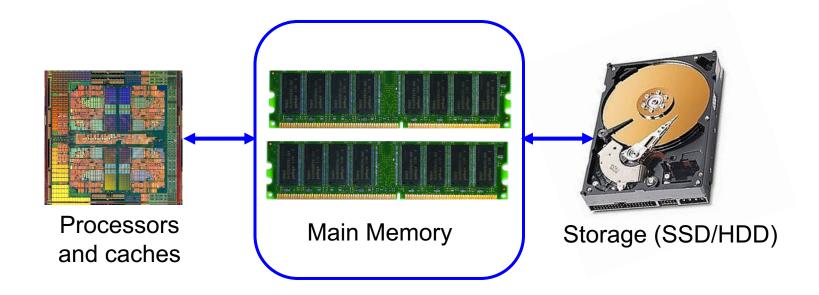
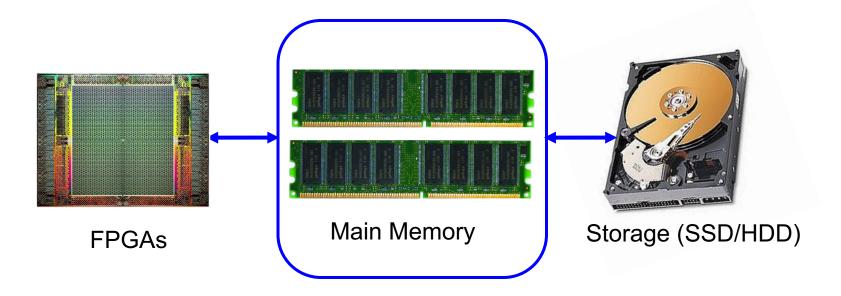
RowHammer and Beyond RowHammer and Other Issues We May Face as Memory Becomes Denser

> Onur Mutlu <u>omutlu@gmail.com</u> https://poople.inf.otbz.ch/omut

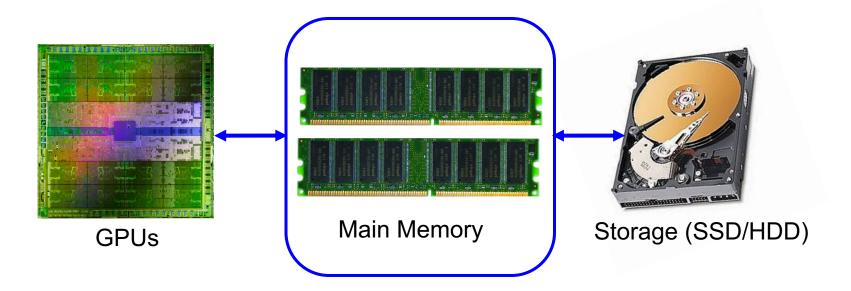
https://people.inf.ethz.ch/omutlu


2 August 2018 MSR Faculty Summit

Systems @ ETH zürich



The Main Memory System


- Main memory is a critical component of all computing systems: server, mobile, embedded, desktop, sensor
- Main memory system must scale (in size, technology, efficiency, cost, and management algorithms) to maintain performance growth and technology scaling benefits

The Main Memory System

- Main memory is a critical component of all computing systems: server, mobile, embedded, desktop, sensor
- Main memory system must scale (in size, technology, efficiency, cost, and management algorithms) to maintain performance growth and technology scaling benefits

The Main Memory System

- Main memory is a critical component of all computing systems: server, mobile, embedded, desktop, sensor
- Main memory system must scale (in size, technology, efficiency, cost, and management algorithms) to maintain performance growth and technology scaling benefits

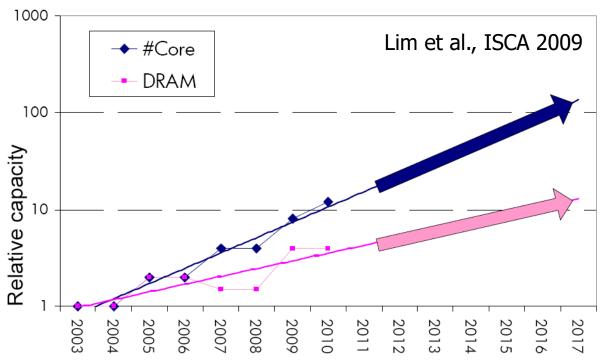
Major Trends Affecting Main Memory (I)

Need for main memory capacity, bandwidth, QoS increasing

Main memory energy/power is a key system design concern

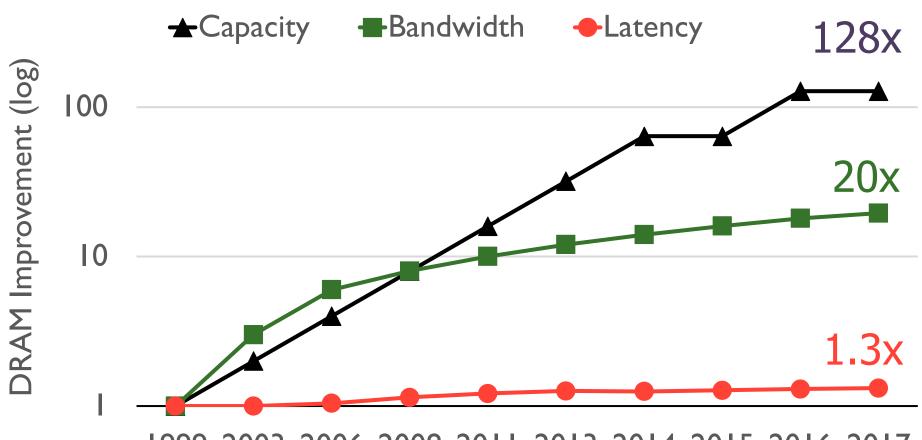
DRAM technology scaling is ending

Major Trends Affecting Main Memory (II)


- Need for main memory capacity, bandwidth, QoS increasing
 - Multi-core: increasing number of cores/agents
 - Data-intensive applications: increasing demand/hunger for data
 - Consolidation: cloud computing, GPUs, mobile, heterogeneity

• Main memory energy/power is a key system design concern

DRAM technology scaling is ending


Consequence: The Memory Capacity Gap

Core count doubling ~ every 2 years DRAM DIMM capacity doubling ~ every 3 years

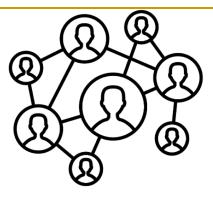
Memory capacity per core expected to drop by 30% every two years
Trends worse for *memory bandwidth per core*!

Example: Capacity, Bandwidth & Latency

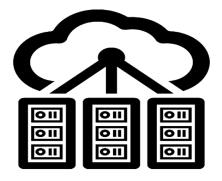
1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

Memory latency remains almost constant

DRAM Is Critical for Performance


In-memory Databases

[Mao+, EuroSys'12; Clapp+ (**Intel**), IISWC'15]



In-Memory Data Analytics

[Clapp+ (**Intel**), IISWC'15; Awan+, BDCloud'15]

Graph/Tree Processing [Xu+, IISWC'12; Umuroglu+, FPL'15]

Datacenter Workloads [Kanev+ (**Google**), ISCA'15]

DRAM Is Critical for Performance

In-memory Databases

Graph/Tree Processing

Memory → performance bottleneck

In-Memory Data Analytics

[Clapp+ (**Intel**), IISWC'15; Awan+, BDCloud'15]

Datacenter Workloads [Kanev+ (**Google**), ISCA'15]

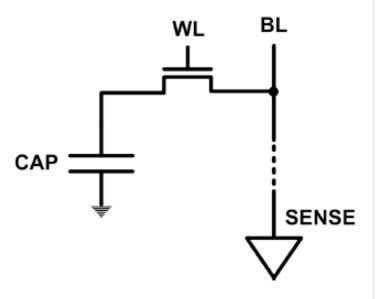
Major Trends Affecting Main Memory (III)

Need for main memory capacity, bandwidth, QoS increasing

- Main memory energy/power is a key system design concern
 - ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, IEEE Computer'03] >40% power in DRAM [Ware, HPCA'10][Paul,ISCA'15]
 - DRAM consumes power even when not used (periodic refresh)
- DRAM technology scaling is ending

Major Trends Affecting Main Memory (IV)

Need for main memory capacity, bandwidth, QoS increasing


Main memory energy/power is a key system design concern

DRAM technology scaling is ending

- ITRS projects DRAM will not scale easily below X nm
- Scaling has provided many benefits:
 - higher capacity (density), lower cost, lower energy

The DRAM Scaling Problem

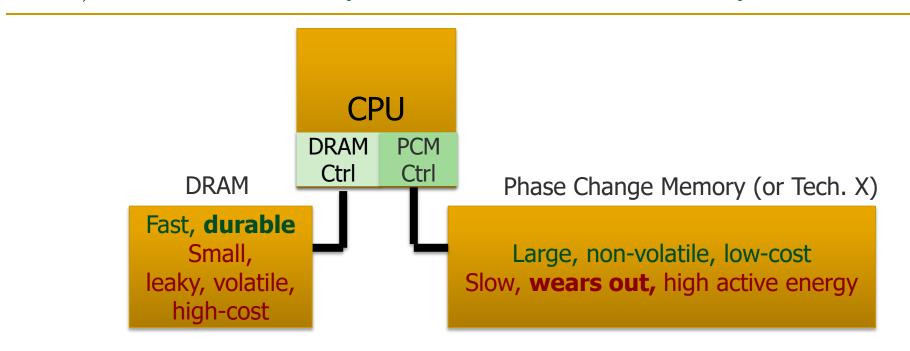
- DRAM stores charge in a capacitor (charge-based memory)
 - Capacitor must be large enough for reliable sensing
 - Access transistor should be large enough for low leakage and high retention time
 - Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

As DRAM cell becomes smaller, it becomes more vulnerable

Major Trends Affecting Main Memory (V)

- DRAM scaling has already become increasingly difficult
 - Increasing cell leakage current, reduced cell reliability, increasing manufacturing difficulties [Kim+ ISCA 2014], [Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]
 - Difficult to significantly improve capacity, energy

Emerging memory technologies are promising


Major Trends Affecting Main Memory (V)

- DRAM scaling has already become increasingly difficult
 - Increasing cell leakage current, reduced cell reliability, increasing manufacturing difficulties [Kim+ ISCA 2014], [Liu+ ISCA 2013], [Mutlu IMW 2013], [Mutlu DATE 2017]
 - Difficult to significantly improve capacity, energy

Emerging memory technologies are promising

3D-Stacked DRAM	higher bandwidth	smaller capacity
Reduced-Latency DRAM (e.g., RL/TL-DRAM, FLY-RAM)	lower latency	higher cost
Low-Power DRAM (e.g., LPDDR3, LPDDR4, Voltron)	lower power	higher latency higher cost
Non-Volatile Memory (NVM) (e.g., PCM, STTRAM, ReRAM, 3D Xpoint)	larger capacity	higher latency higher dynamic power lower endurance

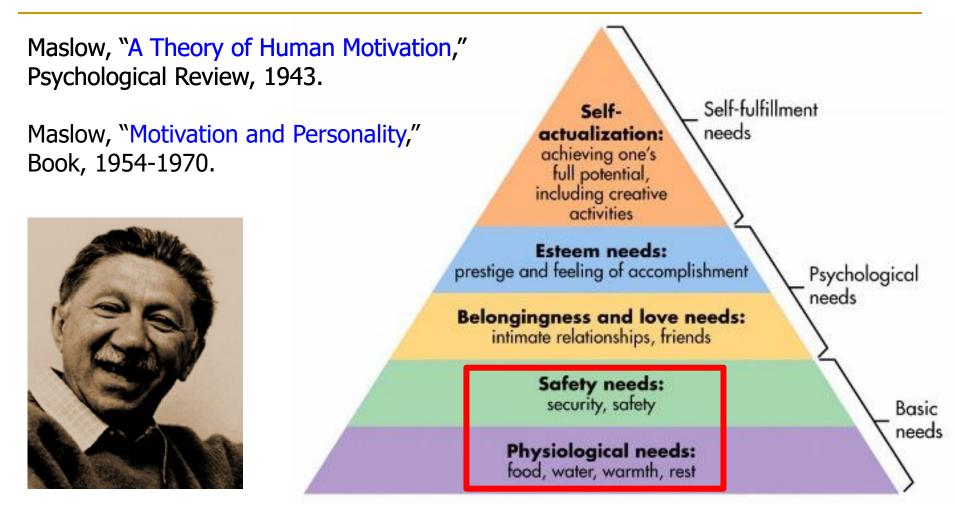
Major Trend: Hybrid Main Memory

Hardware/software manage data allocation and movement to achieve the best of multiple technologies

Meza+, "Enabling Efficient and Scalable Hybrid Memories," IEEE Comp. Arch. Letters, 2012. Yoon+, "Row Buffer Locality Aware Caching Policies for Hybrid Memories," ICCD 2012 Best Paper Award.

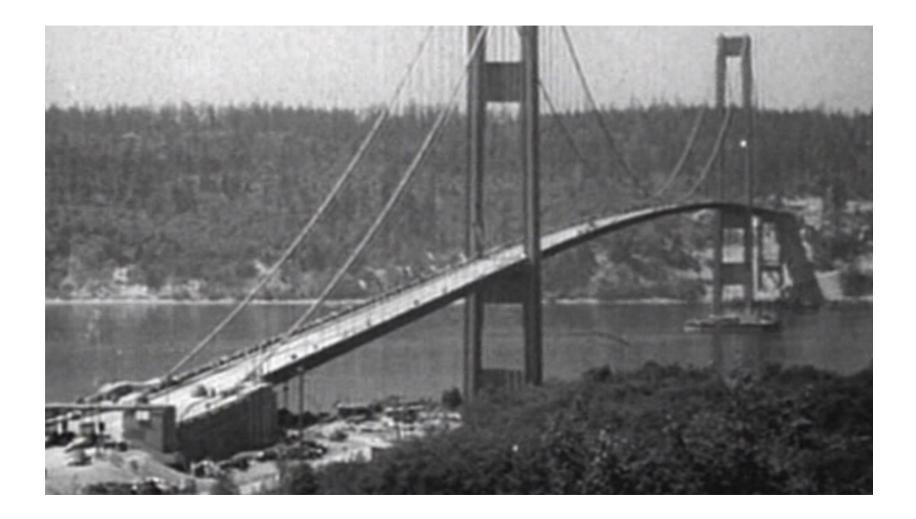
- Major Trends Affecting Main Memory
- The Memory Scaling Problem, Its Consequences, Solutions
 - Rowhammer
 - Beyond Rowhammer: Future Reliability/Security Issues
 - Enabling Secure Systems
- Summary

Fixing the Memory Problem


Secure/Reliable/Safe Architectures

- Energy-Efficient Architectures
 - Memory-centric (Data-centric) Architectures

Low-Latency and QoS-Aware Architectures


Specialized Architectures for Key Workloads

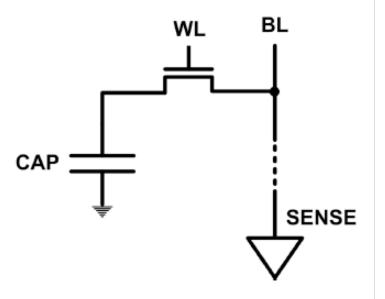
Maslow's (Human) Hierarchy of Needs

We need to start with reliability and security...

How Reliable/Secure/Safe is This Bridge?

Collapse of the "Galloping Gertie"

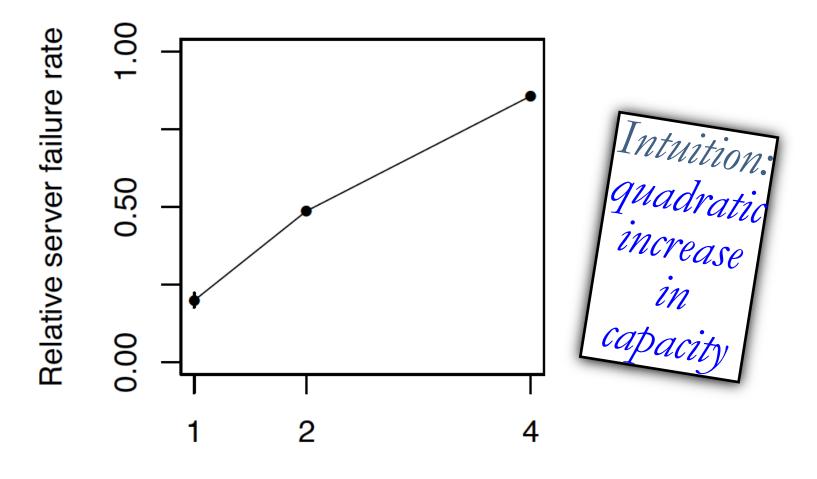
How Secure Are These People?



Security is about preventing unforeseen consequences

Source: https://s-media-cache-ak0.pinimg.com/originals/48/09/54/4809543a9c7700246a0cf8acdae27abf.jpg

The DRAM Scaling Problem


- DRAM stores charge in a capacitor (charge-based memory)
 - Capacitor must be large enough for reliable sensing
 - Access transistor should be large enough for low leakage and high retention time
 - Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

DRAM capacity, cost, and energy/power hard to scale

As Memory Scales, It Becomes Unreliable

- Data from all of Facebook's servers worldwide
- Meza+, "Revisiting Memory Errors in Large-Scale Production Data Centers," DSN'15.

Chip density (Gb)

Large-Scale Failure Analysis of DRAM Chips

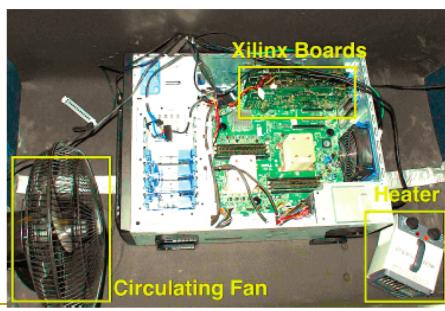
- Analysis and modeling of memory errors found in all of Facebook's server fleet
- Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, <u>"Revisiting Memory Errors in Large-Scale Production Data</u> <u>Centers: Analysis and Modeling of New Trends from the Field"</u> *Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> <u>Dependable Systems and Networks</u> (DSN), Rio de Janeiro, Brazil, June 2015. [<u>Slides (pptx) (pdf)</u>] [DRAM Error Model]*

Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field

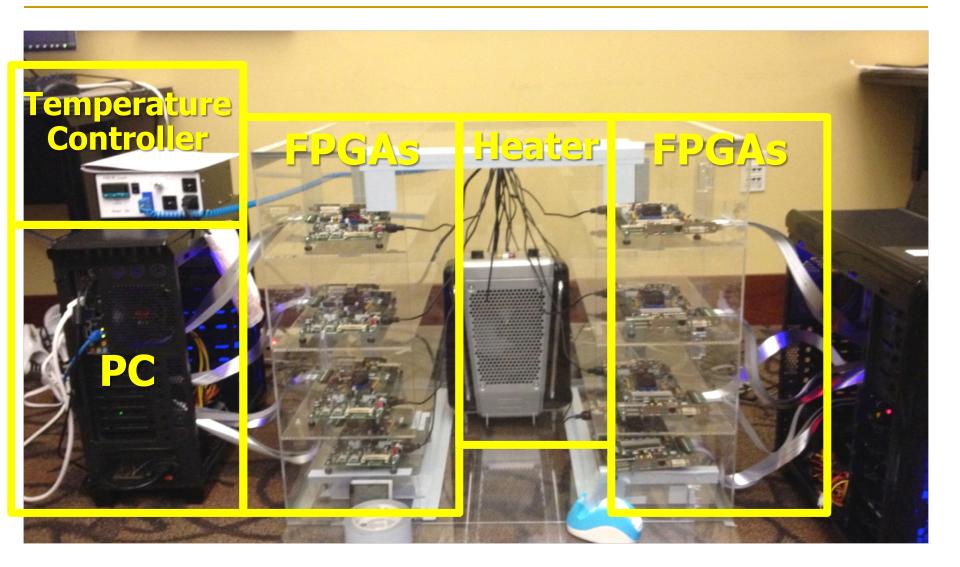
Justin Meza Qiang Wu* Sanjeev Kumar* Onur Mutlu

Carnegie Mellon University * Facebook, Inc.

Infrastructures to Understand Such Issues



Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014)

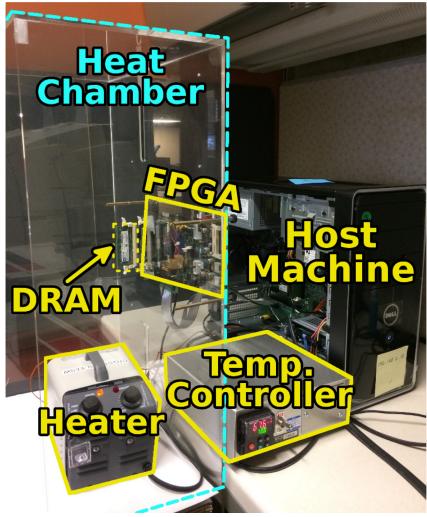

Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case (Lee et al., HPCA 2015)

AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems (Qureshi et al., DSN 2015) An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study (Khan et al., SIGMETRICS 2014)

Infrastructures to Understand Such Issues

SAFARI


Kim+, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors," ISCA 2014.

SoftMC: Open Source DRAM Infrastructure

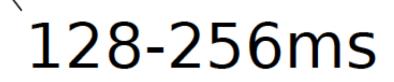
 Hasan Hassan et al., "<u>SoftMC: A</u> <u>Flexible and Practical Open-</u> <u>Source Infrastructure for</u> <u>Enabling Experimental DRAM</u> <u>Studies</u>," HPCA 2017.

- Flexible
- Easy to Use (C++ API)
- Open-source

github.com/CMU-SAFARI/SoftMC

<u>https://github.com/CMU-SAFARI/SoftMC</u>

SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling Experimental DRAM Studies


Hasan Hassan^{1,2,3} Nandita Vijaykumar³ Samira Khan^{4,3} Saugata Ghose³ Kevin Chang³ Gennady Pekhimenko^{5,3} Donghyuk Lee^{6,3} Oguz Ergin² Onur Mutlu^{1,3}

¹ETH Zürich ²TOBB University of Economics & Technology ³Carnegie Mellon University ⁴University of Virginia ⁵Microsoft Research ⁶NVIDIA Research

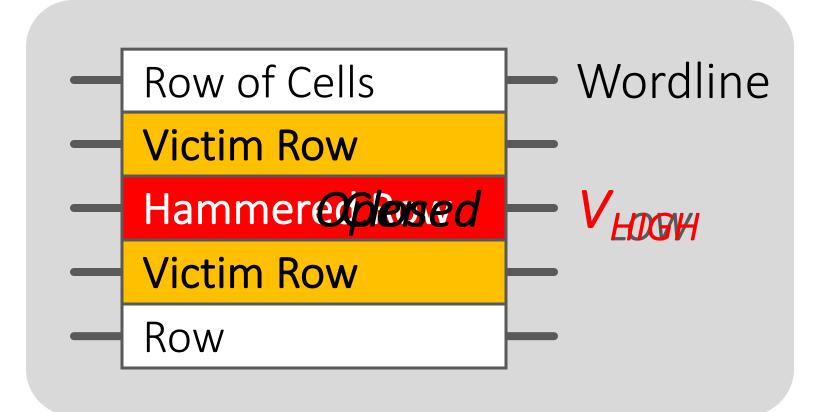
Data Retention in Memory [Liu et al., ISCA 2013]

Retention Time Profile of DRAM looks like this:

>256ms

64-128ms

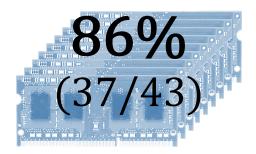
Location dependent Stored value pattern dependent Time dependent

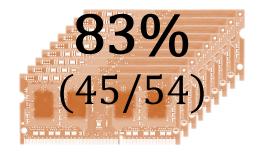

A Curious Discovery [Kim et al., ISCA 2014]

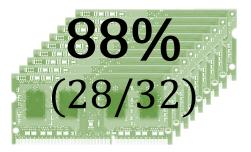
One can predictably induce errors in most DRAM memory chips

A simple hardware failure mechanism can create a widespread system security vulnerability

Modern DRAM is Prone to Disturbance Errors

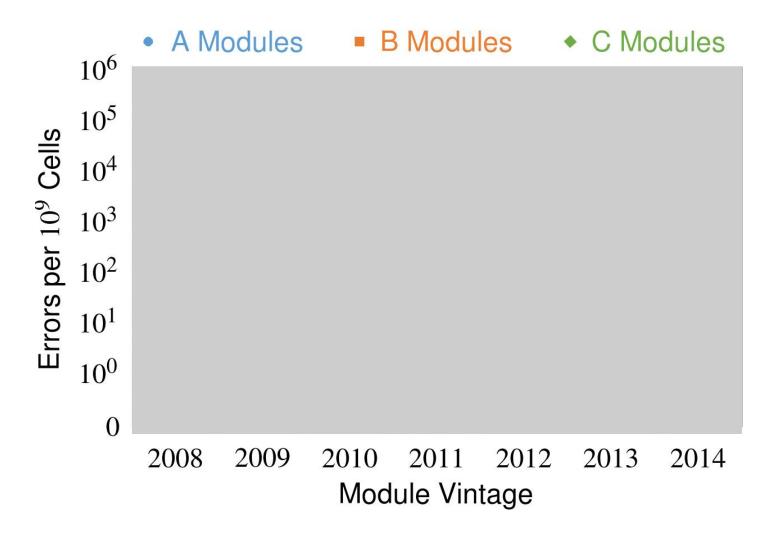


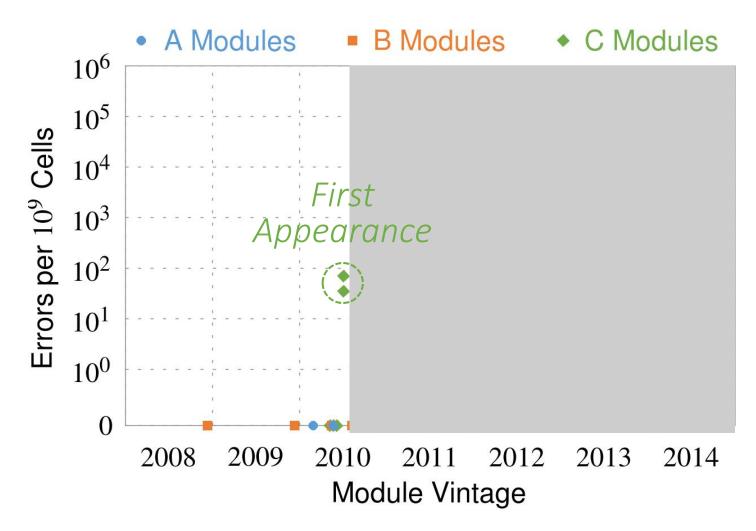

Repeatedly reading a row enough times (before memory gets refreshed) induces disturbance errors in adjacent rows in most real DRAM chips you can buy today


<u>Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM</u> <u>Disturbance Errors</u>, (Kim et al., ISCA 2014)

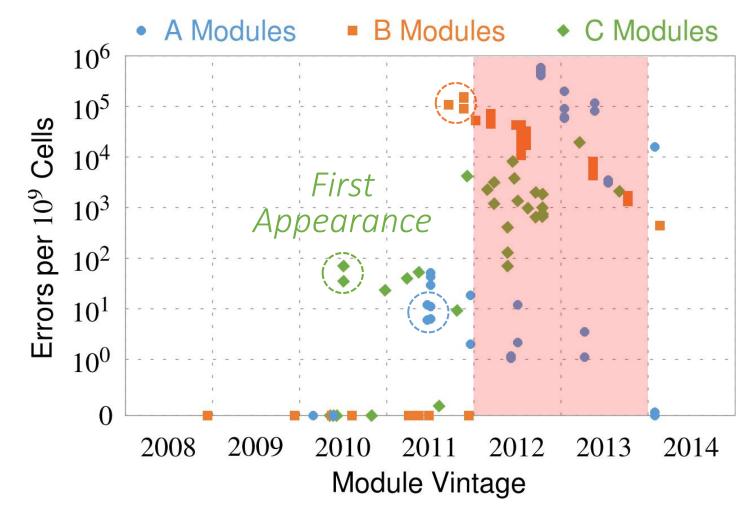
Most DRAM Modules Are Vulnerable

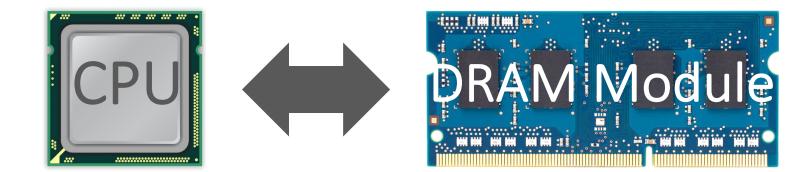
A company B company C company

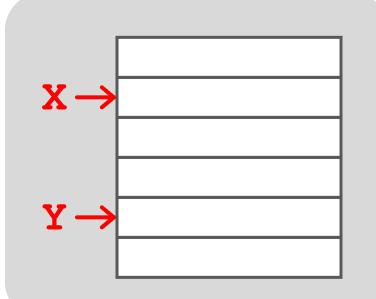


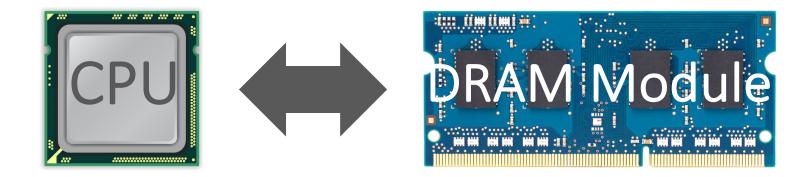

Up to	Up to	Up to
1.0×10 ⁷	2.7×10 ⁶	3.3×10 ⁵
errors	errors	errors

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors, (Kim et al., ISCA 2014)

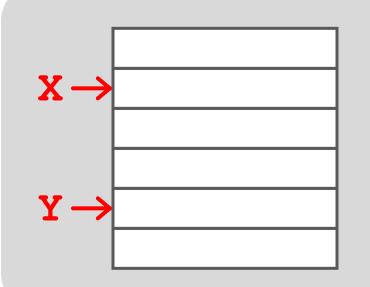

Recent DRAM Is More Vulnerable

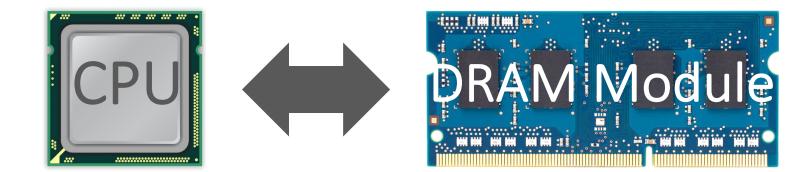

Recent DRAM Is More Vulnerable

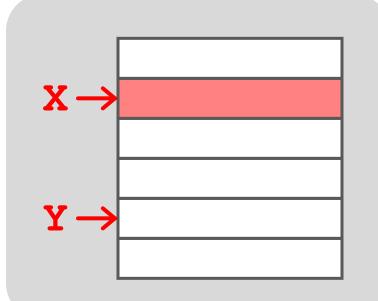

Recent DRAM Is More Vulnerable

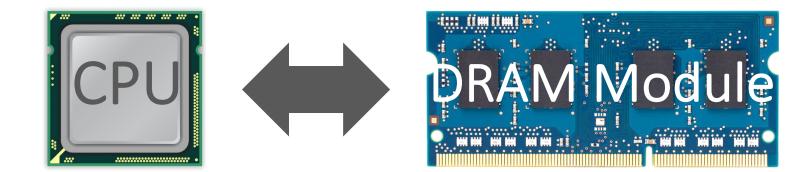


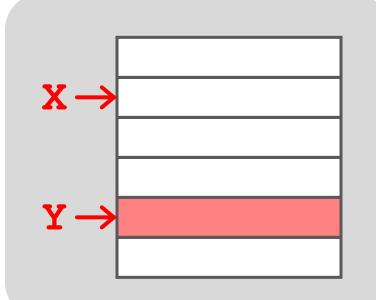
All modules from 2012–2013 are vulnerable

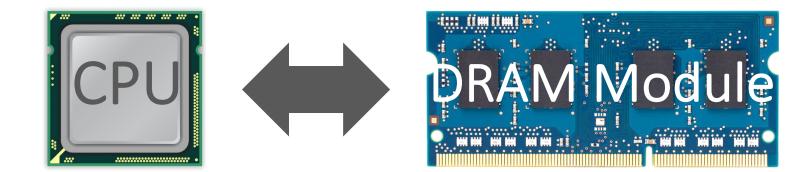


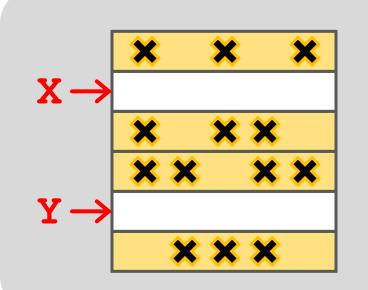

loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (X) mfence jmp loop




- Avoid *cache hits* Flush X from cache
- Avoid *row hits* to X
 Read Y in another row




loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (X) mfence jmp loop



loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (X) mfence jmp loop

loop: mov (X), %eax mov (Y), %ebx clflush (X) clflush (Y) mfence jmp loop

Observed Errors in Real Systems

CPU Architecture	Errors	Access-Rate
Intel Haswell (2013)	22.9K	12.3M/sec
Intel Ivy Bridge (2012)	20.7K	11.7M/sec
Intel Sandy Bridge (2011)	16.1K	11.6M/sec
AMD Piledriver (2012)	59	6.1M/sec

A real reliability & security issue

Kim+, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors," ISCA 2014.

One Can Take Over an Otherwise-Secure System

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Abstract. Memory isolation is a key property of a reliable and secure computing system — an access to one memory address should not have unintended side effects on data stored in other addresses. However, as DRAM process technology

Project Zero

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014)

News and updates from the Project Zero team at Google

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn, 2015)

Monday, March 9, 2015

Exploiting the DRAM rowhammer bug to gain kernel privileges

RowHammer Security Attack Example

- "Rowhammer" is a problem with some recent DRAM devices in which repeatedly accessing a row of memory can cause bit flips in adjacent rows (Kim et al., ISCA 2014).
 - Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014)
- We tested a selection of laptops and found that a subset of them exhibited the problem.
- We built two working privilege escalation exploits that use this effect.
 - Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)
- One exploit uses rowhammer-induced bit flips to gain kernel privileges on x86-64 Linux when run as an unprivileged userland process.
- When run on a machine vulnerable to the rowhammer problem, the process was able to induce bit flips in page table entries (PTEs).
- It was able to use this to gain write access to its own page table, and hence gain read-write access to all of physical memory.

Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn & Dullien, 2015)

Security Implications

Security Implications

It's like breaking into an apartment by repeatedly slamming a neighbor's door until the vibrations open the door you were after

Selected Readings on RowHammer (I)

- Our first detailed study: Rowhammer analysis and solutions (June 2014)
 - Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
 "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors"
 Proceedings of the <u>41st International Symposium on Computer Architecture</u> (ISCA), Minneapolis, MN, June 2014. [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data]
- Our Source Code to Induce Errors in Modern DRAM Chips (June 2014)
 - <u>https://github.com/CMU-SAFARI/rowhammer</u>
- Google Project Zero's Attack to Take Over a System (March 2015)
 - Exploiting the DRAM rowhammer bug to gain kernel privileges (Seaborn+, 2015)
 - <u>https://github.com/google/rowhammer-test</u>
 - Double-sided Rowhammer

Selected Readings on RowHammer (II)

- Remote RowHammer Attacks via JavaScript (July 2015)
 - <u>http://arxiv.org/abs/1507.06955</u>
 - https://github.com/IAIK/rowhammerjs
 - Gruss et al., DIMVA 2016.
 - CLFLUSH-free Rowhammer
 - "A fully automated attack that requires nothing but a website with JavaScript to trigger faults on remote hardware."
 - "We can gain unrestricted access to systems of website visitors."
- ANVIL: Software-Based Protection Against Next-Generation Rowhammer Attacks (March 2016)
 - http://dl.acm.org/citation.cfm?doid=2872362.2872390
 - Aweke et al., ASPLOS 2016
 - CLFLUSH-free Rowhammer
 - Software based monitoring for rowhammer detection

Selected Readings on RowHammer (III)

- Dedup Est Machina: Memory Deduplication as an Advanced Exploitation Vector (May 2016)
 - https://www.ieee-security.org/TC/SP2016/papers/0824a987.pdf
 - Bosman et al., IEEE S&P 2016.
 - Exploits Rowhammer and Memory Deduplication to overtake a browser
 - "We report on the first reliable remote exploit for the Rowhammer vulnerability running entirely in Microsoft Edge."
 - "[an attacker] ... can reliably "own" a system with all defenses up, even if the software is entirely free of bugs."

Selected Readings on RowHammer (IV)

- Flip Feng Shui: Hammering a Needle in the Software Stack (August 2016)
 - https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper razavi.pdf
 - Razavi et al., USENIX Security 2016.
 - Combines memory deduplication and RowHammer
 - "A malicious VM can gain unauthorized access to a co-hosted VM running OpenSSH."
 - Breaks OpenSSH public key authentication
- Drammer: Deterministic Rowhammer Attacks on Mobile Platforms (October 2016)
 - <u>http://dl.acm.org/citation.cfm?id=2976749.2978406</u>
 - Van Der Veen et al., CCS 2016
 - **Can take over an ARM-based Android system deterministically**
 - Exploits predictable physical memory allocator behavior
 - Can deterministically place security-sensitive data (e.g., page table) in an attackerchosen, vulnerable location in memory

Selected Readings on RowHammer (V)

- Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU (May 2018)
 - https://www.vusec.net/wp-content/uploads/2018/05/glitch.pdf
 - Frigo et al., IEEE S&P 2018.
 - The first end-to-end remote Rowhammer exploit on mobile platforms that use our GPU-based primitives in orchestration to compromise browsers on mobile devices in under two minutes.
- Throwhammer: Rowhammer Attacks over the Network and Defenses (July 2018)
 - https://www.cs.vu.nl/~herbertb/download/papers/throwhammer_atc18.pdf
 - Tatar et al., USENIX ATC 2018.
 - "[We] show that an attacker can trigger and exploit Rowhammer bit flips directly from a remote machine by only sending network packets."

Selected Readings on RowHammer (VI)

- Nethammer: Inducing Rowhammer Faults through Network Requests (July 2018)
 - https://arxiv.org/pdf/1805.04956.pdf
 - Lipp et al., arxiv.org 2018.
 - "Nethammer is the first truly remote Rowhammer attack, without a single attacker-controlled line of code on the targeted system."

More Security Implications (I)

"We can gain unrestricted access to systems of website visitors."

Not there yet, but ...

ROOT privileges for web apps!

Daniel Gruss (@lavados), Clémentine Maurice (@BloodyTangerine), December 28, 2015 - 32c3, Hamburg, Germany

Rowhammer.js: A Remote Software-Induced Fault Attack in JavaScript (DIMVA'16)

29

More Security Implications (II)

"Can gain control of a smart phone deterministically"

Hammer And Root

anoroio Millions of Androids

Drammer: Deterministic Rowhammer

Attacks on Mobile Platforms, CCS'16 55

Source: https://fossbytes.com/drammer-rowhammer-attack-android-root-devices/

More Security Implications (III)

 Using an integrated GPU in a mobile system to remotely escalate privilege via the WebGL interface

ars technica

BIZ & IT TECH SCIENCE POLICY CARS GAMING & CULTURE

Drive-by Rowhammer attack uses GPU to compromise an Android phone

JavaScript based GLitch pwns browsers by flipping bits inside memory chips.

DAN GOODIN - 5/3/2018, 12:00 PM

Grand Pwning Unit: Accelerating Microarchitectural Attacks with the GPU

Pietro Frigo Vrije Universiteit Amsterdam p.frigo@vu.nl Cristiano Giuffrida Vrije Universiteit Amsterdam giuffrida@cs.vu.nl Herbert Bos Vrije Universiteit Amsterdam herbertb@cs.vu.nl Kaveh Razavi Vrije Universiteit Amsterdam kaveh@cs.vu.nl

More Security Implications (IV)

Rowhammer over RDMA (I)

ars TECHNICA

BIZ & IT TECH SCIENCE POLICY CARS GAMING & CULTURE

THROWHAMMER —

Packets over a LAN are all it takes to trigger serious Rowhammer bit flips

The bar for exploiting potentially serious DDR weakness keeps getting lower.

DAN GOODIN - 5/10/2018, 5:26 PM

Throwhammer: Rowhammer Attacks over the Network and Defenses

Andrei Tatar VU Amsterdam Radhesh Krishnan VU Amsterdam Elias Athanasopoulos University of Cyprus

Herbert Bos VU Amsterdam Kaveh Razavi VU Amsterdam Cristiano Giuffrida VU Amsterdam

More Security Implications (V)

Rowhammer over RDMA (II)

Nethammer—Exploiting DRAM Rowhammer Bug Through Network Requests

Nethammer: Inducing Rowhammer Faults through Network Requests

Moritz Lipp Graz University of Technology

Daniel Gruss Graz University of Technology Misiker Tadesse Aga University of Michigan

Clémentine Maurice Univ Rennes, CNRS, IRISA

Lukas Lamster Graz University of Technology Michael Schwarz Graz University of Technology

Lukas Raab Graz University of Technology

More Security Implications?

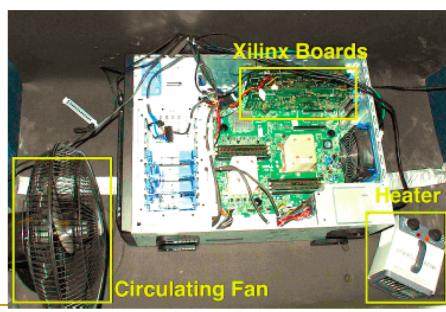
Understanding RowHammer

Root Causes of Disturbance Errors

- Cause 1: Electromagnetic coupling
 - Toggling the wordline voltage briefly increases the voltage of adjacent wordlines
 - − Slightly opens adjacent rows → Charge leakage
- Cause 2: Conductive bridges
- Cause 3: Hot-carrier injection

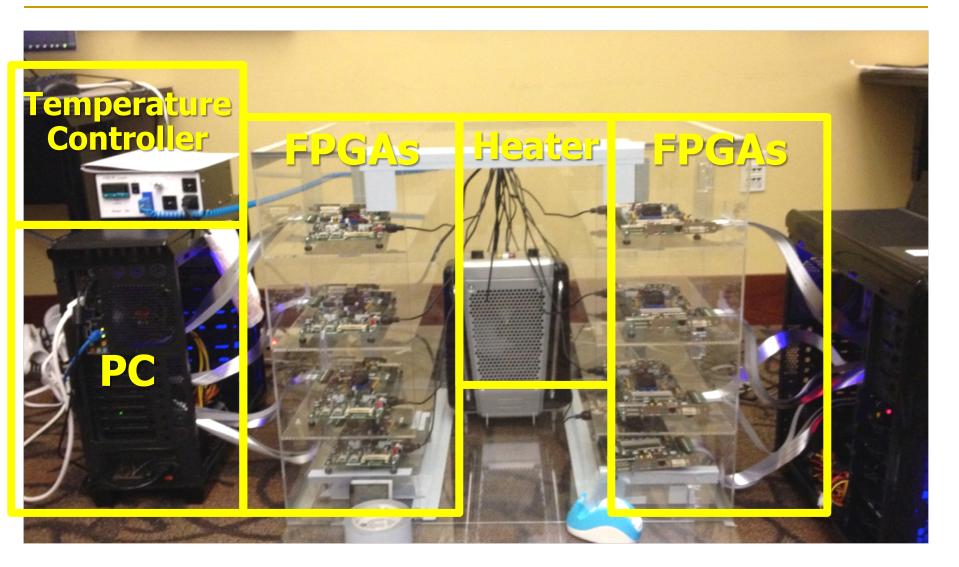
Confirmed by at least one manufacturer

Experimental DRAM Testing Infrastructure



Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors (Kim et al., ISCA 2014)

Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case (Lee et al., HPCA 2015)

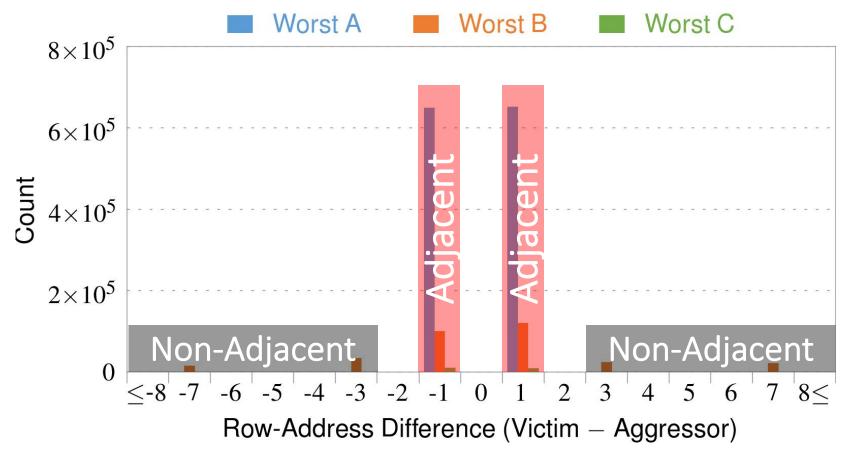

AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems (Qureshi et al., DSN 2015) An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms (Liu et al., ISCA 2013)

The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study (Khan et al., SIGMETRICS 2014)

SAFARI

Experimental DRAM Testing Infrastructure

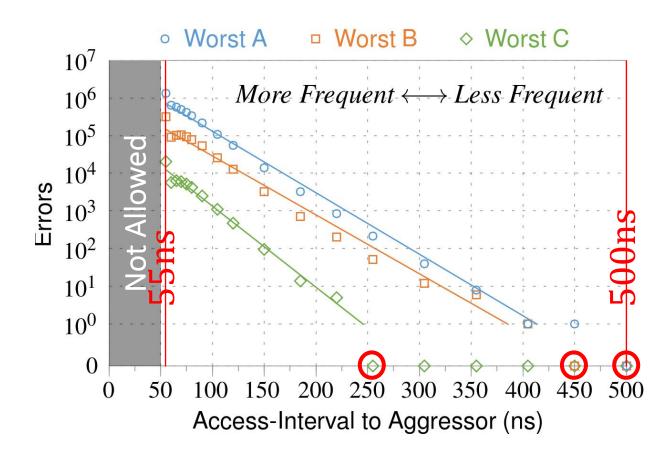
SAFARI


Kim+, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors," ISCA 2014.

RowHammer Characterization Results

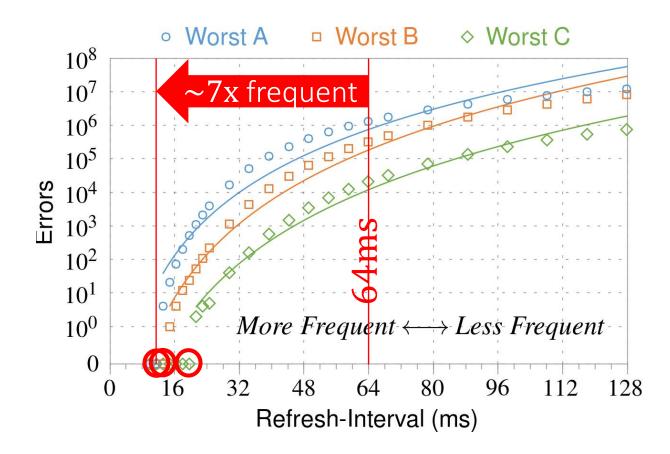
- 1. Most Modules Are at Risk
- 2. Errors vs. Vintage
- 3. Error = Charge Loss
- 4. Adjacency: Aggressor & Victim
- 5. Sensitivity Studies
- 6. Other Results in Paper
- 7. Solution Space

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors, (Kim et al., ISCA 2014)


4. Adjacency: Aggressor & Victim

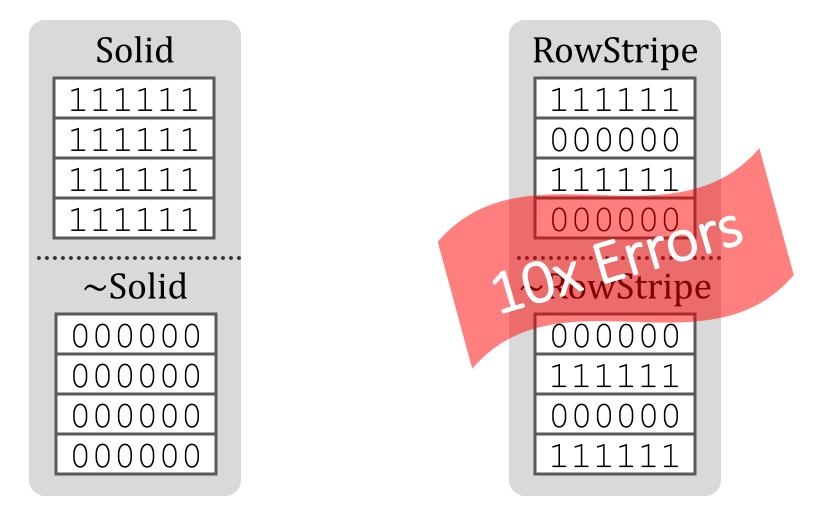
Note: For three modules with the most errors (only first bank)

Most aggressors & victims are adjacent


Access Interval (Aggressor)

Note: For three modules with the most errors (only first bank)

Less frequent accesses → Fewer errors


2 Refresh Interval

Note: Using three modules with the most errors (only first bank)

More frequent refreshes \rightarrow Fewer errors

Errors affected by data stored in other cells

6. Other Results (in Paper)

- Victim Cells ≠ Weak Cells (i.e., leaky cells)
 Almost no overlap between them
- Errors not strongly affected by temperature
 Default temperature: 50°C
 - At 30°C and 70°C, number of errors changes <15%
- Errors are repeatable
 - Across ten iterations of testing, >70% of victim cells had errors in every iteration

6. Other Results (in Paper) cont'd

- As many as 4 errors per cache-line

 Simple ECC (e.g., SECDED) cannot prevent all errors
- Number of cells & rows affected by aggressor

 Victims cells per aggressor: ≤110
 Victims rows per aggressor: ≤9

- Cells affected by two aggressors on either side
 - Very small fraction of victim cells (<100) have an error when either one of the aggressors is toggled

More on RowHammer Analysis

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
 "Flipping Bits in Memory Without Accessing Them: An

 Experimental Study of DRAM Disturbance Errors"
 Proceedings of the <u>41st International Symposium on Computer</u>
 <u>Architecture</u> (ISCA), Minneapolis, MN, June 2014.

 [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data]

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Yoongu Kim¹ Ross Daly^{*} Jeremie Kim¹ Chris Fallin^{*} Ji Hye Lee¹ Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹ ¹Carnegie Mellon University ²Intel Labs

Retrospective on RowHammer & Future

Onur Mutlu, "The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser" Invited Paper in Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Lausanne, Switzerland, March 2017. [Slides (pptx) (pdf)]

The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu ETH Zürich onur.mutlu@inf.ethz.ch https://people.inf.ethz.ch/omutlu

SAFARI https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf 72

RowHammer Solutions

Some Potential Solutions

• Refresh frequently **Power, Performance**

• Sophisticated ECC

Cost, Power

• Access counters Cost, Power, Complexity

Naive Solutions

1 Throttle accesses to same row

- Limit access-interval: ≥500ns
- Limit number of accesses: $\leq 128K$ (=64ms/500ns)

2 Refresh more frequently

– Shorten refresh-interval by $\sim 7x$

Both naive solutions introduce significant overhead in performance and power

Apple's Patch for RowHammer

https://support.apple.com/en-gb/HT204934

Available for: OS X Mountain Lion v10.8.5, OS X Mavericks v10.9.5

Impact: A malicious application may induce memory corruption to escalate privileges

Description: A disturbance error, also known as Rowhammer, exists with some DDR3 RAM that could have led to memory corruption. This issue was mitigated by increasing memory refresh rates.

CVE-ID

CVE-2015-3693 : Mark Seaborn and Thomas Dullien of Google, working from original research by Yoongu Kim et al (2014)

HP, Lenovo, and other vendors released similar patches

Our Solution to RowHammer

- PARA: <u>Probabilistic Adjacent Row Activation</u>
- Key Idea
 - After closing a row, we activate (i.e., refresh) one of its neighbors with a low probability: p = 0.005
- Reliability Guarantee
 - When p=0.005, errors in one year: 9.4×10^{-14}
 - By adjusting the value of p, we can vary the strength of protection against errors

Advantages of PARA

- PARA refreshes rows infrequently
 - Low power
 - Low performance-overhead
 - Average slowdown: 0.20% (for 29 benchmarks)
 - Maximum slowdown: 0.75%
- PARA is stateless
 - Low cost
 - Low complexity
- PARA is an effective and low-overhead solution to prevent disturbance errors

Requirements for PARA

- If implemented in DRAM chip
 - Enough slack in timing parameters
 - Plenty of slack today:
 - Lee et al., "Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common Case," HPCA 2015.
 - Chang et al., "Understanding Latency Variation in Modern DRAM Chips," SIGMETRICS 2016.
 - Lee et al., "Design-Induced Latency Variation in Modern DRAM Chips," SIGMETRICS 2017.
 - Chang et al., "Understanding Reduced-Voltage Operation in Modern DRAM Devices," SIGMETRICS 2017.
 - Ghose et al., "What Your DRAM Power Models Are Not Telling You: Lessons from a Detailed Experimental Study," SIGMETRICS 2018.
- If implemented in memory controller
 - Better coordination between memory controller and DRAM
 - Memory controller should know which rows are physically adjacent

Probabilistic Activation in Real Life (I)

Aptio Setup Utili Chipset	ty – Copyright (C) 2018 Americ	can Megatrends, Inc.
Channel O Slot O Size Number of Ranks Manufacturer Channel O Slot 1 Channel 1 Slot O Size Number of Ranks Manufacturer Channel 1 Slot 1 Memory ratio/reference clock options moved to Overclock->Memory->Custom Profi menu MRC ULT Safe Config Maximum Memory Frequency HOB Buffer Size Max TOLUD SA GV SA GV Low Freq Retrain on Fast Fail Command Tristate Enable RH Prevention Row Hammer Solution	[Disabled] [Auto] [Auto] [Dynamic] [Enabled] [MRC default] [Enabled] [Enabled] [Enabled] [Hardware RHP]	d ++: Select Screen 14: Select Item Enter: Select +/-: Change Opt. F1: General Help F2: Previous Values F3: Optimized Defaults F4: Save & Exit ESC: Exit
Version 2.18.120	53. Copyright (C) 2018 America	an Megatrends, Inc.
	407 66 80 30 5	lenovo X201

SAFARI

https://twitter.com/isislovecruft/status/1021939922754723841

Probabilistic Activation in Real Life (II)

SAFARI

https://twitter.com/isislovecruft/status/1021939922754723841

More on RowHammer Analysis

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
 "Flipping Bits in Memory Without Accessing Them: An

 Experimental Study of DRAM Disturbance Errors"
 Proceedings of the <u>41st International Symposium on Computer</u>
 <u>Architecture</u> (ISCA), Minneapolis, MN, June 2014.

 [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Source Code and Data]

Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors

Yoongu Kim¹ Ross Daly^{*} Jeremie Kim¹ Chris Fallin^{*} Ji Hye Lee¹ Donghyuk Lee¹ Chris Wilkerson² Konrad Lai Onur Mutlu¹ ¹Carnegie Mellon University ²Intel Labs

Future of Memory Reliability

Onur Mutlu, "The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser" Invited Paper in Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Lausanne, Switzerland, March 2017. [Slides (pptx) (pdf)]

The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser

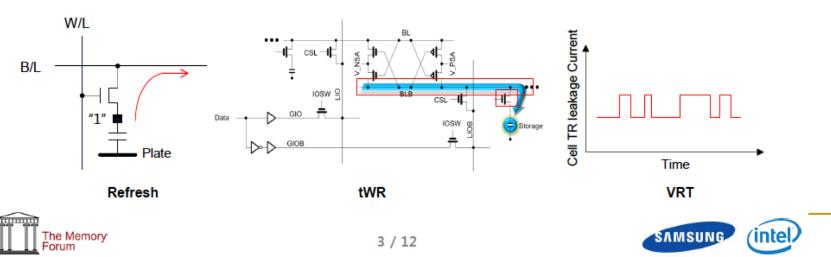
Onur Mutlu ETH Zürich onur.mutlu@inf.ethz.ch https://people.inf.ethz.ch/omutlu

SAFARI https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf 83

Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

Refresh


- · Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance
- · Leakage current of cell access transistors increasing

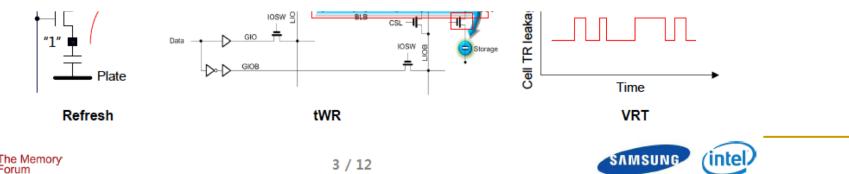
✤ tWR

- · Contact resistance between the cell capacitor and access transistor increasing
- · On-current of the cell access transistor decreasing
- · Bit-line resistance increasing

VRT

Occurring more frequently with cell capacitance decreasing

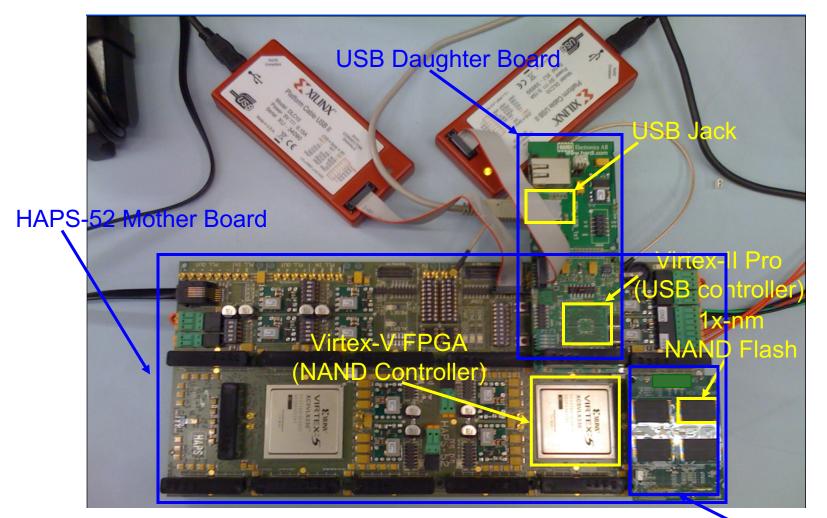
Call for Intelligent Memory Controllers


DRAM Process Scaling Challenges

* Refresh

Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance
THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling


Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng, **John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

85

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel

Aside: Intelligent Controller for NAND Flash

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE 2017, HPCA 2018, SIGMETRICS 2018]

NAND Daughter Board

Cai+, "Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives," Proc. IEEE 2017.

Aside: Intelligent Controller for NAND Flash

Proceedings of the IEEE, Sept. 2017

Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD's reliability and lifetime.

By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu

https://arxiv.org/pdf/1706.08642

Main Memory Needs Intelligent Controllers

Challenge and Opportunity for Future

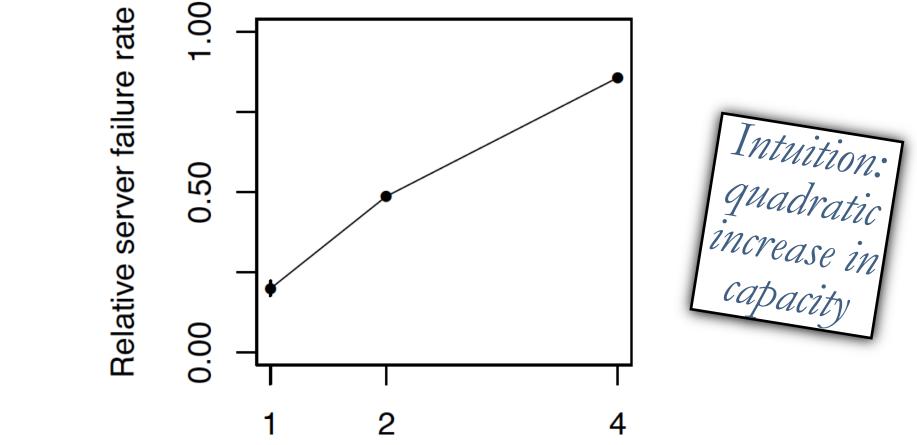
Fundamentally Secure, Reliable, Safe Computing Architectures

Future Memory Reliability/Security Challenges

Future of Main Memory

• DRAM is becoming less reliable \rightarrow more vulnerable

Large-Scale Failure Analysis of DRAM Chips


- Analysis and modeling of memory errors found in all of Facebook's server fleet
- Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, <u>"Revisiting Memory Errors in Large-Scale Production Data</u> <u>Centers: Analysis and Modeling of New Trends from the Field"</u> *Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> <u>Dependable Systems and Networks</u> (DSN), Rio de Janeiro, Brazil, June 2015. [Slides (pptx) (pdf)] [DRAM Error Model]*

Revisiting Memory Errors in Large-Scale Production Data Centers: Analysis and Modeling of New Trends from the Field

> Justin Meza Qiang Wu* Sanjeev Kumar* Onur Mutlu Carnegie Mellon University * Facebook, Inc.

SAFARI

DRAM Reliability Reducing

Chip density (Gb)

Meza+, "Revisiting Memory Errors in Large-Scale Production Data Centers," DSN'15.

Future of Main Memory

- DRAM is becoming less reliable \rightarrow more vulnerable
- Due to difficulties in DRAM scaling, other problems may also appear (or they may be going unnoticed)
- Some errors may already be slipping into the field
 - Read disturb errors (Rowhammer)
 - Retention errors
 - Read errors, write errors

```
• ...
```

These errors can also pose security vulnerabilities

DRAM Data Retention Time Failures

- Determining the data retention time of a cell/row is getting more difficult
- Retention failures may already be slipping into the field

Analysis of Data Retention Failures [ISCA'13]

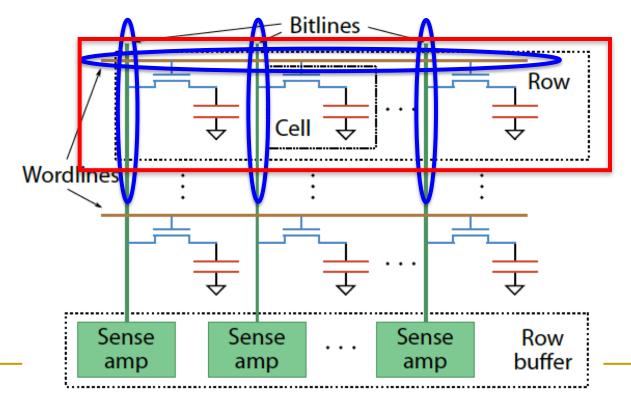
 Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, "An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms" Proceedings of the <u>40th International Symposium on Computer Architecture</u> (ISCA), Tel-Aviv, Israel, June 2013. <u>Slides (ppt)</u> <u>Slides (pdf)</u>

An Experimental Study of Data Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling Mechanisms

Jamie Liu* Ben Jaiyen^{*} Yoongu Kim Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University 5000 Forbes Ave. 5000 Forbes Ave. 5000 Forbes Ave. Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213 bjaiyen@alumni.cmu.edu jamiel@alumni.cmu.edu yoonguk@ece.cmu.edu Chris Wilkerson Onur Mutlu Intel Corporation Carnegie Mellon University 2200 Mission College Blvd. 5000 Forbes Ave. Santa Clara, CA 95054 Pittsburgh, PA 15213

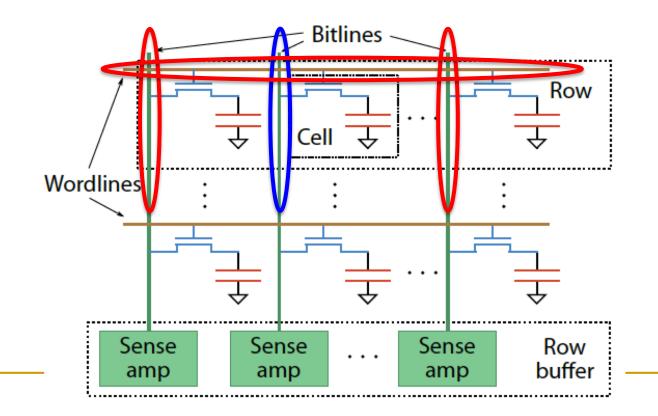
onur@cmu.edu

chris.wilkerson@intel.com


Two Challenges to Retention Time Profiling

Data Pattern Dependence (DPD) of retention time

Variable Retention Time (VRT) phenomenon

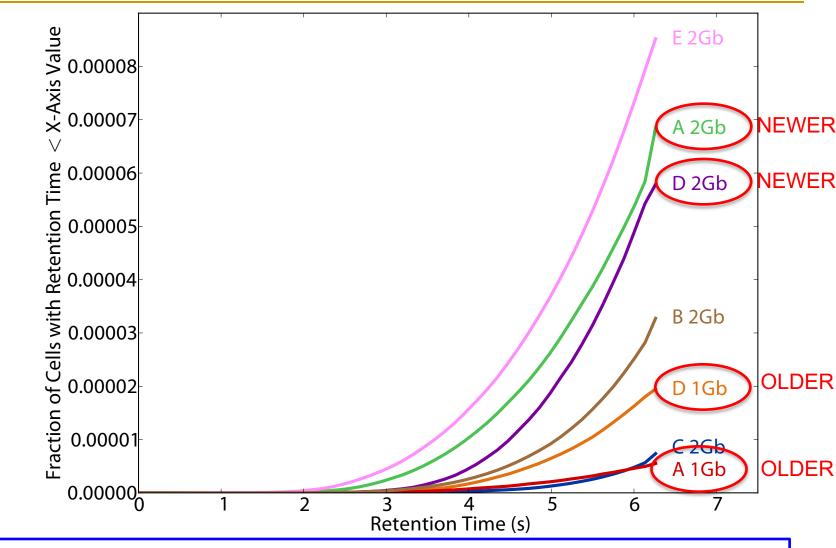

Two Challenges to Retention Time Profiling

- Challenge 1: Data Pattern Dependence (DPD)
 - Retention time of a DRAM cell depends on its value and the values of cells nearby it
 - □ When a row is activated, all bitlines are perturbed simultaneously

Data Pattern Dependence

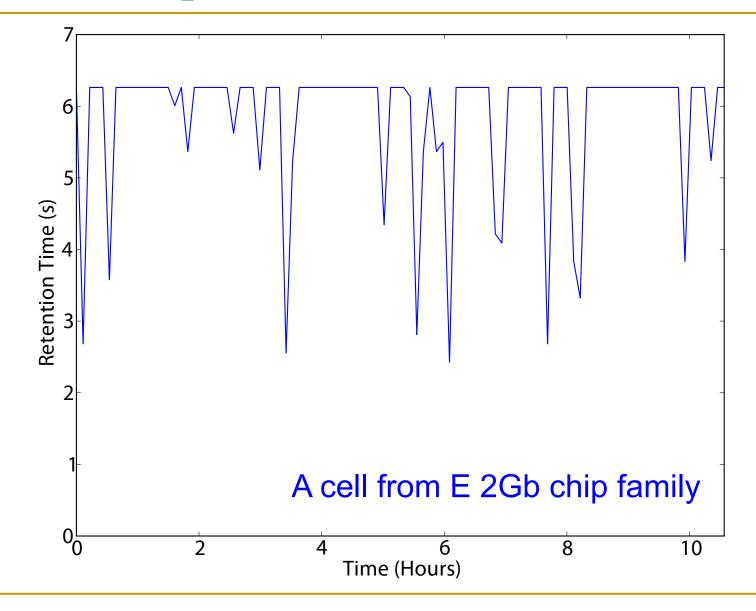
- Electrical noise on the bitline affects reliable sensing of a DRAM cell
- The magnitude of this noise is affected by values of nearby cells via
 - □ Bitline-bitline coupling \rightarrow electrical coupling between adjacent bitlines
 - □ Bitline-wordline coupling → electrical coupling between each bitline and the activated wordline

Data Pattern Dependence

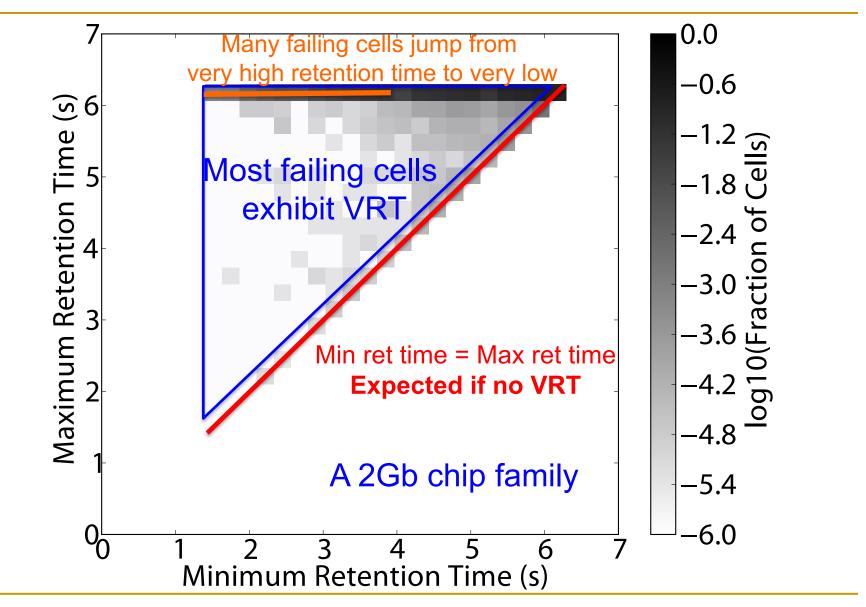

- Electrical noise on the bitline affects reliable sensing of a DRAM cell
- The magnitude of this noise is affected by values of nearby cells via
 - □ Bitline-bitline coupling \rightarrow electrical coupling between adjacent bitlines
 - Bitline-wordline coupling → electrical coupling between each bitline and the activated wordline

- Retention time of a cell depends on data patterns stored in nearby cells
 - \rightarrow need to find the worst data pattern to find worst-case retention time
 - \rightarrow this pattern is location dependent

Two Challenges to Retention Time Profiling


- Challenge 2: Variable Retention Time (VRT)
 - Retention time of a DRAM cell changes randomly over time
 - a cell alternates between multiple retention time states
 - Leakage current of a cell changes sporadically due to a charge trap in the gate oxide of the DRAM cell access transistor
 - When the trap becomes occupied, charge leaks more readily from the transistor's drain, leading to a short retention time
 - Called *Trap-Assisted Gate-Induced Drain Leakage*
 - This process appears to be a random process [Kim + IEEE TED'11]
 - Worst-case retention time depends on a random process
 → need to find the worst case despite this

Modern DRAM Retention Time Distribution



Newer device families have more weak cells than older ones Likely a result of technology scaling

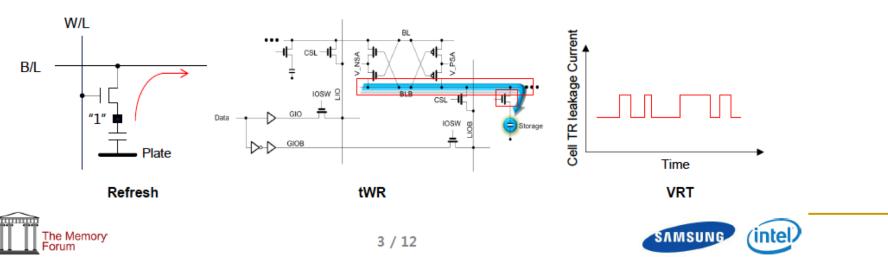
An Example VRT Cell

Variable Retention Time

Industry Is Writing Papers About It, Too

DRAM Process Scaling Challenges

Refresh


- · Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance
- · Leakage current of cell access transistors increasing

✤ tWR

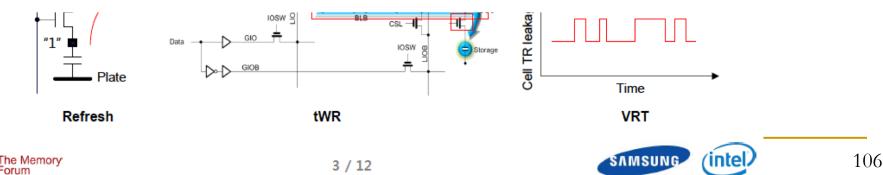
- · Contact resistance between the cell capacitor and access transistor increasing
- · On-current of the cell access transistor decreasing
- · Bit-line resistance increasing

VRT

· Occurring more frequently with cell capacitance decreasing

105

Industry Is Writing Papers About It, Too


DRAM Process Scaling Challenges

* Refresh

Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance
THE MEMORY FORUM 2014

Co-Architecting Controllers and DRAM to Enhance DRAM Process Scaling

Uksong Kang, Hak-soo Yu, Churoo Park, *Hongzhong Zheng, **John Halbert, **Kuljit Bains, SeongJin Jang, and Joo Sun Choi

Samsung Electronics, Hwasung, Korea / *Samsung Electronics, San Jose / **Intel

Mitigation of Retention Issues [SIGMETRICS'14]

Samira Khan, Donghyuk Lee, Yoongu Kim, Alaa Alameldeen, Chris Wilkerson, and Onur Mutlu, "The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study" Proceedings of the ACM International Conference on Measurement and Modeling of Computer Systems (SIGMETRICS), Austin, TX, June 2014. [Slides (pptx) (pdf)] [Poster (pptx) (pdf)] [Full data sets]

The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study

Samira Khant* samirakhan@cmu.edu

Donghyuk Lee[†] donghyuk1@cmu.edu

Chris Wilkerson*

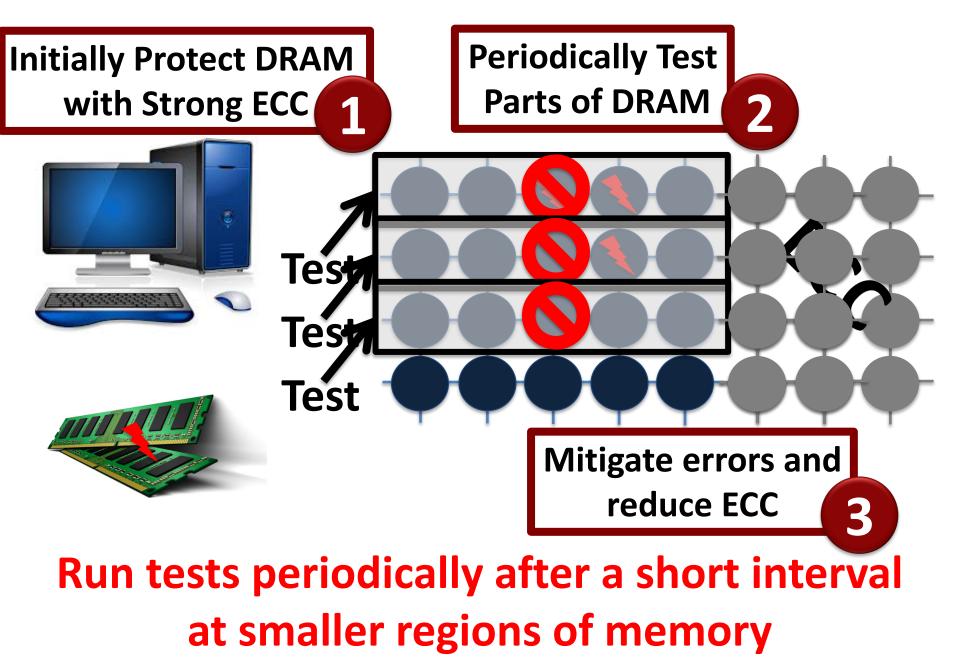
Yoongu Kim[†] yoongukim@cmu.edu

Alaa R. Alameldeen* alaa.r.alameldeen@intel.com chris.wilkerson@intel.com

Onur Mutlu[†] onur@cmu.edu

[†]Carnegie Mellon University *Intel Labs

SAFARI


Towards an Online Profiling System

Key Observations:

- Testing alone cannot detect all possible failures
- Combination of ECC and other mitigation techniques is much more effective
 - But degrades performance
- Testing can help to reduce the ECC strength
 - Even when starting with a higher strength ECC

Khan+, "The Efficacy of Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental Study," SIGMETRICS 2014.

Towards an Online Profiling System

Handling Variable Retention Time [DSN'15]

 Moinuddin Qureshi, Dae Hyun Kim, Samira Khan, Prashant Nair, and Onur Mutlu, "AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM <u>Systems</u>" Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> <u>Dependable Systems and Networks</u> (DSN), Rio de Janeiro, Brazil, June 2015. [Slides (pptx) (pdf)]

AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems

Moinuddin K. Qureshi[†] Dae-Hyun Kim[†] [†]Georgia Institute of Technology {*moin, dhkim, pnair6*}@*ece.gatech.edu* Samira Khan[‡]

Prashant J. Nair[†] Onur Mutlu[‡] [‡]Carnegie Mellon University

{samirakhan, onur}@cmu.edu

Handling Data-Dependent Failures [DSN'16]

 Samira Khan, Donghyuk Lee, and Onur Mutlu, "PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM" Proceedings of the <u>45th Annual IEEE/IFIP International Conference on</u> Dependable Systems and Networks (DSN), Toulouse, France, June 2016. [Slides (pptx) (pdf)]

PARBOR: An Efficient System-Level Technique to Detect Data-Dependent Failures in DRAM

Samira Khan^{*} Donghyuk Lee^{†‡} Onur Mutlu^{*†} *University of Virginia [†]Carnegie Mellon University [‡]Nvidia *ETH Zürich

Handling Data-Dependent Failures [MICRO'17]

 Samira Khan, Chris Wilkerson, Zhe Wang, Alaa R. Alameldeen, Donghyuk Lee, and Onur Mutlu,
 <u>"Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting</u> <u>Current Memory Content"</u> *Proceedings of the <u>50th International Symposium on Microarchitecture</u> (<i>MICRO*), Boston, MA, USA, October 2017.
 [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

Detecting and Mitigating Data-Dependent DRAM Failures by Exploiting Current Memory Content

Samira Khan^{*} Chris Wilkerson[†] Zhe Wang[†] Alaa R. Alameldeen[†] Donghyuk Lee[‡] Onur Mutlu^{*} ^{*}University of Virginia [†]Intel Labs [‡]Nvidia Research ^{*}ETH Zürich

Handling Both DPD and VRT [ISCA'17]

- Minesh Patel, Jeremie S. Kim, and Onur Mutlu,
 "The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions"
 Proceedings of the <u>44th International Symposium on Computer</u> Architecture (ISCA), Toronto, Canada, June 2017.
 [Slides (pptx) (pdf)]
 [Lightning Session Slides (pptx) (pdf)]
- First experimental analysis of (mobile) LPDDR4 chips
- Analyzes the complex tradeoff space of retention time profiling
- Idea: enable fast and robust profiling at higher refresh intervals & temperatures

The Reach Profiler (REAPER): Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions

Minesh Patel^{§‡} Jeremie S. Kim^{‡§} Onur Mutlu^{§‡} [§]ETH Zürich [‡]Carnegie Mellon University

The DRAM Latency PUF:

Quickly Evaluating Physical Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in Modern Commodity DRAM Devices

Jeremie S. Kim Minesh Patel

Hasan Hassan Onur Mutlu

QR Code for the paper

https://people.inf.ethz.ch/omutlu/pub/dram-latency-puf_hpca18.pdf

Carnegie Mellon

HPCA 2018

SAFARI

Keeping Future Memory Secure

How Do We Keep Memory Secure?

- DRAM
- Flash memory
- Emerging Technologies
 - Phase Change Memory
 - STT-MRAM
 - RRAM, memristors
 - ...

Solution Direction: Principled Designs

Design fundamentally secure computing architectures

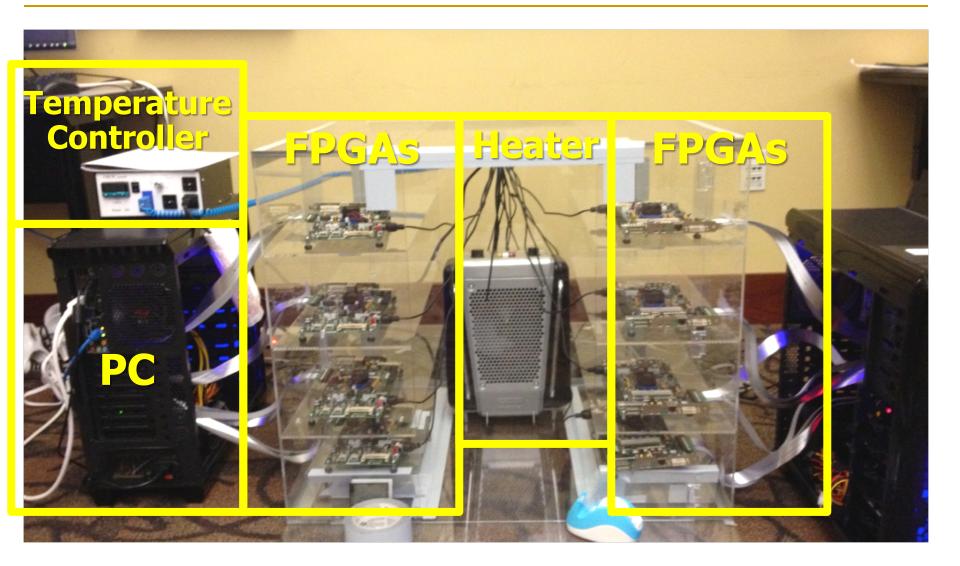
Predict and prevent such safety issues

Recall: Collapse of the "Galloping Gertie"

How Do We Keep Memory Secure?

- Understand: Solid methodologies for failure modeling and discovery
 - □ Modeling based on real device data small scale and large scale
 - Metrics for secure architectures

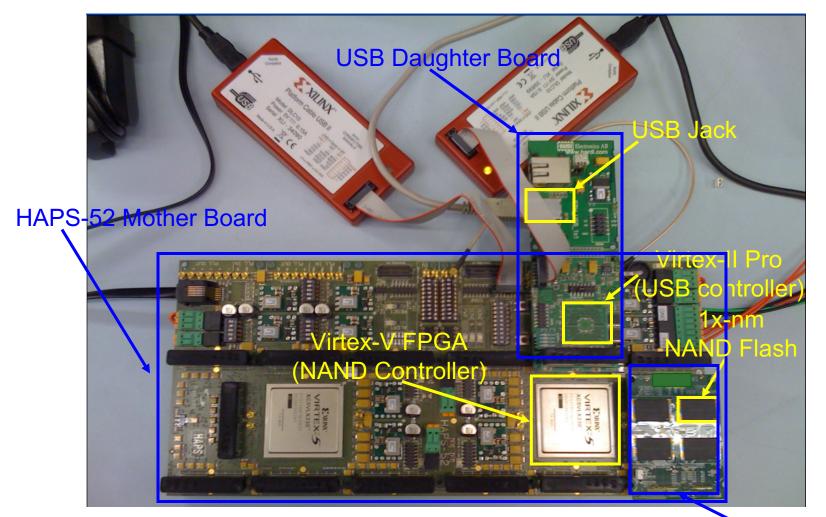
Architect: Principled co-architecting of system and memory


- Good partitioning of duties across the stack
- Patch-ability in the field

Design & Test: Principled electronic design, automation, testing

- Design for security
- High coverage and good interaction with reliability methods

SAFARI


Understand and Model with Experiments (DRAM)

SAFARI

Kim+, "Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Disturbance Errors," ISCA 2014.

Understand and Model with Experiments (Flash)

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE'17, HPCA'18, SIGMETRICS'18]

NAND Daughter Board

Cai+, "Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives," Proc. IEEE 2017.

Understanding Flash Memory Reliability

Proceedings of the IEEE, Sept. 2017

Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD's reliability and lifetime.

By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu

https://arxiv.org/pdf/1706.08642

Understanding Flash Memory Reliability

 Justin Meza, Qiang Wu, Sanjeev Kumar, and <u>Onur Mutlu</u>, <u>"A Large-Scale Study of Flash Memory Errors in the Field"</u> *Proceedings of the <u>ACM International Conference on Measurement and</u> <u>Modeling of Computer Systems</u> (SIGMETRICS), Portland, OR, June 2015. [<u>Slides (pptx) (pdf)</u>] [<u>Coverage at ZDNet</u>] [<u>Coverage on The Register</u>] [<u>Coverage on TechSpot</u>] [<u>Coverage on The Tech Report</u>]*

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza Carnegie Mellon University meza@cmu.edu Qiang Wu Facebook, Inc. qwu@fb.com Sanjeev Kumar Facebook, Inc. skumar@fb.com Onur Mutlu Carnegie Mellon University onur@cmu.edu

SAFARI

NAND Flash Vulnerabilities [HPCA'17]

HPCA, Feb. 2017

Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation Techniques

Yu Cai[†] Saugata Ghose[†] Yixin Luo^{‡†} Ken Mai[†] Onur Mutlu^{§†} Erich F. Haratsch[‡] [†]Carnegie Mellon University [‡]Seagate Technology [§]ETH Zürich

Modern NAND flash memory chips provide high density by storing two bits of data in each flash cell, called a multi-level cell (MLC). An MLC partitions the threshold voltage range of a flash cell into four voltage states. When a flash cell is programmed, a high voltage is applied to the cell. Due to parasitic capacitance coupling between flash cells that are physically close to each other, flash cell programming can lead to cell-to-cell program interference, which introduces errors into neighboring flash cells. In order to reduce the impact of cell-to-cell interference on the reliability of MLC NAND flash memory, flash manufacturers adopt a two-step programming method, which programs the MLC in two separate steps. First, the flash memory partially programs the least significant bit of the MLC to some intermediate threshold voltage. Second, it programs the most significant bit to bring the MLC up to its full voltage state.

In this paper, we demonstrate that two-step programming exposes new reliability and security vulnerabilities. We expebelongs to a different flash memory *page* (the unit of data programmed and read at the same time), which we refer to, respectively, as the least significant bit (LSB) page and the most significant bit (MSB) page [5].

A flash cell is programmed by applying a large voltage on the control gate of the transistor, which triggers charge transfer into the floating gate, thereby increasing the threshold voltage. To precisely control the threshold voltage of the cell, the flash memory uses *incremental step pulse programming* (ISPP) [12, 21, 25, 41]. ISPP applies multiple short pulses of the programming voltage to the control gate, in order to increase the cell threshold voltage by some small voltage amount (V_{step}) after each step. Initial MLC designs programmed the threshold voltage in *one shot*, issuing all of the pulses back-to-back to program *both* bits of data at the same time. However, as flash memory scales down, the distance between neighboring flash cells decreases, which

https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities hpca17.pdf

3D NAND Flash Reliability I [HPCA'18]

 Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu, "HeatWatch: Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Temperature-Awareness"

Proceedings of the <u>24th International Symposium on High-Performance</u> <u>Computer Architecture</u> (**HPCA**), Vienna, Austria, February 2018. [Lightning Talk Video] [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

HeatWatch: Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Temperature Awareness

Yixin Luo[†]Saugata Ghose[†]Yu Cai[‡]Erich F. Haratsch[‡]Onur Mutlu^{§†}[†]Carnegie Mellon University[‡]Seagate Technology[§]ETH Zürich

3D NAND Flash Reliability II [SIGMETRICS'18]

- Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu, "Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation"
 - Proceedings of the <u>ACM International Conference on Measurement and</u> <u>Modeling of Computer Systems</u> (**SIGMETRICS**), Irvine, CA, USA, June 2018. [Abstract]

Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation

Yixin Luo[†]Saugata Ghose[†]Yu Cai[†]Erich F. Haratsch[‡]Onur Mutlu^{§†}[†]Carnegie Mellon University[‡]Seagate Technology[§]ETH Zürich

Potential NAND Flash Memory Vulnerabilities

 Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu, <u>"Error Characterization, Mitigation, and Recovery in Flash Memory Based</u> <u>Solid State Drives"</u> <u>Proceedings of the IEEE</u>, September 2017.

Cai+, "Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis," DATE 2012. Cai+, "Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime," ICCD 2012. Cai+, "Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling," DATE 2013. Cai+, "Error Analysis and Retention-Aware Error Management for NAND Flash Memory." Intel Technology Journal 2013. Cai+, "Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation," ICCD 2013. Cai+, "Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories," SIGMETRICS 2014. Cai+, "Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery," HPCA 2015. Cai+, "Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation," DSN 2015. Luo+, "WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management," MSST 2015. Meza+, "A Large-Scale Study of Flash Memory Errors in the Field," SIGMETRICS 2015. Luo+, "Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory," IEEE JSAC 2016. Cai+, "Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation Techniques," HPCA 2017.

Luo+, "HeatWatch: Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Temperature-Awareness," HPCA 2018.

Luo+, "Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation," SIGMETRICS 2018.

Cai+, "Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives," Proc. IEEE 2017.

There are Two Other Solution Directions

New Technologies: Replace or (more likely) augment DRAM with a different technology Problem

Non-volatile memories

Embracing Un-reliability:

Design memories with different reliability and store data intelligently across them [Luo+ DSN 2014]

	Problem
	Aigorithm
	Program/Language
	System Software
	SW/HW Interface
	Micro-architecture
	Logic
	Devices
	Electrons

Fundamental solutions to security require co-design across the hierarchy

More on Heterogeneous-Reliability Memory

Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
 <u>"Characterizing Application Memory Error Vulnerability to Optimize</u>
 <u>Data Center Cost via Heterogeneous-Reliability Memory"</u>
 *Proceedings of the <u>44th Annual IEEE/IFIP International Conference on</u>
 <u>Dependable Systems and Networks</u> (DSN), Atlanta, GA, June 2014. [Summary]
 [Slides (pptx) (pdf)] [Coverage on ZDNet]*

Characterizing Application Memory Error Vulnerability to Optimize Datacenter Cost via Heterogeneous-Reliability Memory

Yixin Luo Sriram Govindan^{*} Bikash Sharma^{*} Mark Santaniello^{*} Justin Meza Aman Kansal^{*} Jie Liu^{*} Badriddine Khessib^{*} Kushagra Vaid^{*} Onur Mutlu Carnegie Mellon University, yixinluo@cs.cmu.edu, {meza, onur}@cmu.edu *Microsoft Corporation, {srgovin, bsharma, marksan, kansal, jie.liu, bkhessib, kvaid}@microsoft.com

Conclusion

Summary: Memory Reliability and Security

- Memory reliability is reducing
- Reliability issues open up security vulnerabilities
 - Very hard to defend against
- Rowhammer is an example
 - □ Its implications on system security research are tremendous & exciting
- Good news: We have a lot more to do.
- Understand: Solid methodologies for failure modeling and discovery
 Medaling based on real device data
 - Modeling based on real device data small scale and large scale
- Architect: Principled co-architecting of system and memory
 - Good partitioning of duties across the stack
- Design & Test: Principled electronic design, automation, testing
 - High coverage and good interaction with system reliability methods

Challenge and Opportunity for Future

Fundamentally Secure, Reliable, Safe Computing Architectures

One Important Takeaway

Main Memory Needs Intelligent Controllers

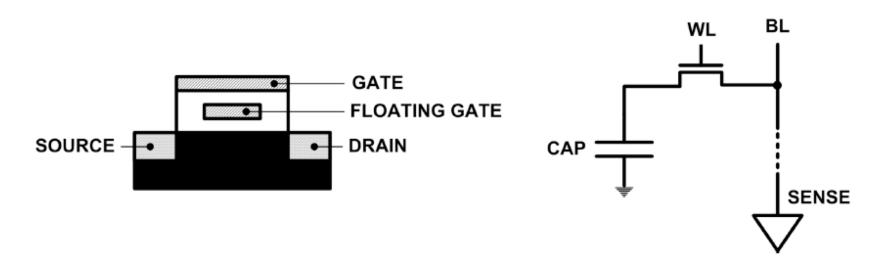
RowHammer and Beyond RowHammer and Other Issues We May Face as Memory Becomes Denser

> Onur Mutlu <u>omutlu@gmail.com</u> https://poople.inf.otbz.ch/omut

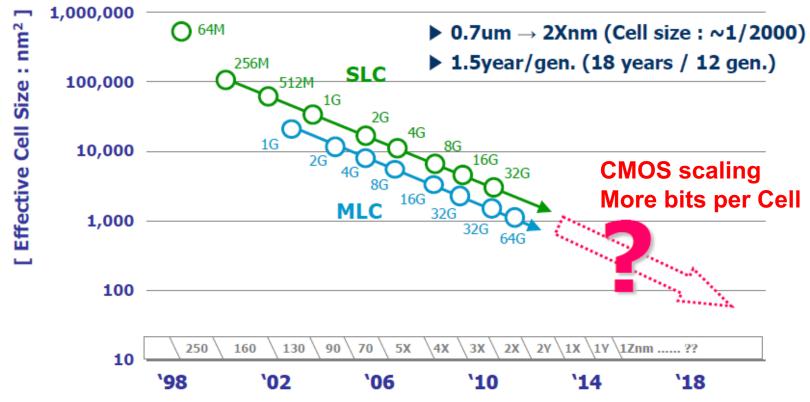
https://people.inf.ethz.ch/omutlu

2 August 2018 MSR Faculty Summit

Systems @ ETH zürich



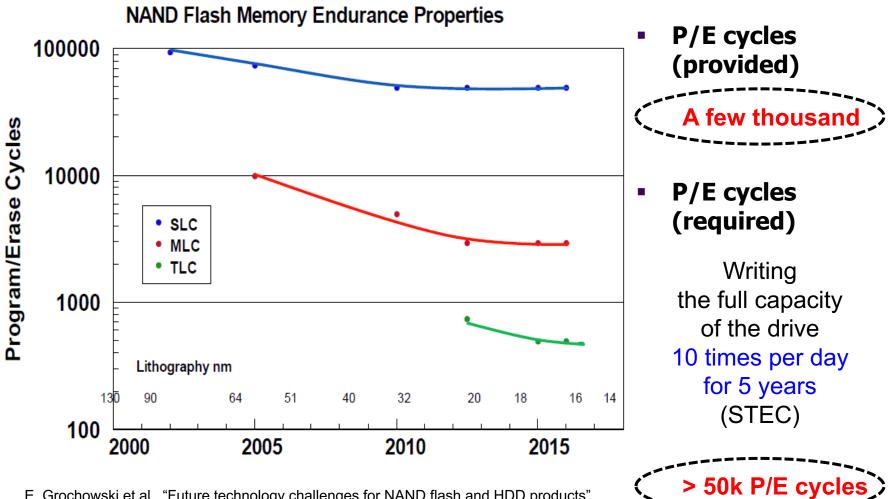
Backup Slides


Flash Memory Reliability and Security

Limits of Charge Memory

- Difficult charge placement and control
 - Flash: floating gate charge
 - DRAM: capacitor charge, transistor leakage
- Reliable sensing becomes difficult as charge storage unit size reduces

Evolution of NAND Flash Memory

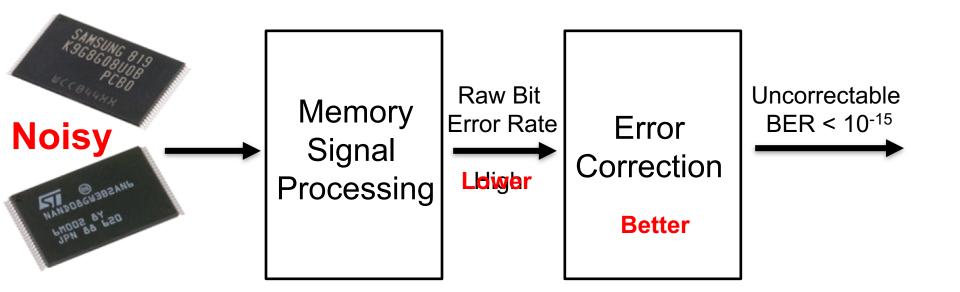


Seaung Suk Lee, "Emerging Challenges in NAND Flash Technology", Flash Summit 2011 (Hynix)

- Flash memory is widening its range of applications
 - Portable consumer devices, laptop PCs and enterprise servers

SAFARI

Flash Challenges: Reliability and Endurance


E. Grochowski et al., "Future technology challenges for NAND flash and HDD products", Flash Memory Summit 2012

SAFARI

NAND Flash Memory is Increasingly Noisy

Future NAND Flash-based Storage Architecture

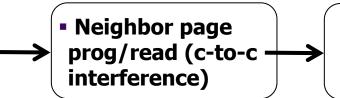
Our Goals:

- Build reliable error models for NAND flash memory
- Design efficient reliability mechanisms based on the model

SAFARI

NAND Flash Error Model

Experimentally characterize and model dominant errors


Cai et al., "Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis", **DATE 2012** Luo et al., "Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory", **JSAC 2016**

Write

Cai et al., "Threshold voltage distribution in MLC NAND Flash Memory: Characterization, Analysis, and Modeling", **DATE 2013**

Cai et al., "Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation Techniques", **HPCA 2017**

Cai et al., "Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation", **ICCD 2013**

Cai et al., "Neighbor-Cell Assisted Error Correction in MLC NAND Flash Memories", **SIGMETRICS 2014**

Cai et al., "Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation", **DSN 2015** Cai et al., "Flash Correct-and-Refresh: Retention-aware error management for increased flash memory lifetime", **ICCD 2012**

Retention

Cai et al., "Error Analysis and Retention-Aware Error Management for NAND Flash Memory", **ITJ 2013**

Cai et al., "Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery", **HPCA 2015**

SAFARI

Read

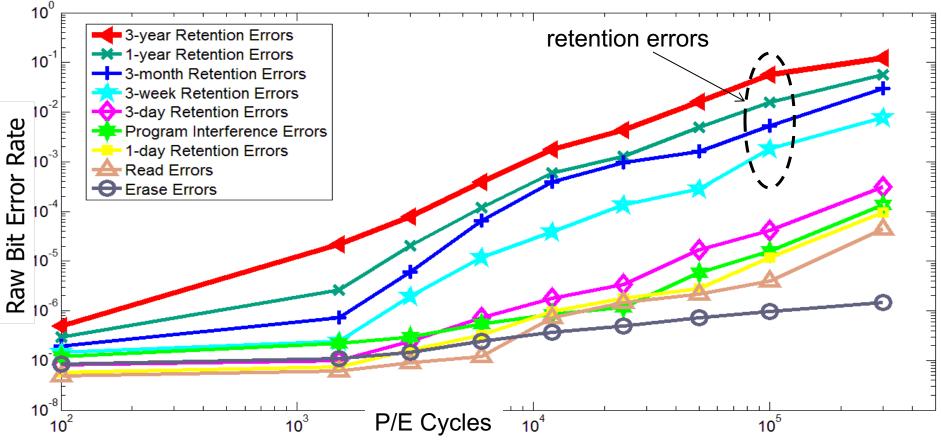
Our Goals and Approach

Goals:

- Understand error mechanisms and develop reliable predictive models for MLC NAND flash memory errors
- Develop efficient error management techniques to mitigate errors and improve flash reliability and endurance
- Approach:
 - □ Solid experimental analyses of errors in real MLC NAND flash memory → drive the understanding and models
 - □ Understanding, models, and creativity → drive the new techniques

Experimental Testing Platform

[DATE 2012, ICCD 2012, DATE 2013, ITJ 2013, ICCD 2013, SIGMETRICS 2014, HPCA 2015, DSN 2015, MSST 2015, JSAC 2016, HPCA 2017, DFRWS 2017, PIEEE 2017, HPCA 2018, SIGMETRICS 2018]


NAND Daughter Board

Cai+, "Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives," Proc. IEEE 2017.

NAND Flash Error Types

- Four types of errors [Cai+, DATE 2012]
- Caused by common flash operations
 - Read errors
 - Erase errors
 - Program (interference) errors
- Caused by flash cell losing charge over time
 - Retention errors
 - Whether an error happens depends on required retention time
 - Especially problematic in MLC flash because threshold voltage window to determine stored value is smaller

Observations: Flash Error Analysis

Raw bit error rate increases exponentially with P/E cycles

- Retention errors are dominant (>99% for 1-year ret. time)
- Retention errors increase with retention time requirement

SAFARI Cai et al., Error Patterns in MLC NAND Flash Memory, DATE 2012. ¹⁴⁶

More on Flash Error Analysis

 Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, "Error Patterns in MLC NAND Flash Memory: <u>Measurement, Characterization, and Analysis</u>" *Proceedings of the Design, Automation, and Test in Europe* <u>Conference</u> (DATE), Dresden, Germany, March 2012. <u>Slides</u> (ppt)

Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis

Yu Cai¹, Erich F. Haratsch², Onur Mutlu¹ and Ken Mai¹ ¹Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA ²LSI Corporation, 1110 American Parkway NE, Allentown, PA ¹{yucai, onur, kenmai}@andrew.cmu.edu, ²erich.haratsch@lsi.com

Solution to Retention Errors

- Refresh periodically
- Change the period based on P/E cycle wearout
 Refresh more often at higher P/E cycles
- Use a combination of in-place and remapping-based refresh

 Cai et al. "Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime", ICCD 2012.

Flash Correct-and-Refresh [ICCD'12]

 Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai,
 "Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime"
 Proceedings of the <u>30th IEEE International Conference on Computer</u> Design (ICCD), Montreal, Quebec, Canada, September 2012. <u>Slides</u> (ppt)(pdf)

Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime

Yu Cai¹, Gulay Yalcin², Onur Mutlu¹, Erich F. Haratsch³, Adrian Cristal², Osman S. Unsal² and Ken Mai¹ ¹DSSC, Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA ²Barcelona Supercomputing Center, C/Jordi Girona 29, Barcelona, Spain ³LSI Corporation, 1110 American Parkway NE, Allentown, PA

Many Errors and Their Mitigation [PIEEE'17]

Table 3List of Different Types of Errors Mitigated by NAND FlashError Mitigation Mechanisms

	Error Type				
	-A)	-B)	erference §IV-C)	(Q-VI§)[\$IV-E)
Mitigation Mechanism	P/E Cycling [32,33,42] (§IV-A)	Program [40,42,53] (§IV-B)	Cell-to-Cell Interference [32,35,36,55] (§IV-C)	Data Retention [20,32,34,37,39] (§IV-D)	Read Disturb [20,32,38,62] (§IV-E)
Shadow Program Sequencing [35,40] (Section V-A)			Х		
Neighbor-Cell Assisted Error Correction [36] (Section V-B)			Х		
Refresh [34,39,67,68] (Section V-C)				Х	Х
Read-Retry [33,72,107] (Section V-D)	Х			Х	X
Voltage Optimization [37,38,74] (Section V-E)	X			X	X
Hot Data Management [41,63,70] (Section V-F)	Х	Х	Х	Х	X
Adaptive Error Mitigation [43,65,77,78,82] (Section V-G)	Х	Х	Х	Х	Х

Cai+, "Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives," Proc. IEEE 2017.

Many Errors and Their Mitigation [PIEEE'17]

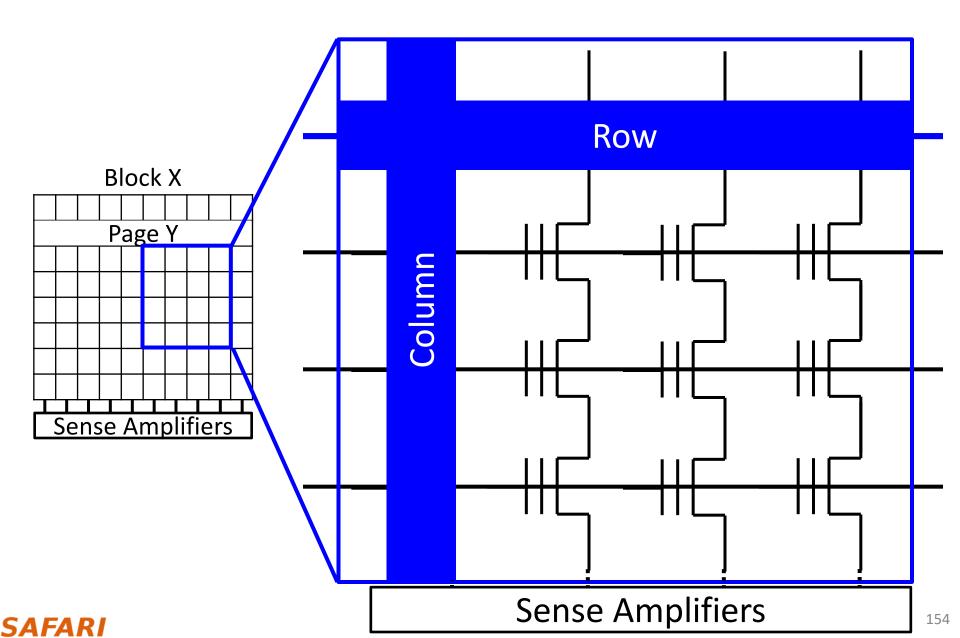
Proceedings of the IEEE, Sept. 2017

Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives

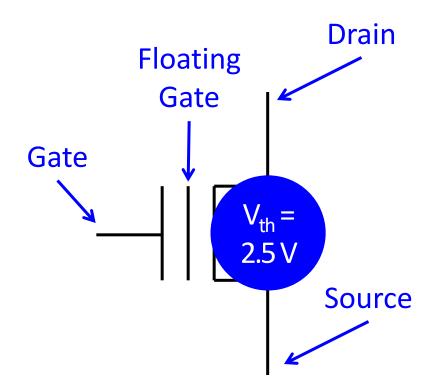
This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD's reliability and lifetime.


By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu

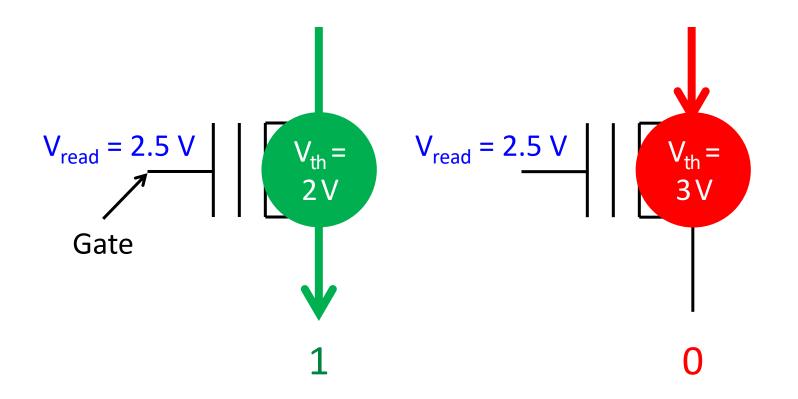
https://arxiv.org/pdf/1706.08642


One Issue: Read Disturb in Flash Memory

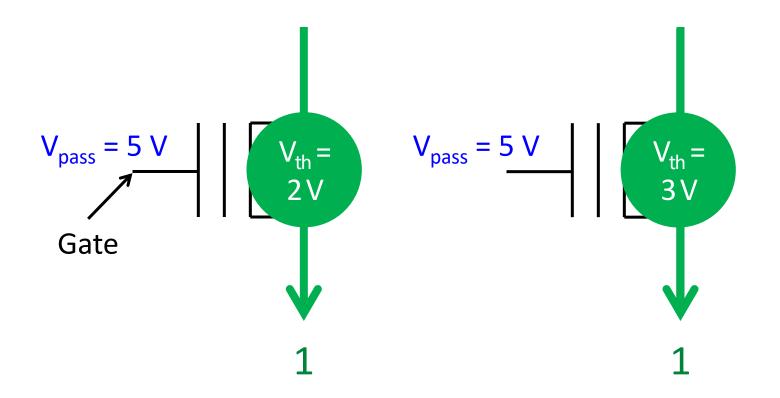
- All scaled memories are prone to read disturb errors
- DRAM
- SRAM
- Hard Disks: Adjacent Track Interference
- NAND Flash


NAND Flash Memory Background

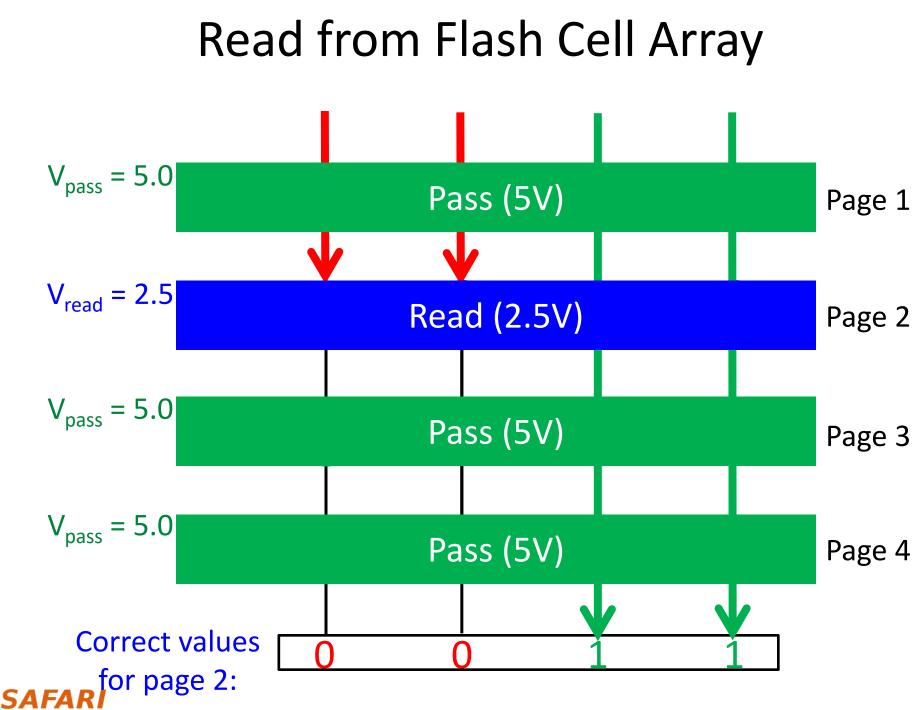
Flash Cell Array

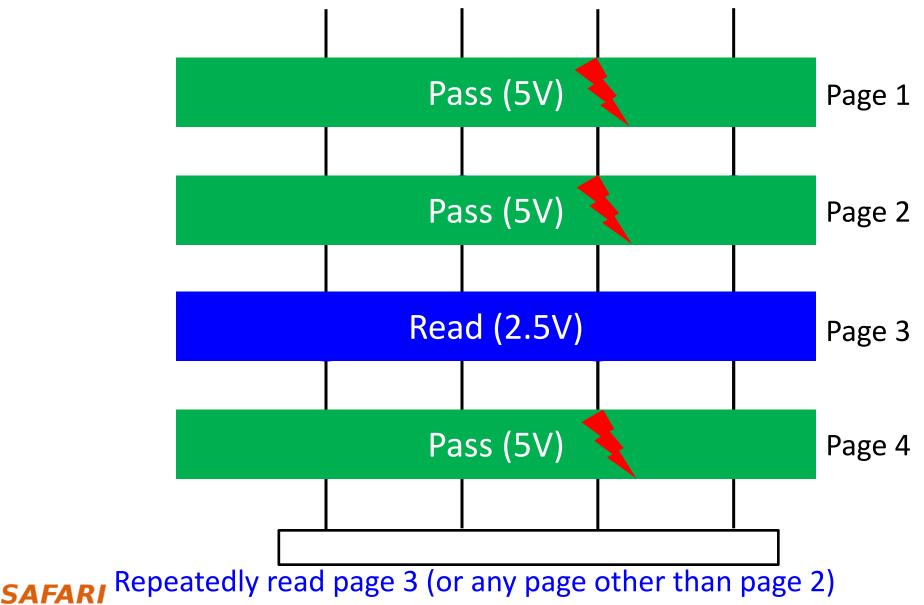

Flash Cell

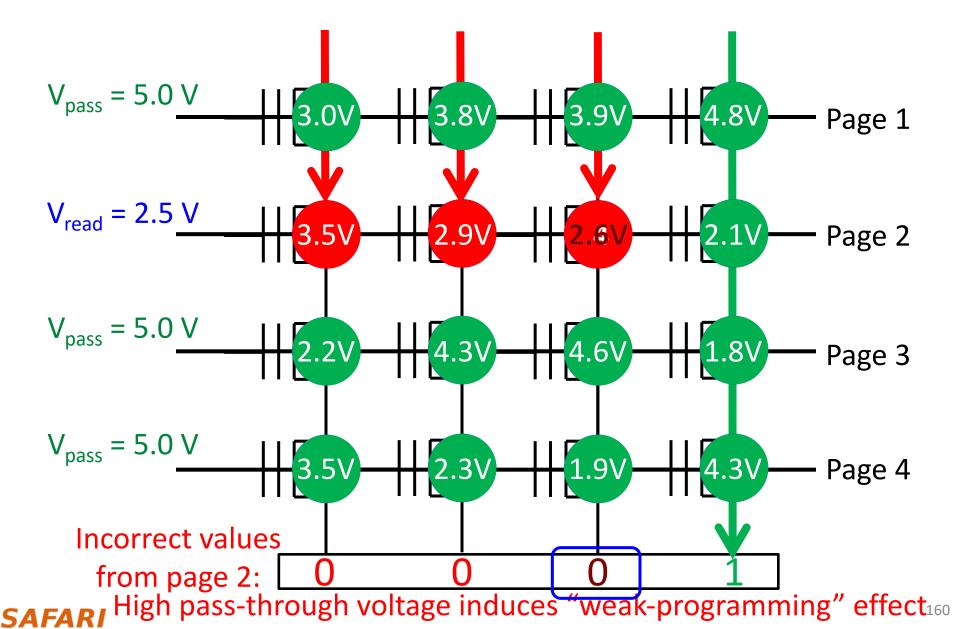
Floating Gate Transistor (Flash Cell)



Flash Read



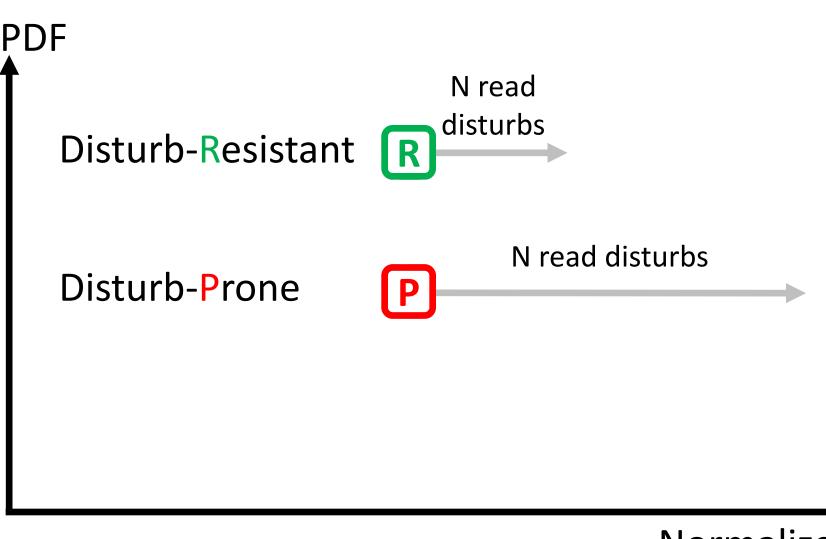

Flash Pass-Through



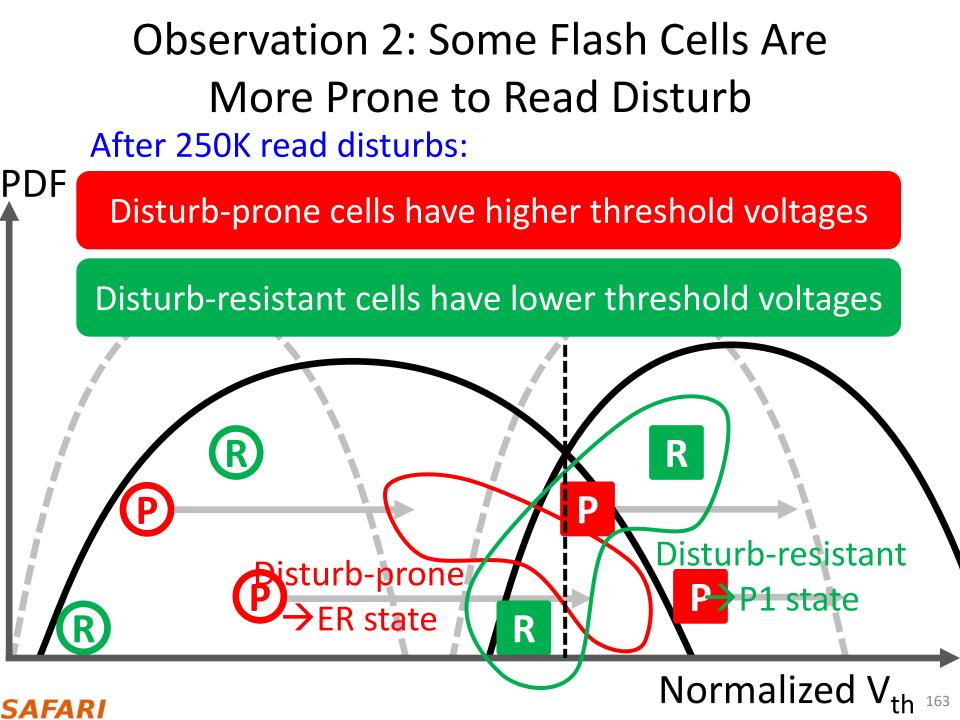
Read Disturb Problem: "Weak Programming" Effect

159

Read Disturb Problem: "Weak Programming" Effect



Executive Summary [DSN'15]


- Read disturb errors limit flash memory lifetime today
 - Apply a high pass-through voltage (V_{pass}) to multiple pages on a read
 - Repeated application of V_{pass} can alter stored values in unread pages
- We characterize read disturb on real NAND flash chips
 - Slightly lowering V_{pass} greatly reduces read disturb errors
 - Some flash cells are more prone to read disturb
- Technique 1: Mitigate read disturb errors online
 - V_{pass} Tuning dynamically finds and applies a lowered V_{pass} per block
 Flash memory lifetime improves by 21%
- Technique 2: Recover after failure to prevent data loss
 - Read Disturb Oriented Error Recovery (RDR) selectively corrects cells more susceptible to read disturb errors

Reduces raw bit error rate (RBER) by up to 36%
 SAFARI

Read Disturb Prone vs. Resistant Cells


```
Normalized V_{th} 162
```


Read Disturb Oriented Error Recovery (RDR)

- Triggered by an uncorrectable flash error
 - -Back up all valid data in the faulty block
 - -Disturb the faulty page 100K times (more)
 - -Compare V_{th} 's before and after read disturb
 - -Select cells susceptible to flash errors ($V_{ref} \sigma < V_{th} < V_{ref} \sigma$)
 - –Predict among these susceptible cells
 - Cells with more V_{th} shifts are disturb-prone \rightarrow Higher V_{th} state
 - Cells with less V_{th} shifts are disturb-resistant \rightarrow Lower V_{th} state

Reduces total error count by up to 36% @ 1M read disturbs ECC can be used to correct the remaining errors

More on Flash Read Disturb Errors [DSN'15]

 Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch, Ken Mai, and Onur Mutlu,
 "Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation"
 Proceedings of the 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Rio de Janeiro, Brazil, June 2015.

Read Disturb Errors in MLC NAND Flash Memory: Characterization, Mitigation, and Recovery

Yu Cai, Yixin Luo, Saugata Ghose, Erich F. Haratsch*, Ken Mai, Onur Mutlu Carnegie Mellon University, *Seagate Technology yucaicai@gmail.com, {yixinluo, ghose, kenmai, onur}@cmu.edu

Large-Scale SSD Error Analysis [SIGMETRICS'15]

- First large-scale field study of flash memory errors
- Justin Meza, Qiang Wu, Sanjeev Kumar, and Onur Mutlu, "A Large-Scale Study of Flash Memory Errors in the Field" Proceedings of the <u>ACM International Conference on Measurement and</u> <u>Modeling of Computer Systems</u> (SIGMETRICS), Portland, OR, June 2015. [Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The Register] [Coverage on TechSpot] [Coverage on The Tech Report]

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza Carnegie Mellon University meza@cmu.edu Qiang Wu Facebook, Inc. qwu@fb.com Sanjeev Kumar Facebook, Inc. skumar@fb.com Onur Mutlu Carnegie Mellon University onur@cmu.edu

Another Lecture: NAND Flash Reliability

 Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu, <u>"Error Characterization, Mitigation, and Recovery in Flash Memory Based</u> <u>Solid State Drives"</u> <u>Proceedings of the IEEE</u>, September 2017.

Cai+, "Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis," DATE 2012. Cai+, "Flash Correct-and-Refresh: Retention-Aware Error Management for Increased Flash Memory Lifetime," ICCD 2012. Cai+, "Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling," DATE 2013. Cai+, "Error Analysis and Retention-Aware Error Management for NAND Flash Memory," Intel Technology Journal 2013. Cai+, "Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation," ICCD 2013. Cai+, "Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories," SIGMETRICS 2014. Cai+, "Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories," SIGMETRICS 2014. Cai+, "Read Disturb Errors in MLC NAND Flash Memory: Characterization, Optimization and Recovery," HPCA 2015. Cai+, "Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation," DSN 2015. Luo+, "WARM: Improving NAND Flash Memory Lifetime with Write-hotness Aware Retention Management," MSST 2015. Meza+, "A Large-Scale Study of Flash Memory Errors in the Field," SIGMETRICS 2015. Luo+, "Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory," IEEE JSAC 2016. Cai+, "Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation Techniques," HPCA 2017.

Luo+, "HeatWatch: Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Temperature-Awareness," HPCA 2018.

Luo+, "Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation," SIGMETRICS 2018.

Cai+, "Error Characterization, Mitigation, and Recovery in Flash Memory Based Solid State Drives," Proc. IEEE 2017.

NAND Flash Vulnerabilities [HPCA'17]

HPCA, Feb. 2017

Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation Techniques

Yu Cai[†] Saugata Ghose[†] Yixin Luo^{‡†} Ken Mai[†] Onur Mutlu^{§†} Erich F. Haratsch[‡] [†]Carnegie Mellon University [‡]Seagate Technology [§]ETH Zürich

Modern NAND flash memory chips provide high density by storing two bits of data in each flash cell, called a multi-level cell (MLC). An MLC partitions the threshold voltage range of a flash cell into four voltage states. When a flash cell is programmed, a high voltage is applied to the cell. Due to parasitic capacitance coupling between flash cells that are physically close to each other, flash cell programming can lead to cell-to-cell program interference, which introduces errors into neighboring flash cells. In order to reduce the impact of cell-to-cell interference on the reliability of MLC NAND flash memory, flash manufacturers adopt a two-step programming method, which programs the MLC in two separate steps. First, the flash memory partially programs the least significant bit of the MLC to some intermediate threshold voltage. Second, it programs the most significant bit to bring the MLC up to its full voltage state.

In this paper, we demonstrate that two-step programming exposes new reliability and security vulnerabilities. We expebelongs to a different flash memory *page* (the unit of data programmed and read at the same time), which we refer to, respectively, as the least significant bit (LSB) page and the most significant bit (MSB) page [5].

A flash cell is programmed by applying a large voltage on the control gate of the transistor, which triggers charge transfer into the floating gate, thereby increasing the threshold voltage. To precisely control the threshold voltage of the cell, the flash memory uses *incremental step pulse programming* (ISPP) [12, 21, 25, 41]. ISPP applies multiple short pulses of the programming voltage to the control gate, in order to increase the cell threshold voltage by some small voltage amount (V_{step}) after each step. Initial MLC designs programmed the threshold voltage in *one shot*, issuing all of the pulses back-to-back to program *both* bits of data at the same time. However, as flash memory scales down, the distance between neighboring flash cells decreases, which

https://people.inf.ethz.ch/omutlu/pub/flash-memory-programming-vulnerabilities hpca17.pdf

NAND Flash Errors: A Modern Survey

Proceedings of the IEEE, Sept. 2017

Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD's reliability and lifetime.

By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu

https://arxiv.org/pdf/1706.08642

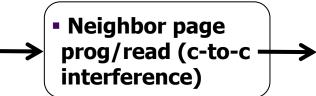
Summary: Memory Reliability and Security

- Memory reliability is reducing
- Reliability issues open up security vulnerabilities
 - Very hard to defend against
- Rowhammer is an example
 - □ Its implications on system security research are tremendous & exciting
- Good news: We have a lot more to do.
- Understand: Solid methodologies for failure modeling and discovery
 Modeling based on real device data small scale and large scale
- Architect: Principled co-architecting of system and memory
 - Good partitioning of duties across the stack
- Design & Test: Principled electronic design, automation, testing
 - High coverage and good interaction with system reliability methods

Other Works on Flash Memory

NAND Flash Error Model

Experimentally characterize and model dominant errors


Cai et al., "Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, and Analysis", **DATE 2012** Luo et al., "Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory", **JSAC 2016**

Write

Erase blockProgram page

Cai et al., "Threshold voltage distribution in MLC NAND Flash Memory: Characterization, Analysis, and Modeling", **DATE 2013**

Cai et al., "Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation Techniques", **HPCA 2017**

Cai et al., "Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation", **ICCD 2013**

Cai et al., "Neighbor-Cell Assisted Error Correction in MLC NAND Flash Memories", **SIGMETRICS 2014**

Cai et al., "Read Disturb Errors in MLC NAND Flash Memory: Characterization and Mitigation", **DSN 2015** Cai et al., "Flash Correct-and-Refresh: Retention-aware error management for

Retention

Retention-aware error management for increased flash memory lifetime", **ICCD 2012**

Cai et al., "Error Analysis and Retention-Aware Error Management for NAND Flash Memory, **ITJ 2013**

Cai et al., "Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery" **, HPCA 2015**

SAFARI

Read

Threshold Voltage Distribution

 Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, "Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis and Modeling" Proceedings of the Design, Automation, and Test in Europe <u>Conference</u> (DATE), Grenoble, France, March 2013. Slides (ppt)

Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, Analysis, and Modeling

Yu Cai¹, Erich F. Haratsch², Onur Mutlu¹ and Ken Mai¹ ¹DSSC, Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA ²LSI Corporation, 1110 American Parkway NE, Allentown, PA ¹{yucai, onur, kenmai}@andrew.cmu.edu, ²erich.haratsch@lsi.com

Program Interference and Vref Prediction

 Yu Cai, Onur Mutlu, Erich F. Haratsch, and Ken Mai, "Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation" Proceedings of the <u>31st IEEE International Conference on</u> <u>Computer Design</u> (ICCD), Asheville, NC, October 2013. Slides (pptx) (pdf) Lightning Session Slides (pdf)

Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation

Yu Cai¹, Onur Mutlu¹, Erich F. Haratsch² and Ken Mai¹ 1. Data Storage Systems Center, Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 2. LSI Corporation, San Jose, CA yucaicai@gmail.com, {omutlu, kenmai}@andrew.cmu.edu

Neighbor-Assisted Error Correction

 Yu Cai, Gulay Yalcin, Onur Mutlu, Eric Haratsch, Osman Unsal, Adrian Cristal, and Ken Mai,
 "Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories"
 Proceedings of the <u>ACM International Conference on</u> <u>Measurement and Modeling of Computer Systems</u>

(SIGMETRICS), Austin, TX, June 2014. Slides (ppt) (pdf)

Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories

Yu Cai¹, Gulay Yalcin², Onur Mutlu¹, Erich F. Haratsch⁴, Osman Unsal², Adrian Cristal^{2,3}, and Ken Mai¹ ¹Electrical and Computer Engineering Department, Carnegie Mellon University ²Barcelona Supercomputing Center, Spain ³IIIA – CSIC – Spain National Research Council ⁴LSI Corporation yucaicai@gmail.com, {omutlu, kenmai}@ece.cmu.edu, {gulay.yalcin, adrian.cristal, osman.unsal}@bsc.es

Data Retention

 Yu Cai, Yixin Luo, Erich F. Haratsch, Ken Mai, and Onur Mutlu, "Data Retention in MLC NAND Flash Memory: Characterization, Optimization and Recovery" Proceedings of the <u>21st International Symposium on High-Performance</u> <u>Computer Architecture</u> (HPCA), Bay Area, CA, February 2015. [Slides (pptx) (pdf)]

Data Retention in MLC NAND Flash Memory: Characterization, Optimization, and Recovery

Yu Cai, Yixin Luo, Erich F. Haratsch^{*}, Ken Mai, Onur Mutlu Carnegie Mellon University, ^{*}LSI Corporation yucaicai@gmail.com, yixinluo@cs.cmu.edu, erich.haratsch@lsi.com, {kenmai, omutlu}@ece.cmu.edu

SSD Error Analysis in the Field

- First large-scale field study of flash memory errors
- Justin Meza, Qiang Wu, Sanjeev Kumar, and <u>Onur Mutlu</u>, <u>"A Large-Scale Study of Flash Memory Errors in the Field"</u> *Proceedings of the <u>ACM International Conference on</u> <u>Measurement and Modeling of Computer Systems</u> (SIGMETRICS), Portland, OR, June 2015. [Slides (pptx) (pdf)] [Coverage at ZDNet] [Coverage on The <u>Register</u>] [Coverage on TechSpot] [Coverage on The Tech <u>Report</u>]*

A Large-Scale Study of Flash Memory Failures in the Field

Justin Meza Carnegie Mellon University meza@cmu.edu Qiang Wu Facebook, Inc. qwu@fb.com Sanjeev Kumar Facebook, Inc. skumar@fb.com Onur Mutlu Carnegie Mellon University onur@cmu.edu

Flash Memory Programming Vulnerabilities

 Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, <u>Onur Mutlu</u>, and Erich F. Haratsch,
 <u>"Vulnerabilities in MLC NAND Flash Memory Programming:</u> <u>Experimental Analysis, Exploits, and Mitigation Techniques"</u> *Proceedings of the <u>23rd International Symposium on High-Performance</u> <u>Computer Architecture</u> (<i>HPCA*) Industrial Session, Austin, TX, USA, February 2017.
 [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

Vulnerabilities in MLC NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation Techniques

Yu Cai[†]

Saugata Ghose[†] Yixin Luo^{‡†} [†]Carnegie Mellon University Ken Mai[†] Onur Mutlu^{§†} Erich F. Haratsch[‡] [‡]Seagate Technology [§]ETH Zürich

Accurate and Online Channel Modeling

 Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and <u>Onur Mutlu</u>, <u>"Enabling Accurate and Practical Online Flash Channel Modeling</u> <u>for Modern MLC NAND Flash Memory"</u>

to appear in <u>IEEE Journal on Selected Areas in Communications</u> (JSAC), 2016.

Enabling Accurate and Practical Online Flash Channel Modeling for Modern MLC NAND Flash Memory

Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, Onur Mutlu

3D NAND Flash Reliability I [HPCA'18]

 Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu, <u>"HeatWatch: Improving 3D NAND Flash Memory Device</u> <u>Reliability by Exploiting Self-Recovery and Temperature-</u> <u>Awareness</u>"

Proceedings of the <u>24th International Symposium on High-Performance</u> <u>Computer Architecture</u> (**HPCA**), Vienna, Austria, February 2018. [Lightning Talk Video] [Slides (pptx) (pdf)] [Lightning Session Slides (pptx) (pdf)]

HeatWatch: Improving 3D NAND Flash Memory Device Reliability by Exploiting Self-Recovery and Temperature Awareness

Yixin Luo[†]Saugata Ghose[†]Yu Cai[‡]Erich F. Haratsch[‡]Onur Mutlu^{§†}[†]Carnegie Mellon University[‡]Seagate Technology[§]ETH Zürich

3D NAND Flash Reliability II [SIGMETRICS'18]

- Yixin Luo, Saugata Ghose, Yu Cai, Erich F. Haratsch, and Onur Mutlu, "Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation"
 - Proceedings of the <u>ACM International Conference on Measurement and</u> <u>Modeling of Computer Systems</u> (**SIGMETRICS**), Irvine, CA, USA, June 2018. [Abstract]

Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process Variation

Yixin Luo[†]Saugata Ghose[†]Yu Cai[†]Erich F. Haratsch[‡]Onur Mutlu^{§†}[†]Carnegie Mellon University[‡]Seagate Technology[§]ETH Zürich