
Rethinking Memory System Design 
(for Data-Intensive Computing)

Onur Mutlu
onur@cmu.edu

http://users.ece.cmu.edu/~omutlu/
July 20, 2015

SAMOS Keynote

http://cmu.edu
http://users.ece.cmu.edu/~omutlu/


The Main Memory System

n Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor

n Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits

2

Processor
and caches

Main Memory Storage (SSD/HDD)



Memory System: A Shared Resource View

3

Storage



State of the Main Memory System
n Recent technology, architecture, and application trends

q lead to new requirements
q exacerbate old requirements

n DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements

n Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging

n We need to rethink the main memory system
q to fix DRAM issues and enable emerging technologies 
q to satisfy all requirements

4



Agenda

n Major Trends Affecting Main Memory
n The Memory Scaling Problem and Solution Directions

q New Memory Architectures
q Enabling Emerging Technologies

n How Can We Do Better?
n Summary

5



Major Trends Affecting Main Memory (I)
n Need for main memory capacity, bandwidth, QoS increasing 

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending 

6



Major Trends Affecting Main Memory (II)
n Need for main memory capacity, bandwidth, QoS increasing 

q Multi-core: increasing number of cores/agents
q Data-intensive applications: increasing demand/hunger for data
q Consolidation: cloud computing, GPUs, mobile, heterogeneity

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending 

7



Example: The Memory Capacity Gap

n Memory capacity per core expected to drop by 30% every two years
n Trends worse for memory bandwidth per core!

8

Core count doubling ~ every 2 years 
DRAM DIMM capacity doubling ~ every 3 years

The picture can't be 
displayed.



Major Trends Affecting Main Memory (III)
n Need for main memory capacity, bandwidth, QoS increasing 

n Main memory energy/power is a key system design concern
q ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 

IEEE Computer 2003] 
q DRAM consumes power even when not used (periodic refresh)

n DRAM technology scaling is ending 

9



Major Trends Affecting Main Memory (IV)
n Need for main memory capacity, bandwidth, QoS increasing 

n Main memory energy/power is a key system design concern

n DRAM technology scaling is ending 
q ITRS projects DRAM will not scale easily below X nm 
q Scaling has provided many benefits: 

n higher capacity (density), lower cost, lower energy

10



Agenda

n Major Trends Affecting Main Memory
n The Memory Scaling Problem and Solution Directions

q New Memory Architectures
q Enabling Emerging Technologies

n How Can We Do Better?
n Summary

11



The DRAM Scaling Problem
n DRAM stores charge in a capacitor (charge-based memory)

q Capacitor must be large enough for reliable sensing
q Access transistor should be large enough for low leakage and high 

retention time
q Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

n DRAM capacity, cost, and energy/power hard to scale
12



Row of Cells
Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row
Hammered Row

Repeatedly opening and closing a row induces 
disturbance errors in adjacent rows in most real 
DRAM chips [Kim+ ISCA 2014]

OpenedClosed

13

An Example of  The Scaling Problem



86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C company

Up to
1.0×107

errors 

Up to
2.7×106

errors 

Up to
3.3×105

errors 

14
Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014.

Most DRAM Modules Are At Risk



DRAM Modulex86 CPU

Y

X

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer


DRAM Modulex86 CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Y

X

https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer


DRAM Modulex86 CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Y

X

https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer


DRAM Modulex86 CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Y

X

https://github.com/CMU-SAFARI/rowhammer

https://github.com/CMU-SAFARI/rowhammer


• A real reliability & security issue 
• In a more controlled environment, we can 

induce as many as ten million disturbance errors

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec

19Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014.

Observed Errors in Real Systems



20
All modules from 2012–2013	are vulnerable

First
Appearance

Errors vs. Vintage



Experimental Infrastructure (DRAM)

21

Liu+, “An Experimental Study of Data 
Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time 
Profiling Mechanisms”, ISCA 2013.

Khan+, “The Efficacy of Error Mitigation 
Techniques for DRAM Retention Failures: A 
Comparative Experimental Study,” 
SIGMETRICS 2014.

Kim+, “Flipping Bits in Memory Without 
Accessing Them: An Experimental Study of 
DRAM Disturbance Errors”, ISCA 2014.

Lee+, “Adaptive-Latency DRAM: Optimizing 
DRAM Timing for the Common-Case,” HPCA 
2015.

Qureshi+, “AVATAR: A Variable-Retention-
Time (VRT) Aware Refresh for DRAM 
Systems,” DSN 2015. 



Experimental Infrastructure (DRAM)

22Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs



1. Most Modules Are at Risk
2. Errors vs. Vintage
3. Error = Charge Loss
4. Adjacency: Aggressor & Victim
5. Sensitivity Studies
6. Other Results in Paper
7. Solution Space

23

RowHammer Characterization Results

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014.



Security Implications

24

http://googleprojectzero.blogspot.com/201
5/03/exploiting-dram-rowhammer-bug-to-
gain.html

http://users.ece.cmu.edu/~omutlu/pub/dra
m-row-hammer_isca14.pdf

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf


Security Implications

25



Recap: The DRAM Scaling Problem

26



How Do We Solve The Problem?
n Fix it: Make DRAM and controllers more intelligent

q New interfaces, functions, architectures: system-DRAM codesign

n Eliminate or minimize it: Replace or (more likely) augment 
DRAM with a different technology
q New technologies and system-wide rethinking of memory & 

storage

n Embrace it: Design heterogeneous memories (none of which 
are perfect) and map data intelligently across them
q New models for data management and maybe usage

n …
27

Solutions (to memory scaling) require 
software/hardware/device cooperation

Microarchitecture
ISA

Programs
Algorithms
Problems

Logic
Devices

Runtime System
(VM, OS, MM)

User



Solution 1: Fix DRAM

n Overcome DRAM shortcomings with
q System-DRAM co-design
q Novel DRAM architectures, interface, functions
q Better waste management (efficient utilization)

n Key issues to tackle
q Enable reliability at low cost
q Reduce energy
q Improve latency and bandwidth
q Reduce waste (capacity, bandwidth, latency)
q Enable computation close to data

28



Solution 1: Fix DRAM
n Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
n Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
n Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
n Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.
n Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.
n Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.
n Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.
n Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 

2014.
n Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.
n Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.
n Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.
n Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.
n Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” 

DSN 2015.
n Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.
n Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.
n Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.
n Ahn+ “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.
n Avoid DRAM:

q Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.
q Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.
q Seshadri+, “The Dirty-Block Index,” ISCA 2014.
q Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.
q Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist 

Warps,” ISCA 2015.

29



Solution 2: Emerging Memory Technologies
n Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile)
n Example: Phase Change Memory

q Expected to scale to 9nm (2022 [ITRS])
q Expected to be denser than DRAM: can store multiple bits/cell

n But, emerging technologies have shortcomings as well
q Can they be enabled to replace/augment/surpass DRAM?

n Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, Micro’10.
n Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.
n Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.
n Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013. 
n Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 

2013.
n Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.
n Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.
n Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change 

Memories,” ACM TACO 2014.
30



Solution 3: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Technology X (e.g., PCM)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



App/Data A App/Data B App/Data C

M
em

or
y 

er
ro

r v
ul

ne
ra

bi
lit

y

Vulnerable 
data

Tolerant 
data

Exploiting Memory Error Tolerance 
with Hybrid Memory Systems

Heterogeneous-Reliability Memory [DSN 2014]

Low-cost memoryReliable memory

Vulnerable 
data

Tolerant 
data

Vulnerable 
data

Tolerant 
data

• ECC protected
• Well-tested chips

• NoECC or Parity
• Less-tested chips

32

On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %



An Orthogonal Issue: Memory Interference

Main 
Memory

33

Core Core

Core Core

Cores’ interfere with each other when accessing shared main memory



n Problem: Memory interference between cores is uncontrolled
à unfairness, starvation, low performance
à uncontrollable, unpredictable, vulnerable system

n Solution: QoS-Aware Memory Systems
q Hardware designed to provide a configurable fairness substrate 

n Application-aware memory scheduling, partitioning, throttling
q Software designed to configure the resources to satisfy different 

QoS goals

n QoS-aware memory systems can provide predictable 
performance and higher efficiency

An Orthogonal Issue: Memory Interference



Goal: Predictable Performance in Complex Systems

n Heterogeneous agents: CPUs, GPUs, and HWAs 
n Main memory interference between CPUs, GPUs, HWAs

35

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance? 



Strong Memory Service Guarantees
n Goal: Satisfy performance/SLA requirements in the 

presence of shared main memory, heterogeneous agents, 
and hybrid memory/storage

n Approach: 
q Develop techniques/models to accurately estimate the 

performance loss of an application/agent in the presence of 
resource sharing

q Develop mechanisms (hardware and software) to enable the 
resource partitioning/prioritization needed to achieve the 
required performance levels for all applications

q All the while providing high system performance 

n Example work: Subramanian et al., “MISE: Providing Performance Predictability and 
Improving Fairness in Shared Main Memory Systems,” HPCA 2013.

36



Some Promising Directions

n New memory architectures
q Rethinking DRAM and flash memory
q A lot of hope in fixing DRAM

n Enabling emerging NVM technologies 
q Hybrid memory systems
q Single-level memory and storage
q A lot of hope in hybrid memory systems and single-level stores

n System-level memory/storage QoS
q A lot of hope in designing a predictable system

37



Agenda

n Major Trends Affecting Main Memory
n The Memory Scaling Problem and Solution Directions

q New Memory Architectures
q Enabling Emerging Technologies

n How Can We Do Better?
n Summary

38



Rethinking DRAM
n In-Memory Computation

n Refresh

n Reliability

n Latency

n Bandwidth

n Energy

n Memory Compression
39



Today’s Memory: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

401046ns, 3.6uJ    (for 4KB page copy via DMA)



Future: RowClone (In-Memory Copy)

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

411046ns, 3.6uJ90ns, 0.04uJ



DRAM Subarray Operation (load one byte)

Row Buffer (8 Kbits)

Data Bus

8 bits

DRAM array

8 Kbits

Step 1: Activate row

Transfer 
row

Step 2: Read  
Transfer byte onto 
bus



RowClone: In-DRAM Row Copy

Row Buffer (8 Kbits)

Data Bus

8 bits

DRAM array

8 Kbits

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row

0.01% area cost



M
em

or
y 

Ch
an

ne
l

Ch
ip

 I/
O

Bank Bank I/O

Subarray

Intra Subarray
Copy (2 ACTs)

Inter Bank Copy
(Pipelined

Internal RD/WR)

Inter Subarray Copy
(Use Inter-Bank Copy Twice)

Generalized RowClone



RowClone: Latency and Energy Savings

0

0.2

0.4

0.6

0.8

1

1.2

Latency Energy

N
or

m
al

ize
d 

Sa
vi

ng
s

Baseline Intra-Subarray
Inter-Bank Inter-Subarray

11.6x 74x

45
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013.



RowClone: Application Performance

46

0

10

20

30

40

50

60

70

80

bootup compile forkbench mcached mysql shell

%
 C

om
pa

re
d 

to
 B

as
el

in
e IPC Improvement Energy Reduction



RowClone: Multi-Core Performance

47

0.9

1

1.1

1.2

1.3

1.4

1.5

N
or

m
al

iz
ed

 W
ei

gh
te

d 
Sp

ee
du

p

50 Workloads (4-core)

Baseline RowClone



End-to-End System Design

48

DRAM (RowClone)

Microarchitecture

ISA

Operating System

Application
How to communicate 
occurrences of bulk 
copy/initialization across 
layers?

How to maximize latency 
and energy savings?

How to ensure cache 
coherence?

How to handle data reuse?



Goal: Ultra-Efficient Processing Near Data

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator



Enabling In-Memory Search

▪ What is a flexible and scalable memory interface?
▪ What is the right partitioning of computation 

capability?
▪ What is the right low-cost memory substrate?
▪ What memory technologies are the best enablers?
▪ How do we rethink/ease search 

Cache

Processor
Core

Interconnect

Memory

Databas
e  

Query vector

Results



Enabling In-Memory Computation 

51

Virtual Memory 
Support

Cache 
Coherence

DRAM 
Support

RowClone
(MICRO 2013)

Dirty-Block 
Index

(ISCA 2014)

Page Overlays 
(ISCA 2015)

In-DRAM 
Gather Scatter

In-DRAM Bitwise 
Operations 

(IEEE CAL 2015)
? ?

Non-contiguous 
Cache lines Gathered Pages



In-DRAM AND/OR: Triple Row Activation

52

½VDD

½VDD

dis

A

B

C

Final State
AB + BC + AC

½VDD+δ

C(A + B) + 
~C(AB)en

0

VDD

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.



In-DRAM AND/OR Results
n 20X improvement in AND/OR throughput vs. Intel AVX
n 50.5X reduction in memory energy consumption
n At least 30% performance improvement in range queries

53Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

8K
B"

16
KB
"
32
KB
"
64
KB
"

12
8K
B"

25
6K
B"

51
2K
B"

1M
B"

2M
B"

4M
B"

8M
B"

16
MB
"

32
MB
"

Size of Vectors to be ANDed

In-DRAM AND (2 banks)

In-DRAM AND (1 bank)

Intel AVX



Rethinking DRAM
n In-Memory Computation

n Refresh

n Reliability

n Latency

n Bandwidth

n Energy

n Memory Compression
54



DRAM Refresh
n DRAM capacitor charge leaks over time

n The memory controller needs to refresh each row 
periodically to restore charge
q Activate each row every N ms
q Typical N = 64 ms

n Downsides of refresh
-- Energy consumption: Each refresh consumes energy
-- Performance degradation: DRAM rank/bank unavailable while 

refreshed
-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM capacity scaling 

55



Refresh Overhead: Performance

56

8%

46%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



Refresh Overhead: Energy

57

15%

47%

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



Retention Time Profile of DRAM

58



RAIDR: Eliminating Unnecessary Refreshes
n Observation: Most DRAM rows can be refreshed much less often 

without losing data [Kim+, EDL’09][Liu+ ISCA’13]

n Key idea: Refresh rows containing weak cells 
more frequently, other rows less frequently
1. Profiling: Profile retention time of all rows
2. Binning: Store rows into bins by retention time in memory controller

Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)
3. Refreshing: Memory controller refreshes rows in different bins at 
different rates

n Results: 8-core, 32GB, SPEC, TPC-C, TPC-H
q 74.6% refresh reduction @ 1.25KB storage
q ~16%/20% DRAM dynamic/idle power reduction
q ~9% performance improvement 
q Benefits increase with DRAM capacity

59
Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



Going Forward (for DRAM and Flash)
n How to find out weak memory cells/rows

q Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices: 
Implications for Retention Time Profiling Mechanisms”, ISCA 2013.

q Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A 
Comparative Experimental Study,” SIGMETRICS 2014.

n Low-cost system-level tolerance of memory errors
q Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center 

Cost,” DSN 2014.
q Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” 

Intel Technology Journal 2013.
q Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” 

SIGMETRICS 2014.

n Tolerating cell-to-cell interference at the system level 
q Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 

DRAM Disturbance Errors,” ISCA 2014.
q Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, 

and Mitigation,” ICCD 2013.
60



Experimental Infrastructure (DRAM)

61

Liu+, “An Experimental Study of Data 
Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time 
Profiling Mechanisms”, ISCA 2013.

Khan+, “The Efficacy of Error Mitigation 
Techniques for DRAM Retention Failures: A 
Comparative Experimental Study,” 
SIGMETRICS 2014.

Kim+, “Flipping Bits in Memory Without 
Accessing Them: An Experimental Study of 
DRAM Disturbance Errors”, ISCA 2014.

Lee+, “Adaptive-Latency DRAM: Optimizing 
DRAM Timing for the Common-Case,” HPCA 
2015.

Qureshi+, “AVATAR: A Variable-Retention-
Time (VRT) Aware Refresh for DRAM 
Systems,” DSN 2015. 



Experimental Infrastructure (DRAM)

62Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs



More Information [ISCA’13, SIGMETRICS’14]

63



Optimize DRAM and mitigate errors online 
without disturbing the system and applications

Initially protect DRAM 
with ECC 1

Periodically test
parts of DRAM 2

Test
Test
Test

Adjust refresh rate and
reduce ECC 3

Online Profiling of  DRAM In the Field



Rethinking DRAM
n In-Memory Computation

n Refresh

n Reliability

n Latency

n Bandwidth

n Energy

n Memory Compression
65



66

DRAM Latency-Capacity Trend

0

20

40

60

80

100

0.0

0.5

1.0

1.5

2.0

2.5

2000 2003 2006 2008 2011

La
te

nc
y 

(n
s)

Ca
pa

ci
ty

 (G
b)

Year

Capacity Latency (tRC)

16X

-20%

DRAM latency continues to be a critical 
bottleneck, especially for response time-sensitive 
workloads



67

DRAM Latency = Subarray Latency + I/O Latency

What Causes the Long Latency?
DRAM Chip

channel

cell array

I/O

DRAM Chip

channel

I/O

subarray

DRAM Latency = Subarray Latency + I/O Latency

Dominant
Su

ba
rr

ay
I/

O



68

Why is the Subarray So Slow?
Subarray

ro
w

 d
ec

od
er

sense amplifier

ca
pa

ci
to

r

access
transistor

wordline

bi
tli

ne

Cell

large sense amplifier

bi
tli

ne
: 5

12
 ce

lls

cell

• Long bitline
– Amortizes sense amplifier cost à Small area
– Large bitline capacitance à High latency & power

se
ns

e 
am

pl
ifi

er

ro
w

 d
ec

od
er



69

Trade-Off: Area (Die Size) vs. Latency

Faster

Smaller

Short BitlineLong Bitline

Trade-Off: Area vs. Latency



70

Trade-Off: Area (Die Size) vs. Latency

0

1

2

3

4

0 10 20 30 40 50 60 70

N
or

m
al

ize
d 

DR
AM

 A
re

a

Latency (ns)

64

32

128
256 512 cells/bitline

Commodity 
DRAM

Long Bitline

Ch
ea

pe
r

Faster

Fancy DRAM
Short Bitline

GOAL



71

Short Bitline

Low Latency 

Approximating the Best of Both Worlds
Long Bitline
Small Area 
Long Bitline

Low Latency 

Short BitlineOur Proposal
Small Area 

Short Bitline è Fast
Need 

Isolation
Add Isolation 

Transistors

High Latency

Large Area



72

Approximating the Best of Both Worlds

Low Latency 

Our Proposal
Small Area 

Long Bitline
Small Area 
Long Bitline

High Latency

Short Bitline

Low Latency 

Short Bitline
Large Area

Tiered-Latency DRAM

Low Latency

Small area 
using long 

bitline



73

0%

50%

100%

150%

0%

50%

100%

150%

Commodity DRAM vs. TL-DRAM [HPCA 2013] 
La

te
nc

y

Po
w

er

–56%

+23%

–51%

+49%
• DRAM Latency (tRC) • DRAM Power

• DRAM Area Overhead
~3%: mainly due to the isolation transistors

TL-DRAM
Commodity 

DRAM

Near       Far Commodity 
DRAM

Near       Far
TL-DRAM

(52.5ns)



74

Trade-Off: Area (Die-Area) vs. Latency

0

1

2

3

4

0 10 20 30 40 50 60 70

N
or

m
al

ize
d 

DR
AM

 A
re

a

Latency (ns)

64

32

128
256 512 cells/bitlineCh

ea
pe

r

Faster

Near Segment Far Segment
GOAL



75

Leveraging Tiered-Latency DRAM 
• TL-DRAM is a substrate that can be leveraged by 

the hardware and/or software

• Many potential uses
1. Use near segment as hardware-managed inclusive

cache to far segment
2. Use near segment as hardware-managed exclusive

cache to far segment
3. Profile-based page mapping by operating system
4. Simply replace DRAM with TL-DRAM 

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.



76

0%

20%

40%

60%

80%

100%

120%

1 (1-ch) 2 (2-ch) 4 (4-ch)
0%

20%

40%

60%

80%

100%

120%

1 (1-ch) 2 (2-ch) 4 (4-ch)

Performance & Power Consumption  
11.5%

N
or

m
al

ize
d 

Pe
rf

or
m

an
ce

Core-Count (Channel)
N

or
m

al
ize

d 
Po

w
er

Core-Count (Channel)

10.7%12.4%
–23% –24% –26%

Using near segment as a cache improves 
performance and reduces power consumption

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.



What Else Causes the Long DRAM Latency?
n Conservative timing margins! 

n DRAM timing parameters are set to cover the worst case

n Worst-case temperatures 
q 85 degrees vs. common-case
q to enable a wide range of operating conditions

n Worst-case devices 
q DRAM cell with smallest charge across any acceptable device
q to tolerate process variation at acceptable yield

n This leads to large timing margins for the common case

77



Adaptive-Latency DRAM [HPCA 2015] 

n Idea: Optimize DRAM timing for the common case
q Current temperature
q Current DRAM module

n Why would this reduce latency?

q A DRAM cell can store much more charge in the common case 
(low temperature, strong cell) than in the worst case

q More charge in a DRAM cell
à Faster sensing, charge restoration, precharging
à Faster access (read, write, refresh, …)

78Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” 
HPCA 2015.



79

AL-DRAM

• Key idea
– Optimize DRAM timing parameters online

• Two components
– DRAM manufacturer provides multiple sets of 

reliable DRAM timing parameters at different 
temperatures for each DIMM

– System monitors DRAM temperature & uses 
appropriate DRAM timing parameters

reliable DRAM timing parameters

DRAM temperature

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 
2015.



80

Latency Reduction Summary of 115 DIMMs

• Latency reduction for read & write (55°C)
– Read Latency: 32.7%
– Write Latency: 55.1%

• Latency reduction for each timing 
parameter (55°C) 
– Sensing: 17.3%
– Restore: 37.3% (read), 54.8% (write)
– Precharge: 35.2%

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 
2015.



81

AL-DRAM: Real System Evaluation

• System
– CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC)
– DRAM: 4GByte DDR3-1600 (800Mhz Clock)
– OS: Linux
– Storage: 128GByte SSD

• Workload
– 35 applications from SPEC, STREAM, Parsec, 

Memcached, Apache, GUPS



82

0%
5%

10%
15%
20%
25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core Multi Core

0%
5%

10%
15%
20%
25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core Multi Core

1.4%
6.7%

0%
5%

10%
15%
20%
25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core Multi Core

5.0%

AL-DRAM: Single-Core Evaluation

AL-DRAM improves performance on a real system

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t Average

Improvement

al
l-3

5-
w

or
kl

oa
d



83

0%
5%

10%
15%
20%
25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core Multi Core

0%
5%

10%
15%
20%
25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core Multi Core

0%
5%

10%
15%
20%
25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core Multi Core
14.0%

2.9%
0%
5%

10%
15%
20%
25%

so
pl

ex

m
cf

m
ilc

lib
q

lb
m

ge
m

s

co
py

s.
cl

us
te

r

gu
ps

no
n-

in
te

ns
iv

e

in
te

ns
iv

e

al
l-w

or
kl

oa
ds

Single Core Multi Core

10.4%

AL-DRAM: Multi-Core Evaluation

AL-DRAM provides higher performance for
multi-programmed & multi-threaded workloads

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t Average    

Improvement

al
l-3

5-
w

or
kl

oa
d



Rethinking DRAM
n In-Memory Computation

n Refresh

n Reliability

n Latency

n Bandwidth

n Energy

n Memory Compression
84



Agenda

n Major Trends Affecting Main Memory
n The Memory Scaling Problem and Solution Directions

q New Memory Architectures
q Enabling Emerging Technologies

n How Can We Do Better?
n Summary

85



Solution 2: Emerging Memory Technologies
n Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile)

n Example: Phase Change Memory
q Data stored by changing phase of material 
q Data read by detecting material’s resistance
q Expected to scale to 9nm (2022 [ITRS])
q Prototyped at 20nm (Raoux+, IBM JRD 2008)
q Expected to be denser than DRAM: can store multiple bits/cell

n But, emerging technologies have (many) shortcomings
q Can they be enabled to replace/augment/surpass DRAM?

86



Limits of Charge Memory
n Difficult charge placement and control

q Flash: floating gate charge
q DRAM: capacitor charge, transistor leakage

n Reliable sensing becomes difficult as charge storage unit 
size reduces

87



Promising Resistive Memory Technologies
n PCM

q Inject current to change material phase
q Resistance determined by phase

n STT-MRAM
q Inject current to change magnet polarity
q Resistance determined by polarity

n Memristors/RRAM/ReRAM
q Inject current to change atomic structure
q Resistance determined by atom distance

88



Phase Change Memory: Pros and Cons
n Pros over DRAM

q Better technology scaling (capacity and cost)
q Non volatility
q Low idle power (no refresh)

n Cons
q Higher latencies: ~4-15x DRAM (especially write)
q Higher active energy: ~2-50x DRAM (especially write)
q Lower endurance (a cell dies after ~108 writes)
q Reliability issues (resistance drift)

n Challenges in enabling PCM as DRAM replacement/helper:
q Mitigate PCM shortcomings
q Find the right way to place PCM in the system

89



PCM-based Main Memory (I)
n How should PCM-based (main) memory be organized?

n Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]: 
q How to partition/migrate data between PCM and DRAM

90



PCM-based Main Memory (II)
n How should PCM-based (main) memory be organized?

n Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]: 
q How to redesign entire hierarchy (and cores) to overcome 

PCM shortcomings

91



An Initial Study: Replace DRAM with PCM
n Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 

Memory as a Scalable DRAM Alternative,” ISCA 2009.
q Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
q Derived “average” PCM parameters for F=90nm

92



Results: Naïve Replacement of DRAM with PCM

n Replace DRAM with PCM in a 4-core, 4MB L2 system
n PCM organized the same as DRAM: row buffers, banks, peripherals
n 1.6x delay, 2.2x energy, 500-hour average lifetime

n Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 
Scalable DRAM Alternative,” ISCA 2009.

93



Results: Architected PCM as Main Memory 
n 1.2x delay, 1.0x energy, 5.6-year average lifetime
n Scaling improves energy, endurance, density

n Caveat 1: Worst-case lifetime is much shorter (no guarantees)
n Caveat 2: Intensive applications see large performance and energy hits
n Caveat 3: Optimistic PCM parameters?

94



Solution 3: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award.

CPU
DRA
MCtrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Weighted Speedup Max. Slowdown Perf. per Watt
Normalized Metric

16GB PCM RBLA-Dyn 16GB DRAM

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
or

m
al

iz
ed

 W
ei

gh
te

d 
Sp

ee
du

p

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 M
ax

. S
lo

w
do

w
n

Hybrid vs. All-PCM/DRAM [ICCD’12]

31% better performance than all PCM, 
within 29% of all DRAM performance

31%

29%

Yoon+, “Row Buffer Locality-Aware Data Placement in Hybrid Memories,” ICCD 2012 Best Paper Award.



STT-MRAM as Main Memory
n Magnetic Tunnel Junction (MTJ) device

q Reference layer: Fixed magnetic orientation
q Free layer: Parallel or anti-parallel

n Magnetic orientation of the free layer 
determines logical state of device
q High vs. low resistance

n Write: Push large current through MTJ to 
change orientation of free layer

n Read: Sense current flow

n Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

Reference Layer

Free Layer
Barrier

Reference Layer

Free Layer
Barrier

Logical 0

Logical 1

Word Line

Bit Line

Access
Transistor

MTJ

Sense Line



STT-MRAM: Pros and Cons
n Pros over DRAM

q Better technology scaling
q Non volatility
q Low idle power (no refresh)

n Cons
q Higher write latency
q Higher write energy
q Reliability?

n Another level of freedom
q Can trade off non-volatility for lower write latency/energy (by 

reducing the size of the MTJ)

98



Architected STT-MRAM as Main Memory
n 4-core, 4GB main memory, multiprogrammed workloads
n ~6% performance loss, ~60% energy savings vs. DRAM

99

88%
90%
92%
94%
96%
98%

mpm
ix0

mpm
ix1

mpm
ix2

mpm
ix3

mpm
ix4

mpm
ix5

mpm
ix6

mpm
ix7

mpm
ix8

mpm
ix9

mpm
i…

Av
era

gePe
rf

or
m

an
ce

 
vs

. D
RA

M

STT-RAM (base) STT-RAM (opt)

0%
20%
40%
60%
80%

100%

mpm
ix0

mpm
ix1

mpm
ix2

mpm
ix3

mpm
ix4

mpm
ix5

mpm
ix6

mpm
ix7

mpm
ix8

mpm
ix9

mpm
ix1

0

Av
era

ge

En
er

gy
 

vs
. D

RA
M

ACT+PRE WB RB

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.



Other Opportunities with Emerging Technologies

n Merging of memory and storage
q e.g., a single interface to manage all data

n New applications
q e.g., ultra-fast checkpoint and restore

n More robust system design
q e.g., reducing data loss

n Processing tightly-coupled with memory
q e.g., enabling efficient search and filtering

100



Coordinated Memory and Storage with NVM (I)
n The traditional two-level storage model is a bottleneck with NVM

q Volatile data in memory à a load/store interface
q Persistent data in storage à a file system interface
q Problem: Operating system (OS) and file system (FS) code to locate, translate, 

buffer data become performance and energy bottlenecks with fast NVM stores

101

Two-Level Store

Processor
and caches

Main Memory Storage (SSD/HDD)

Virtual memory

Address 
translation

Load/Store

Operating 
system

and file system

fopen, fread, fwrite, …

Persistent (e.g., Phase-Change) 
Memory



Coordinated Memory and Storage with NVM (II)

n Goal: Unify memory and storage management in a single unit to 
eliminate wasted work to locate, transfer, and translate data
q Improves both energy and performance
q Simplifies programming model as well

102

Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.



The Persistent Memory Manager (PMM)
n Exposes a load/store interface to access persistent data

q Applications can directly access persistent memory à no conversion, 
translation, location overhead for persistent data 

n Manages data placement, location, persistence, security
q To get the best of multiple forms of storage

n Manages metadata storage and retrieval
q This can lead to overheads that need to be managed

n Exposes hooks and interfaces for system software
q To enable better data placement and management decisions

n Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.

103



The Persistent Memory Manager (PMM)

104

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {

2 // data in file.dat is persistent
3 FILE myData = "file.dat";

4 myData = new int[64];
5 }

6 void updateValue(int n, int value) {

7 FILE myData = "file.dat";

8 myData[n] = value; // value is persistent
9 }

1 int main(void) {

2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");

4 myData = new int[64];
5 }

6 void updateValue(int n, int value) {

7 int *myData = PersistentObject.open("file.dat");

8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Load Store

DRAM Flash NVM HDD

Persistent Memory Manager
Hardware

Software
Data Layout, Persistence, Metadata, Security, ...

Hints from SW/OS/runtime

PMM uses access and hint information to allocate, locate, migrate 
and access data in the heterogeneous array of devices

Persistent objects



Performance Benefits of a Single-Level Store

105

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

User CPU User Memory Syscall CPU Syscall I/O

0.044
0.009

~5X

~24X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.



Energy Benefits of a Single-Level Store

106

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

Fr
ac

tio
n 

of
 T

ot
al 

En
er

gy

User CPU Syscall CPU DRAM NVM HDD

0.065
0.013

~5X

~16X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 
Storage and Memory,” WEED 2013.



Agenda

n Major Trends Affecting Main Memory
n The Memory Scaling Problem and Solution Directions

q New Memory Architectures
q Enabling Emerging Technologies

n How Can We Do Better?
n Summary

107



Principles (So Far)

n Better cooperation between devices and the system
q Expose more information about devices to upper layers
q More flexible interfaces

n Better-than-worst-case design
q Do not optimize for the worst case
q Worst case should not determine the common case

n Heterogeneity in design (specialization, asymmetry)
q Enables a more efficient design (No one size fits all) 

n These principles are coupled
108



Agenda

n Major Trends Affecting Main Memory
n The Memory Scaling Problem and Solution Directions

q New Memory Architectures
q Enabling Emerging Technologies

n How Can We Do Better?
n Summary

109



Summary: Memory Scaling
n Memory scaling problems are a critical bottleneck for system 

performance, efficiency, and usability

n New memory architectures
q A lot of hope in fixing DRAM

n Enabling emerging NVM technologies 
q A lot of hope in hybrid memory systems and single-level stores

n System-level memory/storage QoS
q A lot of hope in designing a predictable system

n Three principles are essential for scaling
q Software/hardware/device cooperation
q Better-than-worst-case design
q Heterogeneity (specialization, asymmetry)

110



Acknowledgments
n My current and past students and postdocs

q Rachata Ausavarungnirun, Abhishek Bhowmick, Amirali
Boroumand, Rui Cai, Yu Cai, Kevin Chang, Saugata Ghose, Kevin 
Hsieh, Tyler Huberty, Ben Jaiyen, Samira Khan, Jeremie Kim, 
Yoongu Kim, Yang Li, Jamie Liu, Lavanya Subramanian, 
Donghyuk Lee, Yixin Luo, Justin Meza, Gennady Pekhimenko, 
Vivek Seshadri, Lavanya Subramanian, Nandita Vijaykumar, 
HanBin Yoon, Jishen Zhao, …

n My collaborators at CMU
q Greg Ganger, Phil Gibbons, Mor Harchol-Balter, James Hoe, Mike 

Kozuch, Ken Mai, Todd Mowry, …

n My collaborators elsewhere
q Can Alkan, Chita Das, Sriram Govindan, Norm Jouppi, Mahmut

Kandemir, Konrad Lai, Yale Patt, Moinuddin Qureshi, Partha 
Ranganathan, Bikash Sharma, Kushagra Vaid, Chris Wilkerson, …

111



Funding Acknowledgments
n NSF
n GSRC
n SRC
n CyLab
n AMD, Google, Facebook, HP Labs, Huawei, IBM, Intel, 

Microsoft, Nvidia, Oracle, Qualcomm, Rambus, Samsung, 
Seagate, VMware

112



Open Source Tools
n Rowhammer

q https://github.com/CMU-SAFARI/rowhammer
n Ramulator

q https://github.com/CMU-SAFARI/ramulator
n MemSim

q https://github.com/CMU-SAFARI/memsim
n NOCulator

q https://github.com/CMU-SAFARI/NOCulator
n DRAM Error Model

q http://www.ece.cmu.edu/~safari/tools/memerr/index.html

n Other open-source software from my group
q https://github.com/CMU-SAFARI/
q http://www.ece.cmu.edu/~safari/tools.html

113

https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/memsim
https://github.com/CMU-SAFARI/NOCulator
http://www.ece.cmu.edu/~safari/tools/memerr/index.html
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html


Referenced Papers

n All are available at
http://users.ece.cmu.edu/~omutlu/projects.htm
http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en

n A detailed accompanying overview paper

q Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory 
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2015. 

114

http://users.ece.cmu.edu/~omutlu/projects.htm
http://scholar.google.com/citations%3Fuser=7XyGUGkAAAAJ&hl=en
http://users.ece.cmu.edu/~omutlu/pub/memory-systems-research_superfri14.pdf
http://superfri.org/superfri


Related Videos and Course Materials
n Undergraduate Computer Architecture Course Lecture 

Videos (2013, 2014, 2015) 

n Undergraduate Computer Architecture Course 
Materials (2013, 2014, 2015) 

n Graduate Computer Architecture Course Materials
(Lecture Videos)

n Parallel Computer Architecture Course Materials
(Lecture Videos)

n Memory Systems Short Course Materials
(Lecture Video on Main Memory and DRAM Basics)

115

https://www.youtube.com/playlist%3Flist=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
https://www.youtube.com/watch%3Fv=BJ87rZCGWU0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
https://www.youtube.com/watch%3Fv=hxzvtWEN7G4&list=PL5PHm2jkkXmgFdD9x7RsjQC4a8KQjmUkQ
https://www.youtube.com/watch%3Fv=zLP_X4wyHbY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
http://www.ece.cmu.edu/~ece447/s13/doku.php%3Fid=schedule
http://www.ece.cmu.edu/~ece447/s13/doku.php%3Fid=schedule
http://www.ece.cmu.edu/~ece447/s14/doku.php%3Fid=schedule
http://www.ece.cmu.edu/~ece447/s15/doku.php%3Fid=schedule
http://www.ece.cmu.edu/~ece740/f13/doku.php%3Fid=schedule
https://www.youtube.com/playlist%3Flist=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D
http://www.ece.cmu.edu/~ece742/f12/doku.php%3Fid=lectures
https://www.youtube.com/playlist%3Ffeature=edit_ok&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
https://www.youtube.com/watch%3Fv=ZLCy3pG7Rc0


Thank you.

onur@cmu.edu
http://users.ece.cmu.edu/~omutlu/

116

http://cmu.edu
http://users.ece.cmu.edu/~omutlu/


Rethinking Memory System Design 
(for Data-Intensive Computing)

Onur Mutlu
onur@cmu.edu

http://users.ece.cmu.edu/~omutlu/
July 20, 2015

SAMOS Keynote

http://cmu.edu
http://users.ece.cmu.edu/~omutlu/


Another Talk: NAND Flash Scaling Challenges
n Onur Mutlu,

"Error Analysis and Management for MLC NAND Flash Memory"
Technical talk at Flash Memory Summit 2014 (FMS), Santa Clara, CA, August 
2014. Slides (ppt) (pdf)

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,” 
DATE 2012.
Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory 
Lifetime,” ICCD 2012.
Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and 
Modeling,” DATE 2013.
Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel 
Technology Journal 2013.
Cai+, “Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,” 
ICCD 2013.
Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.
Cai+,”Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,” 
HPCA 2015.
Cai+, “Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015. 
Luo+, “WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention 
Management,” MSST 2015.

118

http://users.ece.cmu.edu/~omutlu/pub/flash-memory-errors_mutlu_fms14-talk.pdf
http://www.flashmemorysummit.com/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-errors_mutlu_fms14-talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-errors_mutlu_fms14-talk.pdf


Experimental Infrastructure (Flash)

119

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

3x-nm
NAND Flash

[Cai+, DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 
2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015]



Backup Slides

120



Research Focus: Computer architecture, HW/SW, bioinformatics
• Memory, memory, memory, storage, interconnects
• Parallel architectures, heterogeneous architectures, GP-GPUs
• System/architecture interaction, new execution models
• Energy efficiency, fault tolerance, hardware security 
• Genome sequence analysis & assembly algorithms and architectures

General Purpose GPUs

Heterogeneous
Processors and 

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

Broad research 
spanning apps, systems, logic
with architecture at the center

Current Research Focus Areas



• Rethinking Memory System Design for Data-Intensive Computing
• All aspects of DRAM, Flash Memory, Emerging Technologies

• Single-Level Stores: Merging Memory and Storage with Fast NVM

• GPUs as First-Class Computing Engines

• In-memory Computing: Enabling Near-Data Processing

• Predictable Systems: QoS Everywhere in the System

• Secure and Easy-to-Program/Manage Memories: DRAM, Flash, NVM

• Heterogeneous Systems: Architecting and Exploiting Asymmetry

• Efficient and Scalable Interconnects

• Genome Sequence Analysis & Assembly: Algorithms and Architectures

Some Current Directions and Projects



In-Memory Processing

123



A Scalable Processing-in-Memory 
Accelerator for Parallel Graph Processing

Junwhan Ahn, Sungpack Hong*, Sungjoo Yoo,
Onur Mutlu+, Kiyoung Choi

Seoul National University *Oracle Labs +Carnegie Mellon University



Challenges in Scalable Graph Processing

• Challenge 1: How to provide high memory 
bandwidth to computation units in a practical way?
– Processing-in-memory based on 3D-stacked DRAM

• Challenge 2: How to design computation units that 
efficiently exploit large memory bandwidth?
– Specialized in-order cores called Tesseract cores

• Latency-tolerant programming model
• Graph-processing-specific prefetching schemes



Tesseract System fo Graph Processing

Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)



Evaluated Systems
HMC-MC

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

102.4GB/s 640GB/s 640GB/s 8TB/s

HMC-OoO

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

(with FDP)

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

DDR3-OoO
(with FDP)

Tesseract

32 
Tesseract 

Cores

(32-entry MQ, 4KB PF Buffer)



Workloads

• Five graph processing algorithms
– Average teenage follower
– Conductance
– PageRank
– Single-source shortest path
– Vertex cover

• Three real-world large graphs
– ljournal-2008 (social network)
– enwiki-2003 (Wikipedia)
– indochina-0024 (web graph)
– 4~7M vertices, 79~194M edges



Performance

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
ee

du
p



Memory Energy Consumption

0

0.2

0.4

0.6

0.8

1

1.2

HMC-OoO Tesseract with Prefetching

Memory Layers Logic Layers Cores

-87%



Conclusion
• Revisiting the PIM concept in a new context

– Cost-effective 3D integration of logic and memory
– Graph processing workloads demanding high memory bandwidth

• Tesseract: scalable PIM for graph processing
– Many in-order cores in a memory chip
– New message passing mechanism for latency hiding
– New hardware prefetchers for graph processing
– Programming interface that exploits our hardware design

• Evaluations demonstrate the benefits of Tesseract
– 14x performance improvement & 87% energy reduction
– Scalable: memory-capacity-proportional performance



PIM-Enabled Instructions: A Low-
Overhead, Locality-Aware PIM 

Architecture

Junwhan Ahn, Sungjoo Yoo, Onur Mutlu+, and Kiyoung Choi

Seoul National University +Carnegie Mellon University



DRAM die

Challenges in Processing-in-Memory
Cost-effectiveness Programming Model Coherence & VM

DRAM die

Complex Logic

Host Processor

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Host Processor

C

C

In-Memory Processors

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

Thread

Thread
Thread

Thread
Thread

Thread
Thread
Thread
Thread

Thread

5

4



PIM-Enabled Instructions

• Our direction: simple PIM operations as ISA extension
– Simple: low-overhead implementation
– ISA extension: No changes to existing programming models
– One more thing: locality-aware dynamic PIM execution

• Adaptation between host-side and memory-side execution

• Evaluation highlight
– 47% speedup over conventional systems in large inputs
– 32% speedup over PIM-only systems in small inputs
– Impact of data locality, energy efficiency, and more…

Session 6A: Memory Systems I (10:20~10:45)



NVM and Emerging 
Technologies

135



Error Management in MLC NAND Flash

n Problem: MLC NAND flash memory reliability/endurance is a key 
challenge for satisfying future storage systems’ requirements

n Our Goals: (1) Build reliable error models for NAND flash 
memory via experimental characterization, (2) Develop efficient 
techniques to improve reliability and endurance

n This talk provides a “flash” summary of our recent results 
published in the past 3 years:
q Experimental error and threshold voltage characterization [DATE’12&13]
q Retention-aware error management [ICCD’12]
q Program interference analysis and read reference V prediction [ICCD’13]
q Neighbor-assisted error correction [SIGMETRICS’14]

136



Charge vs. Resistive Memories

n Charge Memory (e.g., DRAM, Flash)
q Write data by capturing charge Q
q Read data by detecting voltage V

n Resistive Memory (e.g., PCM, STT-MRAM, memristors)
q Write data by pulsing current dQ/dt
q Read data by detecting resistance R 

137



138



DRAM vs. PCM: An Observation
n Row buffers are the same in DRAM and PCM
n Row buffer hit latency same in DRAM and PCM
n Row buffer miss latency small in DRAM, large in PCM

n Accessing the row buffer in PCM is fast
n What incurs high latency is the PCM array access à avoid this

139

CPU
DRA
MCtrl

PCM 
Ctrl

Ban
k

Ban
k

Ban
k

Ban
k

Row buffer
DRAM Cache PCM Main Memory

N ns row hit
Fast row miss

N ns row hit
Slow row miss



Row-Locality-Aware Data Placement
n Idea: Cache in DRAM only those rows that

q Frequently cause row buffer conflicts à because row-conflict latency 
is smaller in DRAM

q Are reused many times à to reduce cache pollution and bandwidth 
waste

n Simplified rule of thumb:
q Streaming accesses: Better to place in PCM 
q Other accesses (with some reuse): Better to place in DRAM

n Yoon et al., “Row Buffer Locality-Aware Data Placement in Hybrid 
Memories,” ICCD 2012 Best Paper Award.

140



More Detail on New Memory 
Architectures

141



In-DRAM Bitwise AND/OR

Required Operation: Perform a bitwise AND of two 
rows A and B and store the result in C

• R0 – reserved zero row, R1 – reserved one row
• D1, D2, D3 – Designated rows for triple activation

1. RowClone  A into  D1
2. RowClone  B  into  D2
3. RowClone  R0  into  D3
4. ACTIVATE  D1,D2,D3
5. RowClone  Result  into  C

142



Bitmap Index
• Alternative to B-tree and its variants
• Efficient for performing range queries and joins

143

Bi
tm

ap
 1

Bi
tm

ap
 2

Bi
tm

ap
 4

Bi
tm

ap
 3

age < 18 18 < age < 25 25 < age < 60 age > 60



Performance Evaluation

144

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

3 9 20 45 98 118 128

Pe
rf

or
m

an
ce

 R
el

at
iv

e 
to

 
Ba

se
lin

e

Number of OR bins

Conservative (1 Bank) Aggressive (1 Bank)

Conservative (4 Banks) Aggressive (4 Banks)



n Memory Channel Partitioning
q Idea: System software maps badly-interfering applications’ pages 

to different channels [Muralidhara+, MICRO’11]

n Separate data of low/high intensity and low/high row-locality applications
n Especially effective in reducing interference of threads with “medium” and 

“heavy” memory intensity 
q 11% higher performance over existing systems (200 workloads)

A Mechanism to Reduce Memory Interference

145

Core 0
App A

Core 1
App B

Channel 0

Bank 1

Channel 1

Bank 0
Bank 1

Bank 0

Conventional Page Mapping

Time Units

12345

Channel Partitioning

Core 0
App A

Core 1
App B

Channel 0

Bank 1

Bank 0
Bank 1

Bank 0

Time Units

12345

Channel 1



More on Memory Channel Partitioning
n Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut

Kandemir, and Thomas Moscibroda, 
"Reducing Memory Interference in Multicore Systems via 
Application-Aware Memory Channel Partitioning"
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)

146

http://users.ece.cmu.edu/~omutlu/pub/memory-channel-partitioning-micro11.pdf
http://www.microarch.org/micro44/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_micro11_talk.pptx


Designing QoS-Aware Memory Systems: Approaches

n Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism
q QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12][Subramanian+, HPCA’13] [Subramanian+, ICCD’14]

q QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12]

q QoS-aware caches

n Dumb resources: Keep each resource free-for-all, but 
reduce/control interference by injection control or data 
mapping
q Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12]

q QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

q QoS-aware thread scheduling to cores [Das+ HPCA’13]

147



QoS-Aware Memory Scheduling

n How to schedule requests to provide
q High system performance
q High fairness to applications
q Configurability to system software 

n Memory controller needs to be aware of threads

148

Memory 
Controller

Core Core

Core Core
Memory

Resolves memory contention 
by scheduling requests



More on DRAM Disturbance Errors

n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk 
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer 
Architecture (ISCA), Minneapolis, MN, June 2014. Slides (pptx) (pdf)
Lightning Session Slides (pptx) (pdf) Source Code and Data

n Source Code
q https://github.com/CMU-SAFARI/rowhammer

149

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer


More on Heterogeneous-Reliability Memory

n Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin 
Meza, Aman Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur 
Mutlu,
"Characterizing Application Memory Error Vulnerability to 
Optimize Data Center Cost via Heterogeneous-Reliability 
Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. 
Slides (pptx) (pdf) Coverage on ZDNet

150

http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://2014.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
http://www.zdnet.com/how-good-does-memory-need-to-be-7000031853/


• 151



How Do We Solve The Problem?
n Tolerate it: Make DRAM and controllers more intelligent

q New interfaces, functions, architectures: system-DRAM codesign

n Eliminate or minimize it: Replace or (more likely) augment 
DRAM with a different technology
q New technologies and system-wide rethinking of memory & 

storage

n Embrace it: Design heterogeneous-reliability memories that 
map error-tolerant data to less reliable portions
q New models for execution and maybe usage

n …
152

Solutions (to memory scaling) require 
software/hardware/device cooperation



More on Memory Scheduling
n Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, and Onur Mutlu,

"MISE: Providing Performance Predictability and Improving Fairness in 
Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-Performance Computer 
Architecture (HPCA), Shenzhen, China, February 2013. Slides (pptx)

n Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, and Onur 
Mutlu,
"The Blacklisting Memory Scheduler: Achieving High Performance and 
Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on Computer Design
(ICCD), Seoul, South Korea, October 2014. Slides (pptx) (pdf)

n Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling: Exploiting Differences in Memory 
Access Behavior"
Proceedings of the 43rd International Symposium on Microarchitecture (MICRO), 
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

153

http://users.ece.cmu.edu/~omutlu/pub/mise-predictable_memory_performance-hpca13.pdf
http://www.cs.utah.edu/~lizhang/HPCA19/
http://users.ece.cmu.edu/~omutlu/pub/subramanian_hpca13_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss-memory-scheduler_iccd14.pdf
http://www.iccd-conf.com/
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/bliss_lavanya_iccd14-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tcm_micro10.pdf
http://www.microarch.org/micro43/
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf


Ramulator: A Fast and Extensible 
DRAM Simulator 

[IEEE Comp Arch Letters’15]

154



Ramulator Motivation
n DRAM and Memory Controller landscape is changing
n Many new and upcoming standards
n Many new controller designs
n A fast and easy-to-extend simulator is very much needed

155



Ramulator
n Provides out-of-the box support for many DRAM standards:

q DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new 
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

n ~2.5X faster than fastest open-source simulator
n Modular and extensible to different standards

156



Case Study: Comparison of DRAM Standards

157

Across 22 
workloads, 
simple CPU 
model



Ramulator Paper and Source Code
n Yoongu Kim, Weikun Yang, and Onur Mutlu,

"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015. 
[Source Code] 

n Source code is released under the liberal MIT License
q https://github.com/CMU-SAFARI/ramulator

158

http://users.ece.cmu.edu/~omutlu/pub/ramulator_dram_simulator-ieee-cal15.pdf
http://www.computer.org/web/cal
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/ramulator

