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The Main Memory System

Processor
and caches

\_

Main Memory

J

Storage (SSD/HDD)

= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits
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Memory System: A Shared Resource View
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State ot the Main Memory System

Recent technology, architecture, and application trends
o lead to new requirements
o exacerbate old requirements

DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

We need to rethink the main memory system
o to fix DRAM issues and enable emerging technologies
o to satisfy all requirements
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Agenda

Major Trends Affecting Main Memory
The Memory Scaling Problem and Solution Directions

o New Memory Architectures
o Enabling Emerging Technologies

How Can We Do Better?
Summary
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Major Trends Attecting Main Memory (I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
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Major Trends Attecting Main Memory (1I)

= Need for main memory capacity, bandwidth, QoS increasing
o Multi-core: increasing number of cores/agents
o Data-intensive applications: increasing demand/hunger for data
o Consolidation: cloud computing, GPUs, mobile, heterogeneity

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
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Example: The Memory Capacity Gap

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years
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Memory capacity per core expected to drop by “30% every two years
Trends worse for memory bandwidth per corel



Major Trends Atfecting Main Memory (11I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

o ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,
IEEE Computer 2003]

a DRAM consumes power even when not used (periodic refresh)

= DRAM technology scaling is ending
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Major Trends Atfecting Main Memory (IV)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
o ITRS projects DRAM will not scale easily below X nm

o Scaling has provided many benefits:
= higher capacity (density), lower cost, lower energy
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Agenda

Major Trends Affecting Main Memory
The Memory Scaling Problem and Solution Directions

o New Memory Architectures
o Enabling Emerging Technologies

How Can We Do Better?
Summary
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The DRAM Scaling Problem

DRAM stores charge in a capacitor (charge-based memory)
o Capacitor must be large enough for reliable sensing

o Access transistor should be large enough for low leakage and high
retention time

o Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]
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DRAM capacity, cost, and energy/power hard to scale
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An Example of The Scaling Problem

= Row of Cells = Wordline

= Victim Row —
Hammerers s

= Victim Row —

= Row —

Repeatedly opening and closing a row induces
disturbance errors in adjacent rows in most real

DRAM chips  [Kim+ ISCA 2014] .



Most DRAM Modules Are At Risk

A company B company C company

Up to Up to Up to
1.0x107 2.7x10° 3.3x10°
errors errors errors

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” ISCA 2014. 14



x86 CPU DRAM Module
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loop:
mov (), %Seax
mov (), %ebx
clflush ()
clflush ()
mfence

Jmp loop

https://github.com/CMU-SAFARI/rowhammer
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x86 CPU DRAM Module
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loop:
mov (), %Seax
mov (), %ebx
clflush ()
clflush ()
mfence

Jmp loop

https://github.com/CMU-SAFARI/rowhammer



https://github.com/CMU-SAFARI/rowhammer

x86 CPU DRAM Module
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x86 CPU DRAM Module
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Observed Errors in Real Systems

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec
Intel Sandy Bridge (2011) 16.1K 11.6M/sec
AMD Piledriver (2012) 59 6.1M/sec

* Areal reliability & security issue

* /n a more controlled environment, we can
induce as many as ten million disturbance errors

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 19
DRAM Disturbance Errors,” ISCA 2014.



BErrors »s. Vintage

] e A Modules = B Modules ¢ C Modules
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All modules from 2012-2013 are vulnerable
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Experimental Intrastructure (DRAM)
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Kim+, “Flipping Bits in Memory Without
Accessing Them: An Experimental Study of
DRAM Disturbance Errors”, ISCA 2014.

Lee+, “Adaptive-Latency DRAM: Optimizing
DRAM Timing for the Common-Case,” HPCA
2015.

Qureshi+, "AVATAR: A Variable-Retention-
Time (VRT) Aware Refresh for DRAM
Systems,” DSN 2015.

SAFARI

Liu+, "An Experimental Study of Data
Retention Behavior in Modern DRAM
Devices: Implications for Retention Time
Profiling Mechanisms”, ISCA 2013.

Khan+, “The Efficacy of Error Mitigation
Techniques for DRAM Retention Failures: A
Comparative Experimental Study,”
SIGMETRICS 2014.
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Experimental Intrastructure (DRAM)

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An -
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



RowHammer Characterization Results

. Most Modules Are at Risk
. Errors vs. Vintage

. Error = Charge Loss

. Adjacency: Aggressor & Victim
. Sensitivity Studies

. Other Results in Paper

~N OO O B W N -

. Solution Space

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 23
DRAM Disturbance Errors,” ISCA 2014.



Security Implications

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable
and secure computing system — an access to one memory ad-
dress should not have unintended side effects on data stored
in other addresses. However, as DRAM process technology

http://users.ece.cmu.edu/~omutlu/pub/dra

P rOj e Ct Ze ro m-row-hammer_iscal4.pdf

News and updates from the Project Zero team at Google

http://googleprojectzero.blogspot.com/201
5/03/exploiting-dram-rowhammer-bug-to-
gain.html

Exploiting the DRAM rowhammer bug to gain kernel privileges


http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

Security Implications
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Recap: The DRAM Scaling Problem

DRAM Process Scaling Challenges

+* Refresh
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Co-Architecting Controllers and DRAM
to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng,
**John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel
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How Do We Solve The Problem?

Fix it: Make DRA

Problems

a New interfaces,

Algorithms

Programs

ers more intelligent
tectures: system-DRAM codesign

Eliminate or minimize it\Replace or{more likely) augment

DRAM with a different

a New technologies ant

Runtime System
(VM, OS, MM)

ethinking of memory &

storage

ISA

Microarchitecture

Embrace it: Design he

Logic

nemories (none of which

are perfect) and map

Devices

ly across them

o New models for data management and maybe usage

Solutions (to memory scaling) require
software/hardware/device cooperation




Solution 1: Fix DRAM

= Overcome DRAM shortcomings with
o System-DRAM co-design
o Novel DRAM architectures, interface, functions
o Better waste management (efficient utilization)

= Key issues to tackle
a Enable reliability at low cost
a Reduce energy
o Improve latency and bandwidth
a Reduce waste (capacity, bandwidth, latency)
a Enable computation close to data

SAFARI
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Solution 1: Fix DRAM

Liu+, "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.

Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.
Seshadri+, "RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.
Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.
Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.

Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS
2014.

Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.
Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.

Qureshi+, "AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.

Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,”
DSN 2015.

Kim+, “"Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,"” IEEE CAL 2015.

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.

Ahn+ “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.

Avoid DRAM:

o Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.
Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.
Seshadri+, “The Dirty-Block Index,” ISCA 2014.

Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.

Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist
Warps,” ISCA 2015.

SAFARI 29
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Solution 2: Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory
o Expected to scale to 9nm (2022 [ITRS])
o Expected to be denser than DRAM: can store multiple bits/cell

But, emerging technologies have shortcomings as well
a Can they be enabled to replace/augment/surpass DRAM?

Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, Micro'10.
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

Yoon, Meza+, “"Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED
2013.

Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.
Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change
Memories,” ACM TACO 2014.

SAFARI S



Solution 3: Hybrid Memory Systems

\_

Technology X (e.g., PCM)

~

/

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD

2012 Best Paper Award.

SAFARI



Exploiting Memory Error Tolerance
with Hybrid Memory Systems

Vulnerable
data

Reliable memory

On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %

Heterogeneous-Reliability Memory [psn 2014]

32




An Orthogonal Issue: Memory Interference

Core || Core

Mai
< > Menit?ry

Core || Core

Cores’ interfere with each other when accessing shared main memory

SAFARI 33



An Orthogonal Issue: Memory Interference

= Problem: Memory interference between cores is uncontrolled

- unfairness, starvation, low performance
- uncontrollable, unpredictable, vulnerable system

= Solution: QoS-Aware Memory Systems
o Hardware designed to provide a configurable fairness substrate
= Application-aware memory scheduling, partitioning, throttling

o Software designed to configure the resources to satisfy different
QoS goals

= QoS-aware memory systems can provide predictable
performance and higher efficiency

SAFARI



Goal: Predictable Performance in Complex Systems

Shared Cache HWA HWA

y v
DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

= Heterogeneous agents: CPUs, GPUs, and HWAs
= Main memory interference between CPUs, GPUs, HWAs

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance?

SAFARI 3



Strong Memory Service (Guarantees

Goal: Satisfy performance/SLA requirements in the
presence of shared main memory, heterogeneous agents,
and hybrid memory/storage

Approach:

o Develop techniques/models to accurately estimate the
performance loss of an application/agent in the presence of
resource sharing

o Develop mechanisms (hardware and software) to enable the
resource partitioning/prioritization needed to achieve the
required performance levels for all applications

o All the while providing high system performance

Example work: Subramanian et al., “"MISE: Providing Performance Predictability and
Improving Fairness in Shared Main Memory Systems,” HPCA 2013.

SAFARI
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Some Promising Directions

= New memory architectures

o | Rethinking DRAMIand flash memory

o A lot of hope in fixing DRAM

= Enabling NVM technologies

Hybrid memory systems
Single-level memory and storage

o A lot of hope in hybrid memory systems and single-level stores

Q

Q

= System-level memory/storage QoS
o A lot of hope in designing a predictable system

SAFARI 37



Agenda

Major Trends Affecting Main Memory
The Memory Scaling Problem and Solution Directions

o New Memory Architectures
o Enabling Emerging Technologies

How Can We Do Better?
Summary

SAFARI
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Rethinking DRAM

= | In-Memory Computation

= Refresh
= Reliability
= Latency
= Bandwidth
= Energy

= Memory Compression

SAFARI
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Today’s Memory: Bulk Data Copy

1) High latency
3) Cache pollution \\

2) High bandwidth utilization

4) Unwanted data movement

1046ns, 3.6ul (for 4KB page copy via DMA) .



Future: RowClone (In-Memory Copy)

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement

10068s03D8ul

41



DRAM Subarray Operation (load one byte)

Transfer
row

8 Kbits

Step 1: Activate row

DRAM array

CIITTTTT PR TTTTTTTITTTTTTT] Row Buffer (8 Kbits)

Step 2: Read
Transfer byte onto

Data Bus



RowClone: In-DRAM Row Copy

Transfer
row

8 Kbits

Transfgr

row

Step 1: Activate row A

Step 2: Activate row B

DRAM array

0.01% area cc

Row Buffer (8 Kbits)

|8 bits

Data Bus



Generalized RowClone

Inter Subarray Copy
(Use Inter-Bank Copy Twi

¢ )
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RowClone: Latency and Energy Savings

M Baseline M Intra-Subarray
W Inter-Bank M Inter-Subarray

1.2

=
|

A

74X

o
(00]
|

o
>
|

Normalized Savings
o
(@)

o
N
|

Latency Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.
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RowClone: Application Performance

80 —
m [PC Improvement m Energy Reduction

% Compared to Baseline

bootup compile forkbench mcached mysql shell
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RowClone: Multi-Core Performance

1.5

a ==Baseline =RowClone

1.3

1.2

1.1

1 -

Normalized Weighted Speedup

0.9
50 Workloads (4-core)
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End-to-End System Design

Application

Operating System

Microarchitecture

DRAM (RowClone)

How to communicate
occurrences of bulk
copy/initialization across
layers?

How to ensure cache
coherence?

How to maximize latency
and energy savings?

How to handle data reuse?

48



Goal: Ultra-Eftficient Processing Near Data

mini-cPd i Gpu GPu |
CPU CPU o' | :(throughpuf) (throughput) :
core core :] core core |:
video
core
il epPu GPU i
CPU CPU - : (throughput)) (khroughput)
core core 'nliégng : core core :
LLC
N

Memory Controller

Memory Bus

Memory

Specialized
compute-capability
inmemory

Memory similar to a “conventional” accelerator



Enabling In-Memory Search

Processor
Core

Databas
e

Query vec

)
Interconnect

Results

m What is a flexible and scalable memory interface?

® What is the right partitioning of computation
capability?

® What is the right low-cost memory substrate?

= \What memory technologies are the best enablers?

| | IIA‘.. AIA A A A o MALIA:IAIIIA‘AA AAAI‘AIA



Enabling In-Memory Computation

DRAM Cache Virtual Memory
Support Coherence Support
RowClone D|rty(-iBIock Page Overlays
(MICRO 2013) Index

(ISCA 2014)

In-DRAM

Non-cont
on-contiguous Gathered Pages

Cache lines

Gather Scatter

In-DRAM Bitwise
Operations
(IEEE CAL 2015)

| |
i i
i i
i i
i i
i +
i i
i i
i i
i i
| | (ISCA 2015)
| |
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
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In-DRAM AND/OR: Triple Row Activation

A ; l P %Vppt6

I el Final State
B v AB + BC + AC

wl/"‘

A

dis

| %\,

SAFARI Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.
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[n-DRAM AND/OR Results

= 20X improvement in AND/OR throughput vs. Intel AVX
= 50.5X reduction in memory energy consumption

= At least 30% performance improvement in range queries
90

In-DRAM AND (2 banks)
——— s F———m——n

70 ’\
60 \
50

\ In-DRAM AND (1 bank)

40 b '\t * * * * * i =i * * * A

30 )

20
¥4 = 0—\

10

80

Intel AVX

0 T T T

R I R RS IR @ ® ®
‘b.\/‘oo)’l/bb‘&’ﬁob%,\/ @@b‘@@@@@

Size of Vectors to be ANDed

I I I I I 1

Throughput of AND operations (GB/s)

SAFARI Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.



Rethinking DRAM

= In-Memory Computation

-
[Reebiy
= Latency
= Bandwidth

= Energy

= Memory Compression

SAFARI
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DRAM Refresh T

DRAM capacitor charge leaks over time CAP ——

T

N SENSE

The memory controller needs to refresh each row V
periodically to restore charge

o Activate each row every N ms
o Typical N = 64 ms

Downsides of refresh
-- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM capacity scaling

55



Refresh Overhead: Performance

100

Present i Future

4 o) o0
S S S

% time spent refreshing

Do
S

0"2Gb 4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 20



Refresh Overhead: Energy

% DRAM energy spent refreshing

100

Present i Future

o0
S

A
S

I~
)

(\®
S

S

2Gb 4Gb 8Gb 16Gb 32Gb 64 Gb
Device capacity

Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
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Retention Time Profile of DRAM

04-128ms

128-250ms




RAIDR: Eliminating Unnecessary Refreshes

= Observation: Most DRAM rows can be refreshgd much less often

without losing data [kim+, EDL'09][Liu+ ISCA’13]

= Key idea: Refresh rows containing weak cells

more frequently, other rows less frequently

1. Profiling: Profile retention time of all rows

2. Binning: Store rows into bins by retention time in memory controller
Efficient storage with Bloom Filters (only 1.25KB for 32GB memory)
3. Refreshing: Memory controller refreshes rows in different bins at

different rates

= Results: 8-core, 32GB, SPEC, TPC-C, TPC-H
o 74.6% refresh reduction @ 1.25KB storage
o ~16%/20% DRAM dynamic/idle power reduction
o ~9% performance improvement
o Benefits increase with DRAM capacity

SAFARI
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Liu et al., "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.



Going Forward (for DRAM and Flash)
(o to Find ot wesk merory celisfrows]

o Liu+, “"An Experimental Study of Data Retention Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling Mechanisms”, ISCA 2013.

o Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A
Comparative Experimental Study,” SIGMETRICS 2014.

= Low-cost system-level tolerance of memory errors

o Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center
Cost,” DSN 2014.

o Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,
Intel Technology Journal 2013.

o Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,”
SIGMETRICS 2014.

n

= Tolerating cell-to-cell interference at the system level
Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of

DRAM Disturbance Errors,” ISCA 2014.

o Cai+, "Program Interference in MLC NAND Flash Memory: Characterization, Modeling,
and Mitigation,” ICCD 2013.
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Experimental Intrastructure (DRAM)

[ vesol - S

- e ik

Fan over
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Kim+, “Flipping Bits in Memory Without
Accessing Them: An Experimental Study of
DRAM Disturbance Errors”, ISCA 2014.

Lee+, “Adaptive-Latency DRAM: Optimizing
DRAM Timing for the Common-Case,” HPCA
2015.

Qureshi+, "AVATAR: A Variable-Retention-
Time (VRT) Aware Refresh for DRAM
Systems,” DSN 2015.
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Liu+, "An Experimental Study of Data
Retention Behavior in Modern DRAM
Devices: Implications for Retention Time
Profiling Mechanisms”, ISCA 2013.

Khan+, “The Efficacy of Error Mitigation
Techniques for DRAM Retention Failures: A
Comparative Experimental Study,”
SIGMETRICS 2014.
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Experimental Intrastructure (DRAM)

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An P
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



More Information [ISCA’13, SIGMETRICS’14]

The Efficacy of Error Mitigation Techniques for DRAM
Retention Failures: A Comparative Experimental Study

Samira Khan'+ Donghyuk Leet Yoongu Kimt
samirakhan@cmu.edu donghyuki@cmu.edu  yoongukim@cmu.edu

Alaa R. Alameldeen ~ Chris Wilkerson® Onur Mutluf
alaa.r.alameldeen@intel.com chris.wilkerson@intel.com onur@cmu.edu

fCarnegie Mellon University “Intel Labs
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Online Profiling of DRAM In the Field

Initially protect DRAM Periodically test
with ECC 1 parts of DRAM y.

Adjust refresh rate and
reduce ECC 3

Optimize DRAM and mitigate errors online
without disturbing the system and applications



Rethinking DRAM

= In-Memory Computation
= Refresh

= Reliability

[

= Bandwidth

= Energy

= Memory Compression

SAFARI
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DRAM Latency-Capacity Trend

4Capacity =Latency (tRC)

2.5 100
16X
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DRAM latency continues to be a critical
bottleneck, especially for response time-sensitive 66



What Causes the Long Latency?
DRAM Chip

subarray

!

I/0

3

DRAM Latency {Subarray Latemoy ¥ /O llattemoy

Dominant

channelt




Why is the Subarray So Slow?

Subarray Cell
cell o
wordline
= >
. prC
— Q " j\\
% 8 t /,, \\\
Q N S
O ™~ I A= -
Q Ln ) I8 ‘ access il
S & < e transistor | &
2 S s =
2 5 <
sense amplifier large sense amplifier

* Long bitline
— Amortizes sense amplifier cost = Small area

ense amplifier

— Large bitline capacitance = High latency & power
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Trade-Off: Area (Die Size) vs. Latency
Long Bitline Short Bitline

—
%%%%

AYAYAYA
-Off. Area vs. Latency
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Trade-Off: Area (Die Size) vs. Latency
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Approximating the Best of Both Worlds

Long Bitline J Our Proposal | Short Bitline
Small Area )zgaﬂ:(

' N7 N/ \/ \

M Low Latency

Need Add Isolatlon
Isolation Transistors

tline = Fast
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Approximating the Best of Both Worlds

Long Bitlin Tiered-Latency DRAM )ort Bitline

Small Area Small Area M

' N/ N/ N/ \

M Low Latency  Low Latency

using long

bitline §
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Commodity DRAM vs. TL-DRAM [HprcA 2013)
 DRAM Latency (tRC) * DRAM Power

150% 1508 +49%
+23%
> % o % -
< 100 g 100%
)
E 50% - g 50% _51%
0% 0%
Commodity Near | Far Commodity Near | Far
DRAM TL-DRAM DRAM TL-DRAM

* DRAM Area Overhead

~3%: mainly due to the isolation transistors \



Trade-Off: Area (Die-Area) vs. Latency
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Leveraging Tiered-Latency DRAM

 TL-DRAM is a substrate that can be leveraged by
the hardware and/or software

* Many potential uses

(1. Use near segment as hardware-managed inclusive
cache to far segment )

2. Use near segment as hardware-managed exclusive
cache to far segment

3. Profile-based page mapping by operating system )
4. Simply replace DRAM with TL-DRAM

75
Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.



Performance & Power Consumption

120% 120%

Y 12.4% 11.5% 10.7%
— (1) — o — 0,
§ 100% = 100% 23% -24% -26%
S
1 &
g O qno
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Q ©
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© o
g 20% >  20%
o
< 0% . . . 0% . . .
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Core-Count (Channel) Core-Count (Channel)

Using near segment as a cache improves

performance and reduces power consumption

76
Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.



What Else Causes the LLong DRAM Latency?

= Conservative timing margins!

= DRAM timing parameters are set to cover the worst case

= Worst-case temperatures
o 85 degrees vs. common-case
o to enable a wide range of operating conditions
= Worst-case devices
o DRAM cell with smallest charge across any acceptable device
o to tolerate process variation at acceptable yield

= This leads to large timing margins for the common case

SAFARI 7



Adaptive-Latency DRAM [HPCA 2015]

Idea: Optimize DRAM timing for the common case
o Current temperature
a Current DRAM module

Why would this reduce latency?

o A DRAM cell can store much more charge in the common case
(low temperature, strong cell) than in the worst case

o More charge in a DRAM cell
- Faster sensing, charge restoration, precharging
- Faster access (read, write, refresh, ...)

Lee+, “"Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” 78
SAFARI HPCA 2015.



AL-DRAM

e Key idea
— Optimize DRAM timing parameters online

* Jwo components
— DRAM manufacturer provides multiple sets of

reliable DRAM timing parameters ElNsIiEgEIgl

temperatures for each DIMM

— System monitors [BRVAWRTEIIEIEINIEE & Uses

appropriate DRAM timing parameters

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 79
2015.



Latency Reduction Summary of 115 DIMMs

* [atency reduction for read & write (55°C)
— Read Latency: 32.7%
— Write Latency: 55.1%

* [atency reduction for each timing
parameter (55°C)
—Sensing: 17.3%
— Restore: 37.3% (read), 54.8% (write)
— Precharge: 35.2%

SAFARI Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA
2015.



AL-DRAM: Real System Evaluation

System
— CPU: AMD 4386 ( 8 Cores, 3.1GHz, 8MB LLC)

D18F2x200 dct[0] mp[1:0] DDR3 DRAM Timing 0
Reset: 0F05_0505h. See 2.9.3 [DCT Configuration Registers].

Bits

Description

31:30

Reserved.

29:24

Tras: row active strobe. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Specifies
the minimum time in memory clock cycles from an activate command to a precharge command. both

to the same chip select bank.
Bits Description
07h-00h Reserved
2Ah-08h <Tras> clocks
3Fh-2Bh Reserved

Reserved.

Trp: row precharge time. Read-write. BIOS: See 2.9.7.5 [SPD ROM-Based Configuration]. Speci-
fies the minimum time in memory clock cycles from a precharge command to an activate command or
auto refresh command. both to the same bank.




AL-DRAM: Single-Core Evaluation

- Average

g 25%  mSingleCore | Improvement
B 200 R e
>

Q

Q

Copy

Performance |
soplex
m
mi
lbm
ge
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gUps
intensive

non-intensive
all-35-workload

AL-DRAM improves performance on a real system
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AL-DRAM: Multi-Core Evaluation

Average

Performance Improvement

soplex
mcf
milc

libg

lbm
gems
copy

s.cluster
gUps
iIntensive

non-intensive
all-35-workload

AL-DRAM provides higher performance for

multi-programmed & multi-threaded workloads
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Rethinking DRAM

= In-Memory Computation
= Refresh

= Reliability

= Latency

= | Bandwidth

=| Energy

= Memory Compression

SAFARI
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Agenda

Major Trends Affecting Main Memory
The Memory Scaling Problem and Solution Directions

o New Memory Architectures
o Enabling Emerging Technologies

How Can We Do Better?
Summary

SAFARI
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Solution 2: Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory oL
o Data stored by changing phase of material
Data read by detecting material’s resistance ;
Expected to scale to 9nm (2022 [ITRS]) WL SENSE
Prototyped at 20nm (Raoux+, IBM JRD 2008) M Vv
Expected to be denser than DRAM: can store multiple bits/cell

PCM

Q
Q
Q
Q

But, emerging technologies have (many) shortcomings
a Can they be enabled to replace/augment/surpass DRAM?

SAFARI 86



Limits ot Charge Memory

Difficult charge placement and control
o Flash: floating gate charge
o DRAM: capacitor charge, transistor leakage

Reliable sensing becomes difficult as charge storage unit
Size reduces

WL BL
* ] GATE I | ’
CC 33— FLOATING GATE

4|||‘

SENSE

V
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Promising Resisttve Memory Technologies

PCM

o Inject current to change material phase
o Resistance determined by phase

STT-MRAM

o Inject current to change magnet polarity
o Resistance determined by polarity

Memristors/RRAM/ReRAM
o Inject current to change atomic structure
o Resistance determined by atom distance

88



Phase Change Memory: Pros and Cons

= Pros over DRAM
a Better technology scaling (capacity and cost)
a Non volatility
a Low idle power (no refresh)

= Cons
a Higher latencies: ~4-15x DRAM (especially write)
a Higher active energy: ~2-50x DRAM (especially write)
o Lower endurance (a cell dies after ~108 writes)
a Reliability issues (resistance drift)

= Challenges in enabling PCM as DRAM replacement/helper:
o Mitigate PCM shortcomings

o Find the right way to place PCM in the system
SAFARI 89




PCM-based Main Memory (I)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
IcipdiciRgicsh
G- | - CE | @D
Q-G | - CE | ©@- D

= Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC'09]:
o How to partition/migrate data between PCM and DRAM

SAFARI 20



PCM-based Main Memory (1)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
o)~ L)~
Q-G - —c | @D
Q-G -G | @

= Pure PCM main memory [Lee et al., ISCA'09, Top Picks'10]:

o How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

SAFARI 7



An Initial Study: Replace DRAM with PCM

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 20009.

o Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
o Derived “average” PCM parameters for F=90nm

Density Latency
> 9-12F? using BJT > 50ns Rd, 150ns Wr
> 1.5x DRAM \

Endurance Energy

> 40A Rd, 150A Wr
> 1E-08x DRAM \

SAFARI 92



Results: Naive Replacement of DRAM with PCM

= Replace DRAM with PCM in a 4-core, 4MB L2 system
= PCM organized the same as DRAM: row buffers, banks, peripherals
= 1.6x delay, 2.2x energy, 500-hour average lifetime

PCM Performance :: 2048Bx1 Buffer PCM Endurance :: 2048Bx1 Buffer
0.2
3 4 I Delay

- EnergyMem 0.18/

2.8
0.14

0.16
2.6/
24
2.2 012
1.8/ 0.
1.6
. 0.08}
o 1.2

0.06}
0.8
06 0.04
0.4/ 0.0
0.2}

cg Is mg rad oce art equ swi avg 1S mg rad oce art equ swu avg

-

Normalized to DRAM
oD
Years

-t
D

N

(=
o

= Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 20009.
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Results: Architected PCM as Main Memory

= 1.2x delay, 1.0x energy, 5.6-year average lifetime
= Scaling improves energy, endurance, density

PCM Performance .. 512Bx4 Buffer PCM Endurance .. 512Bx4 Buffer
1.8 A I I 16
Il Delay

1.6 I EnergyMem

- lefL ne (648)

14 12

cg is mg rad oce art equ swi avg cg is mg rad oce art equ swn avg

-
- N

Normalized to DRAM
o
o
Years
0’) @

o
»

°
'
I

©
(¥
)

o
o

= Caveat 1: Worst-case lifetime is much shorter (no guarantees)
= Caveat 2: Intensive applications see large performance and energy hits

= Caveat 3: Optimistic PCM parameters?
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Solution 3: Hybrid Memory Systems

CPU
DRA PCM

MCtrl  Ctrl

DRAM

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

SAFARI



Hybrid vs. All-PCM/DRAM [iccp’12]

m16GB PCM BRBLA-Dyn 0©O16GB DRAM

2 1.2

5-1.8 — = .

$ 1.6 29% - E

(=¥

1.4 - z

= = 0.8 -

S1.2 - 7

fn : 31% o

'g, 1 - —— = 0.6 -

~ 0.8 - - 5

= 31% better performance than all PCM,

£ within 29% of all DRAM performance
0 - - 0 - —

Yoon+, “Row Buffer Locality-Aware Data Placement in Hybrid Memories,” ICCD 2012 Best Paper Award.



STT-MRAM as Main Memory

Magnetic Tunnel Junction (MTJ) device
o Reference layer: Fixed magnetic orientation
o Free layer: Parallel or anti-parallel

Magnetic orientation of the free layer
determines logical state of device

o High vs. low resistance

Write: Push large current through MTJ to
change orientation of free layer

Read: Sense current flow

Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

SAFARI
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STT-MRAM: Pros and Cons

= Pros over DRAM
o Better technology scaling
a Non volatility
a Low idle power (no refresh)

= Cons
a Higher write latency
o Higher write energy
a Reliability?

= Another level of freedom

o Can trade off non-volatility for lower write latency/energy (by
reducing the size of the MTJ)

SAFARI
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Architected STT-MRAM as Main Memory

= 4-core, 4GB main memory, multiprogrammed workloads
= ~6% performance loss, ~60% energy savings vs. DRAM

OSTT-RAM (base) ®STT-RAM (opt)

98%

Y _ o6 -
5 = 949
E é 92% -
5 Qo0 - I
‘l:g588%-...........
£ PR EEEE LR L ES
FTETFTFTFTTTTTE ¢
mACT+PRE OWB mRB
100%
80%
>~z 60%
9§ 40%
m g- 00/0 -

SRR

S ELLLS S
&

)
N & @
& & & EEE

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.
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Other Opportunities with Emerging Technologies

Merging of memory and storage

o e.g., a single interface to manage all data

New applications
o e.g., ultra-fast checkpoint and restore

More robust system design
o e.g., reducing data loss

Processing tightly-coupled with memory
o e.g., enabling efficient search and filtering

SAFARI 100



Coordinated Memory and Storage with NVM ()

= The traditional two-level storage model is a bottleneck with NVM
o Volatile data in memory - a load/store interface
o Persistent data in storage - a file system interface

o Problem: Operating system (OS) and file system (FS) code to locate, translate,
buffer data become performance and energy bottlenecks with fast NVM stores

~ Two-Level Store
Load/Store

fopgn, fread, fwrite, ...

Processor
and caches

........
........
........

Persistent (e:g- Phase-Change)
Main Memory StonegeotpSD/HDD)

SAFARI tot




Coordinated Memory and Storage with NVM (1I)

= Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
o Improves both energy and performance
o Simplifies programming model as well

__ Unified Memory/Storage

Persistent Memory
Manager !
Processor
and caches

Load/Store Feedback

Ll
Persistent (e.g., Phase-Change) Memory

SAFARI Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 102
Storage and Memory,” WEED 2013.



The Persistent Memory Manager (PMM)

= Exposes a load/store interface to access persistent data

o Applications can directly access persistent memory - no conversion,
translation, location overhead for persistent data

= Manages data placement, location, persistence, security
o To get the best of multiple forms of storage

= Manages metadata storage and retrieval
o This can lead to overheads that need to be managed

= Exposes hooks and interfaces for system software
o To enable better data placement and management decisions

= Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.
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The Persistent Memory Manager (PMM)

int main (void) {
// data in file.dat 1s persistent
FILE myData = "file.dat";
myData = new int[64];

Persistent objects

}

void updateValue (int n, int value) {
FILE myData = "file.dat";
myData [n] = value; // value is persistent

O 0 1O\ N Wi -

Store l Hints from SW/OS/runtime

Software Persistent Memory Manager
Hardware Data Layout, Persistence, Metadata, Security, ...

I

| DRaM | Fiash | Nvm |[ HDD ]

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices




Performance Benefits of a Single-l.evel Store

M User CPU [ User Memory B Syscall CPU [ Syscall I/O

1.0 ~24X

£ 08 \

|_

5 \

i

B 04

\

S 0.2

= ~oX
0 e

HDD 2-level NVM 2-level  Persistent Memory

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 105
SAFARI Storage and Memory,” WEED 2013.



Energy Benefits of a Single-Level Store

M User CPU [ Syscall CPFU m DRAM [] NVM @ HDD

o o o
N o) N e o

Fraction of Total Energy

O
N

HDD 2-level NVM 2-level  Persistent Memory

SAFARI Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 106
Storage and Memory,” WEED 2013.
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Major Trends Affecting Main Memory
The Memory Scaling Problem and Solution Directions

o New Memory Architectures
o Enabling Emerging Technologies

How Can We Do Better?
Summary
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Principles (So Far)

Better cooperation between devices and the system
o Expose more information about devices to upper layers
o More flexible interfaces

Better-than-worst-case design

o Do not optimize for the worst case
o Worst case should not determine the common case

Heterogeneity in design (specialization, asymmetry)
o Enables a more efficient design (No one size fits all)

These principles are coupled

SAFARI 108



Agenda

Major Trends Affecting Main Memory
The Memory Scaling Problem and Solution Directions

o New Memory Architectures
o Enabling Emerging Technologies

How Can We Do Better?
Summary
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Summary: Memory Scaling

= Memory scaling problems are a critical bottleneck for system
performance, efficiency, and usability

= New memory architectures
o A lot of hope in fixing DRAM

= Enabling emerging NVM technologies
o A lot of hope in hybrid memory systems and single-level stores

= System-level memory/storage QoS
o A lot of hope in designing a predictable system

= Three principles are essential for scaling
o Software/hardware/device cooperation
o Better-than-worst-case design

o Heterogeneity (specialization, asymmetry)
SAFARI o
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Open Source Tools

Rowhammer
o https://github.com/CMU-SAFARI/rowhammer

Ramulator

o https://github.com/CMU-SAFARI/ramulator
MemSim

o https://github.com/CMU-SAFARI/memsim

NOCulator

o https://github.com/CMU-SAFARI/NOCulator
DRAM Error Model

o http://www.ece.cmu.edu/~safari/tools/memerr/index.html

Other open-source software from my group
o https://github.com/CMU-SAFARI/
o http://www.ece.cmu.edu/~safari/tools.html

SAFARI
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https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/memsim
https://github.com/CMU-SAFARI/NOCulator
http://www.ece.cmu.edu/~safari/tools/memerr/index.html
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html

Referenced Papers

= All are available at

http://users.ece.cmu.edu/~omutlu/projects.htm
http://scholar.google.com/citations?user=7XyGUGKAAAAI&hl=en

= A detailed accompanying overview paper

o Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI) 2015.
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http://users.ece.cmu.edu/~omutlu/projects.htm
http://scholar.google.com/citations%3Fuser=7XyGUGkAAAAJ&hl=en
http://users.ece.cmu.edu/~omutlu/pub/memory-systems-research_superfri14.pdf
http://superfri.org/superfri

Related Videos and Course Materials

= Undergraduate Computer Architecture Course Lecture
Videos (2013, 2014, 2015)

= Undergraduate Computer Architecture Course
Materials (2013, 2014, 2015)

= Graduate Computer Architecture Course Materials
(Lecture Videos)

= Parallel Computer Architecture Course Materials
(Lecture Videos)

= Memory Systems Short Course Materials

(Lecture Video on Main Memory and DRAM Basics)
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https://www.youtube.com/playlist%3Flist=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
https://www.youtube.com/watch%3Fv=BJ87rZCGWU0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
https://www.youtube.com/watch%3Fv=hxzvtWEN7G4&list=PL5PHm2jkkXmgFdD9x7RsjQC4a8KQjmUkQ
https://www.youtube.com/watch%3Fv=zLP_X4wyHbY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
http://www.ece.cmu.edu/~ece447/s13/doku.php%3Fid=schedule
http://www.ece.cmu.edu/~ece447/s13/doku.php%3Fid=schedule
http://www.ece.cmu.edu/~ece447/s14/doku.php%3Fid=schedule
http://www.ece.cmu.edu/~ece447/s15/doku.php%3Fid=schedule
http://www.ece.cmu.edu/~ece740/f13/doku.php%3Fid=schedule
https://www.youtube.com/playlist%3Flist=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D
http://www.ece.cmu.edu/~ece742/f12/doku.php%3Fid=lectures
https://www.youtube.com/playlist%3Ffeature=edit_ok&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
https://www.youtube.com/watch%3Fv=ZLCy3pG7Rc0

Thank you.

ohur@cmu.edu
http://users.ece.cmu.edu/~omutlu/
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Rethinking Memory System Design
(for Data-Intensive Computing)

Onur Mutlu
onur@cmu.edu
http://users.ece.cmu.edu/~omutlu/
July 20, 2015
SAMOS Keynote

Carnegie Mellon
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Another Talk: NAND Flash Scaling Challenges

= Onur Mutly,
"Error Analysis and Management for MLC NAND Flash Memory"
Technical talk at Flash Memory Summit 2014 (FMS), Santa Clara, CA, August
2014. Slides (ppt) (pdf)

Cai+, “Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis,”
DATE 2012.

Cai+, “Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory
Lifetime,” ICCD 2012.

Cai+, “Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and
Modeling,” DATE 2013.

Cai+, “Error Analysis and Retention-Aware Error Management for NAND Flash Memory,” Intel
Technology Journal 2013.

Cai+, "Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation,”
ICCD 2013.

Cai+, “Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories,” SIGMETRICS 2014.

Cai+,”"Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery,”
HPCA 2015.

Cai+, "Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation,” DSN 2015.

Luo+, "WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention
Management,” MSST 2015.

SAFARI 118
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http://www.flashmemorysummit.com/
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-errors_mutlu_fms14-talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/flash-memory-errors_mutlu_fms14-talk.pdf

Experimental Infrastructure (Flash)
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[Cai+, DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD
2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015] /D Daughter Board
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Current Research Focus Areas

Research Focus: Computer architecture, HW/SW, bioinformatics

» Memory, memory, memory, storage, interconnects

* Parallel architectures, heterogeneous architectures, GP-GPUs
 System/architecture interaction, new execution models

* Energy efficiency, fault tolerance, hardware security

« Genome sequence analysis & assembly algorithms and architectures

@ crmnitnton

Heterogeneous Persistent Memory/Storage

Processors and
Accelerators

ooooooooooooo

Broad research
spanning apps, systems, logic

General Purpose GPUs

:::::



Some Current Directions and Projects

« Single-Level Stores: Merging Memory and Storage with Fast NVU

» GPUs as First-Class Computing Engines

* In-memory Computing: Enabling Near-Data Processing

* Predictable Systems: QoS Everywhere in the System

* Secure and Easy-to-Program/Manage Memories: DRAM, Flash, NVM
* Heterogeneous Systems: Architecting and Exploiting Asymmetry

» Efficient and Scalable Interconnects

« Genome Sequence Analysis & Assembly: Algorithms and Architectures
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In-Memory Processing
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A Scalable Processing-in-Memory
Accelerator for Parallel Graph Processing

Junwhan Ahn, Sungpack Hong", Sungjoo Yoo,
Onur Mutlu*, Kiyoung Choi

Seoul National University  “Oracle Labs  *Carnegie Mellon University



Challenges in Scalable Graph Processing

* Challenge 1: How to provide high memory
bandwidth to computation units in a practical way?
— Processing-in-memory based on 3D-stacked DRAM

* Challenge 2: How to design computation units that
efficiently exploit large memory bandwidth?

— Specialized in-order cores called Tesseract cores
* Latency-tolerant programming model
* Graph-processing-specific prefetching schemes



Tesseract System fo Graph Processing
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Evaluated Systems
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Workloads

* Five graph processing algorithms
— Average teenage follower
— Conductance
— PageRank
— Single-source shortest path
— Vertex cover

* Three real-world large graphs
— ljournal-2008 (social network)
— enwiki-2003 (Wikipedia)
— indochina-0024 (web graph)
— 4~7M vertices, 79~194M edges



Performance

Speedup
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Memory Energy Consumption
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Conclusion

* Revisiting the PIM concept in a new context
— Cost-effective 3D integration of logic and memory
— Graph processing workloads demanding high memory bandwidth

* Tesseract: scalable PIM for graph processing
— Many in-order cores in a memory chip
— New message passing mechanism for latency hiding
— New hardware prefetchers for graph processing
— Programming interface that exploits our hardware design

e Evaluations demonstrate the benefits of Tesseract
— 14x performance improvement & 87% energy reduction
— Scalable: memory-capacity-proportional performance



PIM-Enabled Instructions: A Low-
Overhead, Locality-Aware PIM
Architecture

Junwhan Ahn, Sungjoo Yoo, Onur Mutlu*, and Kiyoung Choi

Seoul National University *Carnegie Mellon University



Challenges in Processing-in-Memory

Cost-effectiveness

Complex Logic

Programming Model

Host Processor

4 Trea Thread Thread
Thread Thread Thread
Thread Thread Thread
Thread Thread Thread
Thread Thread Thread
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In-Memory Processors

Coherence & VM

Host Processor

DRAM die



PIM-Enabled Instructions

* QOur direction: simple PIM operations as ISA extension
— Simple: low-overhead implementation
— ISA extension: No changes to existing programming models

— One more thing: locality-aware dynamic PIM execution
e Adaptation between host-side and memory-side execution

e Evaluation highlight
— 47% speedup over conventional systems in large inputs
— 32% speedup over PIM-only systems in small inputs
— Impact of data locality, energy efficiency, and more...

Session 6A: Memory Systems | (10:20~10:45)



NVM and Emerging
Technologies




Brror Management 1n C NAND Flash rlaéhMéﬁiory

= Problem: MLC NAND flash memory reliability/endurance is a key
challenge for satisfying future storage systems’ requirements

= Our Goals: (1) Build reliable error models for NAND flash
memory via experimental characterization, (2) Develop efficient
techniques to improve reliability and endurance

= This talk provides a “flash” summary of our recent results
published in the past 3 years:
o Experimental error and threshold voltage characterization [DATE’12&13]
o Retention-aware error management [ICCD’12]
o Program interference analysis and read reference V prediction [ICCD'13]
o Neighbor-assisted error correction [SIGMETRICS'14]

SAFARI 136



Charge vs. Resistive Memories

= Charge Memory (e.g., DRAM, Flash)

o Write data by capturing charge Q
o Read data by detecting voltage V

= Resistive Memory (e.g., PCM, STT-MRAM, memristors)
o Write data by pulsing current dQ/dt
o Read data by detecting resistance R
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Table 1. Technology survey.
Published prototype

| Parameter* Horri® Ahn'? Bedeschi'®> Oh' Pellizer'® Chen® Kang™ Bedeschi® Lee'® Lee®
Year 2003 2004 2004 2005 2006 2006 2006 2008 2008 -
Process, F(nm) - 120 180 120 a0 - 100 a0 a0 a0
Array size (Mbyles)  ** 64 8 64 - - 256 256 512 -~
Material GST,Nd GST.Nd  GST GST GST GS,Nd  GST GST GST GST, Nd
Cell size (pm°) - 0.290 0290 = 0097 60rm®  0.166 0097 0047 0.085 1o

0097
Cell size, F? = 20.1 90 == 12.0 o 166 12.0 58 90to
120
Access device = = BJT FET BT o FET BT Diode BT
Read time (ns) - 70 48 68 - - 62 - 55 48
Heod curant (W) -- 40 -- - - -~ - - 40
Read voltage (V) - 3.0 10 18 16 o 18 - 18 1.0
Read power (W)  ** -- 40 -- - - - - - 40
Hedewny (o) -- 20 -- - - - - - 20
Set fime (ns) 100 150 150 180 = 80 300 - 400 150
Set current (nA) 200 - 300 200 - 55 o - - 150
Set voltage (V) = = 20 - - 125 " - - 1.2
Set power (uW) - - 300 " - 344 o - - a0
Set enargy (pJ) = = 45 = - 28 " - - 135
Reset time (ns) 50 10 40 10 - 60 50 - 50 40
Resetcurent (gA) 600 600 600 600 400 90 600 300 600 300
Reset valtage (V) - - 27 o 18 16 o 16 - 16
Resetpower (uW)  ** - 1620 - - 804 " - - 480
Reset energy (pJ)  ** - 648 = - 48 ~ - - 192
Write endurance 107 10° 10° == 107 10* - 10° 10° 108
* BJ'T: bipolar junction trnsistor; FET: field-effect wansistor; GST: GexSbyTes; MLC: muliilevel cells; N-d: nitrogen doped.
. ** This information i not available in the publication cited.
Sicss

o |



DRAM vs. PCM: An Observation

= Row buffers are the same in DRAM and PCM
= Row buffer hit latency same in DRAM and PCM
= Row buffer miss latency small in DRAM, large in PCM

CPU

Row buffer
DRAM Cache

PCM Main Memory
] ]

N ns row hit N ns row hit
Fast row miss Slow row miss

= Accessing the row buffer in PCM is fast
= What incurs high latency is the PCM array access - avoid this
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Row-Locality-Aware Data Placement

Idea: Cache in DRAM only those rows that

o Frequently cause row buffer conflicts = because row-conflict latency
is smaller in DRAM

o Are reused many times - to reduce cache pollution and bandwidth
waste

Simplified rule of thumb:

o Streaming accesses: Better to place in PCM
o Other accesses (with some reuse): Better to place in DRAM

Yoon et al., "Row Buffer Locality-Aware Data Placement in Hybrid
Memories,” ICCD 2012 Best Paper Award.
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More Detail on New Memory
Architectures
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In-DRAM Bitwise AND/OR

Required Operation: Perform a bitwise AND of two
rows A and B and store the result in C

* RO - reserved zero row, R1 — reserved one row
D1, D2, D3 — Designated rows for triple activation

1
2.
3.
4
5

RowClone A into DI
RowClone B into D2
RowClone RO into D3

. ACTIVATE D1,D2,D3
. RowClone Result into C
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Bitmap Index

e Alternative to B-tree and its variants
* Efficient for performing range queries and joins

age <18 18<age<25 25<age<60 age>60
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Performance Evaluation

Conservative (1 Bank) ™ Aggressive (1 Bank)
B Conservative (4 Banks) B Aggressive (4 Banks)

= =
N B

Performance Relative to
o s
B 00
| |
| |

© o
ON
|

3 9 20 45 98 118 128
Number of OR bins
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A Mechanism to Reduce Memory Interference

= Memory Channel Partitioning

o Idea: System software maps badly-interfering applications’ pages
to different channels [Muralidhara+, MICRO’11]

Time Units Time Units

Channel 0 Channel 0
5 4|32 1

1 5 41|32

| Bank0

EEEEN u
o SIS mEE
Core 1 Core 1 -
App B EEE ApD B
Channel 1 Channel 1
Conventional Page Mapping Channel Partitioning

= Separate data of low/high intensity and low/high row-locality applications

= Especially effective in reducing interference of threads with “medium” and
“heavy” memory intensity

o 11% higher performance over existing systems (200 workloads)
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More on Memory Channel Partitioning

= Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut
Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via
Application-Aware Memory Channel Partitioning”
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)
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Designing QQoS-Aware Memory Systems: Approaches

= Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism

QoS-aware memory controllersfmutiu+ MICRO'07] [Moscibroda+, Usenix Security’07]

"TULIU U0, TUR RS U hva 10] [K|m+ MICRO’ 10 Top Picks’ 11] [EbrahlmH' ISCA’ 11
MICRO'11] [Ausavarungnlrun+ ISCA’12][Subramanian+, HPCA'13] [Subramanian+, ICCD14]

o QoS-aware interconnects [Das+ MICRO'09, ISCA10, Top Picks ‘11] [Grot+ MICRO'09,
ISCA'11, Top Picks 12]

o QoS-aware caches

Q

= Dumb resources: Keep each resource free-for-all, but
reduce/control interference by injection control or data
mapping

o Source throttling to control access to memory system [Ebrahimi+ ASPLOS'10,
ISCA'11, TOCS12] [Ebrahimi+ MICRO'09] [Nychis+ HotNets'10] [Nychis+ SIGCOMM'12]

o QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]
o QoS-aware thread scheduling to cores [pas+ HPCA'13]
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QoS-Aware Memory Scheduling

Resolves memory contention
b /4 schedu//ng reqguests

lllllllllllllllllllll

= How to schedule requests to provide
o High system performance
o High fairness to applications
o Configurability to system software

= Memory controller needs to be aware of threads
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More on DRAM Disturbance Errors

= Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An

Experimental Study of DRAM Disturbance Errors”
Proceedings of the 41st International Symposium on Computer

Architecture (ISCA), Minneapolis, MN, June 2014. Slides (pptx) (pdf)
Lightning Session Slides (pptx) (pdf) Source Code and Data

= Source Code
o https://github.com/CMU-SAFARI/rowhammer
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http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer

More on Heterogeneous-Reliability Memory

= Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin

Meza, Aman Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur
Mutlu,

"Characterizing Application Memory Error Vulnerability to
Optimize Data Center Cost via Heterogeneous-Reliability

Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), Atlanta, GA, June 2014.
Slides (pptx) (pdf) Coverage on ZDNet
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http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://2014.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
http://www.zdnet.com/how-good-does-memory-need-to-be-7000031853/

How good does memory need to
be?

Summary: Main memory is all the same. But why? All data is not created equal, so why is

memory? Another reason the cloud is winning.

] By Robin Harris for Storage Bits | July 22, 2014 -- 11:20 GMT (04:20 PDT)
W Follow @StorageMojo Get the ZDNet Big Data newsletter now

Comments 3 W Votes 2 {E‘ W Tweet < 26 Share more +
There is money to be saved
Memory Error
Main memory treats all data the same. In servers, which typically e
use some form of error correcting code (ECC) to detect and 2

correct errors, the added cost can be significant with today's
large-memory servers.

Researchers at Microsoft and Carnegie Mellon University are
studying the issue. Finding that =57 percent of data center TCO
is capital cost - most of which is server cost - and that processors
and memory are about 60 percent of server cost, it's clear that
reducing memory costs could materially improve data center
capital efficiency.

Correct Result Incorrect Result

Memory error outcomes.

ECC also slows down systems and, due to added logic and RAM, increases power and cooling costs.
It's a double whammy.

The researchers wanted to know if applications all need the level of care that ECC provides and, if
they don't, how much could be saved through hetrogenous memory systems. The key is to
understand how vulnerable a given workload is to memory errors.



How Do We Solve The Problem?

Tolerate it: Make DRAM and controllers more intelligent
o New interfaces, functions, architectures: system-DRAM codesign

Eliminate or minimize it: Replace or (more likely) augment
DRAM with a different technology

o New technologies and system-wide rethinking of memory &
storage

Embrace it: Design heterogeneous-reliability memories that
map error-tolerant data to less reliable portions

o New models for execution and maybe usage

Solutions (to memory scaling) require
software/hardware/device cooperation




More on Memory Scheduling

= Lavanya Subramanian, Vivek Seshadri, Yoongu Kim, Ben Jaiyen, and Onur Mutlu,
"MISE: Providing Performance Predictability and Improving Fairness in
Shared Main Memory Systems"
Proceedings of the 19th International Symposium on High-Performance Computer
Architecture (HPCA), Shenzhen, China, February 2013. Slides (pptx)

= Lavanya Subramanian, Donghyuk Lee, Vivek Seshadri, Harsha Rastogi, and Onur
Mutlu,
"The Blacklisting Memory Scheduler: Achieving High Performance and
Fairness at Low Cost"
Proceedings of the 32nd IEEE International Conference on Computer Design
(ICCD), Seoul, South Korea, October 2014. Slides (pptx) (pdf)

= Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling: Exploiting Differences in Memory
Access Behavior"
Proceedings of the 43rd International Symposium on Microarchitecture (MICRO),
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)
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http://users.ece.cmu.edu/~omutlu/pub/kim_micro10_talk.pdf

Ramulator: A Fast and Extensible
DRAM Simulator
[IEEE Comp Arch Letters’15]
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Ramulator Motivation

= DRAM and Memory Controller landscape is changing

= Many new and upcoming standards

= Many new controller designs

= A fast and easy-to-extend simulator is very much needed

Segment DRAM Standards & Architectures

Commodity DDR3 (2007) [14]; DDR4 (2012) [ 5]

Low-Power LPDDR3 (2012) [!7]: LPDDR4 (2014) [20]

Graphics GDDRS (2009) [15]

Performance eDRAM [2%], [°7]: RLDRAM3 (2011) [2Y]

WIO (2011) [16]: WIO2 (2014) [21]: MCDRAM (2015) [13]:

Academic  SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];

Half-DRAM (2014) [V]: Row-Buffer Decoupling (2014) [5°];
SARP (2014) [o]: AL-DRAM (2015) [25]
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Ramulator

Provides out-of-the box support for many DRAM standards:

o DDR3/4, LPDDR3/4, GDDR5, WI0O1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

~2.5X faster than fastest open-source simulator
Modular and extensible to different standards

Simulator Cycles (10°) Runtime (sec.) Reg/sec ( 10%) Memory

(clang -O3)  Random Stream Random  Stream Random Stream — (MB)

Ramulator 652 411 752 249 133 402 2.1
DRAMSim2 645 413 2,030 876 49 114 1.2
USIMM 661 409 1,880 750 53 133 4.5
DrSim 647 406 18,109 12,984 6 8 1.6
NVMain 666 413 6,881 5,023 15 20 4,230.0

Table 3. Comparison of five simulators using two traces
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Case Study: Comparison of DRAM Standards

Rate Timin Data-Bus BW
Standard — \me or RCD-RP) (Widthx Chan) RankPer-Chan o
DDR3 1.600 11-11-11 64.bit x 1 1 11.9
DDRA4 2400 16-16-16  64-bit x 1 1 17.9
SALPt 1,600 11-11-11 64-bit x 1 1 11.9
LPDDR3  1.600 12-15-15  64-bit x 1 1 11.9
LPDDR4  2.400 222222  32-bit x 2* 1 17.9
GDDRS [17] 6.000 18-18-18  64-bit x 1 1 4.7
HBM 1.000  7-7-7 128-bit x 8* 1 119.2
WIO 266 777 128-bit x 4* 1 15.9
WIO2 1,066 9-10-10  128-bit x 8* 1 127.2
= o0 114 119 088 092 109 127 084 112
c &
f;3 R .. S | | S Across 22
€§ ' workloads,
8 N I I simple CPU
L 1O == If '''' I ________ model
g E
5

DDR4 SALP LPDDR3 LPDDR4 GDDR5 HBM WIO WI02
Figure 2. Performance comparison of DRAM standards
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Ramulator Paper and Source Code

= Yoongu Kim, Weikun Yang, and Onur Mutlu,

"Ramulator: A Fast and Extensible DRAM Simulator™
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

= Source code is released under the liberal MIT License
o https://github.com/CMU-SAFARI/ramulator
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