
Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
9 October 2020

VLSI-SoC

Revisiting RowHammer

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

The Story of RowHammer
n One can predictably induce bit flips in commodity DRAM chips

q >80% of the tested DRAM chips are vulnerable

n First example of how a simple hardware failure mechanism
can create a widespread system security vulnerability

2

An “Early” Position Paper [IMW’13]
n Onur Mutlu,

"Memory Scaling: A Systems Architecture Perspective"
Proceedings of the 5th International Memory
Workshop (IMW), Monterey, CA, May 2013. Slides
(pptx) (pdf)
EETimes Reprint

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_imw13.pdf
http://www.ewh.ieee.org/soc/eds/imw/
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_imw13_invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_imw13_invited-talk.pdf
http://www.eetimes.com/document.asp?doc_id=1280950
https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

The DRAM Scaling Problem
n DRAM stores charge in a capacitor (charge-based memory)

q Capacitor must be large enough for reliable sensing
q Access transistor should be large enough for low leakage and high

retention time
q Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

n DRAM capacity, cost, and energy/power hard to scale
4

As Memory Scales, It Becomes Unreliable
n Data from all of Facebook’s servers worldwide
n Meza+, “Revisiting Memory Errors in Large-Scale Production Data Centers,” DSN’15.

5

Intuition:quadraticincrease
in

capacity

Large-Scale Failure Analysis of DRAM Chips
n Analysis and modeling of memory errors found in all of

Facebook’s server fleet

n Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu,
"Revisiting Memory Errors in Large-Scale Production Data
Centers: Analysis and Modeling of New Trends from the Field"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.
[Slides (pptx) (pdf)] [DRAM Error Model]

6

http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15.pdf
http://2015.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/memory-errors-at-facebook_dsn15-talk.pdf
https://www.ece.cmu.edu/~safari/tools/memerr/index.html

Infrastructures to Understand Such Issues

7

An Experimental Study of Data Retention
Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf

Infrastructures to Understand Such Issues

8Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

SoftMC: Open Source DRAM Infrastructure

n Hasan Hassan et al., “SoftMC: A
Flexible and Practical Open-
Source Infrastructure for
Enabling Experimental DRAM
Studies,” HPCA 2017.

n Flexible
n Easy to Use (C++ API)
n Open-source

github.com/CMU-SAFARI/SoftMC

9

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

SoftMC: Open Source DRAM Infrastructure

n https://github.com/CMU-SAFARI/SoftMC

10

https://github.com/CMU-SAFARI/SoftMC

Data Retention in Memory [Liu et al., ISCA 2013]

n Retention Time Profile of DRAM looks like this:

11

Location dependent
Stored value pattern dependent

Time dependent

Liu+, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

RAIDR: Heterogeneous Refresh [ISCA’12]
n Jamie Liu, Ben Jaiyen, Richard Veras, and Onur Mutlu,

"RAIDR: Retention-Aware Intelligent DRAM Refresh"
Proceedings of the 39th International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2012.
Slides (pdf)

http://users.ece.cmu.edu/~omutlu/pub/raidr-dram-refresh_isca12.pdf
http://isca2012.ittc.ku.edu/
http://users.ece.cmu.edu/~omutlu/pub/liu_isca12_talk.pdf

n Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (ppt) Slides (pdf)

13

Analysis of Data Retention Failures [ISCA’13]

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://isca2013.eew.technion.ac.il/
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.ppt
http://users.ece.cmu.edu/~omutlu/pub/mutlu_isca13_talk.pdf

n Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson,
and Onur Mutlu,
"The Efficacy of Error Mitigation Techniques for DRAM Retention
Failures: A Comparative Experimental Study"
Proceedings of the ACM International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides
(pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets]

14

Mitigation of Retention Issues [SIGMETRICS’14]

http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://www.sigmetrics.org/sigmetrics2014/
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_khan_sigmetrics14-poster.pdf
http://www.ece.cmu.edu/~safari/tools/dram-sigmetrics2014-fulldata.html

Mitigation of Retention Issues [DSN’15]
n Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and

Onur Mutlu,
"AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for
DRAM Systems"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June
2015.
[Slides (pptx) (pdf)]

15

http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf
http://2015.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15-talk.pdf

n Samira Khan, Donghyuk Lee, and Onur Mutlu,
"PARBOR: An Efficient System-Level Technique to Detect Data-
Dependent Failures in DRAM"
Proceedings of the 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Toulouse, France, June 2016.
[Slides (pptx) (pdf)]

Mitigation of Retention Issues [DSN’16]

https://people.inf.ethz.ch/omutlu/pub/parbor-efficient-system-level-test-for-DRAM-failures_dsn16.pdf
http://2015.dsn.org/
https://people.inf.ethz.ch/omutlu/pub/parbor-efficient-system-level-test-for-DRAM-failures_khan_dsn16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/parbor-efficient-system-level-test-for-DRAM-failures_khan_dsn16-talk.pdf

n Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee,
and Onur Mutlu,
"Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting
Current Memory Content"
Proceedings of the 50th International Symposium on Microarchitecture (MICRO),
Boston, MA, USA, October 2017.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

Mitigation of Retention Issues [MICRO’17]

https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17.pdf
http://www.microarch.org/micro50/
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-lightning-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/MEMCON-system-level-data-dependent-DRAM-failure-detection-mitigation_micro17-poster.pdf

Mitigation of Retention Issues [ISCA’17]
n Minesh Patel, Jeremie S. Kim, and Onur Mutlu,

"The Reach Profiler (REAPER): Enabling the Mitigation of DRAM
Retention Failures via Profiling at Aggressive Conditions"
Proceedings of the 44th International Symposium on Computer
Architecture (ISCA), Toronto, Canada, June 2017.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

n First experimental analysis of (mobile) LPDDR4 chips
n Analyzes the complex tradeoff space of retention time profiling
n Idea: enable fast and robust profiling at higher refresh intervals & temperatures

https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17.pdf
http://isca17.ece.utoronto.ca/doku.php
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/reaper-dram-retention-profiling-lpddr4_isca17-lightning-talk.pdf

Mitigation of Retention Issues [DSN’19]
n Minesh Patel, Jeremie S. Kim, Hasan Hassan, and Onur Mutlu,

"Understanding and Modeling On-Die Error Correction in
Modern DRAM: An Experimental Study Using Real Devices"
Proceedings of the 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Portland, OR, USA, June
2019.
[Source Code for EINSim, the Error Inference Simulator]
Best paper award.

https://people.inf.ethz.ch/omutlu/pub/understanding-and-modeling-in-DRAM-ECC_dsn19.pdf
http://2019.dsn.org/
https://github.com/CMU-SAFARI/EINSim

Mitigation of Retention Issues [MICRO’20]
n Minesh Patel, Jeremie S. Kim, Taha Shahroodi, Hasan Hassan, and Onur Mutlu,

"Bit-Exact ECC Recovery (BEER): Determining DRAM On-Die ECC
Functions by Exploiting DRAM Data Retention Characteristics"
Proceedings of the 53rd International Symposium on
Microarchitecture (MICRO), Virtual, October 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (15 minutes)]
[Lightning Talk Video (1.5 minutes)]

https://people.inf.ethz.ch/omutlu/pub/BEER-bit-exact-ECC-recovery_micro20.pdf
http://www.microarch.org/micro53/
https://people.inf.ethz.ch/omutlu/pubBEER-bit-exact-ECC-recovery_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BEER-bit-exact-ECC-recovery_micro20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/BEER-bit-exact-ECC-recovery_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/BEER-bit-exact-ECC-recovery_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=D97oAbCaJWk
https://www.youtube.com/watch?v=hgSziiRTUY4

A Curious Phenomenon

A Curious Discovery [Kim et al., ISCA 2014]

One can
predictably induce errors

in most DRAM memory chips

22

DRAM RowHammer

A simple hardware failure mechanism
can create a widespread

system security vulnerability

23

Row of Cells
Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row
Hammered Row

Repeatedly reading a row enough times (before memory gets
refreshed) induces disturbance errors in adjacent rows in
most real DRAM chips you can buy today

OpenedClosed

24

Modern DRAM is Prone to Disturbance Errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C company

Up to
1.0×107

errors

Up to
2.7×106

errors

Up to
3.3×105

errors

25

Most DRAM Modules Are Vulnerable

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

26

Recent DRAM Is More Vulnerable

27

First
Appearance

Recent DRAM Is More Vulnerable

28
All modules from 2012–2013	are vulnerable

First
Appearance

Recent DRAM Is More Vulnerable

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer

CPU

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X1. Avoid cache hits
– Flush X from cache

2. Avoid row hits to X
– Read Y in another row

https://github.com/CMU-SAFARI/rowhammer

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

Y

X

https://github.com/CMU-SAFARI/rowhammer

CPU

loop:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
mfence
jmp loop

Y

X

Download from: https://github.com/CMU-SAFARI/rowhammer

DRAM Module

A Simple Program Can Induce Many Errors

https://github.com/CMU-SAFARI/rowhammer

A real reliability & security issue

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec

34Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” ISCA 2014.

Observed Errors in Real Systems

One Can Take Over an Otherwise-Secure System

35

Exploiting the DRAM rowhammer bug to
gain kernel privileges (Seaborn, 2015)

Flipping Bits in Memory Without Accessing Them:
An Experimental Study of DRAM Disturbance Errors
(Kim et al., ISCA 2014)

http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

RowHammer Security Attack Example
n “Rowhammer” is a problem with some recent DRAM devices in which

repeatedly accessing a row of memory can cause bit flips in adjacent rows
(Kim et al., ISCA 2014).
q Flipping Bits in Memory Without Accessing Them: An Experimental Study of

DRAM Disturbance Errors (Kim et al., ISCA 2014)

n We tested a selection of laptops and found that a subset of them
exhibited the problem.

n We built two working privilege escalation exploits that use this effect.
q Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)

n One exploit uses rowhammer-induced bit flips to gain kernel privileges on
x86-64 Linux when run as an unprivileged userland process.

n When run on a machine vulnerable to the rowhammer problem, the
process was able to induce bit flips in page table entries (PTEs).

n It was able to use this to gain write access to its own page table, and
hence gain read-write access to all of physical memory.

36Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

Security Implications

37

Security Implications

38

Selected Readings on RowHammer (I)
n Our first detailed study: Rowhammer analysis and solutions (June 2014)

n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An Experimental
Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer Architecture
(ISCA), Minneapolis, MN, June 2014. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Source Code and Data]

n Our Source Code to Induce Errors in Modern DRAM Chips (June 2014)
n https://github.com/CMU-SAFARI/rowhammer

n Google Project Zero’s Attack to Take Over a System (March 2015)
n Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)
n https://github.com/google/rowhammer-test
n Double-sided Rowhammer

39

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/rowhammer
http://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://github.com/google/rowhammer-test

Selected Readings on RowHammer (II)
n Remote RowHammer Attacks via JavaScript (July 2015)

n http://arxiv.org/abs/1507.06955
n https://github.com/IAIK/rowhammerjs
n Gruss et al., DIMVA 2016.
n CLFLUSH-free Rowhammer
n “A fully automated attack that requires nothing but a website with

JavaScript to trigger faults on remote hardware.”
n “We can gain unrestricted access to systems of website visitors.”

n ANVIL: Software-Based Protection Against Next-Generation
Rowhammer Attacks (March 2016)
q http://dl.acm.org/citation.cfm?doid=2872362.2872390
q Aweke et al., ASPLOS 2016
q CLFLUSH-free Rowhammer
q Software based monitoring for rowhammer detection

40

http://arxiv.org/abs/1507.06955
https://github.com/IAIK/rowhammerjs
http://dl.acm.org/citation.cfm?doid=2872362.2872390

Selected Readings on RowHammer (III)
n Dedup Est Machina: Memory Deduplication as an Advanced Exploitation

Vector (May 2016)
n https://www.ieee-security.org/TC/SP2016/papers/0824a987.pdf
n Bosman et al., IEEE S&P 2016.
n Exploits Rowhammer and Memory Deduplication to overtake a browser
n “We report on the first reliable remote exploit for the Rowhammer

vulnerability running entirely in Microsoft Edge.”
n “[an attacker] … can reliably “own” a system with all defenses up, even if

the software is entirely free of bugs.”

n CAn’t Touch This: Software-only Mitigation against Rowhammer Attacks
targeting Kernel Memory (August 2017)
n https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-

brasser.pdf
n Brasser et al., USENIX Security 2017.
n Partitions physical memory into security domains, user vs. kernel; limits

rowhammer-induced bit flips to the user domain.
41

https://www.ieee-security.org/TC/SP2016/papers/0824a987.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-brasser.pdf

Selected Readings on RowHammer (IV)
n A New Approach for Rowhammer Attacks (May 2016)

q https://ieeexplore.ieee.org/document/7495576
q Qiao et al., HOST 2016
q CLFLUSH-free RowHammer
q “Libc functions memset and memcpy are found capable of rowhammer.”
q Triggers RowHammer with malicious inputs but benign code

n One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks and
Privilege Escalation (August 2016)
q https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_pa

per_xiao.pdf
q Xiao et al., USENIX Security 2016.
q “Technique that allows a malicious guest VM to have read and

write accesses to arbitrary physical pages on a shared machine.”
q Graph-based algorithm to reverse engineer mapping of physical addresses

in DRAM

42

https://ieeexplore.ieee.org/document/7495576
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_xiao.pdf

Selected Readings on RowHammer (V)
n Curious Case of RowHammer: Flipping Secret Exponent Bits using

Timing Analysis (August 2016)
q https://link.springer.com/content/pdf/10.1007%2F978-3-662-53140-

2_29.pdf
q Bhattacharya et al., CHES 2016
q Combines timing analysis to perform rowhammer on cryptographic keys

stored in memory

n DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks (August
2016)
q https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_pa

per_pessl.pdf
q Pessl et al., USENIX Security 2016
q Shows RowHammer failures on DDR4 devices despite TRR solution
q Reverse engineers address mapping functions to improve existing

RowHammer attacks

43

https://link.springer.com/content/pdf/10.1007/978-3-662-53140-2_29.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_pessl.pdf

Selected Readings on RowHammer (VI)
n Flip Feng Shui: Hammering a Needle in the Software Stack (August 2016)

n https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper
_razavi.pdf

n Razavi et al., USENIX Security 2016.
n Combines memory deduplication and RowHammer
n “A malicious VM can gain unauthorized access to a co-hosted VM

running OpenSSH.”
n Breaks OpenSSH public key authentication

n Drammer: Deterministic Rowhammer Attacks on Mobile Platforms
(October 2016)
q http://dl.acm.org/citation.cfm?id=2976749.2978406
q Van Der Veen et al., ACM CCS 2016
q Can take over an ARM-based Android system deterministically
q Exploits predictable physical memory allocator behavior

n Can deterministically place security-sensitive data (e.g., page table) in an attacker-
chosen, vulnerable location in memory

44

https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_razavi.pdf
http://dl.acm.org/citation.cfm?id=2976749.2978406

Selected Readings on RowHammer (VII)
n When Good Protections go Bad: Exploiting anti-DoS Measures to

Accelerate Rowhammer Attacks (May 2017)
q https://web.eecs.umich.edu/~misiker/resources/HOST-2017-Misiker.pdf
q Aga et al., HOST 2017
q “A virtual-memory based cache-flush free attack that is sufficiently fast to

rowhammer with double rate refresh.”
q Enabled by Cache Allocation Technology

n SGX-Bomb: Locking Down the Processor via Rowhammer Attack (October
2017)
q https://dl.acm.org/citation.cfm?id=3152709
q Jang et al., SysTEX 2017
q “Launches the Rowhammer attack against enclave memory to trigger the

processor lockdown.”
q Running unknown enclave programs on the cloud can shut down

servers shared with other clients.

45

https://web.eecs.umich.edu/~misiker/resources/HOST-2017-Misiker.pdf
https://dl.acm.org/citation.cfm?id=3152709

Selected Readings on RowHammer (VIII)
n Another Flip in the Wall of Rowhammer Defenses (May 2018)

q https://arxiv.org/pdf/1710.00551.pdf
q Gruss et al., IEEE S&P 2018
q A new type of Rowhammer attack which only hammers one single

address, which can be done without knowledge of physical addresses and
DRAM mappings

q Defeats static analysis and performance counter analysis defenses by
running inside an SGX enclave

n GuardION: Practical Mitigation of DMA-Based Rowhammer Attacks on
ARM (June 2018)
q https://link.springer.com/chapter/10.1007/978-3-319-93411-2_5
q Van Der Veen et al., DIMVA 2018
q Presents RAMPAGE, a DMA-based RowHammer attack against the latest

Android OS

46

https://arxiv.org/pdf/1710.00551.pdf
https://link.springer.com/chapter/10.1007/978-3-319-93411-2_5

Selected Readings on RowHammer (IX)
n Grand Pwning Unit: Accelerating Microarchitectural Attacks with the

GPU (May 2018)
n https://www.vusec.net/wp-content/uploads/2018/05/glitch.pdf
n Frigo et al., IEEE S&P 2018.
n The first end-to-end remote Rowhammer exploit on mobile platforms that

use our GPU-based primitives in orchestration to compromise browsers
on mobile devices in under two minutes.

n Throwhammer: Rowhammer Attacks over the Network and Defenses
(July 2018)
n https://www.cs.vu.nl/~herbertb/download/papers/throwhammer_atc18.pdf
n Tatar et al., USENIX ATC 2018.
n “[We] show that an attacker can trigger and exploit Rowhammer bit

flips directly from a remote machine by only sending network
packets.”

47

https://www.vusec.net/wp-content/uploads/2018/05/glitch.pdf
https://www.cs.vu.nl/~herbertb/download/papers/throwhammer_atc18.pdf

Selected Readings on RowHammer (X)
n Nethammer: Inducing Rowhammer Faults through Network Requests

(July 2018)
n https://arxiv.org/pdf/1805.04956.pdf
n Lipp et al., arxiv.org 2018.
n “Nethammer is the first truly remote Rowhammer attack, without a

single attacker-controlled line of code on the targeted system.”

n ZebRAM: Comprehensive and Compatible Software Protection Against
Rowhammer Attacks (October 2018)
n https://www.usenix.org/system/files/osdi18-konoth.pdf
n Konoth et al., OSDI 2018
n A new pure-software protection mechanism against RowHammer.

48

https://arxiv.org/pdf/1805.04956.pdf
https://www.usenix.org/system/files/osdi18-konoth.pdf

Selected Readings on RowHammer (XI.A)
n PassMark Software, memtest86, since 2014

q https://www.memtest86.com/troubleshooting.htm#hammer

49

https://www.memtest86.com/troubleshooting.htm

Selected Readings on RowHammer (XI.B)
n PassMark Software, memtest86, since 2014

q https://www.memtest86.com/troubleshooting.htm#hammer

50

https://www.memtest86.com/troubleshooting.htm

Security Implications (ISCA 2014)
• Breach of memory protection

– OS page (4KB) fits inside DRAM row (8KB)
– Adjacent DRAM row à Different OS page

• Vulnerability: disturbance attack
– By accessing its own page, a program could

corrupt pages belonging to another program

• We constructed a proof-of-concept
– Using only user-level instructions

51

More Security Implications (I)

52
Source: https://lab.dsst.io/32c3-slides/7197.html

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA’16)

“We can gain unrestricted access to systems of website visitors.”

https://lab.dsst.io/32c3-slides/7197.html

More Security Implications (II)

53
Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

Drammer: Deterministic Rowhammer
Attacks on Mobile Platforms, CCS’16

“Can gain control of a smart phone deterministically”

More Security Implications (III)
n Using an integrated GPU in a mobile system to remotely

escalate privilege via the WebGL interface

54

More Security Implications (IV)
n Rowhammer over RDMA (I)

55

More Security Implications (V)
n Rowhammer over RDMA (II)

56

More Security Implications (VI)
n IEEE S&P 2020

More Security Implications (VII)
n Rowhammer on MLC NAND Flash (based on [Cai+, HPCA 2017])

58

More Security Implications?

59

RowHammer Solutions

Two Types of RowHammer Solutions
n Immediate

q To protect the vulnerable DRAM chips in the field
q Limited possibilities

n Longer-term
q To protect future DRAM chips
q Wider range of protection mechanisms

n Our ISCA 2014 paper proposes both types of solutions
q Seven solutions in total
q PARA proposed as best solution à already employed in the field

61

Some Potential Solutions (ISCA 2014)

62

Cost• Make better DRAM chips

Cost, Power• Sophisticated ECC

Power, Performance• Refresh frequently

Cost, Power, Complexity• Access counters

Apple’s Patch for RowHammer
n https://support.apple.com/en-gb/HT204934

HP, Lenovo, and other vendors released similar patches

https://support.apple.com/en-gb/HT204934

Our Best Solution to RowHammer
• PARA: Probabilistic Adjacent Row Activation

• Key Idea
– After closing a row, we activate (i.e., refresh) one of

its neighbors with a low probability: p	=	0.005

• Reliability Guarantee
– When p=0.005, errors in one year: 9.4×10-14

– By adjusting the value of p, we can vary the strength
of protection against errors

64

Advantages of PARA
• PARA refreshes rows infrequently

– Low power
– Low performance-overhead
• Average slowdown: 0.20% (for 29 benchmarks)
• Maximum slowdown: 0.75%

• PARA is stateless
– Low cost
– Low complexity

• PARA is an effective and low-overhead solution
to prevent disturbance errors

65

Probabilistic Activation in Real Life (I)

66https://twitter.com/isislovecruft/status/1021939922754723841

https://twitter.com/isislovecruft/status/1021939922754723841

Probabilistic Activation in Real Life (II)

67https://twitter.com/isislovecruft/status/1021939922754723841

https://twitter.com/isislovecruft/status/1021939922754723841

Seven RowHammer Solutions Proposed

68

n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer

A Takeaway

Main Memory Needs
Intelligent Controllers

for Security

69

First RowHammer Analysis

70

n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer

Retrospective on RowHammer & Future

71https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

n Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in
Europe Conference (DATE), Lausanne, Switzerland, March 2017.
[Slides (pptx) (pdf)]

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf

A More Recent RowHammer Retrospective
n Onur Mutlu and Jeremie Kim,

"RowHammer: A Retrospective"
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) Special Issue on Top Picks in
Hardware and Embedded Security, 2019.
[Preliminary arXiv version]

72

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf

RowHammer in 2020

RowHammer in 2020 (I)
n Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan,

Roknoddin Azizi, Lois Orosa, and Onur Mutlu,
"Revisiting RowHammer: An Experimental Analysis of Modern
Devices and Mitigation Techniques"
Proceedings of the 47th International Symposium on Computer
Architecture (ISCA), Valencia, Spain, June 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (3 minutes)]

74

https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pdf
https://youtu.be/Lqxc4_ToMUw
https://youtu.be/wDhqi3f1a3Q

RowHammer in 2020 (II)
n Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der

Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi,
"TRRespass: Exploiting the Many Sides of Target Row Refresh"
Proceedings of the 41st IEEE Symposium on Security and
Privacy (S&P), San Francisco, CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Talk Video (17 minutes)]
[Source Code]
[Web Article]
Best paper award.

75

https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pdf
https://www.youtube.com/watch?v=u2C0prK-w7Q
https://github.com/vusec/trrespass
https://www.vusec.net/projects/trrespass/

RowHammer in 2020 (III)
n Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu,

Alec Wolman, and Onur Mutlu,
"Are We Susceptible to Rowhammer? An End-to-End
Methodology for Cloud Providers"
Proceedings of the 41st IEEE Symposium on Security and
Privacy (S&P), San Francisco, CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Talk Video (17 minutes)]

76

https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20-talk.pdf
https://www.youtube.com/watch?v=XP1SvxmJoHE

TRRespass

RowHammer in 2020 (II)
n Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der

Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi,
"TRRespass: Exploiting the Many Sides of Target Row Refresh"
Proceedings of the 41st IEEE Symposium on Security and
Privacy (S&P), San Francisco, CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Talk Video (17 minutes)]
[Source Code]
[Web Article]
Best paper award.

78

https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pdf
https://www.youtube.com/watch?v=u2C0prK-w7Q
https://github.com/vusec/trrespass
https://www.vusec.net/projects/trrespass/

TRRespass
n First work that shows that TRR-protected DRAM chips are

vulnerable to RowHammer in the field
q Mitigations advertised as secure are not secure

n Introduces the Many-sided RowHammer attack
q Idea: Hammer many rows to bypass TRR mitigations (e.g., by

overflowing proprietary TRR tables that detect aggressor rows)

n (Partially) reverse-engineers the TRR and pTRR mitigation
mechanisms implemented in DRAM chips and memory
controllers

n Provides an automatic tool that can effectively create many-
sided RowHammer attacks in DDR4 and LPDDR4(X) chips

79

BitFlips vs. Number of Aggressor Rows

80

TRRespass Key Results
n 13 out of 42 tested DDR4 DRAM modules are vulnerable

q From all 3 major manufacturers
q 3-, 9-, 10-, 14-, 19-sided hammer attacks needed

n 5 out of 13 mobile phones tested vulnerable
q From 4 major manufacturers
q With LPDDR4(X) DRAM chips

n These results are scratching the surface
q TRRespass tool is not exhaustive
q There is a lot of room for uncovering more vulnerable chips

and phones

81

TRRespass Key Takeaways

RowHammer is still
an open problem

Security by obscurity
is likely not a good solution

82

More on TRRespass
n Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der

Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi,
"TRRespass: Exploiting the Many Sides of Target Row Refresh"
Proceedings of the 41st IEEE Symposium on Security and
Privacy (S&P), San Francisco, CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Talk Video (17 minutes)]
[Source Code]
[Web Article]
Best paper award.

83

https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pdf
https://www.youtube.com/watch?v=u2C0prK-w7Q
https://github.com/vusec/trrespass
https://www.vusec.net/projects/trrespass/

Revisiting RowHammer

Revisiting	RowHammer
An	Experimental	Analysis	of	Modern	Devices	

and	Mitigation	Techniques

Jeremie S.	Kim Minesh Patel		
A.	Giray Yağlıkçı Hasan	Hassan

Roknoddin Azizi								Lois	Orosa Onur Mutlu

86

Key	Conclusions
• We	characterized	1580	DRAM	chips	of	different	DRAM	types,	
technology	nodes,	and	manufacturers.	

• We	studied	five state-of-the-art	RowHammer mitigation	
mechanisms	and	an	ideal	refresh-based	mechanism

• We	made	two	key	observations
1. RowHammer is	getting	much	worse.	It	takes	much	fewer	hammers	to	

induce	RowHammer bit	flips	in	newer	chips	
• e.g.,	DDR3: 69.2k	to	22.4k,	DDR4: 17.5k	to	10k,	LPDDR4:	16.8k	to	4.8k

2. Existing	mitigation	mechanisms	do	not	scale	to	DRAM	chips	that	are	
more	vulnerable	to	RowHammer
• e.g.,	80%	performance	loss	when	the	hammer	count	to	induce	the	first	bit	flip	is	128

• We	conclude that	it	is	critical to	do	more	research	on	
RowHammer and	develop	scalable	mitigation	mechanisms	to	
prevent	RowHammer in	future	systems

87

DRAM	Testing	Infrastructures
Three	separate	testing	infrastructures
1. DDR3: FPGA-based	SoftMC [Hassan+,	HPCA’17]	

(Xilinx	ML605)	
2. DDR4: FPGA-based	SoftMC [Hassan+,	HPCA’17]	

(Xilinx	Virtex UltraScale 95)
3. LPDDR4: In-house	testing	hardware	for	LPDDR4	chips

All	provide	fine-grained	control	over	DRAM	commands,	timing	
parameters	and	temperature

DDR4	DRAM	testing	infrastructure

88

DRAM	Chips	Tested

1580 total	DRAM	chips	tested	from	300 DRAM	modules
• Threemajor	DRAM	manufacturers	{A,	B,	C}
• Three DRAM	types	or standards {DDR3,	DDR4,	LPDDR4}

• LPDDR4	chips	we	test	implement	on-die	ECC
• Two technology	nodes	per	DRAM	type	{old/new,	1x/1y}

• Categorized	based	on	manufacturing	date,	datasheet	publication	date,	purchase	
date,	and	characterization	results

Type-node:	conEiguration	describing	a	chip’s	type	and	technology	
node	generation:	DDR3-old/new,	DDR4-old/new,	LPDDR4-1x/1y

storage density and reduce technology node size for future
chip designs. To achieve this goal, we perform a rigorous
experimental characterization study of DRAM chips from
three di�erent DRAM types (i.e., DDR3, DDR4, and LPDDR4),
three major DRAM manufacturers, and at least two di�erent
process technology nodes from each DRAM type. We show
how di�erent chips from di�erent DRAM types and technol-
ogy nodes (abbreviated as “type-node” con�gurations) have
varying levels of vulnerability to RowHammer. We compare
the chips’ vulnerabilities against each other and project how
they will likely scale when reducing the technology node
size even further (Section 5). Finally, we study how e�ec-
tive existing RowHammer mitigation mechanisms will be,
based on our observed and projected experimental data on
the RowHammer vulnerability (Section 6).
4. Experimental Methodology
We describe our methodology for characterizing DRAM

chips for RowHammer.
4.1. Testing Infrastructure

In order to characterize the e�ects of RowHammer across
a broad range of modern DRAM chips, we experimentally
study DDR3, DDR4, and LPDDR4 DRAM chips across a
wide range of testing conditions. To achieve this, we use
two di�erent testing infrastructures: (1) the SoftMC frame-
work [39, 104] capable of testing DDR3 and DDR4 DRAM
modules in a temperature-controlled chamber and (2) an in-
house temperature-controlled testing chamber capable of
testing LPDDR4 DRAM chips.
SoftMC. Figure 3 shows our SoftMC setup for testing

DDR4 chips. In this setup, we use an FPGA board with a
Xilinx Virtex UltraScale 95 FPGA [130], two DDR4 SODIMM
slots, and a PCIe interface. To open up space around the
DDR4 chips for temperature control, we use a vertical DDR4
SODIMM riser board to plug a DDR4 module into the FPGA
board. We heat the DDR4 chips to a target temperature using
silicone rubber heaters pressed to both sides of the DDR4
module. We control the temperature using a thermocouple,
which we place between the rubber heaters and the DDR4
chips, and a temperature controller. To enable fast data trans-
fer between the FPGA and a host machine, we connect the
FPGA to the host machine using PCIe via a 30 cm PCIe ex-
tender. We use the host machine to program the SoftMC
hardware and collect the test results. Our SoftMC setup for
testing DDR3 chips is similar but uses a Xilinx ML605 FPGA
board [129]. Both infrastructures provide �ne-grained con-
trol over the types and timings of DRAM commands sent to
the chips under test and provide precise temperature control
at typical operating conditions.

Figure 3: Our SoftMC infrastructure [39, 104] for testing
DDR4 DRAM chips.

LPDDR4 Infrastructure. Our LPDDR4 DRAM testing
infrastructure uses industry-developed in-house testing hard-
ware for package-on-package LPDDR4 chips. The LPDDR4
testing infrastructure is further equipped with cooling and

heating capabilities that also provide us with precise temper-
ature control at typical operating conditions.
4.2. Characterized DRAM Chips
Table 1 summarizes the DRAM chips that we test using

both infrastructures. We have chips from all of the three
major DRAMmanufacturers spanning DDR3, DDR4, and two
known technology nodes of LPDDR4. We refer to the DRAM
type (e.g., LPDDR4) and technology node of a DRAM chip
as a DRAM type-node con�guration (e.g., LPDDR4-1x). For
DRAM chips whose technology node we do not exactly know,
we identify their node as old or new.

Table 1: Summary of DRAM chips tested.

DRAM Number of Chips (Modules) Tested
type-node Mfr. A Mfr. B Mfr. C Total
DDR3-old 56 (10) 88 (11) 28 (7) 172 (28)
DDR3-new 80 (10) 52 (9) 104 (13) 236 (32)
DDR4-old 112 (16) 24 (3) 128 (18) 264 (37)
DDR4-new 264 (43) 16 (2) 108 (28) 388 (73)
LPDDR4-1x 12 (3) 180 (45) N/A 192 (48)
LPDDR4-1y 184 (46) N/A 144 (36) 328 (82)

DDR3 and DDR4. Among our tested DDR3 modules, we
identify two distinct batches of chips based on their manu-
facturer date, datasheet publication date, their purchase date,
and their RowHammer characteristics. We categorize DDR3
devices with a manufacturing date earlier than 2014 as DDR3-
old chips, and devices with a manufacturing date including
and after 2014 as DDR3-new chips. Using the same set of
properties, we identify two distinct batches of devices among
the DDR4 devices. We categorize DDR4 devices with a man-
ufacturing date before 2018 or a datasheet publication date
of 2015 as DDR4-old chips and devices with a manufacturing
date including and after 2018 or a datasheet publication date
of 2016 or 2017 as DDR4-new chips. Based on our observa-
tions on RowHammer characteristics from these chips, we
expect that DDR3-old/DDR4-old chips are manufactured at
an older date with an older process technology compared to
DDR3-new/DDR4-new chips, respectively. This enables us
to directly study the e�ects of shrinking process technology
node sizes in DDR3 and DDR4 DRAM chips.
LPDDR4. For our LPDDR4 chips, we have two known

distinct generations manufactured with di�erent technology
node sizes, 1x-nm and 1y-nm, where 1y-nm is smaller than
1x-nm. Unfortunately, we are missing data from some genera-
tions of DRAM from speci�c manufacturers (i.e., LPDDR4-1x
from manufacturer C and LPDDR4-1y from manufacturer B)
since we did not have access to chips of these manufacturer-
technology node combinations due to con�dentiality issues.
Note that while we know the external technology node val-
ues for the chips we characterize (e.g., 1x-nm, 1y-nm), these
values are not standardized across di�erent DRAM manufac-
turers and the actual values are con�dential. This means that
a 1x chip from one manufacturer is not necessarily manufac-
tured with the same process technology node as a 1x chip
from another manufacturer. However, since we do know rela-
tive process node sizes of chips from the same manufacturer,
we can directly observe how technology node size a�ects
RowHammer on LPDDR4 DRAM chips.
4.3. E�ectively Characterizing RowHammer

In order to characterize RowHammer e�ects on our DRAM
chips at the circuit-level, we want to test our chips at the
worst-case RowHammer conditions. We identify two condi-
tions that our tests must satisfy to e�ectively characterize
RowHammer at the circuit level: our testing routines must
both: 1) run without interference (e.g., without DRAM refresh
or RowHammer mitigation mechanisms) and 2) systemati-
cally test each DRAM row’s vulnerability to RowHammer

4

89

3.	Hammer	Count	(HC)	Effects

RowHammer bit	flip	rates	(i.e.,	RowHammer vulnerability)
increase	with	technology	node	generation

Sweeping Number of Hammers
DDR3 DDR4-old DDR4-new LPDDR4-1x LPDDR4-1y

Hammer Count (HC)
R

ow
H

am
m

er

B
it

Fl
ip

 R
at

e

A B C
105104 106 105104 106 105104 106

100
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10

DDR4-o
ld

DDR4-n
ew

DDR4-o
ld

DDR4-n
ew

DDR4-
ne

w
DDR4-

old

DDR3-new DDR4-old DDR4-new LPDDR4-1x LPDDR4-1y

Hammer Count (HC)

R
ow

H
am

m
er

B

it
Fl

ip
 R

at
e

Mfr. A Mfr. B Mfr. C

105104 105 105104

100
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10

DDR4-old

DDR4-new

DDR4-old
DDR4-new

DDR4-new

DDR4-old
104

10-11

RowHammer bit	flip	rates	increase	
when	going	from	old	to	new	DDR4	technology	node	generations

90

5.	First	RowHammer Bit	Flips	per	Chip

Mfr. C
H

am
m

er
 C

ou
nt

 n
ee

de
d

 fo
r t

he
 fi

rs
t b

it
fli

p
(H

C
fir

st
)

N
o

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K

What	is	the	minimum	Hammer	Count	required	to	cause	bit	flips	(HCfirst)?

We	note	the	different	
DRAM	types	on	the	x-axis:	
DDR3,	DDR4,	LPDDR4.

We	focus	on	trends	across	
chips	of	the	same	DRAM	
type	to	draw	conclusions

91

5.	First	RowHammer Bit	Flips	per	Chip

Newer chips from a given DRAM manufacturer
more vulnerable to RowHammer

Mfr. A Mfr. B Mfr. C
H

am
m

er
 C

ou
nt

 n
ee

de
d

 fo
r t

he
 fi

rs
t b

it
fli

p
(H

C
fir

st
)

N
o

Bi
t F

lip
s

N
o

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K
Mfr. A Mfr. B Mfr. C

H
am

m
er

 C
ou

nt
 n

ee
de

d

 fo

r t
he

 fi
rs

t b
it

fli
p

(H
C

fir
st

)

N
o

Bi
t F

lip
s

N
o

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K
Mfr. A Mfr. B Mfr. C

H
am

m
er

 C
ou

nt
 n

ee
de

d

 fo

r t
he

 fi
rs

t b
it

fli
p

(H
C

fir
st

)

N
o

Bi
t F

lip
s

N
o

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K

92

5.	First	RowHammer Bit	Flips	per	Chip

Newer chips from a given DRAM manufacturer
more vulnerable to RowHammer

Mfr. A Mfr. B Mfr. C
H

am
m

er
 C

ou
nt

 n
ee

de
d

 fo
r t

he
 fi

rs
t b

it
fli

p
(H

C
fir

st
)

N
o

Bi
t F

lip
s

N
o

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K
Mfr. A Mfr. B Mfr. C

H
am

m
er

 C
ou

nt
 n

ee
de

d

 fo

r t
he

 fi
rs

t b
it

fli
p

(H
C

fir
st

)

N
o

Bi
t F

lip
s

N
o

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K
Mfr. A Mfr. B Mfr. C

H
am

m
er

 C
ou

nt
 n

ee
de

d

 fo

r t
he

 fi
rs

t b
it

fli
p

(H
C

fir
st

)

N
o

Bi
t F

lip
s

N
o

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x
LP

DD
R4

-1
y

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

x

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K

There	are	chips	whose	weakest	cells	fail	
after	only	4800	hammers

In	a	DRAM	type,	HCfirst reduces	significantly	from	
old	to	new	chips,	i.e.,	DDR3: 69.2k	to	22.4k,	
DDR4: 17.5k	to	10k,	LPDDR4:	16.8k	to	4.8k

93

Key	Takeaways	from	1580	Chips
• Chips	of	newer	DRAM	technology	nodes	are	more	
vulnerable to	RowHammer

• There	are	chips	today	whose	weakest	cells	fail	after	
only	4800	hammers

• Chips	of	newer	DRAM	technology	nodes	can	exhibit	
RowHammer bit	Llips	1)	in	more	rows	and	2)	farther	
away	from	the	victim	row.	

94

105 104 103 102

105 104 103 102
D

R
AM

 b
an

dw
id

th
 o

ve
rh

ea
d

of
 R

ow
H

am
m

er
 m

iti
ga

tio
n

(%
)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

D
D
R3

-o
ld

D
D
R3

-n
ew

D
D
R4

-o
ld

LP
D
D
R4

-1
x

D
D
R4

-n
ew

LP
D
D
R4

-1
y

Mitigation	Mechanism	Evaluation

PARA,	ProHIT,	and	MRLoc mitigate	RowHammer bit	flips
in	worst	chips	today	with	reasonable	system	performance	

(92%,	100%,	100%)

D
R

AM
 b

an
dw

id
th

 o
ve

rh
ea

d
of

 R
ow

H
am

m
er

 m
iti

ga
tio

n
(%

)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w
105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

HCfirst (number	of	hammers	required	to	induce	first	RowHammer bit	flip)

95

105 104 103 102

105 104 103 102
D

R
AM

 b
an

dw
id

th
 o

ve
rh

ea
d

of
 R

ow
H

am
m

er
 m

iti
ga

tio
n

(%
)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

D
D
R3

-o
ld

D
D
R3

-n
ew

D
D
R4

-o
ld

LP
D
D
R4

-1
x

D
D
R4

-n
ew

LP
D
D
R4

-1
y

Mitigation	Mechanism	Evaluation

Only	PARA’s	design	scales	to	low	HCfirst values
but	has	very	low	normalized	system	performance	

D
R

AM
 b

an
dw

id
th

 o
ve

rh
ea

d
of

 R
ow

H
am

m
er

 m
iti

ga
tio

n
(%

)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w
105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

HCfirst (number	of	hammers	required	to	induce	first	RowHammer bit	flip)

96

105 104 103 102

105 104 103 102
D

R
AM

 b
an

dw
id

th
 o

ve
rh

ea
d

of
 R

ow
H

am
m

er
 m

iti
ga

tio
n

(%
)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

D
D
R3

-o
ld

D
D
R3

-n
ew

D
D
R4

-o
ld

LP
D
D
R4

-1
x

D
D
R4

-n
ew

LP
D
D
R4

-1
y

Mitigation	Mechanism	Evaluation

Ideal mechanism	is	significantly	better	
than	any	existing	mechanism	for	HCfirst <	1024

Significant	opportunity	for	developing	a	RowHammer solution	
with	low	performance	overhead	that	supports	low	HCfirst

D
R

AM
 b

an
dw

id
th

 o
ve

rh
ea

d
of

 R
ow

H
am

m
er

 m
iti

ga
tio

n
(%

)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w
105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

HC&irst (number	of	hammers	required	to	induce	:irst	RowHammer bit	:lip)

97

Key	Takeaways	from	Mitigation	Mechanisms

• Existing	RowHammer mitigation	mechanisms	can	prevent	
RowHammer attacks	with	reasonable	system	performance	
overhead in	DRAM	chips	today

• Existing	RowHammer mitigation	mechanisms	do	not	scale	
well to	DRAM	chips	more	vulnerable	to	RowHammer

• There	is	still	significant	opportunity	for	developing	a	
mechanism	that	is	scalable	with	low	overhead

98

RowHammer Solutions	Going	Forward

Two promising	directions	for	new	RowHammer solutions:

1. DRAM-system	cooperation
- We	believe	the	DRAM	and	system	should	cooperate	more	to	provide	a	
holistic solution	can	prevent	RowHammer at	low	cost

2. Profile-guided
- Accurate	profile	of	RowHammer-susceptible	cells	in	DRAM	provides	a	
powerful	substrate	for	building	targeted RowHammer solutions,	e.g.:

• Only	increase	the	refresh	rate	for	rows	containing	RowHammer-susceptible	cells

- A	fast	and	accurate	profiling	mechanism	is	a	key	research	challenge	for	
developing	low-overhead	and	scalable	RowHammer solutions

Jeremie S.	Kim Minesh Patel		
A.	Giray Yağlıkçı Hasan	Hassan

Roknoddin Azizi								Lois	Orosa Onur Mutlu

Revisiting	RowHammer
An	Experimental	Analysis	of	Modern	Devices	

and	Mitigation	Techniques

Revisiting RowHammer in 2020 (I)
n Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan,

Roknoddin Azizi, Lois Orosa, and Onur Mutlu,
"Revisiting RowHammer: An Experimental Analysis of Modern
Devices and Mitigation Techniques"
Proceedings of the 47th International Symposium on Computer
Architecture (ISCA), Valencia, Spain, June 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (3 minutes)]

100

https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pdf
https://youtu.be/Lqxc4_ToMUw
https://youtu.be/wDhqi3f1a3Q

RowHammer in 2020 (IV)

101

RowHammer in 2020 (V)

102

RowHammer in 2020 (VI)

103

More to Come…

Future Memory
Reliability/Security Challenges

Future of Main Memory Security
n DRAM is becoming less reliable à more vulnerable

n Due to difficulties in DRAM scaling, other problems may
also appear (or they may be going unnoticed)

n Some errors may already be slipping into the field
q Read disturb errors (Rowhammer)
q Retention errors
q Read errors, write errors
q …

n These errors can also pose security vulnerabilities

106

The Takeaway, Reinforced

Main Memory Needs
Intelligent Controllers

for Security

107

Keeping Future Memory Secure

How Do We Keep Memory Secure?

n DRAM

n Flash memory

n Emerging Technologies
q Phase Change Memory
q STT-MRAM
q RRAM, memristors
q …

109

Solution Direction: Principled Designs

Design fundamentally secure
computing architectures

Predict and prevent
such safety issues

110

Architecting Future Memory for Security
n Understand: Methods for vulnerability modeling & discovery

q Modeling and prediction based on real (device) data and analysis
q Understanding vulnerabilities
q Developing reliable metrics

n Architect: Principled architectures with security as key concern
q Good partitioning of duties across the stack
q Cannot give up performance and efficiency
q Patch-ability in the field

n Design & Test: Principled design, automation, (online) testing
q Design for security
q High coverage and good interaction with system reliability

methods
111

112Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

Understand and Model with Experiments (DRAM)

Understand and Model with Experiments (Flash)

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm
NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014,
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017,
PIEEE 2017, HPCA 2018, SIGMETRICS 2018]
Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

Collapse of the “Galloping Gertie” (1940)

114Source: AP
http://www.wsdot.wa.gov/tnbhistory/connections/connections3.htm

Another Example (1994)

115Source: By 최광모 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=35197984

Yet Another Example (2007)

116Source: Morry Gash/AP,
https://www.npr.org/2017/08/01/540669701/10-years-after-bridge-collapse-america-is-still-crumbling?t=1535427165809

A More Recent Example (2018)

117Source: AFP / Valery HACHE, https://www.capitalfm.co.ke/news/2018/08/genoa-bridge-collapse-what-we-know/

The Takeaway, Again

In-Field Patch-ability
(Intelligent Memory)

Can Avoid Such Failures

118

Conclusion

Summary: RowHammer
n Memory reliability is reducing
n Reliability issues open up security vulnerabilities

q Very hard to defend against
n Rowhammer is a prime example

q First example of how a simple hardware failure mechanism can create
a widespread system security vulnerability

q Its implications on system security research are tremendous & exciting

n Bad news: RowHammer is getting worse.

n Good news: We have a lot more to do.
q We are now fully aware hardware is easily fallible.
q We are developing both attacks and solutions.
q We are developing principled models, methodologies, solutions.

120

For More on RowHammer…
n Onur Mutlu and Jeremie Kim,

"RowHammer: A Retrospective"
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD) Special Issue on Top Picks in
Hardware and Embedded Security, 2019.
[Preliminary arXiv version]

121

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
https://arxiv.org/pdf/1904.09724.pdf

RowHammer in 2020 (I)
n Jeremie S. Kim, Minesh Patel, A. Giray Yaglikci, Hasan Hassan,

Roknoddin Azizi, Lois Orosa, and Onur Mutlu,
"Revisiting RowHammer: An Experimental Analysis of Modern
Devices and Mitigation Techniques"
Proceedings of the 47th International Symposium on Computer
Architecture (ISCA), Valencia, Spain, June 2020.
[Slides (pptx) (pdf)]
[Lightning Talk Slides (pptx) (pdf)]
[Talk Video (20 minutes)]
[Lightning Talk Video (3 minutes)]

122

https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20.pdf
http://iscaconf.org/isca2020/
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/Revisiting-RowHammer_isca20-lightning-talk.pdf
https://youtu.be/Lqxc4_ToMUw
https://youtu.be/wDhqi3f1a3Q

RowHammer in 2020 (II)
n Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der

Veen, Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi,
"TRRespass: Exploiting the Many Sides of Target Row Refresh"
Proceedings of the 41st IEEE Symposium on Security and
Privacy (S&P), San Francisco, CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Talk Video (17 minutes)]
[Source Code]
[Web Article]
Best paper award.

123

https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/rowhammer-TRRespass_ieee_security_privacy20-talk.pdf
https://www.youtube.com/watch?v=u2C0prK-w7Q
https://github.com/vusec/trrespass
https://www.vusec.net/projects/trrespass/

RowHammer in 2020 (III)
n Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu,

Alec Wolman, and Onur Mutlu,
"Are We Susceptible to Rowhammer? An End-to-End
Methodology for Cloud Providers"
Proceedings of the 41st IEEE Symposium on Security and
Privacy (S&P), San Francisco, CA, USA, May 2020.
[Slides (pptx) (pdf)]
[Talk Video (17 minutes)]

124

https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20.pdf
https://www.ieee-security.org/TC/SP2020/
https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/rowhammer-vulnerability-testing-methodology-for-cloud_ieee_security_privacy20-talk.pdf
https://www.youtube.com/watch?v=XP1SvxmJoHE

Funding Acknowledgments
n Alibaba, AMD, ASML, Google, Facebook, Hi-Silicon, HP

Labs, Huawei, IBM, Intel, Microsoft, Nvidia, Oracle,
Qualcomm, Rambus, Samsung, Seagate, VMware

n NSF
n NIH
n GSRC
n SRC
n CyLab

126

Acknowledgments

n My current and past students and postdocs
q Rachata Ausavarungnirun, Abhishek Bhowmick, Amirali

Boroumand, Rui Cai, Yu Cai, Kevin Chang, Saugata Ghose, Kevin
Hsieh, Tyler Huberty, Ben Jaiyen, Samira Khan, Jeremie Kim,
Yoongu Kim, Yang Li, Jamie Liu, Lavanya Subramanian,
Donghyuk Lee, Yixin Luo, Justin Meza, Gennady Pekhimenko,
Vivek Seshadri, Lavanya Subramanian, Nandita Vijaykumar,
HanBin Yoon, Jishen Zhao, …

n My collaborators
q Can Alkan, Chita Das, Phil Gibbons, Sriram Govindan, Norm

Jouppi, Mahmut Kandemir, Mike Kozuch, Konrad Lai, Ken Mai,
Todd Mowry, Yale Patt, Moinuddin Qureshi, Partha Ranganathan,
Bikash Sharma, Kushagra Vaid, Chris Wilkerson, …

127

Acknowledgments

https://safari.ethz.ch

http://www.safari.ethz.ch/

38+ Researchers

https://safari.ethz.ch

Onur Mutlu’s SAFARI Research Group
Computer architecture, HW/SW, systems, bioinformatics, security, memory

https://safari.ethz.ch/safari-newsletter-april-2020/

http://www.safari.ethz.ch/
https://safari.ethz.ch/safari-newsletter-april-2020/

SAFARI Newsletter April 2020 Edition
n https://safari.ethz.ch/safari-newsletter-april-2020/

130

https://safari.ethz.ch/safari-newsletter-april-2020/

Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
9 October 2020

VLSI-SoC

Revisiting RowHammer

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Backup Slides for Further Info

Research & Teaching: Some Overview Talks
https://www.youtube.com/onurmutlulectures

n Future Computing Architectures
q https://www.youtube.com/watch?v=kgiZlSOcGFM&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=1

n Enabling In-Memory Computation
q https://www.youtube.com/watch?v=njX_14584Jw&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=16

n Accelerating Genome Analysis
q https://www.youtube.com/watch?v=hPnSmfwu2-A&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=9

n Rethinking Memory System Design
q https://www.youtube.com/watch?v=F7xZLNMIY1E&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=3

n Intelligent Architectures for Intelligent Machines
q https://www.youtube.com/watch?v=n8Aj_A0WSg8&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=22

133

https://www.youtube.com/onurmutlulectures
https://www.youtube.com/watch?v=kgiZlSOcGFM&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=1
https://www.youtube.com/watch?v=njX_14584Jw&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=16
https://www.youtube.com/watch?v=hPnSmfwu2-A&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=9
https://www.youtube.com/watch?v=F7xZLNMIY1E&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=3
https://www.youtube.com/watch?v=n8Aj_A0WSg8&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=22

An Interview on Research and Education

n Computing Research and Education (@ ISCA 2019)
q https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2

soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz

n Maurice Wilkes Award Speech (10 minutes)
q https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2

soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15

134

https://www.youtube.com/watch?v=8ffSEKZhmvo&list=PL5Q2soXY2Zi_4oP9LdL3cc8G6NIjD2Ydz
https://www.youtube.com/watch?v=tcQ3zZ3JpuA&list=PL5Q2soXY2Zi8D_5MGV6EnXEJHnV2YFBJl&index=15

More Thoughts and Suggestions
n Onur Mutlu,

"Some Reflections (on DRAM)"
Award Speech for ACM SIGARCH Maurice Wilkes Award, at the ISCA Awards
Ceremony, Phoenix, AZ, USA, 25 June 2019.
[Slides (pptx) (pdf)]
[Video of Award Acceptance Speech (Youtube; 10 minutes) (Youku; 13 minutes)]
[Video of Interview after Award Acceptance (Youtube; 1 hour 6 minutes) (Youku;
1 hour 6 minutes)]
[News Article on "ACM SIGARCH Maurice Wilkes Award goes to Prof. Onur Mutlu"]

n Onur Mutlu,
"How to Build an Impactful Research Group"
57th Design Automation Conference Early Career Workshop (DAC), Virtual,
19 July 2020.
[Slides (pptx) (pdf)]

https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://www.sigarch.org/benefit/awards/acm-sigarch-maurice-wilkes-award/
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-MauriceWilkesAward-June-25-2019-FINAL-public.pdf
https://www.youtube.com/watch?v=tcQ3zZ3JpuA
https://v.youku.com/v_show/id_XNDI3MjU2ODIwNA
https://www.youtube.com/watch?v=8ffSEKZhmvo
https://v.youku.com/v_show/id_XNDI3MjU3MTM0OA
https://inf.ethz.ch/news-and-events/spotlights/2019/06/mutlu-ACM-SIGARCH-award.html
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://sites.google.com/gapp.nthu.edu.tw/dac-ecw20/
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC-EarlyCareerWorkshopPanel-ImpactfulResearch-July-19-2020-withbackup-FINAL.pdf

Understanding RowHammer

Why Is This Happening?
n DRAM cells are too close to each other!

q They are not electrically isolated from each other

n Access to one cell affects the value in nearby cells
q due to electrical interference between

n the cells
n wires used for accessing the cells

q Also called cell-to-cell coupling/interference

n Example: When we activate (apply high voltage) to a row,
an adjacent row gets slightly activated as well
q Vulnerable cells in that slightly-activated row lose a little bit of charge
q If row hammer happens enough times, charge in such cells gets drained

137

Higher-Level Implications
n This simple circuit level failure mechanism has enormous

implications on upper layers of the transformation hierarchy

138

Microarchitecture
ISA (Architecture)

Program/Language
Algorithm
Problem

Logic
Devices

Runtime System
(VM, OS, MM)

Electrons

Microarchitecture
ISA

Program/Language
Algorithm
Problem

Runtime System
(VM, OS, MM)

User

Logic
Devices
Electrons

Root Causes of Disturbance Errors
• Cause 1: Electromagne@c coupling

– Toggling the wordline voltage briefly increases the
voltage of adjacent wordlines

– Slightly opens adjacent rows à Charge leakage

• Cause 2: Conduc@ve bridges
• Cause 3: Hot-carrier injec@on

Confirmed by at least one manufacturer

139

Experimental DRAM Testing Infrastructure

140

An Experimental Study of Data Retention
Behavior in Modern DRAM Devices:
Implications for Retention Time Profiling
Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques
for DRAM Retention Failures: A
Comparative Experimental Study
(Khan et al., SIGMETRICS 2014)

Flipping Bits in Memory Without Accessing
Them: An Experimental Study of DRAM
Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM
Timing for the Common-Case (Lee et al.,
HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems (Qureshi
et al., DSN 2015)

http://users.ece.cmu.edu/~omutlu/pub/dram-retention-time-characterization_isca13.pdf
http://users.ece.cmu.edu/~omutlu/pub/error-mitigation-for-intermittent-dram-failures_sigmetrics14.pdf
http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/avatar-dram-refresh_dsn15.pdf

Where RowHammer Was Discovered

141Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

HeaterFPGAs FPGAs

142

Tested
DRAM
Modules

(129 total)

1. Most Modules Are at Risk
2. Errors vs. Vintage
3. Error = Charge Loss
4. Adjacency: Aggressor & VicEm
5. SensiEvity Studies
6. Other Results in Paper
7. SoluEon Space

143

RowHammer Characterization Results

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM
Disturbance Errors, (Kim et al., ISCA 2014)

http://users.ece.cmu.edu/~omutlu/pub/dram-row-hammer_isca14.pdf

4. Adjacency: Aggressor & Victim

Most aggressors & victims are adjacent
144

Note: For three modules with the most errors (only first bank)

Ad
ja

ce
nt

Ad
ja

ce
nt

Ad
ja

ce
nt

Non-AdjacentNon-Adjacent

Note: For three modules with the most errors (only first bank)

N
ot

 A
llo

w
ed

Less frequent accesses à Fewer errors

55
ns

50
0n
s

145

❶ Access Interval (Aggressor)

Note: Using three modules with the most errors (only first bank)

More frequent refreshes à Fewer errors

~7x frequent

64
m
s

146

❷ Refresh Interval

RowStripe

~RowStripe

❸ Data Pattern

111111
111111
111111
111111

000000
000000
000000
000000

000000
111111
000000
111111

111111
000000
111111
000000

Solid

~Solid 10x Errors

Errors affected by data stored in other cells
147

6. Other Results (in Paper)
• Victim Cells ≠ Weak Cells (i.e., leaky cells)

– Almost no overlap between them

• Errors not strongly affected by temperature
– Default temperature: 50°C
– At 30°C and 70°C, number of errors changes <15%

• Errors are repeatable
– Across ten iterations of testing, >70% of victim cells

had errors in every iteration

148

6. Other Results (in Paper) cont’d
• As many as 4 errors per cache-line

– Simple ECC (e.g., SECDED) cannot prevent all errors

• Number of cells & rows affected by aggressor
– Victims cells per aggressor: ≤110
– Victims rows per aggressor: ≤9

• Cells affected by two aggressors on either side
– Very small fraction of victim cells (<100) have an

error when either one of the aggressors is toggled

149

First RowHammer Analysis

150

n Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014.
[Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code
and Data]

https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
https://people.inf.ethz.ch/omutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer

RowHammer Solutions

Naive Solutions
❶ Throttle accesses to same row

– Limit access-interval: ≥500ns
– Limit number of accesses: ≤128K (=64ms/500ns)

❷ Refresh more frequently
– Shorten refresh-interval by ~7x

Both naive solutions introduce significant
overhead in performance and power

152

Requirements for PARA
• If implemented in DRAM chip (done today)

– Enough slack in timing and refresh parameters
– Plenty of slack today:

• Lee et al., “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common Case,” HPCA 2015.
• Chang et al., “Understanding Latency Variation in Modern DRAM Chips,” SIGMETRICS 2016.
• Lee et al., “Design-Induced Latency Variation in Modern DRAM Chips,” SIGMETRICS 2017.
• Chang et al., “Understanding Reduced-Voltage Operation in Modern DRAM Devices,” SIGMETRICS 2017.
• Ghose et al., “What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed Experimental

Study,” SIGMETRICS 2018.
• Kim et al., “Solar-DRAM: Reducing DRAM Access Latency by Exploiting the Variation in Local Bitlines,” ICCD

2018.

• If implemented in memory controller
– Better coordination between memory controller and

DRAM
– Memory controller should know which rows are

physically adjacent 153

Industry Is Writing Papers About It, Too

154

Industry Is Writing Papers About It, Too

155

Aside: Intelligent Controller for NAND Flash

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

1x-nm
NAND Flash

Cai+, “Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives,” Proc. IEEE 2017.

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014,
HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017,
PIEEE 2017, HPCA 2018, SIGMETRICS 2018]

Revisiting RowHammer in 2020

Executive	Summary
• Motivation:	Denser	DRAM	chips	are	more	vulnerable	to	RowHammer but	no	
characterization-based	study	demonstrates	how	vulnerability	scales

• Problem:	Unclear	if	existing	mitigation	mechanisms	will	remain	viable	for	
future	DRAM	chips	that	are	likely	to	be	more	vulnerable	to	RowHammer

• Goal:	
1. Experimentally	demonstrate	how	vulnerable	modern	DRAM	chips	are	to	

RowHammer and	study	how	this	vulnerability	will	scale	going	forward
2. Study	viability	of	existing	mitigation	mechanisms	on	more	vulnerable	chips

• Experimental	Study: First	rigorous	RowHammer characterization	study	across	
a	broad	range	of	DRAM	chips	
- 1580	chips	of	different	DRAM	{types,	technology	node	generations,	manufacturers}
- We	find	that	RowHammer vulnerability	worsens	in	newer	chips
• RowHammer Mitigation	Mechanism	Study: How	five	state-of-the-art	
mechanisms	are	affected	by	worsening	RowHammer vulnerability
- Reasonable	performance	loss	(8%	on	average)	on	modern	DRAM	chips
- Scale	poorly	to	more	vulnerable	DRAM	chips	(e.g.,	80%	performance	loss)
• Conclusion: it	is	critical	to	research	more	effective	solutions	to	RowHammer for	
future	DRAM	chips	that	will	likely	be	even	more	vulnerable	to	RowHammer

159

Motivation
- Denser	DRAM	chips	are	more	vulnerable	to	RowHammer

- Three	prior	works	[Kim+,	ISCA’14],	[Park+,	MR’16],	[Park+,	MR’16],	
over	the	last	six	years provide	RowHammer
characterization	data	on	real	DRAM

- However,	there	is	no	comprehensive	experimental	
study that	demonstrates	how	vulnerability	scales	across	
DRAM	types	and	technology	node	generations	

- It	is	unclear	whether	current	mitigation	mechanisms	
will	remain	viable for	future	DRAM	chips	that	are	likely	
to	be	more	vulnerable	to	RowHammer

160

Goal

1. Experimentally	demonstrate	how	vulnerable	modern	
DRAM	chips	are	to	RowHammer and	predict	how	this	
vulnerability	will	scale going	forward

2. Examine	the	viability	of	current	mitigation	mechanisms	
on	more	vulnerable	chips

161

Effective	RowHammer Characterization	

To	characterize	our	DRAM	chips	at	worst-case conditions,	we:

1. Prevent	sources	of	interference	during	core	test	loop
- We	disable:	
• DRAM	refresh:	to	avoid	refreshing	victim	row
• DRAM	calibration	events:	to	minimize	variation	in	test	timing
• RowHammer mitigation	mechanisms:	to	observe	circuit-level	effects	
- Test	for	less	than	refresh	window	(32ms)	to	avoid	retention	failures

2. Worst-case	access	sequence
- We	use	worst-case access	sequence	based	on	prior	works’	observations
- For	each	row,	repeatedly	access	the	two	directly	physically-adjacent	
rows	as	fast	as	possible	

[More	details	in	the	paper]

162

Testing	Methodology

Row	3
Row	4
Row	3
Row	4

Aggressor	Row
Victim	Row

Row

Row

RowRow	5 Row

Row	0
Row	1
Row	2 Row

Row

RowRow	0 Aggressor	Row

Row	2 Aggressor	Row
Row	1 Victim	RowREFRESH

Disable	refresh	to	prevent	
interruptions in	the	core	loop	of	
our	test	from	refresh	operations

Induce	RowHammer bit	flips	on	a	
fully	charged	row	

by issuing the worst-case sequence of DRAM accesses for that
particular row.
Disabling Sources of Interference. To directly observe
RowHammer e�ects at the circuit level, we want to mini-
mize the external factors that may limit 1) the e�ectiveness of
our tests or 2) our ability to e�ectively characterize/observe
circuit-level e�ects of RowHammer on our DRAM chips.
First, we want to ensure that we have control over how our
RowHammer tests behave without disturbing the desired ac-
cess pattern in any way. Therefore, during the core loop of
each RowHammer test (i.e., when activations are issued at
a high rate to induce RowHammer bit �ips), we disable all
DRAM self-regulation events such as refresh and calibration
using control registers in the memory controller. This guar-
antees consistent testing without interruptions from inter-
mittent events (e.g., to avoid the possibility that a victim row
is refreshed during a RowHammer test routine such that we
observe fewer RowHammer bit �ips). Second, we want to di-
rectly observe the circuit-level bit �ips such that we can make
conclusions about DRAM’s vulnerability to RowHammer at
the circuit technology level rather than the system level. To
this end, to the best of our knowledge, we disable all DRAM-
level (e.g., TRR [25, 45, 47]) and system-level RowHammer
mitigationmechanisms (e.g., pTRR [1]) along with all forms of
rank-level error-correction codes (ECC), which could obscure
RowHammer bit �ips. Unfortunately, all of our LPDDR4-
1x and LPDDR4-1y chips use on-die ECC [52, 67, 68, 86, 96]
(i.e., an error correcting mechanism that corrects single-bit
failures entirely within the DRAM chip [96]), which we can-
not disable. In addition, we ensure that the core loop of our
RowHammer test runs for less than 64 ms (i.e., the refresh
interval speci�ed by manufacturers to prevent DRAM data
retention failures [53, 82, 97]) so that we do not con�ate re-
tention failures with RowHammer bit �ips.
Worst-case RowHammer Access Sequence. We leverage
three key observations from prior work [3, 20, 33, 62, 128] in
order to craft a worst-case RowHammer test pattern. First,
a repeatedly accessed row (i.e., aggressor row) has the great-
est impact on its immediate physically-adjacent rows (i.e.,
repeatedly accessing physical row N will cause the highest
number of RowHammer bit �ips in physical rows N + 1 and
N – 1). Second, a double-sided hammer targeting physical
victim row N (i.e., repeatedly accessing physical rows N – 1
and N + 1) causes the highest number of RowHammer bit
�ips in row N compared to any other access pattern. Third,
increasing the rate of DRAM activations (i.e., issuing the same
number of activations within shorter time periods) results in
an increasing number of RowHammer bit �ips. This rate of
activations is limited by the DRAM timing parameter tRC (i.e.,
the time between two successive activations) which depends
on the DRAM clock frequency and the DRAM type: DDR3
(52.5ns) [44], DDR4 (50ns) [45], LPDDR4 (60ns) [47]. Using
these observations, we test each row’s worst-case vulnerabil-
ity to RowHammer by repeatedly accessing the two directly
physically-adjacent rows as fast as possible.
To enable the quick identi�cation of physical rows N –

1 and N + 1 for a given row N , we reverse-engineer the
undocumented and con�dential logical-to-physical DRAM
row address mapping. To do this, we exploit RowHammer’s
key observation that repeatedly accessing an arbitrary row
causes the two directly physically-adjacent rows to contain
the highest number of RowHammer bit �ips. By repeating
this analysis across rows throughout the DRAM chip, we can
deduce the address mappings for each type of chip that we
test. We can then use this mapping information to quickly
test RowHammer e�ects at worst-case conditions. We note
that for our LPDDR4-1x chips from Manufacturer B, when
we repeatedly access a single row within two consecutive
rows such that the �rst row is an even row (e.g., rows 2 and

3) in the logical row address space as seen by the memory
controller, we observe 1) no RowHammer bit �ips in either of
the two consecutive rows and 2) a near equivalent number of
RowHammer bit �ips in each of the four immediately adjacent
rows: the two previous consecutive rows (e.g., rows 0 and 1)
and the two subsequent consecutive rows (e.g., rows 4 and 5).
This indicates a row address remapping that is internal to the
DRAM chip such that every pair of consecutive rows share the
same internal wordline. To account for this DRAM-internal
row address remapping, we test each row N in LPDDR4-1x
chips from manufacturer B by repeatedly accessing physical
rows N – 2 and N + 2.
Additional Testing Parameters. To investigate RowHam-
mer characteristics, we explore two testing parameters at a
stable ambient temperature of 50¶C:
1. Hammer count (HC). We test the e�ects of changing the

number of times we access (i.e., activate) a victim row’s
physically-adjacent rows (i.e., aggressor rows). We count
each pair of activations to the two neighboring rows as
one hammer (e.g., one activation each to rows N – 1 and
N +1 counts as one hammer). We sweep the hammer count
from 2k to 150k (i.e., 4k to 300k activations) across our
chips so that the hammer test runs for less than 64ms.

2. Data pattern (DP). We test several commonly-used
DRAM data patterns where every byte is written with
the same data: Solid0 (SO0: 0x00), Solid1 (SO1: 0xFF), Col-
stripe0 (CO0: 0x55), Colstripe1 (CO1: 0xAA) [53,82,97]. In
addition, we test data patterns where each byte in every
other row, including the row being hammered, is written
with the same data, Checkered0 (CH0: 0x55) or Rowstripe0
(RS0: 0x00), and all other rows are written with the inverse
data, Checkered1 (CH1: 0xAA) or Rowstripe1 (RS1: 0xFF),
respectively.

RowHammer Testing Routine. Algorithm 1 explains the
general testing methodology we use to characterize RowHam-
mer on DRAM chips. For di�erent data patterns (DP) (line 2)
and hammer counts (HC) (line 8), the test individually tar-

Algorithm 1: DRAM RowHammer Characterization
1 DRAM_RowHammer_Characterization():
2 foreach DP in [Data Patterns]:
3 write DP into all cells in DRAM
4 foreach row in DRAM:
5 set victim_row to row
6 set aggressor_row1 to victim_row – 1
7 set aggressor_row2 to victim_row + 1
8 foreach HC in [HC sweep]:
9 Disable DRAM refresh

10 Refresh victim_row
11 for n = 1 æ HC: // core test loop
12 activate aggressor_row1
13 activate aggressor_row2
14 Enable DRAM refresh
15 Record RowHammer bit �ips to storage
16 Restore bit �ips to original values

gets each row in DRAM (line 4) as a victim row (line 5). For
each victim row, we identify the two physically-adjacent
rows (aggressor_row1 and aggressor_row2) as aggressor rows
(lines 6 and 7). Before beginning the core loop of our
RowHammer test (Lines 11-13), two things happen: 1) the
memory controller disables DRAM refresh (line 9) to ensure
no interruptions in the core loop of our test due to refresh
operations, and 2) we refresh the victim row (line 10) so that
we begin inducing RowHammer bit �ips on a fully-charged
row, which ensures that bit �ips we observe are not due to
retention time violations. The core loop of our RowHammer
test (Lines 11-13) induces RowHammer bit �ips in the victim
row by �rst activating aggressor_row1 then aggressor_row2,
HC times. After the core loop of our RowHammer test, we

5

by issuing the worst-case sequence of DRAM accesses for that
particular row.
Disabling Sources of Interference. To directly observe
RowHammer e�ects at the circuit level, we want to mini-
mize the external factors that may limit 1) the e�ectiveness of
our tests or 2) our ability to e�ectively characterize/observe
circuit-level e�ects of RowHammer on our DRAM chips.
First, we want to ensure that we have control over how our
RowHammer tests behave without disturbing the desired ac-
cess pattern in any way. Therefore, during the core loop of
each RowHammer test (i.e., when activations are issued at
a high rate to induce RowHammer bit �ips), we disable all
DRAM self-regulation events such as refresh and calibration
using control registers in the memory controller. This guar-
antees consistent testing without interruptions from inter-
mittent events (e.g., to avoid the possibility that a victim row
is refreshed during a RowHammer test routine such that we
observe fewer RowHammer bit �ips). Second, we want to di-
rectly observe the circuit-level bit �ips such that we can make
conclusions about DRAM’s vulnerability to RowHammer at
the circuit technology level rather than the system level. To
this end, to the best of our knowledge, we disable all DRAM-
level (e.g., TRR [25, 45, 47]) and system-level RowHammer
mitigationmechanisms (e.g., pTRR [1]) along with all forms of
rank-level error-correction codes (ECC), which could obscure
RowHammer bit �ips. Unfortunately, all of our LPDDR4-
1x and LPDDR4-1y chips use on-die ECC [52, 67, 68, 86, 96]
(i.e., an error correcting mechanism that corrects single-bit
failures entirely within the DRAM chip [96]), which we can-
not disable. In addition, we ensure that the core loop of our
RowHammer test runs for less than 64 ms (i.e., the refresh
interval speci�ed by manufacturers to prevent DRAM data
retention failures [53, 82, 97]) so that we do not con�ate re-
tention failures with RowHammer bit �ips.
Worst-case RowHammer Access Sequence. We leverage
three key observations from prior work [3, 20, 33, 62, 128] in
order to craft a worst-case RowHammer test pattern. First,
a repeatedly accessed row (i.e., aggressor row) has the great-
est impact on its immediate physically-adjacent rows (i.e.,
repeatedly accessing physical row N will cause the highest
number of RowHammer bit �ips in physical rows N + 1 and
N – 1). Second, a double-sided hammer targeting physical
victim row N (i.e., repeatedly accessing physical rows N – 1
and N + 1) causes the highest number of RowHammer bit
�ips in row N compared to any other access pattern. Third,
increasing the rate of DRAM activations (i.e., issuing the same
number of activations within shorter time periods) results in
an increasing number of RowHammer bit �ips. This rate of
activations is limited by the DRAM timing parameter tRC (i.e.,
the time between two successive activations) which depends
on the DRAM clock frequency and the DRAM type: DDR3
(52.5ns) [44], DDR4 (50ns) [45], LPDDR4 (60ns) [47]. Using
these observations, we test each row’s worst-case vulnerabil-
ity to RowHammer by repeatedly accessing the two directly
physically-adjacent rows as fast as possible.
To enable the quick identi�cation of physical rows N –

1 and N + 1 for a given row N , we reverse-engineer the
undocumented and con�dential logical-to-physical DRAM
row address mapping. To do this, we exploit RowHammer’s
key observation that repeatedly accessing an arbitrary row
causes the two directly physically-adjacent rows to contain
the highest number of RowHammer bit �ips. By repeating
this analysis across rows throughout the DRAM chip, we can
deduce the address mappings for each type of chip that we
test. We can then use this mapping information to quickly
test RowHammer e�ects at worst-case conditions. We note
that for our LPDDR4-1x chips from Manufacturer B, when
we repeatedly access a single row within two consecutive
rows such that the �rst row is an even row (e.g., rows 2 and

3) in the logical row address space as seen by the memory
controller, we observe 1) no RowHammer bit �ips in either of
the two consecutive rows and 2) a near equivalent number of
RowHammer bit �ips in each of the four immediately adjacent
rows: the two previous consecutive rows (e.g., rows 0 and 1)
and the two subsequent consecutive rows (e.g., rows 4 and 5).
This indicates a row address remapping that is internal to the
DRAM chip such that every pair of consecutive rows share the
same internal wordline. To account for this DRAM-internal
row address remapping, we test each row N in LPDDR4-1x
chips from manufacturer B by repeatedly accessing physical
rows N – 2 and N + 2.
Additional Testing Parameters. To investigate RowHam-
mer characteristics, we explore two testing parameters at a
stable ambient temperature of 50¶C:
1. Hammer count (HC). We test the e�ects of changing the

number of times we access (i.e., activate) a victim row’s
physically-adjacent rows (i.e., aggressor rows). We count
each pair of activations to the two neighboring rows as
one hammer (e.g., one activation each to rows N – 1 and
N +1 counts as one hammer). We sweep the hammer count
from 2k to 150k (i.e., 4k to 300k activations) across our
chips so that the hammer test runs for less than 64ms.

2. Data pattern (DP). We test several commonly-used
DRAM data patterns where every byte is written with
the same data: Solid0 (SO0: 0x00), Solid1 (SO1: 0xFF), Col-
stripe0 (CO0: 0x55), Colstripe1 (CO1: 0xAA) [53,82,97]. In
addition, we test data patterns where each byte in every
other row, including the row being hammered, is written
with the same data, Checkered0 (CH0: 0x55) or Rowstripe0
(RS0: 0x00), and all other rows are written with the inverse
data, Checkered1 (CH1: 0xAA) or Rowstripe1 (RS1: 0xFF),
respectively.

RowHammer Testing Routine. Algorithm 1 explains the
general testing methodology we use to characterize RowHam-
mer on DRAM chips. For di�erent data patterns (DP) (line 2)
and hammer counts (HC) (line 8), the test individually tar-

Algorithm 1: DRAM RowHammer Characterization
1 DRAM_RowHammer_Characterization():
2 foreach DP in [Data Patterns]:
3 write DP into all cells in DRAM
4 foreach row in DRAM:
5 set victim_row to row
6 set aggressor_row1 to victim_row – 1
7 set aggressor_row2 to victim_row + 1
8 foreach HC in [HC sweep]:
9 Disable DRAM refresh

10 Refresh victim_row
11 for n = 1 æ HC: // core test loop
12 activate aggressor_row1
13 activate aggressor_row2
14 Enable DRAM refresh
15 Record RowHammer bit �ips to storage
16 Restore bit �ips to original values

gets each row in DRAM (line 4) as a victim row (line 5). For
each victim row, we identify the two physically-adjacent
rows (aggressor_row1 and aggressor_row2) as aggressor rows
(lines 6 and 7). Before beginning the core loop of our
RowHammer test (Lines 11-13), two things happen: 1) the
memory controller disables DRAM refresh (line 9) to ensure
no interruptions in the core loop of our test due to refresh
operations, and 2) we refresh the victim row (line 10) so that
we begin inducing RowHammer bit �ips on a fully-charged
row, which ensures that bit �ips we observe are not due to
retention time violations. The core loop of our RowHammer
test (Lines 11-13) induces RowHammer bit �ips in the victim
row by �rst activating aggressor_row1 then aggressor_row2,
HC times. After the core loop of our RowHammer test, we

5

by issuing the worst-case sequence of DRAM accesses for that
particular row.
Disabling Sources of Interference. To directly observe
RowHammer e�ects at the circuit level, we want to mini-
mize the external factors that may limit 1) the e�ectiveness of
our tests or 2) our ability to e�ectively characterize/observe
circuit-level e�ects of RowHammer on our DRAM chips.
First, we want to ensure that we have control over how our
RowHammer tests behave without disturbing the desired ac-
cess pattern in any way. Therefore, during the core loop of
each RowHammer test (i.e., when activations are issued at
a high rate to induce RowHammer bit �ips), we disable all
DRAM self-regulation events such as refresh and calibration
using control registers in the memory controller. This guar-
antees consistent testing without interruptions from inter-
mittent events (e.g., to avoid the possibility that a victim row
is refreshed during a RowHammer test routine such that we
observe fewer RowHammer bit �ips). Second, we want to di-
rectly observe the circuit-level bit �ips such that we can make
conclusions about DRAM’s vulnerability to RowHammer at
the circuit technology level rather than the system level. To
this end, to the best of our knowledge, we disable all DRAM-
level (e.g., TRR [25, 45, 47]) and system-level RowHammer
mitigationmechanisms (e.g., pTRR [1]) along with all forms of
rank-level error-correction codes (ECC), which could obscure
RowHammer bit �ips. Unfortunately, all of our LPDDR4-
1x and LPDDR4-1y chips use on-die ECC [52, 67, 68, 86, 96]
(i.e., an error correcting mechanism that corrects single-bit
failures entirely within the DRAM chip [96]), which we can-
not disable. In addition, we ensure that the core loop of our
RowHammer test runs for less than 64 ms (i.e., the refresh
interval speci�ed by manufacturers to prevent DRAM data
retention failures [53, 82, 97]) so that we do not con�ate re-
tention failures with RowHammer bit �ips.
Worst-case RowHammer Access Sequence. We leverage
three key observations from prior work [3, 20, 33, 62, 128] in
order to craft a worst-case RowHammer test pattern. First,
a repeatedly accessed row (i.e., aggressor row) has the great-
est impact on its immediate physically-adjacent rows (i.e.,
repeatedly accessing physical row N will cause the highest
number of RowHammer bit �ips in physical rows N + 1 and
N – 1). Second, a double-sided hammer targeting physical
victim row N (i.e., repeatedly accessing physical rows N – 1
and N + 1) causes the highest number of RowHammer bit
�ips in row N compared to any other access pattern. Third,
increasing the rate of DRAM activations (i.e., issuing the same
number of activations within shorter time periods) results in
an increasing number of RowHammer bit �ips. This rate of
activations is limited by the DRAM timing parameter tRC (i.e.,
the time between two successive activations) which depends
on the DRAM clock frequency and the DRAM type: DDR3
(52.5ns) [44], DDR4 (50ns) [45], LPDDR4 (60ns) [47]. Using
these observations, we test each row’s worst-case vulnerabil-
ity to RowHammer by repeatedly accessing the two directly
physically-adjacent rows as fast as possible.
To enable the quick identi�cation of physical rows N –

1 and N + 1 for a given row N , we reverse-engineer the
undocumented and con�dential logical-to-physical DRAM
row address mapping. To do this, we exploit RowHammer’s
key observation that repeatedly accessing an arbitrary row
causes the two directly physically-adjacent rows to contain
the highest number of RowHammer bit �ips. By repeating
this analysis across rows throughout the DRAM chip, we can
deduce the address mappings for each type of chip that we
test. We can then use this mapping information to quickly
test RowHammer e�ects at worst-case conditions. We note
that for our LPDDR4-1x chips from Manufacturer B, when
we repeatedly access a single row within two consecutive
rows such that the �rst row is an even row (e.g., rows 2 and

3) in the logical row address space as seen by the memory
controller, we observe 1) no RowHammer bit �ips in either of
the two consecutive rows and 2) a near equivalent number of
RowHammer bit �ips in each of the four immediately adjacent
rows: the two previous consecutive rows (e.g., rows 0 and 1)
and the two subsequent consecutive rows (e.g., rows 4 and 5).
This indicates a row address remapping that is internal to the
DRAM chip such that every pair of consecutive rows share the
same internal wordline. To account for this DRAM-internal
row address remapping, we test each row N in LPDDR4-1x
chips from manufacturer B by repeatedly accessing physical
rows N – 2 and N + 2.
Additional Testing Parameters. To investigate RowHam-
mer characteristics, we explore two testing parameters at a
stable ambient temperature of 50¶C:
1. Hammer count (HC). We test the e�ects of changing the

number of times we access (i.e., activate) a victim row’s
physically-adjacent rows (i.e., aggressor rows). We count
each pair of activations to the two neighboring rows as
one hammer (e.g., one activation each to rows N – 1 and
N +1 counts as one hammer). We sweep the hammer count
from 2k to 150k (i.e., 4k to 300k activations) across our
chips so that the hammer test runs for less than 64ms.

2. Data pattern (DP). We test several commonly-used
DRAM data patterns where every byte is written with
the same data: Solid0 (SO0: 0x00), Solid1 (SO1: 0xFF), Col-
stripe0 (CO0: 0x55), Colstripe1 (CO1: 0xAA) [53,82,97]. In
addition, we test data patterns where each byte in every
other row, including the row being hammered, is written
with the same data, Checkered0 (CH0: 0x55) or Rowstripe0
(RS0: 0x00), and all other rows are written with the inverse
data, Checkered1 (CH1: 0xAA) or Rowstripe1 (RS1: 0xFF),
respectively.

RowHammer Testing Routine. Algorithm 1 explains the
general testing methodology we use to characterize RowHam-
mer on DRAM chips. For di�erent data patterns (DP) (line 2)
and hammer counts (HC) (line 8), the test individually tar-

Algorithm 1: DRAM RowHammer Characterization
1 DRAM_RowHammer_Characterization():
2 foreach DP in [Data Patterns]:
3 write DP into all cells in DRAM
4 foreach row in DRAM:
5 set victim_row to row
6 set aggressor_row1 to victim_row – 1
7 set aggressor_row2 to victim_row + 1
8 foreach HC in [HC sweep]:
9 Disable DRAM refresh

10 Refresh victim_row
11 for n = 1 æ HC: // core test loop
12 activate aggressor_row1
13 activate aggressor_row2
14 Enable DRAM refresh
15 Record RowHammer bit �ips to storage
16 Restore bit �ips to original values

gets each row in DRAM (line 4) as a victim row (line 5). For
each victim row, we identify the two physically-adjacent
rows (aggressor_row1 and aggressor_row2) as aggressor rows
(lines 6 and 7). Before beginning the core loop of our
RowHammer test (Lines 11-13), two things happen: 1) the
memory controller disables DRAM refresh (line 9) to ensure
no interruptions in the core loop of our test due to refresh
operations, and 2) we refresh the victim row (line 10) so that
we begin inducing RowHammer bit �ips on a fully-charged
row, which ensures that bit �ips we observe are not due to
retention time violations. The core loop of our RowHammer
test (Lines 11-13) induces RowHammer bit �ips in the victim
row by �rst activating aggressor_row1 then aggressor_row2,
HC times. After the core loop of our RowHammer test, we

5

163

Testing	Methodology

Row	3
Row	4
Row	3
Row	4

Aggressor	Row
Victim	Row

Row

Row

RowRow	5 Row

Row	0
Row	1
Row	2 Row

Row

Row

Row	1 Victim	Row
Row	2 Aggressor	Rowclosed

Row	0 Aggressor	Rowopen Row	0 Aggressor	Rowclosed

Row	2 Aggressor	Rowopen
Row	1 Aggressor	Row

Row	3 Aggressor	Row
Row	2 Victim	RowRow	2 Aggressor	Row

Row	4 Aggressor	Row
Row	3 Victim	RowRow	3 Aggressor	Row

Row	5 Aggressor	Row
Row	4 Victim	Row

Row	2 Row

Core	test	loop	where	we	alternate	
accesses	to	adjacent	rows

Prevent	further	retention	failures
Record	bit	flips	for	analysis

Disable	refresh	to	prevent	
interruptions in	the	core	loop	of	
our	test	from	refresh	operations

Induce	RowHammer bit	flips	on	a	
fully	charged	row	

1	Hammer	(HC)	=	two	accesses

by issuing the worst-case sequence of DRAM accesses for that
particular row.
Disabling Sources of Interference. To directly observe
RowHammer e�ects at the circuit level, we want to mini-
mize the external factors that may limit 1) the e�ectiveness of
our tests or 2) our ability to e�ectively characterize/observe
circuit-level e�ects of RowHammer on our DRAM chips.
First, we want to ensure that we have control over how our
RowHammer tests behave without disturbing the desired ac-
cess pattern in any way. Therefore, during the core loop of
each RowHammer test (i.e., when activations are issued at
a high rate to induce RowHammer bit �ips), we disable all
DRAM self-regulation events such as refresh and calibration
using control registers in the memory controller. This guar-
antees consistent testing without interruptions from inter-
mittent events (e.g., to avoid the possibility that a victim row
is refreshed during a RowHammer test routine such that we
observe fewer RowHammer bit �ips). Second, we want to di-
rectly observe the circuit-level bit �ips such that we can make
conclusions about DRAM’s vulnerability to RowHammer at
the circuit technology level rather than the system level. To
this end, to the best of our knowledge, we disable all DRAM-
level (e.g., TRR [25, 45, 47]) and system-level RowHammer
mitigationmechanisms (e.g., pTRR [1]) along with all forms of
rank-level error-correction codes (ECC), which could obscure
RowHammer bit �ips. Unfortunately, all of our LPDDR4-
1x and LPDDR4-1y chips use on-die ECC [52, 67, 68, 86, 96]
(i.e., an error correcting mechanism that corrects single-bit
failures entirely within the DRAM chip [96]), which we can-
not disable. In addition, we ensure that the core loop of our
RowHammer test runs for less than 64 ms (i.e., the refresh
interval speci�ed by manufacturers to prevent DRAM data
retention failures [53, 82, 97]) so that we do not con�ate re-
tention failures with RowHammer bit �ips.
Worst-case RowHammer Access Sequence. We leverage
three key observations from prior work [3, 20, 33, 62, 128] in
order to craft a worst-case RowHammer test pattern. First,
a repeatedly accessed row (i.e., aggressor row) has the great-
est impact on its immediate physically-adjacent rows (i.e.,
repeatedly accessing physical row N will cause the highest
number of RowHammer bit �ips in physical rows N + 1 and
N – 1). Second, a double-sided hammer targeting physical
victim row N (i.e., repeatedly accessing physical rows N – 1
and N + 1) causes the highest number of RowHammer bit
�ips in row N compared to any other access pattern. Third,
increasing the rate of DRAM activations (i.e., issuing the same
number of activations within shorter time periods) results in
an increasing number of RowHammer bit �ips. This rate of
activations is limited by the DRAM timing parameter tRC (i.e.,
the time between two successive activations) which depends
on the DRAM clock frequency and the DRAM type: DDR3
(52.5ns) [44], DDR4 (50ns) [45], LPDDR4 (60ns) [47]. Using
these observations, we test each row’s worst-case vulnerabil-
ity to RowHammer by repeatedly accessing the two directly
physically-adjacent rows as fast as possible.
To enable the quick identi�cation of physical rows N –

1 and N + 1 for a given row N , we reverse-engineer the
undocumented and con�dential logical-to-physical DRAM
row address mapping. To do this, we exploit RowHammer’s
key observation that repeatedly accessing an arbitrary row
causes the two directly physically-adjacent rows to contain
the highest number of RowHammer bit �ips. By repeating
this analysis across rows throughout the DRAM chip, we can
deduce the address mappings for each type of chip that we
test. We can then use this mapping information to quickly
test RowHammer e�ects at worst-case conditions. We note
that for our LPDDR4-1x chips from Manufacturer B, when
we repeatedly access a single row within two consecutive
rows such that the �rst row is an even row (e.g., rows 2 and

3) in the logical row address space as seen by the memory
controller, we observe 1) no RowHammer bit �ips in either of
the two consecutive rows and 2) a near equivalent number of
RowHammer bit �ips in each of the four immediately adjacent
rows: the two previous consecutive rows (e.g., rows 0 and 1)
and the two subsequent consecutive rows (e.g., rows 4 and 5).
This indicates a row address remapping that is internal to the
DRAM chip such that every pair of consecutive rows share the
same internal wordline. To account for this DRAM-internal
row address remapping, we test each row N in LPDDR4-1x
chips from manufacturer B by repeatedly accessing physical
rows N – 2 and N + 2.
Additional Testing Parameters. To investigate RowHam-
mer characteristics, we explore two testing parameters at a
stable ambient temperature of 50¶C:
1. Hammer count (HC). We test the e�ects of changing the

number of times we access (i.e., activate) a victim row’s
physically-adjacent rows (i.e., aggressor rows). We count
each pair of activations to the two neighboring rows as
one hammer (e.g., one activation each to rows N – 1 and
N +1 counts as one hammer). We sweep the hammer count
from 2k to 150k (i.e., 4k to 300k activations) across our
chips so that the hammer test runs for less than 64ms.

2. Data pattern (DP). We test several commonly-used
DRAM data patterns where every byte is written with
the same data: Solid0 (SO0: 0x00), Solid1 (SO1: 0xFF), Col-
stripe0 (CO0: 0x55), Colstripe1 (CO1: 0xAA) [53,82,97]. In
addition, we test data patterns where each byte in every
other row, including the row being hammered, is written
with the same data, Checkered0 (CH0: 0x55) or Rowstripe0
(RS0: 0x00), and all other rows are written with the inverse
data, Checkered1 (CH1: 0xAA) or Rowstripe1 (RS1: 0xFF),
respectively.

RowHammer Testing Routine. Algorithm 1 explains the
general testing methodology we use to characterize RowHam-
mer on DRAM chips. For di�erent data patterns (DP) (line 2)
and hammer counts (HC) (line 8), the test individually tar-

Algorithm 1: DRAM RowHammer Characterization
1 DRAM_RowHammer_Characterization():
2 foreach DP in [Data Patterns]:
3 write DP into all cells in DRAM
4 foreach row in DRAM:
5 set victim_row to row
6 set aggressor_row1 to victim_row – 1
7 set aggressor_row2 to victim_row + 1
8 foreach HC in [HC sweep]:
9 Disable DRAM refresh

10 Refresh victim_row
11 for n = 1 æ HC: // core test loop
12 activate aggressor_row1
13 activate aggressor_row2
14 Enable DRAM refresh
15 Record RowHammer bit �ips to storage
16 Restore bit �ips to original values

gets each row in DRAM (line 4) as a victim row (line 5). For
each victim row, we identify the two physically-adjacent
rows (aggressor_row1 and aggressor_row2) as aggressor rows
(lines 6 and 7). Before beginning the core loop of our
RowHammer test (Lines 11-13), two things happen: 1) the
memory controller disables DRAM refresh (line 9) to ensure
no interruptions in the core loop of our test due to refresh
operations, and 2) we refresh the victim row (line 10) so that
we begin inducing RowHammer bit �ips on a fully-charged
row, which ensures that bit �ips we observe are not due to
retention time violations. The core loop of our RowHammer
test (Lines 11-13) induces RowHammer bit �ips in the victim
row by �rst activating aggressor_row1 then aggressor_row2,
HC times. After the core loop of our RowHammer test, we

5

by issuing the worst-case sequence of DRAM accesses for that
particular row.
Disabling Sources of Interference. To directly observe
RowHammer e�ects at the circuit level, we want to mini-
mize the external factors that may limit 1) the e�ectiveness of
our tests or 2) our ability to e�ectively characterize/observe
circuit-level e�ects of RowHammer on our DRAM chips.
First, we want to ensure that we have control over how our
RowHammer tests behave without disturbing the desired ac-
cess pattern in any way. Therefore, during the core loop of
each RowHammer test (i.e., when activations are issued at
a high rate to induce RowHammer bit �ips), we disable all
DRAM self-regulation events such as refresh and calibration
using control registers in the memory controller. This guar-
antees consistent testing without interruptions from inter-
mittent events (e.g., to avoid the possibility that a victim row
is refreshed during a RowHammer test routine such that we
observe fewer RowHammer bit �ips). Second, we want to di-
rectly observe the circuit-level bit �ips such that we can make
conclusions about DRAM’s vulnerability to RowHammer at
the circuit technology level rather than the system level. To
this end, to the best of our knowledge, we disable all DRAM-
level (e.g., TRR [25, 45, 47]) and system-level RowHammer
mitigationmechanisms (e.g., pTRR [1]) along with all forms of
rank-level error-correction codes (ECC), which could obscure
RowHammer bit �ips. Unfortunately, all of our LPDDR4-
1x and LPDDR4-1y chips use on-die ECC [52, 67, 68, 86, 96]
(i.e., an error correcting mechanism that corrects single-bit
failures entirely within the DRAM chip [96]), which we can-
not disable. In addition, we ensure that the core loop of our
RowHammer test runs for less than 64 ms (i.e., the refresh
interval speci�ed by manufacturers to prevent DRAM data
retention failures [53, 82, 97]) so that we do not con�ate re-
tention failures with RowHammer bit �ips.
Worst-case RowHammer Access Sequence. We leverage
three key observations from prior work [3, 20, 33, 62, 128] in
order to craft a worst-case RowHammer test pattern. First,
a repeatedly accessed row (i.e., aggressor row) has the great-
est impact on its immediate physically-adjacent rows (i.e.,
repeatedly accessing physical row N will cause the highest
number of RowHammer bit �ips in physical rows N + 1 and
N – 1). Second, a double-sided hammer targeting physical
victim row N (i.e., repeatedly accessing physical rows N – 1
and N + 1) causes the highest number of RowHammer bit
�ips in row N compared to any other access pattern. Third,
increasing the rate of DRAM activations (i.e., issuing the same
number of activations within shorter time periods) results in
an increasing number of RowHammer bit �ips. This rate of
activations is limited by the DRAM timing parameter tRC (i.e.,
the time between two successive activations) which depends
on the DRAM clock frequency and the DRAM type: DDR3
(52.5ns) [44], DDR4 (50ns) [45], LPDDR4 (60ns) [47]. Using
these observations, we test each row’s worst-case vulnerabil-
ity to RowHammer by repeatedly accessing the two directly
physically-adjacent rows as fast as possible.
To enable the quick identi�cation of physical rows N –

1 and N + 1 for a given row N , we reverse-engineer the
undocumented and con�dential logical-to-physical DRAM
row address mapping. To do this, we exploit RowHammer’s
key observation that repeatedly accessing an arbitrary row
causes the two directly physically-adjacent rows to contain
the highest number of RowHammer bit �ips. By repeating
this analysis across rows throughout the DRAM chip, we can
deduce the address mappings for each type of chip that we
test. We can then use this mapping information to quickly
test RowHammer e�ects at worst-case conditions. We note
that for our LPDDR4-1x chips from Manufacturer B, when
we repeatedly access a single row within two consecutive
rows such that the �rst row is an even row (e.g., rows 2 and

3) in the logical row address space as seen by the memory
controller, we observe 1) no RowHammer bit �ips in either of
the two consecutive rows and 2) a near equivalent number of
RowHammer bit �ips in each of the four immediately adjacent
rows: the two previous consecutive rows (e.g., rows 0 and 1)
and the two subsequent consecutive rows (e.g., rows 4 and 5).
This indicates a row address remapping that is internal to the
DRAM chip such that every pair of consecutive rows share the
same internal wordline. To account for this DRAM-internal
row address remapping, we test each row N in LPDDR4-1x
chips from manufacturer B by repeatedly accessing physical
rows N – 2 and N + 2.
Additional Testing Parameters. To investigate RowHam-
mer characteristics, we explore two testing parameters at a
stable ambient temperature of 50¶C:
1. Hammer count (HC). We test the e�ects of changing the

number of times we access (i.e., activate) a victim row’s
physically-adjacent rows (i.e., aggressor rows). We count
each pair of activations to the two neighboring rows as
one hammer (e.g., one activation each to rows N – 1 and
N +1 counts as one hammer). We sweep the hammer count
from 2k to 150k (i.e., 4k to 300k activations) across our
chips so that the hammer test runs for less than 64ms.

2. Data pattern (DP). We test several commonly-used
DRAM data patterns where every byte is written with
the same data: Solid0 (SO0: 0x00), Solid1 (SO1: 0xFF), Col-
stripe0 (CO0: 0x55), Colstripe1 (CO1: 0xAA) [53,82,97]. In
addition, we test data patterns where each byte in every
other row, including the row being hammered, is written
with the same data, Checkered0 (CH0: 0x55) or Rowstripe0
(RS0: 0x00), and all other rows are written with the inverse
data, Checkered1 (CH1: 0xAA) or Rowstripe1 (RS1: 0xFF),
respectively.

RowHammer Testing Routine. Algorithm 1 explains the
general testing methodology we use to characterize RowHam-
mer on DRAM chips. For di�erent data patterns (DP) (line 2)
and hammer counts (HC) (line 8), the test individually tar-

Algorithm 1: DRAM RowHammer Characterization
1 DRAM_RowHammer_Characterization():
2 foreach DP in [Data Patterns]:
3 write DP into all cells in DRAM
4 foreach row in DRAM:
5 set victim_row to row
6 set aggressor_row1 to victim_row – 1
7 set aggressor_row2 to victim_row + 1
8 foreach HC in [HC sweep]:
9 Disable DRAM refresh

10 Refresh victim_row
11 for n = 1 æ HC: // core test loop
12 activate aggressor_row1
13 activate aggressor_row2
14 Enable DRAM refresh
15 Record RowHammer bit �ips to storage
16 Restore bit �ips to original values

gets each row in DRAM (line 4) as a victim row (line 5). For
each victim row, we identify the two physically-adjacent
rows (aggressor_row1 and aggressor_row2) as aggressor rows
(lines 6 and 7). Before beginning the core loop of our
RowHammer test (Lines 11-13), two things happen: 1) the
memory controller disables DRAM refresh (line 9) to ensure
no interruptions in the core loop of our test due to refresh
operations, and 2) we refresh the victim row (line 10) so that
we begin inducing RowHammer bit �ips on a fully-charged
row, which ensures that bit �ips we observe are not due to
retention time violations. The core loop of our RowHammer
test (Lines 11-13) induces RowHammer bit �ips in the victim
row by �rst activating aggressor_row1 then aggressor_row2,
HC times. After the core loop of our RowHammer test, we

5

by issuing the worst-case sequence of DRAM accesses for that
particular row.
Disabling Sources of Interference. To directly observe
RowHammer e�ects at the circuit level, we want to mini-
mize the external factors that may limit 1) the e�ectiveness of
our tests or 2) our ability to e�ectively characterize/observe
circuit-level e�ects of RowHammer on our DRAM chips.
First, we want to ensure that we have control over how our
RowHammer tests behave without disturbing the desired ac-
cess pattern in any way. Therefore, during the core loop of
each RowHammer test (i.e., when activations are issued at
a high rate to induce RowHammer bit �ips), we disable all
DRAM self-regulation events such as refresh and calibration
using control registers in the memory controller. This guar-
antees consistent testing without interruptions from inter-
mittent events (e.g., to avoid the possibility that a victim row
is refreshed during a RowHammer test routine such that we
observe fewer RowHammer bit �ips). Second, we want to di-
rectly observe the circuit-level bit �ips such that we can make
conclusions about DRAM’s vulnerability to RowHammer at
the circuit technology level rather than the system level. To
this end, to the best of our knowledge, we disable all DRAM-
level (e.g., TRR [25, 45, 47]) and system-level RowHammer
mitigationmechanisms (e.g., pTRR [1]) along with all forms of
rank-level error-correction codes (ECC), which could obscure
RowHammer bit �ips. Unfortunately, all of our LPDDR4-
1x and LPDDR4-1y chips use on-die ECC [52, 67, 68, 86, 96]
(i.e., an error correcting mechanism that corrects single-bit
failures entirely within the DRAM chip [96]), which we can-
not disable. In addition, we ensure that the core loop of our
RowHammer test runs for less than 64 ms (i.e., the refresh
interval speci�ed by manufacturers to prevent DRAM data
retention failures [53, 82, 97]) so that we do not con�ate re-
tention failures with RowHammer bit �ips.
Worst-case RowHammer Access Sequence. We leverage
three key observations from prior work [3, 20, 33, 62, 128] in
order to craft a worst-case RowHammer test pattern. First,
a repeatedly accessed row (i.e., aggressor row) has the great-
est impact on its immediate physically-adjacent rows (i.e.,
repeatedly accessing physical row N will cause the highest
number of RowHammer bit �ips in physical rows N + 1 and
N – 1). Second, a double-sided hammer targeting physical
victim row N (i.e., repeatedly accessing physical rows N – 1
and N + 1) causes the highest number of RowHammer bit
�ips in row N compared to any other access pattern. Third,
increasing the rate of DRAM activations (i.e., issuing the same
number of activations within shorter time periods) results in
an increasing number of RowHammer bit �ips. This rate of
activations is limited by the DRAM timing parameter tRC (i.e.,
the time between two successive activations) which depends
on the DRAM clock frequency and the DRAM type: DDR3
(52.5ns) [44], DDR4 (50ns) [45], LPDDR4 (60ns) [47]. Using
these observations, we test each row’s worst-case vulnerabil-
ity to RowHammer by repeatedly accessing the two directly
physically-adjacent rows as fast as possible.
To enable the quick identi�cation of physical rows N –

1 and N + 1 for a given row N , we reverse-engineer the
undocumented and con�dential logical-to-physical DRAM
row address mapping. To do this, we exploit RowHammer’s
key observation that repeatedly accessing an arbitrary row
causes the two directly physically-adjacent rows to contain
the highest number of RowHammer bit �ips. By repeating
this analysis across rows throughout the DRAM chip, we can
deduce the address mappings for each type of chip that we
test. We can then use this mapping information to quickly
test RowHammer e�ects at worst-case conditions. We note
that for our LPDDR4-1x chips from Manufacturer B, when
we repeatedly access a single row within two consecutive
rows such that the �rst row is an even row (e.g., rows 2 and

3) in the logical row address space as seen by the memory
controller, we observe 1) no RowHammer bit �ips in either of
the two consecutive rows and 2) a near equivalent number of
RowHammer bit �ips in each of the four immediately adjacent
rows: the two previous consecutive rows (e.g., rows 0 and 1)
and the two subsequent consecutive rows (e.g., rows 4 and 5).
This indicates a row address remapping that is internal to the
DRAM chip such that every pair of consecutive rows share the
same internal wordline. To account for this DRAM-internal
row address remapping, we test each row N in LPDDR4-1x
chips from manufacturer B by repeatedly accessing physical
rows N – 2 and N + 2.
Additional Testing Parameters. To investigate RowHam-
mer characteristics, we explore two testing parameters at a
stable ambient temperature of 50¶C:
1. Hammer count (HC). We test the e�ects of changing the

number of times we access (i.e., activate) a victim row’s
physically-adjacent rows (i.e., aggressor rows). We count
each pair of activations to the two neighboring rows as
one hammer (e.g., one activation each to rows N – 1 and
N +1 counts as one hammer). We sweep the hammer count
from 2k to 150k (i.e., 4k to 300k activations) across our
chips so that the hammer test runs for less than 64ms.

2. Data pattern (DP). We test several commonly-used
DRAM data patterns where every byte is written with
the same data: Solid0 (SO0: 0x00), Solid1 (SO1: 0xFF), Col-
stripe0 (CO0: 0x55), Colstripe1 (CO1: 0xAA) [53,82,97]. In
addition, we test data patterns where each byte in every
other row, including the row being hammered, is written
with the same data, Checkered0 (CH0: 0x55) or Rowstripe0
(RS0: 0x00), and all other rows are written with the inverse
data, Checkered1 (CH1: 0xAA) or Rowstripe1 (RS1: 0xFF),
respectively.

RowHammer Testing Routine. Algorithm 1 explains the
general testing methodology we use to characterize RowHam-
mer on DRAM chips. For di�erent data patterns (DP) (line 2)
and hammer counts (HC) (line 8), the test individually tar-

Algorithm 1: DRAM RowHammer Characterization
1 DRAM_RowHammer_Characterization():
2 foreach DP in [Data Patterns]:
3 write DP into all cells in DRAM
4 foreach row in DRAM:
5 set victim_row to row
6 set aggressor_row1 to victim_row – 1
7 set aggressor_row2 to victim_row + 1
8 foreach HC in [HC sweep]:
9 Disable DRAM refresh

10 Refresh victim_row
11 for n = 1 æ HC: // core test loop
12 activate aggressor_row1
13 activate aggressor_row2
14 Enable DRAM refresh
15 Record RowHammer bit �ips to storage
16 Restore bit �ips to original values

gets each row in DRAM (line 4) as a victim row (line 5). For
each victim row, we identify the two physically-adjacent
rows (aggressor_row1 and aggressor_row2) as aggressor rows
(lines 6 and 7). Before beginning the core loop of our
RowHammer test (Lines 11-13), two things happen: 1) the
memory controller disables DRAM refresh (line 9) to ensure
no interruptions in the core loop of our test due to refresh
operations, and 2) we refresh the victim row (line 10) so that
we begin inducing RowHammer bit �ips on a fully-charged
row, which ensures that bit �ips we observe are not due to
retention time violations. The core loop of our RowHammer
test (Lines 11-13) induces RowHammer bit �ips in the victim
row by �rst activating aggressor_row1 then aggressor_row2,
HC times. After the core loop of our RowHammer test, we

5

164

1.	RowHammer Vulnerability

Newer	DRAM	chips	are	more	vulnerable	to	RowHammer

Q.	Can	we	induce	RowHammer bit	flips	in	all	of	our	DRAM	chips?

All	chips	are	vulnerable,	except	many	DDR3	chips	

• A	total	of	1320	out	of	all	1580	chips	(84%)	are	vulnerable

• Within	DDR3-old chips,	only	12% of	chips	(24/204)	are	vulnerable

• Within	DDR3-new chips,	65% of	chips	(148/228)	are	vulnerable

165

2.	Data	Pattern	Dependence
Q.	Are	some	data	patterns	more	effective	in	inducing	RowHammer bit	9lips?

• We	test	several	data	patterns typically	examined	in	prior	
work	to	identify	the	worst-case	data	pattern	

• The	worst-case	data	pattern	is	consistent	across	chips	of	the	
same	manufacturer	and	DRAM	type-node	configuration

• We	use	the	worst-case	data	pattern	per	DRAM	chip	to	
characterize	each	chip	at	worst-case	conditions and	
minimize	the	extensive	testing	time

[More detail and figures in paper]

166

3.	Hammer	Count	(HC)	Effects
DDR4-new

Hammer Count (HC)

Ro
w

H
am

m
er

Bi

t F
lip

 R
at

e

105104

100

10-1
10-2
10-3

10-4
10-5
10-6

10-7
10-8
10-9

10-10

Q.	How	does	the	Hammer	Count	affect	the	number	of	bit	flips	induced?

Mfr. A DDR4-new

Hammer Count = 2 Accesses,
one to each adjacent row of victim

167

4.	Spatial	Effects:	Row	Distance
Fr

ac
tio

n
of

 R
ow

H
am

m
er

 b
it

fli
ps

w

ith
 d

is
ta

nc
e

X
fro

m
 th

e
vi

ct
im

 ro
w

Distance from the victim row (row 0)
-6 -4 -2 0 2 4 6

0.0
0.2
0.4
0.6
0.8
1.0

The	number	of	RowHammer bit	flips	that	occur	in	a	given	row	
decreases	as	the	distance	from	the	victim	row	(row	0)	increases.	

Q.	Where	do	RowHammer bit	2lips	occur	relative	to	aggressor	rows?

Ag
gr

es
so

r R
ow

Ag
gr

es
so

r R
ow

Mfr.	A		DDR4-old

168

DDR3-new
DDR4-old

LPDDR4-1x

Mfr. A Mfr. B Mfr. C

Fr
ac

tio
n

of
 R

ow
H

am
m

er
 b

it
fli

ps

w
ith

 d
is

ta
nc

e
X

fro
m

 th
e

vi
ct

im
 ro

w

Distance from the victim row (row 0)

0.0
0.2
0.4
0.6
0.8
1.0

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Not Enough
Bit Flips

LPDDR4-1y
DDR4-new

Not Enough
Data

No Chips

No Chips

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

4.	Spatial	Effects:	Row	Distance

DDR3-new
DDR4-old

LPDDR4-1x

Mfr. A Mfr. B Mfr. C

Fr
ac

tio
n

of
 R

ow
H

am
m

er
 b

it
fli

ps

w
ith

 d
is

ta
nc

e
X

fro
m

 th
e

vi
ct

im
 ro

w

Distance from the victim row (row 0)

0.0
0.2
0.4
0.6
0.8
1.0

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Not Enough
Bit Flips

LPDDR4-1y
DDR4-new

Not Enough
Data

No Chips

No Chips

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

DDR3-new
DDR4-old

LPDDR4-1x

Mfr. A Mfr. B Mfr. C

Fr
ac

tio
n

of
 R

ow
H

am
m

er
 b

it
fli

ps

w
ith

 d
is

ta
nc

e
X

fro
m

 th
e

vi
ct

im
 ro

w

Distance from the victim row (row 0)

0.0
0.2
0.4
0.6
0.8
1.0

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Not Enough
Bit Flips

LPDDR4-1y
DDR4-new

Not Enough
Data

No Chips

No Chips

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

DDR3-new
DDR4-old

LPDDR4-1x

Mfr. A Mfr. B Mfr. C

Fr
ac

tio
n

of
 R

ow
H

am
m

er
 b

it
fli

ps

w
ith

 d
is

ta
nc

e
X

fro
m

 th
e

vi
ct

im
 ro

w

Distance from the victim row (row 0)

0.0
0.2
0.4
0.6
0.8
1.0

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Not Enough
Bit Flips

LPDDR4-1y
DDR4-new

Not Enough
Data

No Chips

No Chips

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

Chips	of	newer	DRAM	technology	nodes	can	exhibit	RowHammer
bit]lips	1)	in	more	rows	and	2)	farther	away	from	the	victim	row.	

We	normalize	data	by	inducing	a	bit	flip	rate	of	10-6 in	each	chip

169

4.	Spatial	Effects:	Row	Distance

DDR3-new
DDR4-old

LPDDR4-1x
Mfr. A Mfr. B Mfr. C

Fr
ac

tio
n

of
 R

ow
H

am
m

er
 b

it
fli

ps

w
ith

 d
is

ta
nc

e
X

fro
m

 th
e

vi
ct

im
 ro

w

Distance from the victim row (row 0)

0.0
0.2
0.4
0.6
0.8
1.0

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

Not Enough
Bit Flips

LPDDR4-1y
DDR4-new

Not Enough
Data

No Chips

No Chips

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

[More analysis in the paper]

We	plot	this	data	for	each	DRAM	type-node	configuration	per	manufacturer	

170

4.	Spatial	Distribution	of	Bit	Flips
Fr

ac
tio

n
of

 6
4-

bi
t w

or
ds

 c
on

ta
in

in
g

X
bi

t fl
ip

s

ov

er
 a

ll
64

-b
it

w
or

ds
 c

on
ta

in
in

g
bi

t fl
ip

s

Number of RowHammer bit flips per 64-bit word

0.0
0.2
0.4
0.6
0.8
1.0

1 2 3 4 5

Q.	How	are	RowHammer bit	flips	spatially	distributed	across	a	chip?

Fr
ac

tio
n

of
 6

4-
bi

t w
or

ds
 c

on
ta

in
in

g
X

bi
t fl

ip
s

ov
er

 a
ll

64
-b

it
w

or
ds

 c
on

ta
in

in
g

bi
t fl

ip
s

Number of RowHammer bit flips per 64-bit word

0.0
0.2
0.4
0.6
0.8
1.0

1 2 3 4 5
Fr

ac
tio

n
of

 6
4-

bi
t w

or
ds

 c
on

ta
in

in
g

X
bi

t fl
ip

s

ov

er
 a

ll 6
4-

bi
t w

or
ds

 c
on

ta
in

in
g

bi
t fl

ip
s

Number of RowHammer bit flips per 64-bit word

0.0
0.2
0.4
0.6
0.8
1.0

1 2 3 4 5

Mfr. A Mfr. B Mfr. C

F
ra

c
ti
o

n
 o

f
6

4
-b

it
 w

o
rd

s
 c

o
n

ta
in

in
g

 X
 b

it
 fl

ip
s

o
v
e
r

a
ll

6
4

-b
it
 w

o
rd

s
 c

o
n

ta
in

in
g

 b
it
 fl

ip
s

Number of RowHammer bit flips per 64-bit word
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Not Enough
Bit Flips

Not Enough
Data

No Chips

No Chips

D
D

R
3
-n

e
w

D
D

R
4
-o

ld
L
P

D
D

R
4
-1

x
L
P

D
D

R
4
-1

y
D

D
R

4
-n

e
w

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

The	distribution	of	RowHammer bit	Elip	density	per	word	
changes	signiGicantly	in	LPDDR4	chips	from	other	DRAM	types

Representative of DDR3/DDR4 chip Representa4ve of LPDDR4 chip

We	normalize	data	by	inducing	a	bit	flip	rate	of	10-6 in	each	chip

At	a	bit	flip	rate	of	10-6,	a	64-bit	word	can	contain	up	to	4	bit	flips.
Even	at	this	very	low	bit	flip	rate,	a	very	strong	ECC is	required

171

4.	Spatial	Distribution	of	Bit	Flips

Mfr. A Mfr. B Mfr. C
Fr

ac
tio

n
of

 6
4-

bi
t w

or
ds

 c
on

ta
in

in
g

X
bi

t fl
ip

s

ov

er
 a

ll
64

-b
it

w
or

ds
 c

on
ta

in
in

g
bi

t fl
ip

s

Number of RowHammer bit flips per 64-bit word
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Not Enough
Bit Flips

Not Enough
Data

No Chips

No Chips

DDR3-new
DDR4-old

LPDDR4-1x
LPDDR4-1y

DDR4-new

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

We	plot	this	data	for	each	DRAM	type-node	configuration	per	manufacturer	

[More analysis in the paper]

172

5.	First	RowHammer Bit	Flips	per	Chip

Mfr. C
H

am
m

er
 C

ou
nt

 n
ee

de
d

 fo
r t

he
 fi

rs
t b

it
fli

p
(H

C
fir

st
)

N
o

Bi
t F

lip
s

DD
R3

-o
ld

DD
R3

-n
ew

DD
R4

-o
ld

DD
R4

-n
ew

LP
DD

R4
-1

y0K

20K

40K

60K

80K

100K

120K

What	is	the	minimum	Hammer	Count	required	to	cause	bit	Blips	(HC&irst)?

Whisker
Q3:	75%	point
Median:	50%

Q1:	25%	point
Whisker

173

Evaluation	Methodology
• Cycle-level	simulator: Ramulator [Kim+,	CAL’15]
https://github.com/CMU-SAFARI/ramulator
- 4GHz,	4-wide,	128	entry	instruction	window	
- 48		8-core	workload	mixes	randomly	drawn	from	SPEC	
CPU2006	(10	<	MPKI	<	740)

• Metrics	to	evaluate	mitigation	mechanisms
1. DRAM	Bandwidth	Overhead: fraction	of	total	system	DRAM	

bandwidth	consumption	from	mitigation	mechanism	
2. Normalized	System	Performance: normalized	weighted	

speedup	to	a	100%	baseline

https://github.com/CMU-SAFARI/ramulator

174

Evaluation	Methodology
• We	evaluate	five state-of-the-art	mitigation	mechanisms:
- Increased	Refresh	Rate	[Kim+,	ISCA’14]
- PARA [Kim+,	ISCA’14]

- ProHIT [Son+,	DAC’17]

- MRLoc [You+,	DAC’19]
- TWiCe [Lee+,	ISCA’19]

• and	one ideal	refresh-based	mitigation	mechanism:
- Ideal

• More	detailed	descriptions	in	the	paper	on:
- Descriptions	of	mechanisms	in	our	paper	and	the	original	publications
- How	we	scale	each	mechanism	to	more	vulnerable	DRAM	chips	(lower	HCfirst)

175

Mitigation	Mech.	Eval.	(Increased	Refresh)

105 104 103 102

105 104 103 102

HCfirst (number	of	hammers	required	to	induce	first	RowHammer bit	flip)

D
R

AM
 b

an
dw

id
th

 o
ve

rh
ea

d
of

 R
ow

H
am

m
er

 m
iti

ga
tio

n
(%

)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

D
R

AM
 b

an
dw

id
th

 o
ve

rh
ea

d
of

 R
ow

H
am

m
er

 m
iti

ga
tio

n
(%

)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w
105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

Substantial overhead	for	high	HCfirst values.

This	mechanism	does	not	support	HCfirst <	32k	
due	to	the	prohibitively	high	refresh	rates	required

176

D
R

AM
 b

an
dw

id
th

 o
ve

rh
ea

d
of

 R
ow

H
am

m
er

 m
iti

ga
tio

n
(%

)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w
105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

105 104 103 102

105 104 103 102
D

R
AM

 b
an

dw
id

th
 o

ve
rh

ea
d

of
 R

ow
H

am
m

er
 m

iti
ga

tio
n

(%
)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

Mitigation	Mechanism	Evaluation	(PARA)	

HCfirst (number	of	hammers	required	to	induce	first	RowHammer bit	flip)

Low	Performance	Overhead High	Performance	Overhead

80%	performance	loss

177

105 104 103 102

105 104 103 102
D

R
AM

 b
an

dw
id

th
 o

ve
rh

ea
d

of
 R

ow
H

am
m

er
 m

iti
ga

tio
n

(%
)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

Mitigation	Mechanism	Evaluation	(ProHIT)
D

R
AM

 b
an

dw
id

th
 o

ve
rh

ea
d

of
 R

ow
H

am
m

er
 m

iti
ga

tio
n

(%
)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w
105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

HCfirst (number	of	hammers	required	to	induce	first	RowHammer bit	flip)

178

105 104 103 102

105 104 103 102
D

R
AM

 b
an

dw
id

th
 o

ve
rh

ea
d

of
 R

ow
H

am
m

er
 m

iti
ga

tio
n

(%
)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

Mitigation	Mechanism	Evaluation	(MRLoc)
D

R
AM

 b
an

dw
id

th
 o

ve
rh

ea
d

of
 R

ow
H

am
m

er
 m

iti
ga

tio
n

(%
)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w
105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

HC&irst (number	of	hammers	required	to	induce	:irst	RowHammer bit	:lip)

Models	for	scaling ProHIT and	MRLoc for	HCfirst <	2k	
are	not	provided	and	how	to	do	so	is	not	intuitive

Supported Not	supported

179

105 104 103 102

105 104 103 102
D

R
AM

 b
an

dw
id

th
 o

ve
rh

ea
d

of
 R

ow
H

am
m

er
 m

iti
ga

tio
n

(%
)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

Mitigation	Mechanism	Evaluation	(TWiCe)
D

R
AM

 b
an

dw
id

th
 o

ve
rh

ea
d

of
 R

ow
H

am
m

er
 m

iti
ga

tio
n

(%
)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w
105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

HCfirst (number	of	hammers	required	to	induce	first	RowHammer bit	flip)

Supported Not	supported

TWiCe does	not	support	HCfirst <	32k.	

We	evaluate	an	ideal	scalable	version	(TWiCe-ideal)	
assuming	it	solves	two	critical	design	issues

180

105 104 103 102

105 104 103 102
D

R
AM

 b
an

dw
id

th
 o

ve
rh

ea
d

of
 R

ow
H

am
m

er
 m

iti
ga

tio
n

(%
)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

Mitigation	Mechanism	Evaluation	(Ideal)
D

R
AM

 b
an

dw
id

th
 o

ve
rh

ea
d

of
 R

ow
H

am
m

er
 m

iti
ga

tio
n

(%
)

HCfirst

N
or

m
al

iz
ed

 S

ys
te

m
 P

er
fo

rm
an

ce
 (%

)

a)

b)

LPDDR4-1y
DDR4-new

DDR4-old
DDR3-old

LPDDR4-1x

LPDDR4-1x

DDR3-old
DDR4-old

DDR4-new

DDR4-new
DDR4-old

DDR3-old

}
}
}Mfr. A

Mfr. B

Mfr. C

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w
105 104 103 102

105 104 103 102

10-3

10-2

10-1

100

101

102

103

0

 20

 40

 60

 80

 100

 10

 30

 50

 70

 90

DDR3-new

LPDDR4-1y

DDR3-new

DDR3-new

D
D
R
3-
ol
d

D
D
R
4-
ol
d

D
D
R
4-
ne

w

LP
D
D
R
4-
1x

LP
D
D
R
4-
1y

D
D
R
3-
ne

w

PARA

TWiCe-ideal

Ideal

Ideal

TWiCe-ideal

PARA

HCfirst (number	of	hammers	required	to	induce	first	RowHammer bit	flip)

Ideal	mechanism	issues	a	refresh	command	
to	a	row	only	right	before	the	row	

can	potentially	experience	a	RowHammer bit	flip	

6%	performance	loss

181

Additional	Details	in	the	Paper	
• Single-cell	RowHammer bit	flip	probability

• More	details	on	our	data	pattern	dependence study

• Analysis	of	Error	Correcting	Codes	(ECC) in	mitigating	
RowHammer bit	flips

• Additional	observations on	our	data	

• Methodology	details	for	characterizing	DRAM

• Further	discussion	on	comparing	data	across	different	
infrastructures

• Discussion	on	scaling	each	mitigation	mechanism

RowHammer Reviews

Initial RowHammer Reviews

Missing the Point Reviews from Micro 2013

More … Reviews from ISCA 2014

Final RowHammer Reviews

Before RowHammer (I)

187https://www.cs.princeton.edu/~appel/papers/memerr.pdf

https://www.cs.princeton.edu/~appel/papers/memerr.pdf

Before RowHammer (II)

188https://www.cs.princeton.edu/~appel/papers/memerr.pdf

https://www.cs.princeton.edu/~appel/papers/memerr.pdf

Aside: Byzantine Failures
n This class of failures is known as Byzantine failures

n Characterized by
q Undetected erroneous computation
q Opposite of “fail fast (with an error or no result)”

n “erroneous” can be “malicious” (intent is the only
distinction)

n Very difficult to detect and confine Byzantine failures
n Do all you can to avoid them

n Lamport et al., “The Byzantine Generals Problem,” ACM TOPLAS 1982.

189Slide credit: Mahadev Satyanarayanan, CMU, 15-440, Spring 2015

Aside: Byzantine Generals Problem

190https://dl.acm.org/citation.cfm?id=357176

https://dl.acm.org/citation.cfm?id=357176

RowHammer, Revisited
n One can predictably induce bit flips in commodity DRAM chips

q >80% of the tested DRAM chips are vulnerable

n First example of how a simple hardware failure mechanism
can create a widespread system security vulnerability

191

