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The Main Memory System
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= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits
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The Main Memory System

Main Memory Storage (SSD/HDD)
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= Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

= Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits
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Memory System: A Shared Resonrce View
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Most of the system is dedicated to storing and moving data
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State of the Main Memory System

Recent technology, architecture, and application trends
o lead to new requirements
o exacerbate old requirements

DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

We need to rethink the main memory system
o to fix DRAM issues and enable emerging technologies
o to satisfy all requirements
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Agenda

Major Trends Affecting Main Memory

The Memory Scaling Problem and Solution Directions
o New Memory Architectures

o Enabling Emerging Technologies

Cross-Cutting Principles

Summary

SAFARI



Major Trends Atfecting Main Memory (I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
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Major Trends Attecting Main Memory (II)

= Need for main memory capacity, bandwidth, QoS increasing
o Multi-core: increasing number of cores/agents
o Data-intensive applications: increasing demand/hunger for data
o Consolidation: cloud computing, GPUs, mobile, heterogeneity

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
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Example: The Memory Capacity Gap

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years
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o #Core Lim et al., ISCA 2009
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Memory capacity per core expected to drop by 30% every two years

Trends worse for memory bandwidth per core!
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Major Trends Attecting Main Memory (I1I)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

o ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,
IEEE Computer 2003]

o DRAM consumes power even when not used (periodic refresh)

= DRAM technology scaling is ending
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Major Trends Attecting Main Memory (IV)

= Need for main memory capacity, bandwidth, QoS increasing

= Main memory energy/power is a key system design concern

= DRAM technology scaling is ending
o ITRS projects DRAM will not scale easily below X nm

o Scaling has provided many benefits:
= higher capacity (density), lower cost, lower energy
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Agenda

Major Trends Affecting Main Memory

The Memory Scaling Problem and Solution Directions
o New Memory Architectures

o Enabling Emerging Technologies

Cross-Cutting Principles

Summary
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Two Key Issues in Future Platforms

= | Fundamentally Secure/Reliable/Safe Architectures

= Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

SAFARI
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Maslow’s (Human) Hierarchy of Needs

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Self-fulfillment
needs

’ ‘ | Psychological
Belongingness and love needs: :
, 1gingness and love

T e ship s, friends

= We need to start with reliability and security...

SA FAR' Source: https://www.simplypsychology.org/maslow.htm| s



The DRAM Scaling Problem

DRAM stores charge in a capacitor (charge-based memory)
o Capacitor must be large enough for reliable sensing

o Access transistor should be large enough for low leakage and high
retention time

o Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]
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DRAM capacity, cost, and energy/power hard to scale
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As Memory Scales, It Becomes Unreliable

= Data from all of Facebook’s servers worldwide
= Meza+, “"Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.
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Infrastructures to Understand Such Issues

P An Experimental Study of Data Retention
R T Behavior in Modern DRAM Devices:
“fan over Implications for Retention Time Profiling
o8 & Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A
Comparative Experimental Study

(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing

o ‘-,,xumx Board

| '.9’
SN -

Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)
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Infrastructures to Understand Such Issues

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An I
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



A Curious Discovery [Kim et al., ISCA 2014]

One can
predictably induce errors
in most DRAM memory chips

SAFARI
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DRAM RowHammer

A simple hardware failure mechanism
can create a widespread
system security vulnerability

WRYR}HD| Forget Software—Now Hackers Are Exploiting Physics
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Modern DRAM i1s Prone to Disturbance Errors
== Row of Cells = Wordline
= Victim Row =
Hammer® 5"tz V mow
= Victim Row =
-1 Row =

Repeatedly reading a row enough times (before memo
refreshed) induces disturbance errors in adjacent rows
most real DRAM chips you can buy today

ry gets
N

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM 29

Disturbance Errors, (Kim et al., ISCA 2014)




Most DRAM Modules Are at Risk

A company B company C company

Up to Up to Up to
1.0x107 2.7x10® 3.3x10°
errors errors errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM

Disturbance Errors, (Kim et al., ISCA 2014) 23




Recent DRAM Is More Vulnerable

Errors per 10° Cells
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All modules from 2012-2013 are vulnerable
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A Simple Program Can Induce Many Errors

_ERAM Module

uuuu T Yoy e, |
5 R

loop:

mov ( ), %eax

mov ( ), %ebx
clflush ( )

clflush ()
mfence

Jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer
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Observed Errors in Real Systems

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel lvy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M /sec

A real reliability & security issue

Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” ISCA 2014.
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One Can Take Over an Otherwise-Secure System

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable
and secure computing system — an access to one memory ad-
dress should not have unintended side effects on data stored
in other addresses. However, as DRAM process technology

Flipping Bits in Memory Without Accessing Them:

P rOj ect Ze ro An Experimental Study of DRAM Disturbance Errors

(Kim et al., ISCA 2014)

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Exploiting the DRAM rowhammer bug to gain kernel privileges



RowHammer Security Attack Example

= "Rowhammer” is a problem with some recent DRAM devices in which
repeatedly accessing a row of memory can cause bit flips in adjacent rows
(Kim et al., ISCA 2014).

o Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors (Kim et al., ISCA 2014)

= We tested a selection of laptops and found that a subset of them
exhibited the problem.

= We built two working privilege escalation exploits that use this effect.
o Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

= One exploit uses rowvhammer-induced bit flips to gain kernel privileges on
x86-64 Linux when run as an unprivileged userland process.

= When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTES).

= It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015) 3




Security Implications
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the vibrations open the door you were after



More Security Implications

“"We can gain unrestricted access to systems of website visitors.”

Not there yet, but ...

Y OWHAMMER)S

ROQOT privileges for web apps!

Daniel Gruss (@lavados), Clémentine Maurice (@BloodyTangerine),
December 28, 2015 — 32¢3, Hamburg, Germany

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA'16)
34

Source: https://lab.dsst.io/32c3-slides/7197.html




More Security Implications

“Can gain control of a smart phone deterministically”

Hammer And Root

Mllllons of Androids

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS'16 35

Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/



More Security Implications?

36



Apple’s Patch for RowHammer

s https://support.apple.com/en-gb/HT204934

Available for: OS X Mountain Lion v10.8.5, OS X Mavericks v10.9.5
Impact: A malicious application may induce memory corruption to escalate privileges

Description: A disturbance error, also known as Rowhammer, exists with some DDR3 RAM that could
have led to memory corruption]This issue was mitigated by increasing memory refresh rates.

CVE-ID

CVE-2015-3693 : Mark Seaborn and Thomas Dullien of Google, working from original research by
Yoongu Kim et al (2014)

HP, Lenovo, and other vendors released similar patches




Better Solution Directions: Principled Designs

Design fundamentally secure
computing architectures

Predict and prevent such safety issues

38



How Do We Keep Memory Secure?

Understand: Methodologies for failure modeling and discovery
o Modeling and prediction based on real (device) data

Architect: Principled co-architecting of system and memory
o Good partitioning of duties across the stack

Design & Test: Principled design, automation, testing
o High coverage and good interaction with system reliability methods

39



Understand and Model with Experiments (DRAM)

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An 10
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



Understand and Model with Experiments (Flash)

‘USB Jack
/

E

—vrrexs [ Pro
2(USB cahtroller)
: B 1x-nm

wVirex-ViFPGA “NAND Flash
(NAND -Caontroller). -« : 3 =l

SR L e T

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, NAND Daughter Board

HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017]

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.



There are Two Other Solutions

= New Technologies: Replace or (more likely) augment DRAM
with a different technology

o Non-volatile memories

Problem

Program/Language

= Embracing Un-reliability: System Software
SW/HW Interface

Design memories with different reliability
and store data intelligently across them

Fundamental solutions to security
require co-design across the hierarchy




Challenge and Opportunity for Future

Fundamentally
Secure, Reliable, Safe
Computing Architectures




Solving the Memory Scaling Problem

Fix it: Make memory and controllers more intelligent
o New interfaces, functions, architectures: system-mem codesign

Eliminate or minimize it: Replace or (more likely) augment
DRAM with a different technology

o New technologies and system-wide rethinking of memory &
storage

Embrace it: Design heterogeneous memories (none of which
are perfect) and map data intelligently across them

a New models for data management and maybe usage

44



Solving the Memory Scaling Problem

= Fix it: Make menpgrraasaants

pllers more intelligent

_ Problems
a New interfaces, lEeriTE

tectures: system-mem codesign

Programs

= Eliminate or minimize it\Replace or{more likely) augment

DRAM with a different

Runtime System

o New technologies an{ wm os, mmy  pthinking of memory &

storage

ISA

= Embrace it: Design h
are perfect) and map

emories (none of which
ly across them

a New models for data management and maybe usage

Solutions (to memo

ry scaling) require

software/hardware/device cooperation




Two Key Issues in Future Platforms

= Fundamentally Secure/Reliable/Safe Architectures

= | Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

SAFARI
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Maslow’s (Human) Hierarchy of Needs, Revisited

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Self-fulfillment
needs

Psychological
needs

Everlasting battery life

SAFARI 47



Challenge and Opportunity for Future

Sustainable
and
Energy Efficient

SAFARI



The Problem

Data access is the major performance and energy bottleneck

Our current
design principles
cause great energy waste

SAFARI 49



The Problem

Processing of data
is performed
far away from the data

SAFARI
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A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Computing e Communication e Memory/Storage
Unit Unit Unit
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-
-
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”

Memory System Storage System
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A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Communication




Today’s Computing Systems

Are overwhelmingly processor centric

All data processed in the processor - at great system cost
Processor is heavily optimized and is considered the master

Data storage units are dumb slaves and are largely

unoptimized (except for some that are on the processor die)

Computing System

4 )

Unit Unit

k A———

Computing E 3 Communication E 3 Memory/Storage

Unit

L
-
-
-
s
e
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Memory System

Storage System
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Yet ...

= “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)

100
95
90
85
80
75
70
65
60
95
o0
45 -
40 A
35 A
30
25 A
20 A
15 1
10

5 .
0

@ Non-stall (compute) time

B Full-window stall time

Normalized Execution Time

128-entry window Data from Runahead Execution [HPCA 2003]

Mutlu+, “"Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



Perils of Processor-Centric Design

Grossly-imbalanced systems

o Processing done only in one place

o Everything else just stores and moves data: data moves a lot
- Energy inefficient

- Low performance

- Complex

Overly complex and bloated processor (and accelerators)
o To tolerate data access from memory

o Complex hierarchies and mechanisms

- Energy inefficient

- Low performance

- Complex
55



Perils ot Processor-Centric Design

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
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Shared Shared
Memory Memory
Control Control
Shared Memory

Most of the system is dedicated to storing and moving data




Three Key Systems Trends

1. Data access is a major bottleneck
o Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
o Especially true for off-chip to on-chip movement

SAFARI >



Data Movement vs. Computation Energy

Communication Dominates Arithmetic

256-bit access
8 kB SRAM

SAFARI

Dally, HIPEAC 2015

256 pJ

—
16 nJ I- Rd/Wr

Efficient
>00p) pu off-chip link




Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP

256-bit buses

Efficient
>00p. off-chip link

256-bit access
8 kB SRAM
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We Need A Paradigm Shift To ...

Enable computation with minimal data movement
Compute where it makes sense (where data resides)

Make computing architectures more data-centric

60



Goal: In-Memory Computation Engine

Processor 1 Database

Core

Graphs
! Media

Interconnec):t
Results Problem

= Many questions ... How do we design the: Program/Language
o compute-capable memory? System Software
processor Ch|p? SW/HW Interface

software interface?
system software and languages?
algorithms?

o O O O




Starting Simple: Data Copy and Initialization

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’I5]

- Zero initialization ' '

l eo o
‘;li” Many more

VM Cloning  page Migration
Deduplication

SAFARI 62
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Today’s Systems: Bulk Data Copy

1) High latency
3) Cache pollution \

2) High bandwidth utilization

4) Unwanted data movement

1046ns, 3.6u) (for 4KB page copy via DMA)

63



Future Systems: In-Memory Copy

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement

10068s03)8ul

64



RowClone: In-DRAM Row Copy

Transfer
row

4 Kbytes

Idea: Two consecutive ACTivates

Negligible HW cost

Step 1: Activate row A

Step 2: Activate row B

DRAM subarray

Row Buffer (4 Kbytes)

Data Bus



RowClone: Latency and Energy Savings

1.2 W Baseline ¥ Intra-Subarray
¥ Inter-Subarray

A

"~ Inter-Bank

=
|

74X

o
0e]
|

Normalized Savings
o o
IN o

o
N
|

Latency Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013. o



(Truly) In-Memory Computation

Similarly, we can support in-DRAM AND, OR, NOT, MAJ
At low cost
Using analog behavior of memory

30-60X performance and energy improvement
o Seshadri+, “In-DRAM Bulk Bitwise AND and OR,” CAL 2016.

o Seshadri+, “"Buddy-RAM: Improving the Performance and Efficiency of
Bulk Bitwise Operations Using DRAM,"” arxiv 2016.

New memory technologies enable even more opportunities
o Memristors, resistive RAM, phase change mem, STT-MRAM, ...
o Can operate on data with minimal movement

67



Another Example: In-Memory Graph Processing

= Large graphs are everywhere (circa 2015)

Yy ®

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages = Facebook Users Twitter Users  Instagram Photos

= Scalable large-scale graph processing is challenging

32 Cores [
128 _ +420/0—
Cores

0 1 2 3 4
Speedup

68



Key Bottlenecks in Graph Processing

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

}
}

w.rank
w.next_rank

w.edges

SAFARI

1. Frequent random memory accesses

2. Little amount of computation
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Tesseract System tor Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped

Accelerator Interface .
Noncacheable, Physically Addressed) :
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SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.



Communications via
Remote Function Calls

Message Queue




Prefetching

LP PF Buffer

MTP




FEwvaluated Systems

DDR3-000 HMC-000 HMC-MC Tesseract
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Tesseract Graph Processing Performance

>13X Performance Improvement

16
On five graph processing algorithms 13.8x
14
1 11.6x
o 10 9.0x
>
3 8
&
6
4
+56%  4+25%
, == N
DDR3-000 HMC-Oo0 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP

SAFARI Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 74



Memory Bandwidth Consumption

2.9TB/s

Memory Bandwidth (TB/s)

2.2TB/s
1.3TB/s
190GB/s 243GB/s
80GB/s
— T

DDR3-000 HMC-000 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP




Tesseract Graph Processing Energy

® Memory Layers [ Logic Layers [lCores
1.2

0.8
0.6

0.4

> 8X Energy Reduction

HMC-000 Tesseract with Prefetching

0.2

SAFARI Anhn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015. 70



Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures
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Concluding Remarks




A Quote from A Famous Architect

= architecture [...] based upon principle, and not upon
precedent”




Precedent-Based Design?

= architecture [...] based upon principle, and not upon
precedent”
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Principled Design

= architecture [...] based upon principle, and not upon
precedent”




Another Example: Precedent-Based Design

Source: http://cookiemagik.deviantart.com/art/Train-station-207266944 82



Principled Design

Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256
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Principle Applied to Another Structure
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Concluding Remarks

It is time to design principled system architectures to solve
the memory scaling problem

Discover design principles for fundamentally secure and
reliable computer architectures

Design complete systems to be balanced and energy-efficient,
i.e., data-centric (or memory-centric)

Enable new and emerging memory architectures

This can
o Lead to orders-of-magnitude improvements
o Enable new applications & computing platforms

U aus
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Conclud

ing Remarks

SW/HW Interface
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Slides Not Covered
But Could Be Useful




Recap: The DRAM Scaling Problem
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Solution 1: New Memory Architectures

= Overcome memory shortcomings with
o Memory-centric system design
o Novel memory architectures, interfaces, functions
o Better waste management (efficient utilization)

= Key issues to tackle
a Enable reliability at low cost
o Reduce energy
a Improve latency and bandwidth
o Reduce waste (capacity, bandwidth, latency)
o Enable computation close to data

SAFARI
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Solution 1: New Memory Architectures

" Liu+, "RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
" Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
. Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
" Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.
. Seshadri+, “"RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.
. Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.
" Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.
" Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.
. Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.
" Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.
" Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.
" Qureshi+, "AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.
" Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 2015.
" Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.
] Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.
. Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.
" Ahn+, "PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.
" Lee+, “Decoupled Direct Memory Access: Isolating CPU and 10 Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015.
" Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO 2015.
" Lee+, “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” TACO 2016.
" Hassan+, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality,” HPCA 2016.
" Chang+, “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Migration in DRAM,” HPCA 2016.
. Chang+, “Understanding Latency Variation in Modern DRAM Chips Experimental Characterization, Analysis, and Optimization,” SIGMETRICS 2016.
" Khan+, "PARBOR: An Efficient System-Level Technique to Detect Data Dependent Failures in DRAM,” DSN 2016.
" Hsieh+, “Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems,” ISCA 2016.
" Hashemi+, “Accelerating Dependent Cache Misses with an Enhanced Memory Controller,” ISCA 2016.
" Boroumand+, “LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,” IEEE CAL 2016.
" Pattnaik+, “Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities,” PACT 2016.
. Hsieh+, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation,” ICCD 2016.
" Hashemi+, “Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads,” MICRO 2016.
" Khan+, “A Case for Memory Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM",” IEEE CAL 2016.
" Hassan+, “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” HPCA 2017.
" Avoid DRAM:
&) Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.

Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.

Seshadri+, “The Dirty-Block Index,” ISCA 2014.

Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.

Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” ISCA 2015.
Pekhimenko+, “Toggle-Aware Bandwidth Compression for GPUs,” HPCA 2016.
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Solution 2: Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory

o Expected to scale to 9nm (2022 [ITRS])
o Expected to be denser than DRAM: can store multiple bits/cell

But, emerging technologies have shortcomings as well
a Can they be enabled to replace/augment/surpass DRAM?

Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, IEEE Micro'10.

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.

Yoon, Meza+, “"Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.

Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.

Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.

Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
Ren+, "ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.

SAFARI o



Solution 3: Hybrid Memory Systems

-

DRAM

\2

Ctrl

Ctrl

/

\_

Technology X (e.g., PCM)

~

/

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., "Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD

2012 Best Paper Award.
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Exploiting Memory Error Tolerance
with Hybrid Memory Systems

Vulnerable
data

Reliable memory

On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %

Heterogeneous-Reliability Memory [psn 2014]
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Challenge and Opportunity

Providing the Best of
Multiple Metrics

SAFARI
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Departing From “Business as Usual”

Heterogeneous Memory Systems

Configurable Memory Systems

SAFARI
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An Orthogonal Issue: Memory Interference

Core

Core

Core

Core

<

>

Main
Memory

Cores’ interfere with each other when accessing shared main memory
This is uncontrolled today - Unpredictable, uncontrollable system

SAFARI
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Goal: Predictable Performance in Complex Systems

Shared Cache HWA HWA

TR
DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

= Heterogeneous agents: CPUs, GPUs, and HWAs
= Main memory interference between CPUs, GPUs, HWAs

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance?

SAFARI 100



QoS-Aware Memory Systems

Solution: QoS-Aware Memory Systems

Hardware provides a configurable QoS substrate
o Application-aware memory scheduling, partitioning, throttling

Software configures the substrate to satisfy various QoS goals

QoS-aware memory systems provide predictable performance
and higher efficiency

Subramanian et al., “"MISE: Providing Performance Predictability and Improving Fairness in
Shared Main Memory Systems,” HPCA 2013.

Subramanian et al., “"The Application Slowdown Model,” MICRO 2015.
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Challenge and Opportunity

Strong
Memory Service
Guarantees
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Departing From “Business as Usual”

Predictable Memory Management

Programmable Memory Systems
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Some Promising Directions
= New memory architectures

o Memory-centric system design

= Enabling and exploiting emerging NVM technologies
o Hybrid memory systems
a Unified interface to all data

= System-level QoS and predictability

o Predictable systems with configurable QoS
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Limits of Charge Memory

Difficult charge placement and control
o Flash: floating gate charge
o DRAM: capacitor charge, transistor leakage

Reliable sensing becomes difficult as charge
storage unit size reduces

WL BL
1 —— GATE I | ’ )
C#3— FLOATING GATE
- SENSE
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Promising Resisttve Memory Technologies

PCM

o Inject current to change material phase
o Resistance determined by phase

STT-MRAM
o Inject current to change magnet polarity
o Resistance determined by polarity

Memristors/RRAM/ReRAM
o Inject current to change atomic structure
o Resistance determined by atom distance
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Emerging Memory Technologies

Some emerging resistive memory technologies seem more
scalable than DRAM (and they are non-volatile)

Example: Phase Change Memory BL
o Data stored by changing phase of material
Data read by detecting material’s resistance ;
Expected to scale to 9nm (2022 [ITRS]) w SENSE
Prototyped at 20nm (Raoux+, IBM JRD 2008) ? Vv
Expected to be denser than DRAM: can store multiple bits/cell

PCM

a
a
a
a

But, emerging technologies have (many) shortcomings
o Can they be enabled to replace/augment/surpass DRAM?
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Phase Change Memory: Pros and Cons

= Pros over DRAM
o Better technology scaling (capacity and cost)
a Non volatile > Persistent
o Low idle power (no refresh)

= Cons
o Higher latencies: ~4-15x DRAM (especially write)
a Higher active energy: ~2-50x DRAM (especially write)
a Lower endurance (a cell dies after ~108 writes)
o Reliability issues (resistance drift)

= Challenges in enabling PCM as DRAM replacement/helper:
o Mitigate PCM shortcomings

o Find the right way to place PCM in the system
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PCM-based Main Memory (I)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
IcipdiciRgicsh
GCGQ-—a | -G | @D
Q-G | - CE | @D

= Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC'09]:
o How to partition/migrate data between PCM and DRAM
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PCM-based Main Memory (11)

= How should PCM-based (main) memory be organized?

CPU CPU CPU
o)~ L)~
Q- - —Cc | @&«
Q-G -G | @

= Pure PCM main memory [Lee et al., ISCA'09, Top Picks’10]:

o How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings
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An Initial Study: Replace DRAM with PCM

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

o Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
o Derived “average” PCM parameters for F=90nm

Density \ Latency
> 9-12F? using BJT > 50ns Rd, 150ns Wr
> 1.5x DRAM |

Endurance Energy

> 404A Rd, 150A Wr
> 1E-08x DRAM \
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Results: Naive Replacement of DRAM with PCM

Replace DRAM with PCM in a 4-core, 4MB L2 system
PCM organized the same as DRAM: row buffers, banks, peripherals
1.6x delay, 2.2x energy, 500-hour average lifetime

PCM Performance :: 2048Bx1 Buffer PCM Endurance :: 2048Bx1 Buffer
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-EnergyMem 0.18
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Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009.
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Results: Architected PCM as Main Memory

= 1.2x delay, 1.0x energy, 5.6-year average lifetime
= Scaling improves energy, endurance, density

PCM Performance .. 512Bx4 Buffer PCM Endurance .. 512Bx4 Buffer
1.8[———— 16
Il Delay — DiffLine (648)

1.6 I EnergyMem

14! I I DiffWord (4B)

cg IS mg rad oce art equ swi avg cg is mg rad oce art equ SWI avg

14

-
N

o

oo —

Years
@

2]

Normalized to DRAM
(]
o

o
'
I

©
(¥
N}

o
o

= Caveat 1: Worst-case lifetime is much shorter (no guarantees)
= Caveat 2: Intensive applications see large performance and energy hits

= Caveat 3: Optimistic PCM parameters?
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A More Viable Approach: Hybrid Memory Systems

CPU

DRAM PCM
Ctrl  Ctrl

Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.

Yoon+, “"Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

SAFARI




Data Placement Between DRAM and PCM

Idea: Characterize data access patterns and guide data
placement in hybrid memory

Streaming accesses: As fast in PCM as in DRAM
Random accesses: Much faster in DRAM

Idea: Place random access data with some reuse in DRAM;
streaming data in PCM

Yoon+, “"Row Buffer Locality-Aware Data Placement in
Hybrid Memories,” ICCD 2012 Best Paper Award.
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Hybrid vs. All-PCM/DRAM [iccp’12]

®16GBPCM BERBLA-Dyn B016GB DRAM

2 1.2

1.6 29% o <

=3

N 4 - 2 o |

2 - - 77

= 1.2 319 ’

o0 <

s 1 - = 0.6 -

=08 - - I

: 31% better performance than all PCM,

within 29% of all DRAM performance

0 - — 0 - —

Yoon+, “Row Buffer Locality-Aware Data Placement in Hybrid Memories,” ICCD 2012 Best Paper Award.



STT-MRAM as Main Memory

Magnetic Tunnel Junction (MTJ) device
o Reference layer: Fixed magnetic orientation
o Free layer: Parallel or anti-parallel

Magnetic orientation of the free layer
determines logical state of device

o High vs. low resistance

Write: Push large current through MTJ to
change orientation of free layer

Read: Sense current flow

Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.
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STT-MRAM: Pros and Cons

= Pros over DRAM
o Better technology scaling
o Non volatility
o Low idle power (no refresh)

= Cons
a Higher write latency
o Higher write energy
o Reliability?

= Another level of freedom

a Can trade off non-volatility for lower write latency/energy (by
reducing the size of the MTJ)
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Architected STT-MRAM as Main Memory

= 4-core, 4GB main memory, multiprogrammed workloads
= ~6% performance loss, ~60% energy savings vs. DRAM

OSTT-RAM (base)  ESTT-RAM (opt)

98%
96% -

s
§§94°/0‘
E 92% -
5 2 0% —I—
E g880/0‘ T T T T T T T T T T T
S D 0 D > H o DO D
PRSP SN UIP AU UIPN PN UIPNUIPNSIPAUSRS

B ACT+PRE OWB ERB

0% -
6\\.\9 d’.\/é\\.\} ‘i\’b&\q\-b‘ .@@.&@.{_\@.&&\.\9 N QQ'
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Kultursay+, “"Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.
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Challenge and Opportunity

Enabling an Emerging Technology
to Replace DRAM
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Departing From Business As Usual

Hybrid Memory

Persistent Memory
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Other Opportunities with Emerging Technologies

Merging of memory and storage

o e.g., a single interface to manage all data

New applications
o e.g., ultra-fast checkpoint and restore

More robust system design
o e.g., reducing data loss

Processing tightly-coupled with memory
o e.g., enabling efficient search and filtering
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Coordinated Memory and Storage with NVM (I)

= The traditional two-level storage model is a bottleneck with NVM
o Volatile data in memory - a load/store interface
o Persistent data in storage - a file system interface

o Problem: Operating system (OS) and file system (FS) code to locate, translate,
buffer data become performance and energy bottlenecks with fast NVM stores

~ Two-Level Store

Load/Store

Main Memory

Processor
and caches

fop#n, fread, fwrite, ...

------
......
........
........
........

Persistent ( G Phase-Change)
Stdtege(ESD/HDD)

SAFARI
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Coordinated Memory and Storage with NVM (1)

= Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
o Improves both energy and performance
o Simplifies programming model as well

__ Unified Memory/Storage

Persistent Memory
Manager

Processor
and caches
Load/Store Feedback

Ll
Persistent (e.g., Phase-Change) Memory

SAFARI Meza+, “A Case for Efficient Hardware-Software Cooperative Management of 124
Storage and Memory,” WEED 2013.



The Persistent Memory Manager (PMM)

int main (void) {
// data in file.dat 1s persistent
FILE myData = "file.dat";
myData = new int[64];

Persistent objects

}

void updateValue (int n, int value) {
FILE myData = "file.dat";
myData [n] = value; // value is persistent

O 0 1O\ N Wi -

Store l Hints from SW/OS/runtime

Software Persistent Memory Manager
Hardware Data Layout, Persistence, Metadata, Security, ...

I

| DRAM | Fiash | Nvm |[ HDD ]

PMM uses access and hint information to allocate, locate, migrate
and access data in the heterogeneous array of devices




The Persistent Memory Manager (PMM)

= EXposes a load/store interface to access persistent data

o Applications can directly access persistent memory = no conversion,
translation, location overhead for persistent data

= Manages data placement, location, persistence, security
a To get the best of multiple forms of storage

= Manages metadata storage and retrieval
a This can lead to overheads that need to be managed

= Exposes hooks and interfaces for system software
o To enable better data placement and management decisions

= Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.
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Performance Benetits of a Single-Level Store

M User CPU [ User Memory M Syscall CPU [ Syscall I/O

10 ~24X

£ 08 \

|_

5 \

L3

§ 0.4

\

s 0.2

= ~9X
0 —_—

HDD 2-level NVM 2-level  Persistent Memory
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Energy Benefits of a Single-Level Store

B User CPU [J SyscallCPU @ DRAM [J NVM m HDD

o o o
N o) N e o

Fraction of Total Energy

©
N

HDD 2-level NVM 2-level  Persistent Memory
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Challenge and Opportunity

Combined
Memory & Storage
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Departing From “Business as Usual”

A Unified Interface to All Data
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Agenda

Major Trends Affecting Main Memory

The Memory Scaling Problem and Solution Directions
o New Memory Architectures

o Enabling Emerging Technologies

Cross-Cutting Principles

Summary
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Principles (So Far)

Better interfaces between layers of the system stack
o Expose more information judiciously across the system stack
o Design more flexible and efficient interfaces

Better-than-worst-case design
o Do not optimize for the worst case
o Worst case should not determine the common case

Heterogeneity in design (specialization, asymmetry)
o Enables a more efficient design (No one size fits all)

These principles are coupled (and require broad thinking)
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Principles (So Far)

= Better interfaces between Iayers of the system stack
o Expose more i sropiems ously across the system stack
o Design more fl¢ ajgorithms ent interfaces

Programs 4—-
= Better-than-worst-case ?esign /

o Do not optimize for { Runtime System

o Worst case should n¢ (vM, OS, MM) : common case
ISA

on, asymmetry)
ne size fits all)

= Heterogeneity in desi
a Enables a more effic

= These principles are coupled (and require broad thinking)
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Agenda

Major Trends Affecting Main Memory

The Memory Scaling Problem and Solution Directions
o New Memory Architectures

o Enabling Emerging Technologies

Cross-Cutting Principles

Summary
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Summary

Opportunity

RowHammer

Fixed, frequent refreshes
Fixed, high latency

Slow page copy & initialization
Fixed reliability mechanisms
Memory as a dumb device
DRAM-only main memory
Two-level data storage model
Large timing and error margins
Poor performance guarantees
Fixed policies in controllers

SAFARI

Memory controller anticipates and fixes errors
Heterogeneous refresh rate across memory
Heterogeneous latency in time and space

Exploit internal connectivity in memory to move data
Heterogeneous reliability across time and space
Memory as an accelerator and autonomous agent
Emerging memory technologies and hybrid memories
Unified interface to all data

Online adaptation of timing and error margins
Strong service guarantees and configurable QoS
Configurable and programmable memory controllers
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Summary

= Memory problems are a critical bottleneck for system
performance, efficiency, and usability

= New memory architectures
o Compute capable and autonomous memory

= Enabling emerging NVM technologies
o Persistent and hybrid memory

= System-level memory/storage QoS
o Predictable systems with configurable QoS

= Many opportunities and challenges that will change

the systems and software we design
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Some Open Source Tools

Rowhammer

o https://github.com/CMU-SAFARI/rowhammer
Ramulator — Fast and Extensible DRAM Simulator
o https://github.com/CMU-SAFARI/ramulator
MemSim

o https://github.com/CMU-SAFARI/memsim
NOCulator

o https://github.com/CMU-SAFARI/NOCulator

DRAM Error Model
a http://www.ece.cmu.edu/~safari/tools/memerr/index.html

Other open-source software from my group

o https://github.com/CMU-SAFARI/
o http://www.ece.cmu.edu/~safari/tools.html

SAFARI
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Referenced Papers

= All are available at
http://users.ece.cmu.edu/~omutlu/projects.htm
http://scholar.google.com/citations?user=7XyGUGKAAAAI&hl=en

= A detailed accompanying overview paper

a Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory
Systems"”

Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2015.
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Related Videos and Course Materials

= Undergraduate Computer Architecture Course Lecture
Videos (2013, 2014, 2015)

= Undergraduate Computer Architecture Course
Materials (2013, 2014, 2015)

= Graduate Computer Architecture Lecture Videos
(2013, 2015)

= Graduate Computer Architecture Course Materials
(2013, 2015)

= Parallel Computer Architecture Course Materials
(Lecture Videos)

= Memory Systems Short Course Materials

(Lecture Video on Main Memory and DRAM Basics)
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Ramulator: A Fast and Extensible
DRAM Simulator
[IEEE Comp Arch Letters’15]
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Ramulator Motivation

= DRAM and Memory Controller landscape is changing

= Many new and upcoming standards

= Many new controller designs

= A fast and easy-to-extend simulator is very much needed

Segment DRAM Standards & Architectures

Commodity DDR3 (2007) [14]; DDR4 (2012) [ 5]

Low-Power LPDDR3 (2012) [!7]: LPDDR4 (2014) [20]

Graphics GDDRS (2009) [15]

Performance eDRAM [2%], [72]: RLDRAM3 (2011) [29]

WIO (2011) [16]: WIO2 (2014) [21]: MCDRAM (2015) [13]:

3D-Stacked  pypny 9013) [19]: HMCL.0 (2013) [10]: HMCL.1 (2014) [11]
SBA/SSA (2010) [35]: Staged Reads (2012) [%]: RAIDR (2012) [27]:
rcademic | SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [*7];

Half-DRAM (2014) [ Y]; Row-Buffer Decoupling (2014) [>°];
SARP (2014) [¢]: AL-DRAM (2015) [25]

SAF, Table 1. Landscape of DRAM-based memory 141



Ramulator

Provides out-of-the box support for many DRAM standards:

o DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

~2.5X faster than fastest open-source simulator
Modular and extensible to different standards

Simulator Cycles (10°) Runtime (sec.) Reg/sec ( 10%) Memory

(clang -O3)  Random Stream Random ~ Stream Random Stream — (MB)

Ramulator 652 411 752 249 133 402 2.1
DRAMSim2 645 413 2,030 876 49 114 1.2
USIMM 661 409 1,880 750 53 133 4.5
DrSim 647 406 18,109 12,984 6 8 1.6
NVMain 666 413 6,881 5,023 15 20 4,230.0

Table 3. Comparison of five simulators using two traces
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Case Study: Comparison of DRAM Standards

Rate Timin Data-Bus BW
Standard — \meor RCD-RP) (Widthx Chan) Rankper-Chan o
DDR3 1.600 11-11-11 64.bit x 1 1 11.9
DDRA4 2400 16-16-16  64-bit x 1 1 17.9
SALPt 1,600 11-11-11 64-bit x 1 1 11.9
LPDDR3  1.600 12-15-15  64-bit x 1 1 11.9
LPDDR4  2.400 222222  32-bit x 2* 1 17.9
GDDRS [17] 6.000 18-18-18  64-bit x 1 1 4.7
HBM 1.000  7-7-7 128-bit x 8* 1 119.2
WIO 266 777 128-bit x 4* 1 15.9
WIO2 1,066 9-10-10  128-bit x 8* 1 127.2
= 50 114 119 088 092 109 127 084 112
c &
f;3 R .. S| | S Across 22
€§ ' workloads,
9 N I I simple CPU
Y- LOp- == Ef """ I """" model
g E
5

DDR4 SALP LPDDR3 LPDDR4 GDDR5 HBM wIO WI02

Figure 2. Performance comparison of DRAM standards
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Ramulator Paper and Source Code

= Yoongu Kim, Weikun Yang, and Onur Mutlu,
"Ramulator: A Fast and Extensible DRAM Simulator”
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

= Source code is released under the liberal MIT License
o https://github.com/CMU-SAFARI/ramulator

Ramulator: A Fast and Extensible DRAM Simulator

Yoongu Kim'  Weikun Yang’?  Onur Mutlu!
ICarnegie Mellon University ~ 2Peking University
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DRAM Infrastructure
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Experimental DRAM Testing Infrastructure

P An Experimental Study of Data Retention
R T Behavior in Modern DRAM Devices:
“fan over Implications for Retention Time Profiling
o8 & Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A
Comparative Experimental Study

(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing

o ‘-,,xumx Board

| '.9’
SN -

Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)
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Experimental DRAM Testing Infrastructure

SAFARI Kim+, “Flipping Bits in Memory Without Accessing Them: An 147
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.



SottMC: Open Source DRAM Infrastructure

= Hasan Hassan et al., "SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

= Flexible

= Easy to Use (C++ API)

= Open-source
github.com/CMU-SAFARI/SoftMC

SAFARI

i Sl Machme

(W Temp yt
=9\ Controller
Heater Bl
H@]

148



SottMC: Open Source DRAM Infrastructure

s https://github.com/CMU-SAFARI/SoftMC

SoftMC: A Flexible and Practical Open-Source Infrastructure
for Enabling Experimental DRAM Studies

1,2,3 3 4,3 3

Samira Khan Saugata Ghose® Kevin Chang?
6.3 Oguz Ergin? Onur Mutlu!-3

Hasan Hassan Nandita Vijaykumar
Gennady Pekhimenko®3 Donghyuk Lee

\ETH Ziirich  >TOBB University of Economics & Technology 3Carnegie Mellon University
*University of Virginia > Microsoft Research ~ SNVIDIA Research
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