longer a Dumb Device

SAFARI
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Two Approaches to In-Memory Processing

= 1. Minimally change DRAM to enable simple yet powerful
computation primitives
o RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data
(Seshadri et al., MICRO 2013)
o Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

o Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

=| 2. Exploit the control logic in 3D-stacked memory to enable
more comprehensive computation near memor
o PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-

Memory Architecture (Ahn et al., ISCA 2015)

o A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing
(Ahn et al., ISCA 2015)

o Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges,
Mechanisms, Evaluation (Hsieh et al., ICCD 2016)

SAFARI 7>




Key Bottlenecks in Graph Processing

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

}
}

w.rank
w.next_rank

w.edges

SAFARI

1. Frequent random memory accesses

2. Little amount of computation
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Tesseract System tor Graph Processing

Host Processor

Memory-Mapped

Accelerator Interface .
Noncacheable, Physically Addressed) :

| 1 >
~ 43 I / o
b !
| y | 1
> & v i 1
- A | | ) 1
y & < WHE 1 e I
b - 2 0l - 1
. il 1
N & p 1

1 . . I

1 v 1

] v 1

1 1

1 1

1 1

1 1

' In-Order Core
7
1/
/ mEn

o
P
>
<
O
@)

LP - PFBuffer =~ 2
Crossbar Network o
D
Oem / e MTP
J Message Queue NI

SAFAR/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 77



Communication via
Remote Function Calls

Message Queue




Prefetching

LP PF Buffer

MTP




FEwvaluated Systems

DDR3-000

(with FDP)

8 000 8 000
4GHz 4GHz

8 000 8 000
4GHz 4GHz

102.4GB/s

HMC-000

(with FDP)

8 000 8 000
4GHz 4GHz

8 000 8 000
4GHz 4GHz

640GB/s

128 128
In-Order In-Order
2GHz 2GHz
128 128
In-Order In-Order
2GHz 2GHz
640GB/s

Tesseract

(:32-entry MQ, 4KB PF Buffer)

32
Tesseract
Cores

8TB/s

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 80



Workloads

Five graph processing algorithms
o Average teenage follower

o Conductance

o PageRank

o Single-source shortest path

o Vertex cover

Three real-world large graphs

o ljournal-2008 (social network)
o enwiki-2003 (Wikipedia)

o indochina-0024 (web graph)

o 4~7M vertices, 79~194M edges

SAFARI



Tesseract Graph Processing Performance

>13X Performance Improvement

16
13.8x
14
1 11.6x
o 10 9.0x
>
3 8
&
6
4
+56%  4+25%
, == N
DDR3-000 HMC-Oo0O HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 52



Memory Bandwidth Consumption

2.9TB/s

Memory Bandwidth (TB/s)

2.2TB/s
1.3TB/s
190GB/s 243GB/s
80GB/s
— T

DDR3-000 HMC-000 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP




Memory Energy Consumption (Normalized)

® Memory Layers [ Logic Layers [lCores
1.2

0.8
0.6

0.4

8X Energy Reduction

HMC-000 Tesseract with Prefetching

0.2

SAFARI Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 84



Challenge and Opportunity

Memory
Bandwidth
and
Energy

SAFARI
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Departing From “Business as Usual”

Memory No Longer a Dumb Device

Autonomous and Self-Managing
Memory

SAFARI 86



More on PIM: PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,

Locality-Aware Processing-in-Memory Architecture”
Proceedings of the

42nd International Symposium on Computer Architecture
(ISCA), Portland, OR, June 2015.

[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn  Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University *Carnegie Mellon University
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More on PIM Design: 3D-Stacked GPU I

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"”
Proceedings of the
43rd International Symposium on Computer Architecture (ISCA), Seoul,
South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim*  Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

fCarnegie Mellon University 'NVIDIA *KAIST SETH Ziirich



More on PIM Design: 3D-Stacked GPU 11

Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,

"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the

25th International Conference on Parallel Architectures and Compilation
Techniques (PACT), Haifa, Israel, September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik®  Xulong Tang*  Adwait Jog> Onur Kayiran?
Asit K. Mishra* Mahmut T. Kandemir! Onur Mutlu®® Chita R. Das!

'Pennsylvania State University = *College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs SETH Zirich ¢Carnegie Mellon University
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Key Challenge 1

3D-stacked memory

(memory stack)

__global__

void applyScaleFactorsKernel( uint8_ T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols )

// Work out which pixel we are working on.

const int rowIdx

blockIdx.x * blockDim.x + threadIdx.x;

const int colldx = blockIdx.y:
const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if( rowIdx >= numRows ) return;

// Compute the

index of my element

size_t linearIdx = rowIdx + colIdx*numRows +
sliceIdx*numRows*numCols;

SM (Streaming Multiprocessor)

Main GPU

Logic layer

Logic layer
SM

I

Crossbar switch

Vault| .... Vault
Ctrl Ctrl




Key Challenge 1

* Challenge 1: Which operations should be executed
on the logic layer SMs!? ey

void applyScaleFactorsKernel( uint8_ T * const out,
uint8_T const * const in, const double *factor,
’ size_t const numRows, size_t const numCols )

{

L] // Work out which pixel we are working on.
const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
.. EEEEEEEERN const int colIldx = blockIdx.y:
m const int sliceldx = threadIdx.z;
| ] // Check this thread isn't off the image
- if( rowIdx >= numRows ) return;
[ ] // Compute the index of my element
3 D-stacked memoyr size_t linearIdx = rowIdx + colIdx*numRows +
y | sliceIdx*numRows*numCols;
|
L3 o
(memory stack) = SM (Streaming Multiprocessor) n
] \ -
1 u | w =)
| \ H e
| |
|

............ Logic layer

L

Logic layer
SM
I

Crossbar switch
[ [

Vault| .... Vault
Ctrl Ctrl

"




Key Challenge 2

* Challenge 2: How should data be mapped to
different 3D memory stacks!?

3D-stacked memory

(memory stack) SM (Streaming Multiprocessor)

Logic layer
SM

I

Crossbar switch

Vault| .... Vault
Ctrl Ctrl




More on PIM Design: Dependent Misses

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,
"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller”
Proceedings of the
43rd International Symposium on Computer Architecture (ISCA), Seoul,
South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimif, Onur Mutlu$, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University

SAFARI )3



More on PIM: ILinked Data Structures

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation”
Proceedings of the
34th IEEE International Conference on Computer Design (ICCD),
Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich
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More on PIM Design: Coherence

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'$, Brandon Lucia’,
Kevin Hsieht, Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f

t Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich
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An FPGA-based Test-bed for PIM?

= Hasan Hassan et al., "SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

= Flexible
= Easy to Use (C++ API)

= Open-source
github.com/CMU-SAFARI/SoftMC

SAFARI

el Machme

N Temp yt
=9\ Controller
Heater Bl
H@]
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Simulation Infrastructures for PIM

Ramulator extended for PIM
o Flexible and extensible DRAM simulator
o Can model many different memory standards and proposals

o Kim+, "Ramulator: A Flexible and Extensible DRAM
Simulator”, IEEE CAL 2015.

o https://github.com/CMU-SAFARI/ramulator

Ramulator: A Fast and Extensible DRAM Simulator

Yoongu Kim!  Weikun Yang!-?  Onur Mutlu®
ICarnegie Mellon University ~ 2Peking University

SAFARI 7



Rethinking Memory Architecture

Compute Capable Memory
Reliability

Latency

Bandwidth

Energy

Memory Compression
SAFARI
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DRAM Refresh L

DRAM capacitor charge leaks over time CAP ——

T

N SENSE

The memory controller needs to refresh each row V
periodically to restore charge

o Activate each row every N ms
o Typical N = 64 ms

Downsides of refresh

-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM capacity scaling

99



Refresh Overhead: Performance

100

Present i Future

4 o) o0
S S S

% time spent refreshing

Do
S

0"2Gb 4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 100



Retresh Overhead: Energy

100— .

Present i Future

o0
S

A
S

I~
)

(\®
S

% DRAM energy spent refreshing

S

2Gb 4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 101



Retention Time Profile of DRAM

04-128ms

128-250ms




RAIDR: Eliminating Unnecessary Refreshes

= Observation: Most DRAM rows can be refreshgd much less often

: : E =
without losing data [kim+, EDL’'09][Liu+ ISCA'13] 2 o 105

g 1058

o 1077 4

= Key idea: Refresh rows containing weak cellsz v |ﬁ..1999.991!§.@2,5921; ______________ e
% 10_9 ~ cells ms ; 2%

more frequently, other rows less frequently w52 BA o oS

e . . . §10‘” Cutoff @ 64 ms 03
1. Profiling: Profile retention time of all rows o =L o » £

Refresh interval (s)

2. Binning: Store rows into bins by retention time in memory controller
Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)

3. Refreshing: Memory controller refreshes rows in different bins at
different rates

160

B Auto S0%
= Results: 8-core, 32GB, SPEC, TPC-C, TPC-H 2 130 =
o 74.6% refresh reduction @ 1.25KB storage :
o ~16%/20% DRAM dynamic/idle power reduction
o ~9% performance improvement
o Benefits increase with DRAM capacity

c
S
S

0
-

~
(=)

Energy per acce
o)
S

[\
=]

0"4Gb 8Gb 16Gb 32Gb 64 Gb

Device capacity
SAFARI Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



Experimental DRAM Testing Infrastructure

P An Experimental Study of Data Retention
R T Behavior in Modern DRAM Devices:
“fan over Implications for Retention Time Profiling
o8 & Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A
Comparative Experimental Study

(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing

o ‘-,,xumx Board

| '.9’
SN -

Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

SAFARI 104




Experimental Infrastructure (DRAM)

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An 105
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



More Information [ISCA’13]

An Experimental Study of Data Retention Behavior in
Modern DRAM Devices:
Implications for Retention Time Profiling Mechanisms

+ ®
Jamie Liu Ben Jaiyen Yoongu Kim
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University
5000 Forbes Ave. 5000 Forbes Ave. 5000 Forbes Ave.
Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213

jamiel@alumni.cmu.edu bjaiyen@alumni.cmu.edu yoonguk@ece.cmu.edu

Chris Wilkerson Onur Mutlu
Intel Corporation Carnegie Mellon University
2200 Mission College Blivd. 5000 Forbes Ave.
Santa Clara, CA 95054 Pittsburgh, PA 15213
chris.wilkerson@intel.com onur@cmu.edu
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More Information [SIGMETRICS’14]

The Efficacy of Error Mitigation Techniques for DRAM
Retention Failures: A Comparative Experimental Study

Samira Khan'+ Donghyuk Leet Yoongu Kimf
samirakhan@cmu.edu donghyuki@cmu.edu  yoongukim@cmu.edu

Alaa R. Alameldeen ~ Chris Wilkerson® Onur Mutluf
alaa.r.alameldeen@intel.com chris.wilkerson@intel.com onur@cmu.edu

fCarnegie Mellon University “Intel Labs
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Online Profiling of DRAM In the Field

Initially protect DRAM Periodically test
with ECC 1 parts of DRAM 2

Adjust refresh rate and
reduce ECC 3

Optimize DRAM and mitigate errors online
without disturbing the system and applications



Online Profiling of DRAM [DSN’15]

AVATAR: A Variable-Retention-Time (VRT) Aware
Refresh for DRAM Systems

Moinuddin K. Qureshi’ Dae-Hyun Kim' Samira Khan* Prashant J. Nair' Onur Mutlu*
"Georgia Institute of Technology *Carnegie Mellon University
{moin, dhkim, pnair6}@ece.gatech.edu {samirakhan, onur}@cmu.edu
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Online Profiling of DRAM [DSN’16]

PARBOR: An Efficient System-Level Technique
to Detect Data-Dependent Failures in DRAM

Samira Khan*  Donghyuk Lee™*  Onur Mutlu*"
*University of Virginia TCarnegie Mellon University *Nvidia *ETH Ziirich

SAFARI 10



Online Protiling of DRAM [IEEE CAL16]

A Case for Memory Content-Based Detection and Mitigation
of Data-Dependent Failures in DRAM

Samira Khan*, Chris Wilkerson', Donghyuk Lee*, Alaa R. Alameldeen®, Onur Mutlu**
*University of Virginia TIntel Labs tCarnegie Mellon University *ETH Zirich

SAFARI i



Challenge and Opportunity

Minimizing Refresh
(and Other Technology Taxes)

SAFARI 12



Departing From “Business as Usual”

Online Detection and
Management of Memory Errors

(Online Avoidance of Technology Taxes)

SAFARI 13



Rethinking Memory Architecture

= In-Memory Computation

= Refresh
-
Many More
= | Latency Challenges and Opportunities

= Bandwidth

=| Energy

=| Memory Compression
SAFARI 114




Agenda

Major Trends Affecting Main Memory

The Memory Scaling Problem and Solution Directions
o New Memory Architectures

o Enabling Emerging Technologies

Cross-Cutting Principles
Summary

SAFARI 1>



Limits of Charge Memory

Difficult charge placement and control
o Flash: floating gate charge
o DRAM: capacitor charge, transistor leakage

Reliable sensing becomes difficult as charge
storage unit size reduces

WL BL
1 —— GATE I | ’ )
C#3— FLOATING GATE
- SENSE

SAFARI 16



Promising Resisttve Memory Technologies

PCM

o Inject current to change material phase
o Resistance determined by phase

STT-MRAM
o Inject current to change magnet polarity
o Resistance determined by polarity

Memristors/RRAM/ReRAM
o Inject current to change atomic structure
o Resistance determined by atom distance

SAFARI 17



Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory BL
o Data stored by changing phase of material
Data read by detecting material’s resistance ;
Expected to scale to 9nm (2022 [ITRS]) w SENSE
Prototyped at 20nm (Raoux+, IBM JRD 2008) ? Vv
Expected to be denser than DRAM: can store multiple bits/cell

PCM

a
a
a
a

But, emerging technologies have (many) shortcomings
o Can they be enabled to replace/augment/surpass DRAM?

SAFARI 118



Phase Change Memory: Pros and Cons

= Pros over DRAM
o Better technology scaling (capacity and cost)
a Non volatile > Persistent
o Low idle power (no refresh)

= Cons
o Higher latencies: ~4-15x DRAM (especially write)
a Higher active energy: ~2-50x DRAM (especially write)
a Lower endurance (a cell dies after ~108 writes)
o Reliability issues (resistance drift)

= Challenges in enabling PCM as DRAM replacement/helper:
o Mitigate PCM shortcomings

o Find the right way to place PCM in the system
SAFARI 119



PCM-based Main Memory (I)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
IcipdiciRgicsh
GCGQ-—a | -G | @D
Q-G | - CE | @D

= Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC'09]:
o How to partition/migrate data between PCM and DRAM
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PCM-based Main Memory (11)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
o)~ L)~
Q- - —Cc | @&«
Q-G -G | @

= Pure PCM main memory [Lee et al., ISCA'09, Top Picks’10]:

o How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings
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An Initial Study: Replace DRAM with PCM

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

o Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
o Derived “average” PCM parameters for F=90nm

Density \ Latency
> 9-12F? using BJT > 50ns Rd, 150ns Wr
> 1.5x DRAM .~ |> 4x,12x DRAM
Endurance Energy

> 404A Rd, 150A Wr
> 1E-08x DRAM | > 2x,43x DRAM
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Results: Naive Replacement of DRAM with PCM

Replace DRAM with PCM in a 4-core, 4MB L2 system
PCM organized the same as DRAM: row buffers, banks, peripherals
1.6x delay, 2.2x energy, 500-hour average lifetime

PCM Performance :: 2048Bx1 Buffer PCM Endurance :: 2048Bx1 Buffer

0.2
3 4 I Delay

-EnergyMem 0.18

2.8
0.14

0.16
26
z2
a 0.12
: 0.
T g, 0.08
' 0.0
0.8!
06l 0.04
0.4/ 0.0
0.2!

is mg rad oce art equ swi avg IS mg rad oce art equ swu avg

Normalized to
R N N NN
I\J -h 0‘) O’J N

Years

-h
D

N

(=
o

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009.
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Results: Architected PCM as Main Memory

= 1.2x delay, 1.0x energy, 5.6-year average lifetime
= Scaling improves energy, endurance, density

PCM Performance .. 512Bx4 Buffer PCM Endurance .. 512Bx4 Buffer
1.8[———— 16
Il Delay — DiffLine (648)

1.6 I EnergyMem

14! I I DiffWord (4B)

cg IS mg rad oce art equ swi avg cg is mg rad oce art equ SWI avg

14

-
N

o

oo —

Years
@

2]

Normalized to DRAM
(]
o

o
'
I

©
(¥
N}

o
o

= Caveat 1: Worst-case lifetime is much shorter (no guarantees)
= Caveat 2: Intensive applications see large performance and energy hits

= Caveat 3: Optimistic PCM parameters?
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A More Viable Approach: Hybrid Memory Systems

CPU

DRAM PCM
Ctrl  Ctrl

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, “"Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

SAFARI




Data Placement Between DRAM and PCM

Idea: Characterize data access patterns and guide data
placement in hybrid memory

Streaming accesses: As fast in PCM as in DRAM
Random accesses: Much faster in DRAM

Idea: Place random access data with some reuse in DRAM;
streaming data in PCM

Yoon+, “"Row Buffer Locality-Aware Data Placement in
Hybrid Memories,” ICCD 2012 Best Paper Award.

SAFARI 126



Hybrid vs. All-PCM/DRAM [iccp’12]

®16GBPCM BERBLA-Dyn B016GB DRAM

2 1.2

1.6 29% o <

=3

N 4 - 2 o |

2 - - 77

= 1.2 319 ’

o0 <

s 1 - = 0.6 -

=08 - - I

: 31% better performance than all PCM,

within 29% of all DRAM performance

0 - — 0 - —

Yoon+, “Row Buffer Locality-Aware Data Placement in Hybrid Memories,” ICCD 2012 Best Paper Award.



STT-MRAM as Main Memory

Magnetic Tunnel Junction (MTJ) device
o Reference layer: Fixed magnetic orientation
o Free layer: Parallel or anti-parallel

Magnetic orientation of the free layer
determines logical state of device

o High vs. low resistance

Write: Push large current through MTJ to
change orientation of free layer

Read: Sense current flow

Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.
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STT-MRAM: Pros and Cons

= Pros over DRAM
o Better technology scaling
o Non volatility
o Low idle power (no refresh)

= Cons
a Higher write latency
o Higher write energy
o Reliability?

= Another level of freedom

a Can trade off non-volatility for lower write latency/energy (by
reducing the size of the MTJ)
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Architected STT-MRAM as Main Memory

= 4-core, 4GB main memory, multiprogrammed workloads
= ~6% performance loss, ~60% energy savings vs. DRAM

OSTT-RAM (base)  ESTT-RAM (opt)

98%
96% -

s
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Kultursay+, “"Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.
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Challenge and Opportunity

Enabling an Emerging Technology
to Replace DRAM
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Departing From Business As Usual

Hybrid Memory

Persistent Memory
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Other Opportunities with Emerging Technologies

Merging of memory and storage

o e.g., a single interface to manage all data

New applications
o e.g., ultra-fast checkpoint and restore

More robust system design
o e.g., reducing data loss

Processing tightly-coupled with memory
o e.g., enabling efficient search and filtering
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Coordinated Memory and Storage with NVM (I)

= The traditional two-level storage model is a bottleneck with NVM
o Volatile data in memory - a load/store interface
o Persistent data in storage - a file system interface

o Problem: Operating system (OS) and file system (FS) code to locate, translate,
buffer data become performance and energy bottlenecks with fast NVM stores

Main Memory

~ Two-Level Store

Load/Store

Processor
and caches

fop#n, fread, fwrite, ...

------
......
........
........
........

PRYTRES

Phase-Change)
Stmagm(fiSD/HDD)

SAFARI
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Coordinated Memory and Storage with NVM (1)

= Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
o Improves both energy and performance
o Simplifies programming model as well

__ Unified Memory/Storage

Persistent Memory
Manager

Processor
and caches
Load/Store Feedback

Ll
Persistent (e.g., Phase-Change) Memory

SAFARI Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 135
Storage and Memory,” WEED 2013.



The Persistent Memory Manager (PMM)

int main (void) {
// data in file.dat 1s persistent
FILE myData = "file.dat";
myData = new int[64];

Persistent objects

}

void updateValue (int n, int value) {
FILE myData = "file.dat";
myData [n] = value; // value is persistent

O 0 1O\ N Wi -

Store l Hints from SW/OS/runtime

Software Persistent Memory Manager
Hardware Data Layout, Persistence, Metadata, Security, ...

I

| DRAM | Fiash | Nvm |[ HDD ]

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices




The Persistent Memory Manager (PMM)

= EXposes a load/store interface to access persistent data

o Applications can directly access persistent memory = no conversion,
translation, location overhead for persistent data

= Manages data placement, location, persistence, security
a To get the best of multiple forms of storage

= Manages metadata storage and retrieval
a This can lead to overheads that need to be managed

= Exposes hooks and interfaces for system software
o To enable better data placement and management decisions

= Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.
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Performance Benetits of a Single-Level Store

M User CPU [ User Memory M Syscall CPU [ Syscall I/O

10 ~24X

£ 08 \

|_

5 \

L3
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s 0.2

= ~9X
0 —_—

HDD 2-level NVM 2-level  Persistent Memory

SAFARI Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 133
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Energy Benefits of a Single-Level Store

B User CPU [J SyscallCPU @ DRAM [J NVM m HDD

o o o
N o) N e o

Fraction of Total Energy

©
N

HDD 2-level NVM 2-level  Persistent Memory

SAFARI Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 139
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Challenge and Opportunity

Combined
Memory & Storage
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Departing From “Business as Usual”

A Unified Interface to All Data
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Agenda

Major Trends Affecting Main Memory

The Memory Scaling Problem and Solution Directions
o New Memory Architectures

o Enabling Emerging Technologies

Cross-Cutting Principles

Summary
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Principles (So Far)

= Better interfaces between Iayers of the system stack
o Expose more i sropiems ously across the system stack
o Design more fl¢ ajgorithms ent interfaces

Programs 4—-
= Better-than-worst-case ?esign /

o Do not optimize for { Runtime System

o Worst case should n¢ (vM, OS, MM) : common case
ISA

on, asymmetry)
ne size fits all)

= Heterogeneity in desi
a Enables a more effic

= These principles are coupled (and require broad thinking)
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Agenda

Major Trends Affecting Main Memory

The Memory Scaling Problem and Solution Directions
o New Memory Architectures

o Enabling Emerging Technologies

Cross-Cutting Principles

Summary

SAFARI 144



Summary

Opportunity

RowHammer

Fixed, frequent refreshes
Fixed, high latency

Slow page copy & initialization
Fixed reliability mechanisms
Memory as a dumb device
DRAM-only main memory
Two-level data storage model
Large timing and error margins
Poor performance guarantees
Fixed policies in controllers

SAFARI

Memory controller anticipates and fixes errors
Heterogeneous refresh rate across memory
Heterogeneous latency in time and space

Exploit internal connectivity in memory to move data
Heterogeneous reliability across time and space
Memory as an accelerator and autonomous agent
Emerging memory technologies and hybrid memories
Unified interface to all data

Online adaptation of timing and error margins
Strong service guarantees and configurable QoS
Configurable and programmable memory controllers
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Summary

= Memory problems are a critical bottleneck for system
performance, efficiency, and usability

= New memory architectures
o Compute capable and autonomous memory

= Enabling emerging NVM technologies
o Persistent and hybrid memory

= System-level memory/storage QoS
o Predictable systems with configurable QoS

= Many opportunities and challenges that will change

the systems and software we design
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Some Open Source Tools

Rowhammer

o https://github.com/CMU-SAFARI/rowhammer
Ramulator — Fast and Extensible DRAM Simulator
o https://github.com/CMU-SAFARI/ramulator
MemSim

o https://github.com/CMU-SAFARI/memsim
NOCulator

o https://github.com/CMU-SAFARI/NOCulator

DRAM Error Model
a http://www.ece.cmu.edu/~safari/tools/memerr/index.html

Other open-source software from my group

o https://github.com/CMU-SAFARI/
o http://www.ece.cmu.edu/~safari/tools.html

SAFARI
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Referenced Papers

= All are available at
http://users.ece.cmu.edu/~omutlu/projects.htm
http://scholar.google.com/citations?user=7XyGUGKAAAAI&hl=en

= A detailed accompanying overview paper

a Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory
Systems"”

Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2015.
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Related Videos and Course Materials

= Undergraduate Computer Architecture Course Lecture
Videos (2013, 2014, 2015)

= Undergraduate Computer Architecture Course
Materials (2013, 2014, 2015)

= Graduate Computer Architecture Lecture Videos
(2013, 2015)

= Graduate Computer Architecture Course Materials
(2013, 2015)

= Parallel Computer Architecture Course Materials
(Lecture Videos)

= Memory Systems Short Course Materials

(Lecture Video on Main Memory and DRAM Basics)
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Thank you.

onur.mutlu@inf.ethz.ch
https://people.inf.ethz.ch/omutlu
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Rethinking Memory System Design
(and the Platforms We Design Around It)

Onur Mutlu
onur.mutlu@inf.ethz.ch
https://people.inf.ethz.ch/omutlu

April 4, 2017
E; ARC 2017 Keynote
Systems @ ETH zirich m Z U r i Ch
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NAND Flash Memory Scaling




Another Talk: NAND Flash Scaling Challenges

= Onur Mutluy,
"Error Analysis and Management for MLC NAND Flash Memory"
Technical talk at Flash Memory Summit 2014 (FMS), Santa Clara, CA, August
2014. Slides (ppt) (pdf)

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” DATE 2012.

Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime,” ICCD
2012.

Cai+, “"Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling,” DATE
2013.

Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel Technology Journal 2013.
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” ICCD 2013.
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.

Cai+,"Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” HPCA 2015.

Cai+, “"Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.

Luo+, "WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management,” MSST
2015.

Meza+, “A Large-Scale Study of Flash Memory Errors in the Field,” SIGMETRICS 2015.

Luo+, “Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory,” IEEE
JSAC 2016.

Cai+, “Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation
Techniques,” HPCA 2017.
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Experimental Infrastructure (Flash)

‘USB Jack
/

" vVirtex-1l Pro

S s /-/(USB cotroller)
= g =50 58 g
A Vifex-VEFRPGA D

“NAND Flash
(NAND.-Controller) . )

[Cai+, DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD
2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015] /0 Daughter Board
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Error Management 1n C NAND Flash rlaéhMéﬁiory

Problem: MLC NAND flash memory reliability/endurance is a key
challenge for satisfying future storage systems’ requirements

Our Goals: (1) Build reliable error models for NAND flash
memory via experimental characterization, (2) Develop efficient
techniques to improve reliability and endurance

This talk provides a “flash” summary of our recent results
published in the past 3 years:

o Experimental error and threshold voltage characterization [DATE’12&13]
o Retention-aware error management [ICCD’12]

o Program interference analysis and read reference V prediction [ICCD’13]
o Neighbor-assisted error correction [SIGMETRICS'14]
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Ramulator: A Fast and Extensible
DRAM Simulator
[IEEE Comp Arch Letters’15]
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Ramulator Motivation

= DRAM and Memory Controller landscape is changing

= Many new and upcoming standards

= Many new controller designs

= A fast and easy-to-extend simulator is very much needed

Segment DRAM Standards & Architectures

Commodity DDR3 (2007) [14]; DDR4 (2012) [ 5]

Low-Power LPDDR3 (2012) [!7]: LPDDR4 (2014) [20]

Graphics GDDRS (2009) [15]

Performance eDRAM [2%], [72]: RLDRAM3 (2011) [29]

WIO (2011) [16]: WIO2 (2014) [21]: MCDRAM (2015) [13]:

3D-Stacked  pypny 9013) [19]: HMCL.0 (2013) [10]: HMCL.1 (2014) [11]
SBA/SSA (2010) [35]: Staged Reads (2012) [%]: RAIDR (2012) [27]:
rcademic | SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [*7];

Half-DRAM (2014) [ Y]; Row-Buffer Decoupling (2014) [>°];
SARP (2014) [¢]: AL-DRAM (2015) [25]

SAF, Table 1. Landscape of DRAM-based memory 160



Ramulator

Provides out-of-the box support for many DRAM standards:

o DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

~2.5X faster than fastest open-source simulator
Modular and extensible to different standards

Simulator Cycles (10°) Runtime (sec.) Reg/sec ( 10%) Memory

(clang -O3)  Random Stream Random ~ Stream Random Stream — (MB)

Ramulator 652 411 752 249 133 402 2.1
DRAMSim2 645 413 2,030 876 49 114 1.2
USIMM 661 409 1,880 750 53 133 4.5
DrSim 647 406 18,109 12,984 6 8 1.6
NVMain 666 413 6,881 5,023 15 20 4,230.0

Table 3. Comparison of five simulators using two traces
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Case Study: Comparison of DRAM Standards

Rate Timin Data-Bus BW
Standard — \meor RCD-RP) (Widthx Chan) Rankper-Chan o
DDR3 1.600 11-11-11 64.bit x 1 1 11.9
DDRA4 2400 16-16-16  64-bit x 1 1 17.9
SALPt 1,600 11-11-11 64-bit x 1 1 11.9
LPDDR3  1.600 12-15-15  64-bit x 1 1 11.9
LPDDR4  2.400 222222  32-bit x 2* 1 17.9
GDDRS [17] 6.000 18-18-18  64-bit x 1 1 4.7
HBM 1.000  7-7-7 128-bit x 8* 1 119.2
WIO 266 777 128-bit x 4* 1 15.9
WIO2 1,066 9-10-10  128-bit x 8* 1 127.2
= 50 114 119 088 092 109 127 084 112
c &
f;3 R .. S| | S Across 22
€§ ' workloads,
9 N I I simple CPU
Y- LOp- == Ef """ I """" model
g E
5

DDR4 SALP LPDDR3 LPDDR4 GDDR5 HBM wIO WI02

Figure 2. Performance comparison of DRAM standards
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Ramulator Paper and Source Code

= Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator”
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

= Source code is released under the liberal MIT License
o https://qgithub.com/CMU-SAFARI/ramulator
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DRAM Infrastructure
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Experimental DRAM Testing Infrastructure

P An Experimental Study of Data Retention
R T Behavior in Modern DRAM Devices:
“fan over Implications for Retention Time Profiling
o8 & Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A
Comparative Experimental Study

(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing

o ‘-,,xumx Board

| '.9’
SN -

Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

SAFARI 165




Experimental Infrastructure (DRAM)

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An 166
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



ThyNVM




One Challenge

How to ensure consistency of system/data if all memory is
persistent?

Two extremes

o Programmer transparent: Let the system handle everything
o Programmer only: Let the programmer handle everything

o Many alternatives in-between...
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CHALLENGE: CRASH CONSISTENCY

Persistent Memory System

System crash can result in

permanent data corruption in NVM
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CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-Heaps srios11;, BPFS 1sosp0s;, MINEMOSYNE iaspiosiay

AtomicBegin {

Insert a new node;
} AtomicEnd;

Limits adoption of NVM

Have to rewrite code with clear partition
between volatile and non-volatile data

Burden on the programmers

170



OUR APPROACH: ThyNVM
Goal:

Software transparent consistency in
persistent memory systems




ThyNVM: Summary

—

A new hardware-based
checkpointing mechanism

 Checkpoints at multiple granularities to
reduce both checkpointing latency and
metadata overhead

* Overlaps checkpointing and execution to
reduce checkpointing latency

 Adapts to DRAM and NVM characteristics

Performs within 4.9% of an idealized DRAM

with zero cost consistency



More About ThyNVM

Ren+, "ThyNVM: Enabling Software-Transparent Crash
Consistency in Persistent Memory Systems,” MICRO 2015.

ThyNVM: Enabling Software-Transparent Crash Consistency
in Persistent Memory Systems

Jinglei Ren*" Jishen Zhao* Samira Khan” Jongmoo Choi*" Yongwei Wu* Onur Mutlu®

TCarnegie Mellon University *Tsinghua University
*University of California, Santa Cruz 'University of Virginia *Dankook University
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CHALLENGE: CRASH CONSISTENCY

Persistent Memory System

System crash can result in

permanent data corruption in NVM
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CURRENT SOLUTIONS

Explicit interfaces to manage consistency
— NV-Heaps srios11;, BPFS 1sosp0s;, MINEMOSYNE iaspiosiay

AtomicBegin {

Insert a new node;
} AtomicEnd;

Limits adoption of NVM

Have to rewrite code with clear partition
between volatile and non-volatile data

Burden on the programmers
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OUR APPROACH: ThyNVM
Goal:

Software transparent consistency in
persistent memory systems




ThyNVM: Summary

—

A new hardware-based
checkpointing mechanism

 Checkpoints at multiple granularities to
reduce both checkpointing latency and
metadata overhead

* Overlaps checkpointing and execution to
reduce checkpointing latency

 Adapts to DRAM and NVM characteristics

Performs within 4.9% of an idealized DRAM

with zero cost consistency



DRAM Latency




Rethinking Memory Architecture

Compute Capable Memory
Refresh

Reliability

Bandwidth

Energy

Memory Compression
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DRAM Latency vs. Capacity vs. Bandwidth

4 Capacity #Bandwidth Latency
100 64X

16X

Improvement
o

1.2x

m
| @

1999 2003 2006 2008 2011 2013 2014 2015

DRAM latency continues to be a critical bottleneck,

especially for response time-sensitive workloads
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A Closer Look ...

50 @ Activation » Precharge A Restoration
’g +21% 2704
S 40 —
LC>; 30 17% 0
-17% N
% 20 R 12%

1999 2003 2006 2008 2011 2013 2014 2015

Year
Figure 1: DRAM latency trends over time [20, 21, 23, 51].

Chang+, "Understanding Latency Variation in Modern DRAM Chips: Experimental
Characterization, Analysis, and Optimization",” SIGMETRICS 2016.
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Why the Long Latency?

Design of DRAM uArchitecture
o Goal: Maximize capacity/area, not minimize latency

One size fits all approach to latency specification

Same latency parameters for all temperatures

Same latency parameters for all DRAM chips (e.g., rows)
Same latency parameters for all parts of a DRAM chip
Same latency parameters for all supply voltage levels
Same latency parameters for all application data

o 0 O O O O
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Tackling the Fixed Latency Mindset

Reliable operation latency is actually very heterogeneous
o Across temperatures, chips, parts of a chip, voltage levels, ...

Idea: Dynamically find out and use the lowest latency one
can reliably access a memory location with

o Adaptive-Latency DRAM [HPCA 2015]
o Flexible-Latency DRAM [SIGMETRICS 2016]

D L

We would like to find sources of latency heterogeneity and
exploit them to minimize latency
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AL-DRAM

e Keyidea
— Optimize DRAM timing parameters online

* Jwo components
— DRAM manufacturer provides multiple sets of

reliable DRAM timing parameters Elfelit=g=Ials

temperatures for each DIMM

— System monitors [BRYNV/RETagfelEdilgel & uses

appropriate DRAM timing parameters

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 184
2015.



Latency Reduction Summary of 115 DIMMs

e [atency reduction for read & write (55°C)

— Read Latency: 32.7%
— Write Latency: 55.1%

e [atency reduction for each timing

parameter (55°C)

— Sensing: 17.3%

— Restore: 37.3% (read), 54.8% (write)
— Precharge: 35.2%

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA
2015.



AL-DRAM: Real System Evaluation

System
— CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC)

D18F2x200 dct[0] mp[1:0] DDR3 DRAM Timing 0
Reset: 0F05_0505h. See 2.9.3 [DCT Configuration Registers].

Bits

Description

31:30

Reserved.

29:24

Tras: row active strobe. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Specifies
the minimum time in memory clock cycles from an activate command to a precharge command. both

to the same chip select bank.
Bits Description
07h-00h Reserved
2Ah-08h <Tras> clocks
3Fh-2Bh Reserved

Reserved.

Trp: row precharge time. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Speci-
fies the minimum time in memory clock cycles from a precharge command to an activate command or
auto refresh command. both to the same bank.




AL-DRAM: Single-Core Evaluation

4 Average
@ 5%
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AL-DRAM improves single-core performance

on a real system
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AL-DRAM: Multi-Core Evaluation
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AL-DRAM provides higher performance on

multi-programmed & multi-threaded workloads
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Heterogeneous Latency within A Chip

|.25
0
- 19.5009.7 Yo

17.6

.15
||
.05
I

13.3

® Baseline (DDR3)
® FLY-DRAM (D)
¥ FLY-DRAM (D2)
® FLY-DRAM (D3)

® Upper Bound
0.95 PP

0.9

Normalized Performance

40 Workloads

Chang+, "Understanding Latency Variation in Modern DRAM Chips: Experimental

Characterization, Analysis, and Optimization",” SIGMETRICS 2016.
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And, What If ...

= ... we can sacrifice reliability of some data to access it with
even lower latency?
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ChargeCache




ChargeCache: Executive Summary

* Goal: Reduce average DRAM access latency with no
modification to the existing DRAM chips

* Observations:

1) A highly-charged DRAM row can be accessed with low latency
2) Arow's charge is restored when the row is accessed
3) Arecently-accessed row is likely to be accessed again:

Row Level Temporal Locality (RLTL)

 Key Idea: Track recently-accessed DRAM rows and use lower
timing parameters if such rows are accessed again

e ChargeCache:
— Low cost & no modifications to the DRAM
— Higher performance (8.6-10.6% on average for 8-core)

— Lower DRAM energy (7.9% on average)
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DRAM Charge over Time
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Accessing Highly-charged Rows

Ready to
Ready to Access Precharge
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< Sense-Amplifier
Data 0
' , ! : —>
Sensing Restore  Precharge time
ACT gt 3
tRAS

>
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Observation 1

A highly-charged DRAM row can be
accessed with low latency

o

e tRCD:44%
e tRAS:37%

How does a row become
highly-charged?

SAFARI 195



How Does a Row Become Highly-Charged?

DRAM cells lose charge over time
Two ways of restoring a row’s charge:
* Refresh Operation

e Access
A
Q \]\%\
)
S
S
: : : —>
Refresh Access Refresh time
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Observation 2

A row’s charge is restored when the row
is accessed

How likely is a recently-accessed
row to be accessed again?
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Row Level Temporal Locality (RLTL)

A recently-accessed DRAM row is likely to be
accessed again.

 t-RLTL: Fraction of rows that are accessed
within time t after their previous access

97%
w
0 100%
A 80%
S 60%
I 40%
S 20%
o 0%
= 5 O O > 0 000 DO QO DIV HL AN QO NG
S SILITLLILPIPIIIITEIIIIITIIE
o
Snmss—RMTLfoorsaight-core workloads
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Key Idea

Track recently-accessed DRAM rows
and use lower timing parameters if
such rows are accessed again

SAFARI 199



ChargeCache Overview
DRAM

Memory Controller

ChargeCache

MmO OW B

Requests: A D A

Cbbegg€labbdWMHis: Wse hofualtTiimingss
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Area and Power Overhead
* Modeled with CACTI

e Area

— ~5KB for 128-entry ChargeCache

—0.24% of a 4MB Last Level Cache (LLC)
area

* Power Consumption
—0.15 mW on average (static + dynamic)
—0.23% of the 4MB LLC power consumption
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Methodology

 Simulator

— DRAM Simulator (Ramulator [Kim+, CAL’15])
https://github.com/CMU-SAFARI/ramulator

e Workloads

— 22 single-core workloads
« SPEC CPU2006, TPC, STREAM

— 20 multi-programmed 8-core workloads
* By randomly choosing from single-core workloads

— Execute at least 1 billion representative instructions per
core (Pinpoints)
* System Parameters
— 1/8 core system with 4MB LLC
— Default tRCD/tRAS of 11/28 cycles
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Single-core Performance

NUAT - ChargeCache

- ChargeCache + NUAT - LL-DRAM (Upper bound)

16%
S 12%
.=
O 8%
<)
Fod iy
0%

ChargeCache |mproves
single-core performance
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Eight-core Performance

NUAT 2.59 - ChargeCache 99
- ChargeCache + NUAT - LL-DRAM (Upperbound) 139

Edddddddddd

ChargeCache significantly improves
multi-core performance
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DRAM Energy Savings

15% :
O Average M Maximum

Single-core Eight-core

p—
-
X

DRAM Energy
Reduction

ChargeCache reduces DRAM energy
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More on ChargeCache

= Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar,
Vivek Seshadri, Donghyuk Lee, Oguz Ergin, and Onur Mutlu,
"ChargeCache: Reducing DRAM Latency by Exploiting
Row Access Locality”
Proceedings of the
22nd International Symposium on High-Performance
Computer Architecture (HPCA), Barcelona, Spain, March
2016.

[Slides (pptx) (pdf)]

= Source code will be released as part of Ramulator (May 2016)
o https://github.com/CMU-SAFARI/ramulator
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Tiered Latency DRAM




What Causes the Long Latency?
DRAM Chip

subarray

!

I/0

S

DRAM Latency {Subarray Lattemay ¥+ [)/D latt=moy

Dominant

channel‘
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Why is the Subarray So Slow?

Subarray Cell
cell N
© w5 wordline
. prrr—
T m /”’ Ss &
3 g % 7 L. | B
° N 8 II/ \\\ $
S ™~ ;= - —
Y ) U [ 2 ‘ access | o,
RS o i s transistor || & g
1 @© | ==
g .S 3 ‘\\ 1 5= (@
E E E \ / —Q &
= <
U
....... (7
sense amplifier large sense amplifier

* Long bitline
— Amortizes sense amplifier cost = Small area

— Large bitline capacitance 2 High latency & power
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Trade-Off: Area (Die Size) vs. Latency
Long Bitline Short Bitline

—
%%%%

AYAYAYA
Trade-Off. Area vs. Latency
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Trade-Off: Area (Die Size) vs. Latency

I

32

w

FENIE] LAY Commodity

64 Short Bitline DRAM
Long Bitline

(B

512 cells/bitline

0
Normalized DRAM Area
N

50 60 70

o

Latency (ns)
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Approximating the Best of Both Worlds

Long Bitline J Our Proposal | Short Bitline
Small Area __lorgeAreq

' N7 N/ \/ \

M Low Latency

Need Add Isolatlon
Isolation Transistors

tline = Fast
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Approximating the Best of Both Worlds

Long Bitlir Tiered-Latency DRAM ort Bitline

Small Area  Small Area M

' N/ N/ N/ \

M Low Latency Low Latency

SmaII area
using long

bitline §
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Commodity DRAM vs. TL-DRAM [HpPcA 2013]
 DRAM Latency (tRC) - DRAM Power

150% 150%
> o - 0
G 100% L+ 100%
Q S
T o
- 50% - Q. 50%
0% 0%
Commodity Near | Far Commodity Near | Far
DRAM TL-DRAM DRAM TL-DRAM

 DRAM Area Overhead

~3%: mainly due to the isolation transistors 514



Trade-Off: Area (Die-Area) vs. Latency

I

32

w

64

128
256 512 cells/bitline

® ®
& Near Segment Far Segment

0 10 20 30 40 50 60 /70
Latency (ns)

0
Normalized DRAM Area
S N

o
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Leveraging Tiered-Latency DRAM

* TL-DRAM is a substrate that can be leveraged
by the hardware and/or software

 Many potential uses

1. Use near segment as hardware-managed inclusive |
cache to far segment )

2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system
4. Simply replace DRAM with TL-DRAM

\.

J
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Performance & Power Consumption

g 120% % 11.5% 10.7% 120%

c 920/ _79A9/ _9€0

g L00% gmo% 23% —-24% —26%

1 &
o) o o)

_c:> 80% o 80%

o D

o 60% Q 60%

© —_—

) (]

N 40% & 40%

= | 9

© o

£ 2% 2 20%

1 &

o

= 0% T T | 0% T T |

1 (1-ch) 2 (2-ch) 4 (4-ch) 1 (1-ch) 2 (2-ch) 4 (4-ch)

Core-Count (Channel) Core-Count (Channel)

Using near segment as a cache improves
performance and reduces power consumption

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
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Rethinking Memory Architecture

Compute Capable Memory
Refresh

Reliability

Latency

Bandwidth

Memory Compression
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Large DRAM Power in Modern Systems

>40% in POWERY (ware+, HPcA'10)  >40% in GPU (paul+, 1ScA'15)
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Why Is Power Large?

Design of DRAM uArchitecture
o A lot of waste (granularity, latency, ...)

High Voltage
o Can we scale it down reliably?

High Frequency
o Can we scale it down with low performance impact?

DRAM Refresh
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Memory Dynamic Voltage/Freq. Scaling

= Howard David, Chris Fallin, Eugene Gorbatov, UIf R. Hanebutte, and
Onur Mutlu,
"Memory Power Management via Dynamic Voltage/Frequency
Scaling”
Proceedings of the
8th International Conference on Autonomic Computing (ICAC),
Karlsruhe, Germany, June 2011. Slides (pptx) (pdf)

Memory Power Management via
Dynamic Voltage/Frequency Scaling

Howard Davidt, Chris Falling, Eugene Gorbatovi, Ulf R. Hanebuttet, Onur Mutlus

tIntel Corporation gCarnegie Mellon University
{howard.david,eugene.gorbatov, {cfallin,onur}@cmu.edu

ulf.r.hanebutte}@intel.com



New Memory Architectures

Compute Capable Memory
Refresh

Reliability

Latency

Bandwidth

Energy

Memory Compression
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Readings on Memory Compression (I)

= Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Philip B. Gibbons,
Michael A. Kozuch, and Todd C. Mowry,
"Base-Delta-Immediate Compression: Practical Data
Compression for On-Chip Caches”
Proceedings of the
21st International Conference on Parallel Architectures and Compilation

Technigues (PACT), Minneapolis, MN, September 2012. Slides (pptx)
Source Code

Base-Delta-Immediate Compression:
Practical Data Compression for On-Chip Caches

Gennady Pekhimenkot Vivek Seshadrif Onur Mutlut
gpekhime@cs.cmu.edu vseshadr@cs.cmu.edu onur@cmu.edu
Michael A. Kozuch- Phillip B. Gibbons* Todd C. Mowryt

michael.a.kozuch@intel.com phillip.b.gibbons@intel.com tcm@cs.cmu.edu

fCarnegie Mellon University *Intel Labs Pittsburgh



Readings on Memory Compression (1I)

= Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur
Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"Linearly Compressed Pages: A Low-Complexity, Low-Latency
Main Memory Compression Framework"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [
Lightning Session Slides (pptx) (pdf)] Poster (pptx) (pdf)]

Linearly Compressed Pages: A Low-Complexity,
Low-Latency Main Memory Compression Framework

Gennady Pekhimenko? Vivek Seshadrif Yoongu Kimf Hongyi Xin'
gpekhime@cs.cmu.edu vseshadr@cs.cmu.edu yoongukim@cmu.edu hxin@cs.cmu.edu
Onur Mutlut Phillip B. Gibbons* Michael A. Kozuch+ Todd C. Mowryf
onur@cmu.edu  phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

‘Carnegie Mellon University *Intel Labs Pittsburgh
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Readings on Memory Compression (11I)

= Gennady Pekhimenko, Tyler Huberty, Rui Cai, Onur Mutlu, Phillip P.
Gibbons, Michael A. Kozuch, and Todd C. Mowry,

"Exploiting Compressed Block Size as an Indicator of Future
Reuse"

Proceedings of the

21st International Symposium on High-Performance Computer
Architecture (HPCA), Bay Area, CA, February 2015.

[Slides (pptx) (pdf)]

Exploiting Compressed Block Size as an Indicator of Future Reuse

Gennady Pekhimenko! Tyler Huberty' Rui Cai' Onur Mutluf
gpekhime@cs.cmu.edu  thuberty@alumni.cmu.edu rcai@alumni.cmu.edu onur@cmu.edu
Phillip B. Gibbons* Michael A. Kozuch* Todd C. Mowry'
phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tem@cs.cmu.edu

fCarnegie Mellon University *Intel Labs Pittsburgh
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Readings on Memory Compression (IV)

= Gennady Pekhimenko, Evgeny Bolotin, Nandita Vijaykumar, Onur Mutlu,
Todd C. Mowry, and Stephen W. Keckler,
"A Case for Toggle-Aware Compression for GPU Systems"
Proceedings of the
22nd International Symposium on High-Performance Computer
Architecture (HPCA), Barcelona, Spain, March 2016.
[Slides (pptx) (pdf)]

A Case for Toggle-Aware Compression for GPU Systems

Gennady Pekhimenko, Evgeny Bolotin*, Nandita Vijaykumar',
Onur Mutlu’, Todd C. Mowry', Stephen W. Keckler*#

Carnegie Mellon University *NVIDIA #University of Texas at Austin
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Readings on Memory Compression (V)

= Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek
Bhowmick, Rachata Ausavarungnirun, Chita Das, Mahmut Kandemir, Todd
C. Mowry, and Onur Mutlu,
"A Case for Core-Assisted Bottleneck Acceleration in GPUs:
Enabling Flexible Data Compression with Assist Warps"
Proceedings of the
42nd International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2015.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

A Case for Core-Assisted Bottleneck Acceleration in GPUs:
Enabling Flexible Data Compression with Assist Warps
Nandita Vijaykumar Gennady Pekhimenko Adwait Jog" Abhishek Bhowmick
Rachata Ausavarungnirun Chita Das’ Mahmut Kandemir’ Todd C. Mowry Onur Mutlu

Carnegie Mellon University " Pennsylvania State University

{nandita,abhowmick, rachata, onur}@cmu.edu
{gpekhime, tcm}@cs.cmu. edu {adwait,das,kandemir}@cse. psu.edu
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End of Backup Slides




Brief Self Introduction @
Onur Mutlu &’)

o 0O 0 0O 0O O

Full Professor @ ETH Zurich CS, since September 2015

Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-...
PhD from UT-Austin, worked @ Google, VMware, Microsoft Research, Intel, AMD
https://people.inf.ethz.ch/omutlu/

omutlu@gmail.com (Best way to reach me)
https://people.inf.ethz.ch/omutlu/projects.htm

Research, Education, Consulting in

o 0O 0 0 0o 0 O

a

Computer architecture and systems, bioinformatics

Memory and storage systems, emerging technologies

Many-core systems, heterogeneous systems, core design
Interconnects

Hardware/software interaction and co-design (PL, OS, Architecture)
Predictable and QoS-aware systems

Hardware fault tolerance and security

Algorithms and architectures for genome analysis
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