
Onur Mutlu
onur.mutlu@inf.ethz.ch

https://people.inf.ethz.ch/omutlu
June 5, 2017

Technion Seiden Workshop: Beyond CMOS

Rethinking Memory System Design

(and the Platforms We Design Around It)

The Main Memory System

!  Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

!  Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

2

Processors
and caches

Main Memory Storage (SSD/HDD)

The Main Memory System

!  Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

!  Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

3

Main Memory Storage (SSD/HDD) FPGAs

The Main Memory System

!  Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

!  Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

4

Main Memory Storage (SSD/HDD) GPUs

Memory System: A Shared Resource View

5

Storage

Most of the system is dedicated to storing and moving data

State of the Main Memory System
!  Recent technology, architecture, and application trends

"  lead to new requirements
"  exacerbate old requirements

!  DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

!  Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

!  We need to rethink the main memory system
"  to fix DRAM issues and enable emerging technologies
"  to satisfy all requirements

6

Agenda

!  Major Trends Affecting Main Memory
!  The Memory Scaling Problem and Solution Directions

"  New Memory Architectures
"  Enabling Emerging Technologies

!  Cross-Cutting Principles
!  Summary

7

Major Trends Affecting Main Memory (I)
!  Need for main memory capacity, bandwidth, QoS increasing

!  Main memory energy/power is a key system design concern

!  DRAM technology scaling is ending

8

Major Trends Affecting Main Memory (II)
!  Need for main memory capacity, bandwidth, QoS increasing

"  Multi-core: increasing number of cores/agents
"  Data-intensive applications: increasing demand/hunger for data
"  Consolidation: cloud computing, GPUs, mobile, heterogeneity

!  Main memory energy/power is a key system design concern

!  DRAM technology scaling is ending

9

Example: The Memory Capacity Gap

!  Memory capacity per core expected to drop by 30% every two years
!  Trends worse for memory bandwidth per core!

10

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years

Lim et al., ISCA 2009

Major Trends Affecting Main Memory (III)
!  Need for main memory capacity, bandwidth, QoS increasing

!  Main memory energy/power is a key system design concern

"  ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,
IEEE Computer 2003]

"  DRAM consumes power even when not used (periodic refresh)

!  DRAM technology scaling is ending

11

Major Trends Affecting Main Memory (IV)
!  Need for main memory capacity, bandwidth, QoS increasing

!  Main memory energy/power is a key system design concern

!  DRAM technology scaling is ending

"  ITRS projects DRAM will not scale easily below X nm
"  Scaling has provided many benefits:

!  higher capacity (density), lower cost, lower energy

12

Agenda

!  Major Trends Affecting Main Memory
!  The Memory Scaling Problem and Solution Directions

"  New Memory Architectures
"  Enabling Emerging Technologies

!  Cross-Cutting Principles
!  Summary

13

Two Key Issues in Future Platforms

!  Fundamentally Secure/Reliable/Safe Architectures

!  Fundamentally Energy-Efficient Architectures
"  Memory-centric (Data-centric) Architectures

14

Maslow’s (Human) Hierarchy of Needs

!  We need to start with reliability and security…

15

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Source:	h*ps://www.simplypsychology.org/maslow.html	

The DRAM Scaling Problem
!  DRAM stores charge in a capacitor (charge-based memory)

"  Capacitor must be large enough for reliable sensing
"  Access transistor should be large enough for low leakage and high

retention time
"  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

!  DRAM capacity, cost, and energy/power hard to scale

16

As Memory Scales, It Becomes Unreliable
!  Data from all of Facebook’s servers worldwide
!  Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.

17

Intuition: quadratic increase
in

capacity

Infrastructures to Understand Such Issues

18

An Experimental Study of Data Retention
Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

Infrastructures to Understand Such Issues

19 Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

Heater FPGAs FPGAs

A Curious Discovery [Kim et al., ISCA 2014]

One can
predictably induce errors

in most DRAM memory chips

20

DRAM RowHammer

A simple hardware failure mechanism
can create a widespread

system security vulnerability

21

 Row of Cells

 Row

 Row

 Row

 Row

 Wordline

 VLOW
 VHIGH

 Vic2m Row

 Vic2m Row

 Hammered Row

Repeatedly reading a row enough 2mes (before memory gets
refreshed) induces disturbance errors in adjacent rows in
most real DRAM chips you can buy today

Opened
Closed

22

Modern DRAM is Prone to Disturbance Errors

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	

86%

(37/43)

83%

(45/54)

88%

(28/32)

A company
 B company
 C company

Up to

1.0×107 �

errors

Up to

2.7×106�

errors

Up to

3.3×105 �

errors

23

Most DRAM Modules Are at Risk

Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	DRAM	
Disturbance	Errors, (Kim	et	al.,	ISCA	2014)	

24

All modules from 2012–2013 are vulnerable

First

Appearance

Recent DRAM Is More Vulnerable

CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Download	from:	h*ps://github.com/CMU-SAFARI/rowhammer		

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Download	from:	h*ps://github.com/CMU-SAFARI/rowhammer		

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Download	from:	h*ps://github.com/CMU-SAFARI/rowhammer		

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Y

X

Download	from:	h*ps://github.com/CMU-SAFARI/rowhammer		

DRAM Module

A Simple Program Can Induce Many Errors

A real reliability & security issue

CPU Architecture
 Errors Access-Rate

Intel Haswell (2013)
 22.9K	 12.3M/sec	

Intel Ivy Bridge (2012)
 20.7K	 11.7M/sec	

Intel Sandy Bridge (2011)
 16.1K	 11.6M/sec	

AMD Piledriver (2012)
 59	 6.1M/sec	

29
Kim+, “Flipping	Bits	in	Memory	Without	Accessing	Them:	An	Experimental	Study	of	
DRAM	Disturbance	Errors,” ISCA 2014.

Observed Errors in Real Systems

One Can Take Over an Otherwise-Secure System

30

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

RowHammer Security Attack Example
!  “Rowhammer” is a problem with some recent DRAM devices in which

repeatedly accessing a row of memory can cause bit flips in adjacent rows
(Kim et al., ISCA 2014).
"  Flipping Bits in Memory Without Accessing Them: An Experimental Study of

DRAM Disturbance Errors (Kim et al., ISCA 2014)

!  We tested a selection of laptops and found that a subset of them
exhibited the problem.

!  We built two working privilege escalation exploits that use this effect.
"  Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

!  One exploit uses rowhammer-induced bit flips to gain kernel privileges on
x86-64 Linux when run as an unprivileged userland process.

!  When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTEs).

!  It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

31 Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

Security Implications

32

Security Implications

33

More Security Implications

34 Source: https://lab.dsst.io/32c3-slides/7197.html

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

“We can gain unrestricted access to systems of website visitors.”

More Security Implications

35 Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16

“Can gain control of a smart phone deterministically”

More Security Implications?

36

Apple’s Patch for RowHammer
!  https://support.apple.com/en-gb/HT204934

HP, Lenovo, and other vendors released similar patches

Better Solution Directions: Principled Designs

Design fundamentally secure
computing architectures

Predict and prevent such safety issues

38

How Do We Keep Memory Secure?

!  Understand: Methodologies for failure modeling and discovery
"  Modeling and prediction based on real (device) data

!  Architect: Principled co-architecting of system and memory

"  Good partitioning of duties across the stack

!  Design & Test: Principled design, automation, testing
"  High coverage and good interaction with system reliability methods

39

40 Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

Heater FPGAs FPGAs

Understand and Model with Experiments (DRAM)

Understand and Model with Experiments (Flash)

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm
NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014,
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017]

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

There are Two Other Solutions
!  New Technologies: Replace or (more likely) augment DRAM

with a different technology
"  Non-volatile memories

!  Embracing Un-reliability:
 Design memories with different reliability
 and store data intelligently across them

!  …

42

Fundamental	solu-ons	to	security	
require	co-design	across	the	hierarchy	

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic
 Devices

System Software

Electrons

Challenge and Opportunity for Future

Fundamentally
Secure, Reliable, Safe

Computing Architectures

43

Solving the Memory Scaling Problem
!  Fix it: Make memory and controllers more intelligent

"  New interfaces, functions, architectures: system-mem codesign

!  Eliminate or minimize it: Replace or (more likely) augment
DRAM with a different technology
"  New technologies and system-wide rethinking of memory &

storage

!  Embrace it: Design heterogeneous memories (none of which
are perfect) and map data intelligently across them
"  New models for data management and maybe usage

!  …

44

Solving the Memory Scaling Problem
!  Fix it: Make memory and controllers more intelligent

"  New interfaces, functions, architectures: system-mem codesign

!  Eliminate or minimize it: Replace or (more likely) augment
DRAM with a different technology
"  New technologies and system-wide rethinking of memory &

storage

!  Embrace it: Design heterogeneous memories (none of which
are perfect) and map data intelligently across them
"  New models for data management and maybe usage

!  …

45

Solu-ons	(to	memory	scaling)	require		
so9ware/hardware/device	coopera-on	

Microarchitecture

ISA

Programs

Algorithms
Problems

Logic

Devices

Runtime System
(VM, OS, MM)

User

Two Key Issues in Future Platforms

!  Fundamentally Secure/Reliable/Safe Architectures

!  Fundamentally Energy-Efficient Architectures
"  Memory-centric (Data-centric) Architectures

46

Maslow’s (Human) Hierarchy of Needs, Revisited

47

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Everlasting battery life

Challenge and Opportunity for Future

Sustainable
and

Energy Efficient

48

The Problem

Data access is the major performance and energy bottleneck

Our current
design principles

cause great energy waste

49

The Problem

Processing of data
is performed

far away from the data

50

A Computing System
!  Three key components
!  Computation
!  Communication
!  Storage/memory

51

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

A Computing System
!  Three key components
!  Computation
!  Communication
!  Storage/memory

52

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Today’s Computing Systems
!  Are overwhelmingly processor centric
!  All data processed in the processor # at great system cost
!  Processor is heavily optimized and is considered the master
!  Data storage units are dumb slaves and are largely

unoptimized (except for some that are on the processor die)

53

Yet …
!  “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

Perils of Processor-Centric Design

!  Grossly-imbalanced systems
"  Processing done only in one place
"  Everything else just stores and moves data: data moves a lot
Energy inefficient
Low performance
Complex

!  Overly complex and bloated processor (and accelerators)

"  To tolerate data access from memory
"  Complex hierarchies and mechanisms
Energy inefficient
Low performance
Complex

55

Perils of Processor-Centric Design

56

Most of the system is dedicated to storing and moving data

Three Key Systems Trends

1. Data access is a major bottleneck
"  Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
"  Especially true for off-chip to on-chip movement

57

Data Movement vs. Computation Energy

58

Dally, HiPEAC 2015

Data Movement vs. Computation Energy

59

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

We Need A Paradigm Shift To …

!  Enable computation with minimal data movement

!  Compute where it makes sense (where data resides)

!  Make computing architectures more data-centric

60

Goal: In-Memory Computation Engine

!  Many questions … How do we design the:
"  compute-capable memory?
"  processor chip?
"  software interface?
"  system software and languages?
"  algorithms?

Cache

Processor
Core

 Interconnect

 Memory
Database

Graphs

Media

Query

Results

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic
 Devices

System Software

Electrons

Starting Simple: Data Copy and Initialization

62

Forking

00000
00000
00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration

Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

Today’s Systems: Bulk Data Copy

Memory
	

	

	

MC L3 L2 L1 CPU

1)	High	latency	

2)	High	bandwidth	uRlizaRon	

3)	Cache	polluRon	

4)	Unwanted	data	movement	

63	1046ns,	3.6uJ				(for	4KB	page	copy	via	DMA)	

Future Systems: In-Memory Copy

Memory
	

	

	

MC L3 L2 L1 CPU

1)	Low	latency	

2)	Low	bandwidth	uRlizaRon	

3)	No	cache	polluRon	

4)	No	unwanted	data	movement	

64	1046ns,	3.6uJ	90ns,	0.04uJ	

RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
Idea: Two consecutive ACTivates

RowClone: Latency and Energy Savings

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Latency	 Energy	

N
or
m
al
iz
ed

	S
av
in
gs
	

Baseline	 Intra-Subarray	
Inter-Bank	 Inter-Subarray	

11.6x	 74x	

66	
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

(Truly) In-Memory Computation
!  Similarly, we can support in-DRAM AND, OR, NOT, MAJ
!  At low cost
!  Using analog behavior of memory
!  30-60X performance and energy improvement

"  Seshadri+, “In-DRAM Bulk Bitwise AND and OR,” CAL 2016.
"  Seshadri+, “Buddy-RAM: Improving the Performance and Efficiency of

Bulk Bitwise Operations Using DRAM,” arxiv 2016.

!  New memory technologies enable even more opportunities
"  Memristors, resistive RAM, phase change mem, STT-MRAM, …
"  Can operate on data with minimal movement

67

Another Example: In-Memory Graph Processing

68

!  Large graphs are everywhere (circa 2015)

!  Scalable large-scale graph processing is challenging	

36 Million
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128
Cores

32 Cores

Speedup

Key Bottlenecks in Graph Processing

69

for	(v:	graph.verRces)	{	
				for	(w:	v.successors)	{	
								w.next_rank	+=	weight	*	v.rank;	
				}	
}	

weight * v.rank	

v�

w�

&w�

1. Frequent random memory accesses	

2. Little amount of computation	

w.rank	

w.next_rank	

w.edges	

…	

Tesseract System for Graph Processing

Crossbar	Network�

…	

…	

…	
…	

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)	

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Logic

Memory

Tesseract System for Graph Processing

71

Crossbar	Network�

…	

…	

…	
…	

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)	

CommunicaRons	via	
Remote	FuncRon	Calls�

Logic

Memory

Tesseract System for Graph Processing

72

Crossbar	Network�

…	

…	

…	
…	

DRAM
	Controller�

NI�

In-Order	Core�

Message	Queue�

PF	Buffer�

MTP�

LP�

Host	Processor�

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)	

Prefetching�

Evaluated Systems

73

HMC-MC	

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

128	
In-Order	
2GHz�

102.4GB/s	 640GB/s	 640GB/s	 8TB/s	

HMC-OoO	

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

8	OoO	
4GHz�

DDR3-OoO	 Tesseract	

32	
Tesseract	
Cores�

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

74

+56%	 +25%	

9.0x	

11.6x	

13.8x	

0	

2	

4	

6	

8	

10	

12	

14	

16	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

Sp
ee
du

p�

>13X Performance Improvement	

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms

Tesseract Graph Processing Performance

75

+56%	 +25%	

9.0x	

11.6x	

13.8x	

0	

2	

4	

6	

8	

10	

12	

14	

16	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

Sp
ee
du

p�

80GB/s	 190GB/s	 243GB/s	

1.3TB/s	

2.2TB/s	

2.9TB/s	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

DDR3-OoO	HMC-OoO	 HMC-MC	 Tesseract	 Tesseract-	
LP	

Tesseract-	
LP-MTP	

M
em

or
y	
Ba

nd
w
id
th
	(T

B/
s)
	

Memory	Bandwidth	Consump-on	

Tesseract Graph Processing Energy

76

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

HMC-OoO	 Tesseract	with	Prefetching	

Memory	Layers	 Logic	Layers	 Cores	

> 8X Energy Reduction	

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)

Computing Architectures
77

 Concluding Remarks

78

A Quote from A Famous Architect
!  “architecture […] based upon principle, and not upon

precedent”

79

Precedent-Based Design?
!  “architecture […] based upon principle, and not upon

precedent”

80

Principled Design
!  “architecture […] based upon principle, and not upon

precedent”

81

Another Example: Precedent-Based Design

82 Source: http://cookiemagik.deviantart.com/art/Train-station-207266944

Principled Design

83 Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256

Principle Applied to Another Structure

84
Source: https://www.dezeen.com/2016/08/29/santiago-calatrava-oculus-world-trade-center-transportation-hub-new-york-photographs-hufton-crow/
Source: By 準建築人手札網站 Forgemind ArchiMedia - Flickr: IMG_2489.JPG, CC BY 2.0,
https://commons.wikimedia.org/w/index.php?curid=31493356, https://en.wikipedia.org/wiki/Santiago_Calatrava

Concluding Remarks
!  It is time to design principled system architectures to solve

the memory scaling problem

!  Discover design principles for fundamentally secure and
reliable computer architectures

!  Design complete systems to be balanced and energy-efficient,
i.e., data-centric (or memory-centric)

!  Enable new and emerging memory architectures

!  This can
"  Lead to orders-of-magnitude improvements
"  Enable new applications & computing platforms
"  …

85

Concluding Remarks

86

Micro-architecture

SW/HW Interface

Program/Language

Algorithm

Problem

Logic
 Devices

System Software

Electrons

Onur Mutlu
onur.mutlu@inf.ethz.ch

https://people.inf.ethz.ch/omutlu
June 5, 2017

Technion Seiden Workshop: Beyond CMOS

Rethinking Memory System Design

(and the Platforms We Design Around It)

Acknowledgments

!  My current and past students and postdocs
"  Rachata Ausavarungnirun, Abhishek Bhowmick, Amirali

Boroumand, Rui Cai, Yu Cai, Kevin Chang, Saugata Ghose, Kevin
Hsieh, Tyler Huberty, Ben Jaiyen, Samira Khan, Jeremie Kim,
Yoongu Kim, Yang Li, Jamie Liu, Lavanya Subramanian,
Donghyuk Lee, Yixin Luo, Justin Meza, Gennady Pekhimenko,
Vivek Seshadri, Lavanya Subramanian, Nandita Vijaykumar,
HanBin Yoon, Jishen Zhao, …

!  My collaborators
"  Can Alkan, Chita Das, Phil Gibbons, Sriram Govindan, Norm

Jouppi, Mahmut Kandemir, Mike Kozuch, Konrad Lai, Ken Mai,
Todd Mowry, Yale Patt, Moinuddin Qureshi, Partha Ranganathan,
Bikash Sharma, Kushagra Vaid, Chris Wilkerson, …

88

Funding Acknowledgments

!  NSF
!  GSRC
!  SRC
!  CyLab
!  AMD, Google, Facebook, HP Labs, Huawei, IBM, Intel,

Microsoft, Nvidia, Oracle, Qualcomm, Rambus, Samsung,
Seagate, VMware

89

Slides Not Covered
 But Could Be Useful

90

Recap: The DRAM Scaling Problem

91

Solution 1: New Memory Architectures

!  Overcome memory shortcomings with
"  Memory-centric system design
"  Novel memory architectures, interfaces, functions
"  Better waste management (efficient utilization)

!  Key issues to tackle
"  Enable reliability at low cost
"  Reduce energy
"  Improve latency and bandwidth
"  Reduce waste (capacity, bandwidth, latency)
"  Enable computation close to data

92

Solution 1: New Memory Architectures
!  Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
!  Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
!  Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
!  Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices,” ISCA 2013.
!  Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” MICRO 2013.
!  Pekhimenko+, “Linearly Compressed Pages: A Main Memory Compression Framework,” MICRO 2013.
!  Chang+, “Improving DRAM Performance by Parallelizing Refreshes with Accesses,” HPCA 2014.
!  Khan+, “The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study,” SIGMETRICS 2014.
!  Luo+, “Characterizing Application Memory Error Vulnerability to Optimize Data Center Cost,” DSN 2014.
!  Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

!  Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 2015.
!  Qureshi+, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” DSN 2015.
!  Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field,” DSN 2015.
!  Kim+, “Ramulator: A Fast and Extensible DRAM Simulator,” IEEE CAL 2015.
!  Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM,” IEEE CAL 2015.
!  Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing,” ISCA 2015.
!  Ahn+, “PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture,” ISCA 2015.
!  Lee+, “Decoupled Direct Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM,” PACT 2015.
!  Seshadri+, “Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit Strided Accesses,” MICRO 2015.
!  Lee+, “Simultaneous Multi-Layer Access: Improving 3D-Stacked Memory Bandwidth at Low Cost,” TACO 2016.
!  Hassan+, “ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality,” HPCA 2016.

!  Chang+, “Low-Cost Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Migration in DRAM,” HPCA 2016.
!  Chang+, “Understanding Latency Variation in Modern DRAM Chips Experimental Characterization, Analysis, and Optimization,” SIGMETRICS 2016.
!  Khan+, “PARBOR: An Efficient System-Level Technique to Detect Data Dependent Failures in DRAM,” DSN 2016.
!  Hsieh+, “Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems,” ISCA 2016.
!  Hashemi+, “Accelerating Dependent Cache Misses with an Enhanced Memory Controller,” ISCA 2016.
!  Boroumand+, “LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory,” IEEE CAL 2016.
!  Pattnaik+, “Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities,” PACT 2016.
!  Hsieh+, “Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation,” ICCD 2016.
!  Hashemi+, “Continuous Runahead: Transparent Hardware Acceleration for Memory Intensive Workloads,” MICRO 2016.
!  Khan+, “A Case for Memory Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM",” IEEE CAL 2016.
!  Hassan+, “SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies,” HPCA 2017.

!  Avoid DRAM:
"  Seshadri+, “The Evicted-Address Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing,” PACT 2012.
"  Pekhimenko+, “Base-Delta-Immediate Compression: Practical Data Compression for On-Chip Caches,” PACT 2012.
"  Seshadri+, “The Dirty-Block Index,” ISCA 2014.
"  Pekhimenko+, “Exploiting Compressed Block Size as an Indicator of Future Reuse,” HPCA 2015.
"  Vijaykumar+, “A Case for Core-Assisted Bottleneck Acceleration in GPUs: Enabling Flexible Data Compression with Assist Warps,” ISCA 2015.
"  Pekhimenko+, “Toggle-Aware Bandwidth Compression for GPUs,” HPCA 2016.

93

Solution 2: Emerging Memory Technologies
!  Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)
!  Example: Phase Change Memory

"  Expected to scale to 9nm (2022 [ITRS])
"  Expected to be denser than DRAM: can store multiple bits/cell

!  But, emerging technologies have shortcomings as well
"  Can they be enabled to replace/augment/surpass DRAM?

!  Lee+, “Architecting Phase Change Memory as a Scalable DRAM Alternative,” ISCA’09, CACM’10, IEEE Micro’10.
!  Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters 2012.
!  Yoon, Meza+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012.
!  Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.
!  Meza+, “A Case for Efficient Hardware-Software Cooperative Management of Storage and Memory,” WEED 2013.
!  Lu+, “Loose Ordering Consistency for Persistent Memory,” ICCD 2014.
!  Zhao+, “FIRM: Fair and High-Performance Memory Control for Persistent Memory Systems,” MICRO 2014.
!  Yoon, Meza+, “Efficient Data Mapping and Buffering Techniques for Multi-Level Cell Phase-Change Memories,” TACO 2014.
!  Ren+, “ThyNVM: Enabling Software-Transparent Crash Consistency in Persistent Memory Systems,” MICRO 2015.
!  Chauhan+, “NVMove: Helping Programmers Move to Byte-Based Persistence,” INFLOW 2016.

94

Solution 3: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Technology X (e.g., PCM)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

App/Data	A	 App/Data	B	 App/Data	C	

M
em

or
y	
er
ro
r	v

ul
ne

ra
bi
lit
y	

Vulnerable	
data	

Tolerant	
data	

ExploiRng	Memory	Error	Tolerance		
with	Hybrid	Memory	Systems	

Heterogeneous-Reliability	Memory	[DSN	2014]	

Low-cost	memory	Reliable	memory	

Vulnerable	
data	

Tolerant	
data	

Vulnerable	
data	

Tolerant	
data	

•  ECC	protected	
• Well-tested	chips	

•  NoECC	or	Parity	
•  Less-tested	chips	

96	

On	Microson’s	Web	Search	workload	
Reduces	server	hardware	cost	by	4.7	%	
Achieves	single	server	availability	target	of	99.90	%	

Challenge and Opportunity

Providing the Best of
Multiple Metrics

97

Departing From “Business as Usual”

98

Heterogeneous Memory Systems

Configurable Memory Systems

An Orthogonal Issue: Memory Interference

Main
Memory

99

Core Core

Core Core

Cores’ interfere with each other when accessing shared main memory

This is uncontrolled today # Unpredictable, uncontrollable system

Goal: Predictable Performance in Complex Systems

!  Heterogeneous agents: CPUs, GPUs, and HWAs
!  Main memory interference between CPUs, GPUs, HWAs

100

CPU CPU CPU CPU

Shared Cache

GPU

HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

How to allocate resources to heterogeneous agents
to mitigate interference and provide predictable performance?

!  Solution: QoS-Aware Memory Systems

!  Hardware provides a configurable QoS substrate
"  Application-aware memory scheduling, partitioning, throttling

!  Software configures the substrate to satisfy various QoS goals

!  QoS-aware memory systems provide predictable performance
and higher efficiency

Subramanian et al., “MISE: Providing Performance Predictability and Improving Fairness in
Shared Main Memory Systems,” HPCA 2013.
Subramanian et al., “The Application Slowdown Model,” MICRO 2015.

QoS-Aware Memory Systems

Challenge and Opportunity

Strong
Memory Service

 Guarantees

102

Departing From “Business as Usual”

103

Predictable Memory Management

Programmable Memory Systems

Some Promising Directions

!  New memory architectures
"  Memory-centric system design

!  Enabling and exploiting emerging NVM technologies

"  Hybrid memory systems
"  Unified interface to all data

!  System-level QoS and predictability
"  Predictable systems with configurable QoS

104

Limits of Charge Memory
!  Difficult charge placement and control

"  Flash: floating gate charge
"  DRAM: capacitor charge, transistor leakage

!  Reliable sensing becomes difficult as charge
storage unit size reduces

105

Promising Resistive Memory Technologies
!  PCM

"  Inject current to change material phase
"  Resistance determined by phase

!  STT-MRAM
"  Inject current to change magnet polarity
"  Resistance determined by polarity

!  Memristors/RRAM/ReRAM
"  Inject current to change atomic structure
"  Resistance determined by atom distance

106

Emerging Memory Technologies
!  Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)

!  Example: Phase Change Memory
"  Data stored by changing phase of material
"  Data read by detecting material’s resistance
"  Expected to scale to 9nm (2022 [ITRS])
"  Prototyped at 20nm (Raoux+, IBM JRD 2008)
"  Expected to be denser than DRAM: can store multiple bits/cell

!  But, emerging technologies have (many) shortcomings
"  Can they be enabled to replace/augment/surpass DRAM?

107

Phase Change Memory: Pros and Cons
!  Pros over DRAM

"  Better technology scaling (capacity and cost)
"  Non volatile # Persistent
"  Low idle power (no refresh)

!  Cons
"  Higher latencies: ~4-15x DRAM (especially write)
"  Higher active energy: ~2-50x DRAM (especially write)
"  Lower endurance (a cell dies after ~108 writes)
"  Reliability issues (resistance drift)

!  Challenges in enabling PCM as DRAM replacement/helper:
"  Mitigate PCM shortcomings
"  Find the right way to place PCM in the system

108

PCM-based Main Memory (I)
!  How should PCM-based (main) memory be organized?

!  Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09]:
"  How to partition/migrate data between PCM and DRAM

109

PCM-based Main Memory (II)
!  How should PCM-based (main) memory be organized?

!  Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:

"  How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

110

An Initial Study: Replace DRAM with PCM
!  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change

Memory as a Scalable DRAM Alternative,” ISCA 2009.
"  Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
"  Derived “average” PCM parameters for F=90nm

111

Results: Naïve Replacement of DRAM with PCM
!  Replace DRAM with PCM in a 4-core, 4MB L2 system
!  PCM organized the same as DRAM: row buffers, banks, peripherals
!  1.6x delay, 2.2x energy, 500-hour average lifetime

!  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a

Scalable DRAM Alternative,” ISCA 2009.
112

Results: Architected PCM as Main Memory
!  1.2x delay, 1.0x energy, 5.6-year average lifetime
!  Scaling improves energy, endurance, density

!  Caveat 1: Worst-case lifetime is much shorter (no guarantees)
!  Caveat 2: Intensive applications see large performance and energy hits
!  Caveat 3: Optimistic PCM parameters?

113

A More Viable Approach: Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best
Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

Data Placement Between DRAM and PCM
!  Idea: Characterize data access patterns and guide data

placement in hybrid memory

!  Streaming accesses: As fast in PCM as in DRAM

!  Random accesses: Much faster in DRAM

!  Idea: Place random access data with some reuse in DRAM;
streaming data in PCM

!  Yoon+, “Row Buffer Locality-Aware Data Placement in
Hybrid Memories,” ICCD 2012 Best Paper Award.

115

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Weighted Speedup Max. Slowdown Perf. per Watt
Normalized Metric

16GB PCM RBLA-Dyn 16GB DRAM

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 M
ax

. S
lo

w
do

w
n

Hybrid vs. All-PCM/DRAM [ICCD’12]

31%	beVer	performance	than	all	PCM,		
within	29%	of	all	DRAM	performance	

31%	

29%	

Yoon+,	“Row	Buffer	Locality-Aware	Data	Placement	in	Hybrid	Memories,”	ICCD	2012	Best	Paper	Award.	

STT-MRAM as Main Memory
!  Magnetic Tunnel Junction (MTJ) device

"  Reference layer: Fixed magnetic orientation
"  Free layer: Parallel or anti-parallel

!  Magnetic orientation of the free layer
determines logical state of device
"  High vs. low resistance

!  Write: Push large current through MTJ to
change orientation of free layer

!  Read: Sense current flow

!  Kultursay et al., “Evaluating STT-RAM as an Energy-
Efficient Main Memory Alternative,” ISPASS 2013.

Reference Layer

Free Layer

Barrier

Reference Layer

Free Layer

Barrier

Logical 0

Logical 1

Word Line

Bit Line

Access
Transistor

MTJ

Sense Line

STT-MRAM: Pros and Cons
!  Pros over DRAM

"  Better technology scaling
"  Non volatility
"  Low idle power (no refresh)

!  Cons
"  Higher write latency
"  Higher write energy
"  Reliability?

!  Another level of freedom
"  Can trade off non-volatility for lower write latency/energy (by

reducing the size of the MTJ)

118

Architected STT-MRAM as Main Memory
!  4-core, 4GB main memory, multiprogrammed workloads
!  ~6% performance loss, ~60% energy savings vs. DRAM

119

88%

90%

92%

94%

96%

98%

P
er

fo
rm

an
ce

vs

.
D

R
A

M

STT-RAM (base) STT-RAM (opt)

0%

20%

40%

60%

80%

100%

E
n

er
g

y

vs
.

D
R

A
M

ACT+PRE WB RB

Kultursay+, “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative,” ISPASS 2013.

Challenge and Opportunity

Enabling an Emerging Technology
to Replace DRAM

120

Departing From Business As Usual

121

Hybrid Memory

Persistent Memory

Other Opportunities with Emerging Technologies

!  Merging of memory and storage
"  e.g., a single interface to manage all data

!  New applications
"  e.g., ultra-fast checkpoint and restore

!  More robust system design
"  e.g., reducing data loss

!  Processing tightly-coupled with memory
"  e.g., enabling efficient search and filtering

122

Coordinated Memory and Storage with NVM (I)
!  The traditional two-level storage model is a bottleneck with NVM

"  Volatile data in memory # a load/store interface
"  Persistent data in storage # a file system interface
"  Problem: Operating system (OS) and file system (FS) code to locate, translate,

buffer data become performance and energy bottlenecks with fast NVM stores

123

Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

Persistent (e.g., Phase-Change)
Memory

Coordinated Memory and Storage with NVM (II)

!  Goal: Unify memory and storage management in a single unit to
eliminate wasted work to locate, transfer, and translate data
"  Improves both energy and performance
"  Simplifies programming model as well

124

Unified Memory/Storage

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

The Persistent Memory Manager (PMM)

125

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Load Store

DRAM Flash NVM HDD

Persistent Memory Manager
Hardware

Software
Data Layout, Persistence, Metadata, Security, ...

Hints from SW/OS/runtime

PMM	uses	access	and	hint	informa-on	to	allocate,	locate,	migrate	
and	access	data	in	the	heterogeneous	array	of	devices	

Persistent objects

The Persistent Memory Manager (PMM)
!  Exposes a load/store interface to access persistent data

"  Applications can directly access persistent memory # no conversion,
translation, location overhead for persistent data

!  Manages data placement, location, persistence, security
"  To get the best of multiple forms of storage

!  Manages metadata storage and retrieval
"  This can lead to overheads that need to be managed

!  Exposes hooks and interfaces for system software
"  To enable better data placement and management decisions

!  Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

126

Performance Benefits of a Single-Level Store

127

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

User CPU User Memory Syscall CPU Syscall I/O

0.044
0.009

~5X

~24X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

Energy Benefits of a Single-Level Store

128

0

0.2

0.4

0.6

0.8

1.0

HDD 2-level NVM 2-level Persistent Memory

Fr
ac

tio
n

of
 T

ot
al

En
er

gy

User CPU Syscall CPU DRAM NVM HDD

0.065
0.013

~5X

~16X

Meza+, “A Case for Efficient Hardware-Software Cooperative Management of
Storage and Memory,” WEED 2013.

Challenge and Opportunity

Combined
Memory & Storage

129

Departing From “Business as Usual”

130

A Unified Interface to All Data

Agenda

!  Major Trends Affecting Main Memory
!  The Memory Scaling Problem and Solution Directions

"  New Memory Architectures
"  Enabling Emerging Technologies

!  Cross-Cutting Principles
!  Summary

131

Principles (So Far)

!  Better interfaces between layers of the system stack
"  Expose more information judiciously across the system stack
"  Design more flexible and efficient interfaces

!  Better-than-worst-case design
"  Do not optimize for the worst case
"  Worst case should not determine the common case

!  Heterogeneity in design (specialization, asymmetry)
"  Enables a more efficient design (No one size fits all)

!  These principles are coupled (and require broad thinking)

132

Principles (So Far)

!  Better interfaces between layers of the system stack
"  Expose more information judiciously across the system stack
"  Design more flexible and efficient interfaces

!  Better-than-worst-case design
"  Do not optimize for the worst case
"  Worst case should not determine the common case

!  Heterogeneity in design (specialization, asymmetry)
"  Enables a more efficient design (No one size fits all)

!  These principles are coupled (and require broad thinking)

133

Microarchitecture

ISA

Programs

Algorithms
Problems

Logic

Devices

Runtime System
(VM, OS, MM)

User

Agenda

!  Major Trends Affecting Main Memory
!  The Memory Scaling Problem and Solution Directions

"  New Memory Architectures
"  Enabling Emerging Technologies

!  Cross-Cutting Principles
!  Summary

134

Summary

Business as Usual Opportunity

RowHammer Memory controller anticipates and fixes errors

Fixed, frequent refreshes Heterogeneous refresh rate across memory

Fixed, high latency Heterogeneous latency in time and space

Slow page copy & initialization Exploit internal connectivity in memory to move data

Fixed reliability mechanisms Heterogeneous reliability across time and space

Memory as a dumb device Memory as an accelerator and autonomous agent

DRAM-only main memory Emerging memory technologies and hybrid memories

Two-level data storage model Unified interface to all data

Large timing and error margins Online adaptation of timing and error margins

Poor performance guarantees Strong service guarantees and configurable QoS

Fixed policies in controllers Configurable and programmable memory controllers

… …

135

Summary
!  Memory problems are a critical bottleneck for system

performance, efficiency, and usability

!  New memory architectures
"  Compute capable and autonomous memory

!  Enabling emerging NVM technologies
"  Persistent and hybrid memory

!  System-level memory/storage QoS
"  Predictable systems with configurable QoS

!  Many opportunities and challenges that will change
the systems and software we design

136

Some Open Source Tools
!  Rowhammer

"  https://github.com/CMU-SAFARI/rowhammer

!  Ramulator – Fast and Extensible DRAM Simulator
"  https://github.com/CMU-SAFARI/ramulator

!  MemSim
"  https://github.com/CMU-SAFARI/memsim

!  NOCulator
"  https://github.com/CMU-SAFARI/NOCulator

!  DRAM Error Model
"  http://www.ece.cmu.edu/~safari/tools/memerr/index.html

!  Other open-source software from my group
"  https://github.com/CMU-SAFARI/
"  http://www.ece.cmu.edu/~safari/tools.html

137

Referenced Papers

!  All are available at
http://users.ece.cmu.edu/~omutlu/projects.htm
http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en

!  A detailed accompanying overview paper

"  Onur Mutlu and Lavanya Subramanian,
"Research Problems and Opportunities in Memory
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2015.

138

Related Videos and Course Materials
!  Undergraduate Computer Architecture Course Lecture

Videos (2013, 2014, 2015)
!  Undergraduate Computer Architecture Course

Materials (2013, 2014, 2015)

!  Graduate Computer Architecture Lecture Videos
(2013, 2015)

!  Graduate Computer Architecture Course Materials
(2013, 2015)

!  Parallel Computer Architecture Course Materials
(Lecture Videos)

!  Memory Systems Short Course Materials
 (Lecture Video on Main Memory and DRAM Basics)

139

Ramulator: A Fast and Extensible
DRAM Simulator

 [IEEE Comp Arch Letters’15]

140

Ramulator Motivation
!  DRAM and Memory Controller landscape is changing
!  Many new and upcoming standards
!  Many new controller designs
!  A fast and easy-to-extend simulator is very much needed

141

Ramulator
!  Provides out-of-the box support for many DRAM standards:

"  DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new
proposals (SALP, AL-DRAM, TLDRAM, RowClone, and SARP)

!  ~2.5X faster than fastest open-source simulator
!  Modular and extensible to different standards

142

Case Study: Comparison of DRAM Standards

143

Across 22
workloads,
simple CPU
model

Ramulator Paper and Source Code
!  Yoongu Kim, Weikun Yang, and Onur Mutlu,

"Ramulator: A Fast and Extensible DRAM Simulator"
IEEE Computer Architecture Letters (CAL), March 2015.
[Source Code]

!  Source code is released under the liberal MIT License
"  https://github.com/CMU-SAFARI/ramulator

144

DRAM Infrastructure

145

Experimental DRAM Testing Infrastructure

146

An Experimental Study of Data Retention
Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

Experimental DRAM Testing Infrastructure

147 Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

Heater FPGAs FPGAs

SoftMC: Open Source DRAM Infrastructure

!  Hasan Hassan et al., “SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

!  Flexible
!  Easy to Use (C++ API)
!  Open-source
 github.com/CMU-SAFARI/SoftMC

148

SoftMC: Open Source DRAM Infrastructure

!  https://github.com/CMU-SAFARI/SoftMC

149

