Memory Systems

and Memory-Centric Computing Systems

Part 3: Computation in Memory

Prof. Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
7 July 2019
SAMOS Tutorial

SAFARI ETHZzurich cCarnegieMellon

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Sub-Agenda: In-Memory Computation

= Major Trends Affecting Main Memory
= The Need for Intelligent Memory Controllers
o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications
= Processing in Memory: Two Directions
o Minimally Changing Memory Chips
o Exploiting 3D-Stacked Memory
= How to Enable Adoption of Processing in Memory

= Conclusion

Three Key Systems Trends

1. Data access is a major bottleneck
o Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
o Especially true for off-chip to on-chip movement

Observation and Opportunity

High latency and high energy caused by data movement
o Long, energy-hungry interconnects

o Energy-hungry electrical interfaces

o Movement of large amounts of data

Opportunity: Minimize data movement by performing
computation directly (near) where the data resides

o Processing in memory (PIM)

o In-memory computation/processing
o Near-data processing (NDP)
a

General concept applicable to any data storage & movement
unit (caches, SSDs, main memory, network, controllers)

SAFARI

Four Key Issues in Future Platforms

= Fundamentally Secure/Reliable/Safe Architectures

=| Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures
= Fundamentally Low-Latency Architectures

= Architectures for Genomics, Medicine, Health

SAFARI

Maslow’s (Human) Hierarchy of Needs, Revisited

Maslow, “A Theory of Human Motivation,”
Psychological Review, 1943.

Self-fulfillment
needs

Self-
Maslow, “Motivation and Personality,” actualization:

h- - ’
Book, 1954-1970. ochlim:gncms

including creative
activities
Esteem needs:
prestige and feeling of accomplishment Psychological

needs
Belongingness and love needs:
infimate relationships, friends

Safety needs:
security, safety Basic

needs

Everlasting energy

SA FA R' Source: https://www.simplypsychology.org/maslow.html 0

Do We Want This?

SAFARI Source: V. Milutinovic

Or This?

SA FA Rl Source: V. Milutinovic 8

that over the coming decade memory subsys

I expect tha -
C halle n ge a nd O p p C tem design will be the only important design issue for micro-
processors.

High Performance,
Energy Efficient,
Sustainable

SAFARI

The Problem

Data access is the major performance and energy bottleneck

Our current
design principles
cause great energy waste

(and great performance loss)

SAFARI 10

The Problem

Processing of data
IS performed
far away from the data

SAFARI

11

A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Computing E a Communication E 3 Memory/Storage
Unit Unit Unit

-
-
==
-
-
a=""
-
-
-
-

-y
-
-
-
-
an
-
"’-
-
-
-
-
-
-
-
2"

Memory System Storage System

12
Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

A Computing System

= Three key components
= Computation

= Communication

= Storage/memory

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Computing System

Communication

Image source: https://Ibsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

Today’s Computing Systems

Are overwhelmingly processor centric
All data processed in the processor - at great system cost
Processor is heavily optimized and is considered the master

Data storage units are dumb and are largely unoptimized
(except for some that are on the processor die)

Computing System
4)

Computing E a Communication E a Memory/Storage
Unit Unit Unit

k C——

L

-

-
-
o
e
-
-
-
am
-
o
-

e

Memory System Storage System

14

I expect that over the coming decade memory subsys-
i et tem design will be the only important design issue for micro-
* Pprocessors.

=« “It's the Memory, Stupid!” (Richard Sites, MPR, 1996)

100
95
90
85
80
75
70
65
60
95
50
45 -
40 A
35 -
30
25 -
20 -
15
10

5 .
0

@ Non-stall (compute) time

B Full-window stall time

Normalized Execution Time

128-entry window Data from Runahead Execution [HPCA 2003]

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

The Pertormance Perspective

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February
2003. Slides (pdf)

Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors

Onur Mutlu § Jared Stark ¥ Chris Wilkerson I Yale N. Patt §

§ECE Department TMicroprocessor Research TDesktop Platforms Group
The University of Texas at Austin Intel Labs Intel Corporation

{onur,patt} @ece.utexas.edu jared.w.stark @intel.com chris.wilkerson @intel.com

16

https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf

The Performance Perspective (Today)

= All of Google’s Data Center Workloads (2015):

B Retiring
1 Front-end bound

B Bad speculation
2 Back-end bound

ads
bigtable
disk
flight-search
gmail
gmail-fe
indexingl
indexing2
searchl
search2
search3
video

400.perlbench
445.gobmk
429.mcf
471.omnetpp
433.milc

0 20 40 60 80 100 120
Pipeline slot breakdown (%)

Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

17

The Performance Perspective (Today)

All of Google’s Data Center Workloads (2015):

ads - T ! ——————f - ——— .
bigtable |- t——) - —1 .
disk - - 18} i
flight-search | L g - - .
gmail |- R B g .
gmail-fe |- o I R -
indexinglf -—{—® 3 — .
indexing2 - B l
searchl}| s — i
search2 &+ - — —1 .
search3} W _
video |- , 1 - = ! [- - |]
0 10 20 30 40 50 o0 70 80
Cache-bound cycles (%)
Figure 11: Half of cycles are spent stalled on caches.
18

Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

Perils of Processor-Centric Design

Grossly-imbalanced systems

o Processing done only in one place

o Everything else just stores and moves data: data moves a lot
- Energy inefficient

- Low performance

- Complex

Overly complex and bloated processor (and accelerators)
o To tolerate data access from memory

o Complex hierarchies and mechanisms

- Energy inefficient

- Low performance

- Complex
19

Perils of Processor-Centric Design

Shared Memory
Shared Shared
Memory Memory
Shared Control Control
Interconnect
\

KIOWRIA] pPaIeys

/ﬁﬂm‘ﬂls /

Shared Shared
s | Memory Memory
Control Control

Shared Memory

Most of the system is dedicated to storing and moving data

The Energy Perspective

Communication Dominates Arithmetic

256-bit access
8 kB SRAM

SAFARI

Dally, HIPEAC 2015

256 pJ

— M
16 nJ I- Rd/Wr

Efficient
B c:-chip link

Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP DRAM
16 nJ * Rd/Wr

256-bit buses .
500 pJ Efficient

off-chip link
256-bit access
8 kB SRAM

22

Data Movement vs. Computation Energy

= Data movement is a major system energy bottleneck
o Comprises 41% of mobile system energy during web browsing [2]
o Costs ~115 times as much energy as an ADD operation [1, 2]

Data Movement

\

———

g I I - - - .y,

[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)
[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)

SAFARI 23

Energy Waste in Mobile Devices

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose’ Youngsok Kim*
Rachata Ausavarungnirun’ Eric Shiv> Rahul Thakur’ ~ Daehyun Kim*”
Aki Kuusela® Allan Knies®> Parthasarathy Ranganathan® Onur Mutlu™!

SAFARI 24

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

We Do Not Want to Move Datal

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP DRAM
16 nJ * Rd/Wr

256-bit buses .
500 pJ Efficient

off-chip link
256-bit access
8 kB SRAM

25

We Need A Paradigm Shift To ...

Enable computation with minimal data movement
Compute where it makes sense (where data resides)

Make computing architectures more data-centric

26

Goal: Processing Inside Memory

Processor

Core

Results

Many questions ... How do we design the:

Q

o O O 0O

compute-capable memory & controllers?
processor chip and in-memory units?
software and hardware interfaces?
system software and languages?
algorithms?

)
Interconnect

1 Database

Graphs

I Media

Problem

Program/Language
System Software

SW/HW Interface

Micro-architecture

Logic

Electrons

Why In-Memory Computation Today?

= Pull from Systems and Applications
o Data access is a major system and application bottleneck
o Systems are energy limited
o Data movement much more energy-hungry than computation

SAFARI 28

Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory
The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications

Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI 29

Processing in Memory:

Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

Approach 1: Minimally Changing DRAM

= DRAM has great capability to perform bulk data movement and
computation internally with small changes

o Can exploit internal connectivity to move data
a Can exploit analog computation capability

Q ...

= Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM

o RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data
(Seshadri et al., MICRO 2013)

o Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

o Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)

o "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity
DRAM Technology” (Seshadri et al., MICRO 2017)

SAFARI 31

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Starting Simple: Data Copy and Initialization

Bulk Data .
Copy

Bulk Data
Initialization

SAFARI

Starting Simple: Data Copy and Initialization

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

00000

00000
00000

Zero initialization

Many more

d L

VM Cloning page Migration
Deduplication

SAFARI 33

Today’s Systems: Bulk Data Copy

1) High latency
3) Cache pollution \

2) High bandwidth utilization

4) Unwanted data movement

1046ns, 3.6ul (for 4KB page copy via DMA)

34

Future Systems: In-Memory Copy

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement

1046ns, 3.6u)] =2 90ns, 0.04u)

35

RowClone: In-DRAM Row Copy

Transfer
row

Transfer|
row

4 Kbytes

Idea: Two consecutive ACTivates

Negligible HW cost

Step 1: Activate row A

Step 2: Activate row B

DRAM subarray

CEEP TPV VPPV PP PP TPV PP PP TP Tl Row Buffer (4 Kbytes)

I8 bits

[11.6X latency reduction, 74X energy reduction]

RowClone: Inter-Bank

A

Memory Channel

\4

-

\ N ™
I | Bank
C_\D\ J U Y,
o —t—t
6f N [N

|
N\ J U Y,

J

B Shared

internal bus

-

Overlap the latency of the read and the write

. 1.9X latency reduction, 3.2X energy reduction)

\

Generalized RowClone 0.01% area cost

Inter Subarray Copy
(Use Inter-Bank Copy Twice) —~ \
TA(— \\\
E k ' K
11 O 53 W e
b B iy [| ! :
a E I I l,
g U
Q
E v \ U J

Inter Bank Copy Intra Subarray

(Pipelined Copy (2 ACTSs)
Internal RD/WR)

RowClone: Latency and Energy Savings

M Baseline M Intra-Subarray
W Inter-Bank M Inter-Subarray

1.2

=
|

A

74x

o
(00]
l

o
>
|

Normalized Savings
o
(@)

o
N
l

Latency Energy

Seshadri et al., "RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

39

More on RowClone

= Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,

"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization”
Proceedings of the 46th International Symposium on Microarchitecture

(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

RowClone: Fast and Energy-Efficient
In-DRAM Bulk Data Copy and Initialization

Vivek Seshadri Yoongu Kim Chris Fallin™ Donghyuk Lee

vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu

Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu yixinluo@andrew.cmu.edu

Onur Mutlu Phillip B. Gibbonst Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu

Carnegie Mellon University fIntel Pittsburgh

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

In-Memory Bulk Bitwise Operations

We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
At low cost

Using analog computation capability of DRAM

o Idea: activating multiple rows performs computation

30-60X performance and energy improvement

o Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology,” MICRO 2017.

New memory technologies enable even more opportunities
o Memristors, resistive RAM, phase change mem, STT-MRAM, ...
o Can operate on data with minimal movement

41

In-DRAM AND/OR: Triple Row Activation

A ; l P %Vppt6

I el Final State
B v AB + BC + AC

c

| %5,

dis

SAFARI Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.

42

In-DRAM Bulk Bitwise AND/OR Operation

BULKAND A, B> C

Semantics: Perform a bitwise AND of two rows A and B and
store the result in row C

RO — reserved zero row, R1 — reserved one row
D1, D2, D3 — Designated rows for triple activation

. RowClone A into D1

. RowClone B into D2

. RowClone RO into D3

. ACTIVATE D1,D2,D3

5. RowClone Result into C

SAFARI 3

D W DN =

In-DRAM NOT: Dual Contact Cell

d-wordline .
dual-contact)E R %
cell (DCC) | Al i 2 -
n-wordline :__I__LI_ | Id ed.
wense | = | Feed the
amplifier
plifier —7\ 7 negated value

in the sense amplifier
into a special row

bitline

Figure 5: A dual-contact
cell connected to both
ends of a sense amplifier

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI 4

Performance: In-DRAM Bitwise Operations

Skylake B GTX 745 HMC 2.0 Ambit Il Ambit-3D
@ 0T S S
@p)] 1024 O
8-‘ 512 I PR R I I
O iq) 256 —_ eiiiieieeneees] R T e
:/ 8 128 el 1 BB ... eieieieee.] BBl B
a N 64 —_eieneeeeeeel | ... | BH...............] | BB...............] | BN..-...........
20 324 | PR] R | R
-2° 4] | R R | R R
= S | B B | Rl |
o N HE e BN e BN W N
= NN BR BN BN BHE BN BN BE o
| | | | |
not and/or nand/nor XOI/XNor mean

Figure 9: Throughput of bitwise operations on various systems.

SAFARI s

Energy of In-DRAM Bitwise Operations

Design not and/or nand/nor xor/xnor

DRAM & DDR3 93.7 137.9 137.9 137.9
Channel Energy =~ Ambit 1.6 3.2 4.0 5.5
(nJ/KB) (l) 595X 439X 35.1X 25.1X

Table 3: Energy of bitwise operations. (J) indicates energy
reduction of Ambit over the traditional DDR3-based design.

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI 46

Ambit vs. DDR3: Performance and Energy

Performance Improvement B Energy Reduction
70

60
50 32X 35X

40
30
20
10 |
0

and/or nand/nor xor/xnor mean

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017. 47

Bulk Bitwise Operations in Workloads

BitWeaving

Bitmap indices (database queries)
(database indexing)

BitFunnel

Bulk Bitwise (web search)

Set operations Operations

DNA
sequence mapping
Encryption algorithms

SA FAR' [1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017

Example Data Structure: Bitmap Index

Alternative to B-tree and its variants
Efficient for performing range gueries and joins
Many bitwise operations to perform a query

age <18 18<age<25 25<age<60 age>60

SAFARI

Performance: Bitmap Index on Ambit

~~ 110 4 = L e T e,
GE) E 100 < Baseline I Ambit ol b,
cZ o04L—— 00000 b
= S, 80 e L e L
- GL) T O —f-eeemeemmmi L] L
9 = 60_ ..
.5: 0 50 et Y A I PO I A [R
8 _GC‘) 318_ ..
e e e [. ‘e 6.6X
LI>J< : %8 _ 54X 6.3X - 5.7X 6.2X | [.9:
(@) —....| [|..7: e [AR N PR R EEEEROPRRTY B .

2-weeks 3-weeks 4-weeks 2-weeks 3-weeks 4-weeks
8 million users 16 million users

Figure 10: Bitmap index performance. The value above each
bar indicates the reduction in execution time due to Ambit.

>5.4-6.6X Performance Improvement

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI >0

Performance: BitWeaving on Ambit

‘select count(*) from T where cl <= val <= c2’

13 _ ROW Count (r) _ D 1m . 2m D 4m . 8m

Speedup offered by Ambit

16 24
Number of Bits per Column (b)

Figure 11: Speedup offered by Ambit over baseline CPU with
SIMD for BitWeaving

Seshadri+, "Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

SAFARI >

More on In-DRAM Bulk AND/OR

= Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk

Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,

"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*,
Michael A. Kozuch', Onur Mutlu*, Phillip B. Gibbons', Todd C. Mowry*

*Carnegie Mellon University TIntel Pittsburgh

SAFARI >2

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

More on In-DRAM Bitwise Operations

= Vivek Seshadri et al., "Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

Ambit: In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri'® Donghyuk Lee*®> Thomas Mullins®® Hasan Hassan® ~Amirali Boroumand®
Jeremie Kim*® Michael A. Kozuch® Onur Mutlu®® Phillip B. Gibbons® Todd C. Mowry”®

!Microsoft Research India ?NVIDIA Research Z3Intel *ETH Ziirich °Carnegie Mellon University

SAFARI >3

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Challenge: Intelligent Memory Device

Does memory

have to be
dumb?

SAFARI

Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI

Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory
The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications

Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI 20

Processing in Memory:

Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

Opportunity: 3D-Stacked Logic+Memory

vbrid Memory Cube

Logic

Other “True 3D" technologies
under development

SAFARI >8

DRAM Landscape (circa 2015)

Segment DRAM Standards & Architectures
Commodity DDR3 (2007) [14]; DDR4 (2012) [1¥]

Low-Power LPDDR3 (2012) [17]; LPDDR4 (2014) [20]
Graphics GDDRS5 (2009) [15]

Performance eDRAM [2£], [32]; RLDRAMS3 (2011) [29]

SBA/SSA (2010) [38]; Staged Reads (2012) [%]; RAIDR (2012) [27];
SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];
Half-DRAM (2014) [39]; Row-Bufter Decoupling (2014) [33];

SARP (2014) [6]; AL-DRAM (2015) [25]

Academic

Table 1. Landscape of DRAM-based memory

Kim+, "Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.

SAFARI 59

Several Questions in 3D-Stacked PIM

=| What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?
a | By changing the entire system

o By performing simple function offloading

= What is the minimal processing-in-memory support we can
provide?
a With minimal changes to system and programming

SAFARI 60

Another Example: In-Memory Graph Processing

= Large graphs are everywhere (circa 2015)

oo R J

36 Million 1.4 Billion 300 Million 30 Billion
Wikipedia Pages = Facebook Users Twitter Users Instagram Photos

= Scalable large-scale graph processing is challenging

Speedup

61

Key Bottlenecks in Graph Processing

for (v: graph.vertices) {
for (w: v.successors) {
w.next_rank += weight * v.rank;

)

}
1. Frequent random memory accesses

/\
<——-’——\- ________
~
I
Vv " &w
w.rank] ._I-/// !
<-——-I"— i /
w.next_rank | | . T T e e
b 7 weight * Kk
w.edges W — _~ \W~e|9 t V.EaD <
_\7 -
« = “

2. Little amount of computation

SAFARI 62

Tesseract System for Graph Processing

Interconnected set of 3D-stacked memory+logic chips with simple cores

Host Processor

Memory-Mapped

Accelerator Interface
Noncacheable, Physically Addressed)

g

1
1
1
1
1
\
\
\
\
\
\

(1)

(1)

(1)

(1]

Crossbar Network

+

+

+t

+

In-Order Core

LP PF Buffer

MTP

Message Queue

J3]|0J43U0D NVYA

g

B

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Communications via

Remote Function Calls

Message Queue

Communications In Tesseract (1)

for (v: graph.vertices) {
for (w: v.successors) {

}
}

w.next_rank += weight * v.rank;

SAFARI

65

Communications In Tesseract (1I)

for (v: graph.vertices) {
for (w: v.successors) {

}
}

SAFARI

w.next_rank += weight * v.rank;

Vault #1

\\\
-~

Vault #2

—

——p

= ——
——

66

Communications In Tesseract (I11)

for (v: graph.vertices) {

for (w: v.successors) { Non-blocking Remote Function Call
put(w.id, function() { w.next_rank += weight * v.rank; });
i Can be delayed
} until the nearest barrier
barrier();
Vault #1 Vault #2
put ~
Y > &w
4——-”/// ‘\
put \\\
N put
. » W
put |

SAFARI 07

Remote Function Call (Non-Blocking)

1. Send function address & args to the remote core

2. Store the incoming message to the message queue
3. Flush the message queue when it is full or a

synchronization barrier is reached

Local
Core

,

NI

&func, &w, value

NI

_>

Remote
Core b
MQ -

put(w.id, function() { w.next_rank +=value; })

SAFARI

68

Prefetching

LP PF Buffer

MTP

Evaluated Systems

DDR3-000 HMC-Oo0 Tesseract

1
J |
1
| |
| |
h

1
| |
1
| |
| |

32
Tesseract
Cores

15O 5 A

128 128
In-Order <«*| In-Order
2GHz 2GHz

' ¢

128 128
In-Order | In-Order
2GHz 2GHz

| A A &

y
| |
| |
| |

y

| |
1

J |
1

| |
1

| |

N
()
=]
N
I
o
2
N
o
()
2
N
N
()
2
N

102.4GB/s 640GB/s 640GB/s 8TB/s

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

. >13X Performance Improvement

" On five graph processing algorithms 13.8x

11.6x

12
10 9.0x

Speedup

~ o o

+56% 125%

, mm BN e

DDR3-000 HMC-Oo0 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP

N

SAFAR] Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Memory Bandwidth Consumption

2.9TB/s

Memory Bandwidth (TB/s)

2.2TB/s
1.3TB/s
190GB/s 243GB/s
80GB/s
— T

DDR3-000 HMC-000 HMC-MC Tesseract Tesseract- Tesseract-
LP LP-MTP

_|

Effect of Bandwidth & Programming Model

] HMC-MC Bandwidth (640GB/s) [[] Tesseract Bandwidth (8TB/s)

Programming Model

3.0x

Speedup

2.3X

\ 4

, I

HMC-MC HMC-MC + Tesseract + Tesseract
PIM BW Conventional BW (No Prefetching)

SAFARI 73

Tesseract Graph Processing System Energy

B Memory Layers [Logic Layers [Cores
1.2

0.8
0.6
0.4

0.2 > 8X Energy Reduction

HMC-000 Tesseract with Prefetching

SAFAR/ Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

More on Tesseract

= Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,
and Kiyoung Choi,

"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing”

Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

Junwhan Ahn Sungpack Hong® Sungjoo Yoo Onur Mutlu' Kiyoung Choi

junwhan@snu.ac.kr, sungpack.hong @oracle.com, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University $Oracle Labs fCarnegie Mellon University

SAFARI 75

http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

Several Questions in 3D-Stacked PIM

=| What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?

a By changing the entire system

o | By performing simple function offloading

= What is the minimal processing-in-memory support we can
provide?
a With minimal changes to system and programming

SAFARI 76

3D-Stacked PIM on Mobile Devices

= Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata
Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks
Amirali Boroumand' Saugata Ghose' Youngsok Kim?

Rachata Ausavarungnirun' Eric Shiv> Rahul Thakur’> Daehyun Kim*?
Aki Kuusela® Allan Knies® Parthasarathy Ranganathan® Onur Mutlu”!

SAFARI 7

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Google Workloads

for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

SAFARI CarnegieMellon Google

PSnmsuncg

\?;
A 0

WER® SEOUL
ghy Lo ETH:..

77 UNIVERSITY

\d,&««r

Consumer Devices

Consumer devices are everywhere!

Energy consumption is
a first-class concern in consumer devices

SAFARI 79

Popular Google Consumer Workloads

Z 12

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI 80

Energy Cost of Data Movement

|5t key observation: 62.7% of the total system
energy is spent on data movement

Data Movement

Processing-In-Memory (PIM)

Potential solution: move computation close to data

Challenge: limited area and energy budget
SAFARI 8l

Using PIM to Reduce Data Movement

2"d key observation: a significant fraction of the
data movement often comes from simple functions

We can design lightweight logic to implement
these simple functions in memory

Small embedded Small fixed-function
low-power core accelerators

Offloading to PIM logic reduces energy and improves
performance, on average, by 55.4% and 54.2%

SAFARI 5

Goals

Understand the data movement related
bottlenecks in modern consumer workloads

2 Analyze opportunities to mitigate data movement
by using processing-in-memory (PIM)

3 Design PIM logic that can maximize energy
efficiency given the limited area and energy
budget in consumer devices

SAFARI 83

Workload Analysis

®

Chrome TensorFlow Mobile
Google’s web browser Google’s machine learning
framework
@ O YouTube @ O YouTube
Video Playback Video Capture
Google’s video codec Google’s video codec

SAFARI 84

)

TensorFlow Mob

Prediction
9

Inferenc

(¢

57.3% of the inference energy is spent on
data movement

\

54.4% of the data movement energy comes from
packing/unpacking and quantization

SAFARI 34

Packing

Matrix Packed Matrix
l Packing l

Reorders elements of matrices to minimize
cache misses during matrix multiplication

v v

Up to 40% of the Packing’s data movement
inference energy and 3 1% of accounts for up to
inference execution time 35.3% of the inference energy

A simple data reorganization process
that requires simple arithmetic

SAFARI 36

Quantization

floating point integer

Converts 32-bit floating point to 8-bit integers to improve
inference execution time and energy consumption

v v

Up to 16.8% of the Majority of quantization
inference energy energy comes from
and 16.1% of data movement

inference execution time

A simple data conversion operation that requires
shift, addition, and multiplication operations

SAFARI 36

Based on our analysis, we conclude that:

* Both functions are good candidates for PIM execution
* It is feasible to implement them in PIM logic

Evaluation Methodology

* System Configuration (gem5 Simulator)

— SoC: 4 O00 cores, 8-wide issue, 64 kB L1cache,
2MB L2 cache

— PIM Core: | core per vault, | -wide issue, 4-wide SIMD,
32kB L1 cache

— 3D-Stacked Memory: 2GB cube, |16 vaults per cube
* Internal Bandwidth: 256 GB/S
¢ Off-Chip Channel Bandwidth: 32 GB/s

— Baseline Memory: LPDDR3, 2GB, FR-FCFS scheduler
* We study each target in isolation and emulate each

separately and run them in our simulator
SAFARI 40

Normalized Energy

CPU-Only mPIM-Core OPIM-Acc

x> NN N R
N N N N N N
SNERRSER
w I NN N\ N
5 0.6 1N N N N § N\
2 I IR NN N7
0NN N N)
N\ N1\
z | NP N LN N N
Texture Cold ki -Pi

77.7% and 82.6% of energy reduction for texture tiling
and packing comes from eliminating data movement

1 core and PIM accelerator reduces
energy consumption on average by 49.1% and 55.4%

SAFARI 41

Normalized Runtime

o o
o

Normalized Runtime
o o

o

CPU-Only B PIM-Core [0 PIM-Acc

Offloading these kernels to PIM core and PIM accelerator
improves performance on average by 44.6% and 54.2%

TR N N
N N N
NN N
N Nm-\
AN N
)
, INEEPNEL S
Texture Color Comp- Decomp- | Sub-Pixel Deblocking Motion |TensorFlow
Tiling Blitting ression ression [Interpolation Filter Estimation
Chrome Browser Video Playback Tensor!=low
and Capture Mobile

91

Google Workloads

for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

ASPLOS 2018
SAFARI CarnegieMellon Google

MBS SEOUL
) o ETH. i
inse@eN. UNIVERSITY

s
N>

\‘L&««r

More on PIM for Mobile Devices

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose’ Youngsok Kim*
Rachata Ausavarungnirun’ Eric Shiv> Rahul Thakur’ ~ Daehyun Kim*”
Aki Kuusela® Allan Knies®> Parthasarathy Ranganathan® Onur Mutlu™!

SAFARI 73

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Truly Distributed GPU Processing with PIM?

__global__

void applyScaleFactorsKernel(uint8_ T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols)

// Work out which pixel we are working on.

const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
const int colldx = blockIdx.y:

const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if(rowIdx >= numRows) return;

// Compute the index of my element

3 D-StaCked memory size_t linearIdx = rowIdx + colIdx*numRows +

sliceIdx*numRows*numCols;

(memory stack) SM (Streaming Multiprocessor)

<. Logic layer

Logic layer
SM
1

Crossbar switch
| I

Vault| |Vault
Ctrl Ctrl

Accelerating GPU Execution with PIM (I)

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim* Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

ICarnegie Mellon University 'NVIDIA *KAIST SETH Ziirich

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Accelerating GPU Execution with PIM (1I)

= Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik® Xulong Tang* Adwait Jog> Onur Kayiran?
Asit K. Mishra* Mahmut T. Kandemirt Onur Mutlu>¢ Chita R. Das!

'Pennsylvania State University =~ *College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich ¢Carnegie Mellon University

SAFARI %6

https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

Accelerating linked Data Structures

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,

"Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer

Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich

SAFARI o7

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

Accelerating Dependent Cache Misses

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

'Accelerating Dependent Cache Misses with an Enhanced

Memory Controller”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University

SAFARI 78

https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

Several Questions in 3D-Stacked PIM

= What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?

a By changing the entire system
o By performing simple function offloading

= | What is the minimal processing-in-memory support we can
provide?

ith minimal changes to system and programming

SAFARI 7

PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University

SAFARI

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

PEI: PIM-Enabled Instructions (Ideas)

Goal: Develop mechanisms to get the most out of near-data
processing with minimal cost, minimal changes to the system, no
changes to the programming model

Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block

0 e.g., __pim_add(&w.next_rank, value) = pim.add r1, (r2)

No changes sequential execution/programming model

No changes to virtual memory

Minimal changes to cache coherence

No need for data mapping: Each PEI restricted to a single memory module

o O O O

Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors

o Execute each operation at the location that provides the best performance

SAFARI tot

Simple PIM Operations as ISA Extensions (II)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;

Main Memory

64 bytes in - PR — et
64 bytes out |

Conventional Architecture

SAFARI 102

Simple PIM Operations as ISA Extensions (I1I)

for (v: graph.vertices) {
—_ H %k .
value = weight * v.rank; oim.add r1, (r2)
for (w: v.successors) {

__pim_add(&w.next_rank, value);

Main Memory

"

Sbytesin [EEEm—————m
O bytesout |

In-Memory Addition

SAFARI 103

Always Executing in Memory? Not A Good Idea

60%

50%
(0)

0% Increased

30% = Memory Bandwidth

20% Consumption

10% Caching very effective l
-)

0% ‘ \ E—

Speedup

[

-10%
-20%

Reduced Memory Bandwidth
Consumption due to

L

| .
2 " -(Fe = '-g S w0 In-Memory Computation
\V —OO'Q‘I— N O - w — (S
= 99 Qe 89 £ S+ L5 50
N Y Q0 S e a o g oA
Q S N © n 2 =

More Vertices

—
SAFARI 104

PEIL: PIM-Enabled Instructions (Example)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
__pim_add(&w.next_rank, value);

pim.add r1, (r2)

} Table 1: Summary of Supported PIM Operations
} Operation R W Input Output Applications
pfe nce 8-byte integer increment O O Obytes Obytes AT
pfe nce () . 8-byte integer min O O 8bytes Obytes BFS, SP, WCC
4 Floating-point add O O 8bytes Obytes PR
Hash table probing O X 8bytes 9bytes HJ
Histogram bin index O X 1byte 16bytes HG, RP
Euclidean distance O X 64bytes 4bytes SC
Dot product O X 32bytes 8bytes SVM

Executed either in memory or in the processor: dynamic decision
o Low-cost locality monitoring for a single instruction

Cache-coherent, virtually-addressed, single cache block only

Atomic between different PEIs

Not atomic with normal instructions (use pfence for ordering)

SAFARI

105

PIM-Enabled Instructions

Key to practicality: single-cache-block restriction
a Each PEI can access at most one last-level cache block
o Similar restrictions exist in atomic instructions

Benefits

o Localization: each PEI is bounded to one memory module

o Interoperability: easier support for cache coherence and
virtual memory

o Simplified locality monitoring: data locality of PEIs can be
identified simply by the cache control logic

SAFARI

PEI: Initial Evaluation Results

= Initial evaluations with 10 emerging data-intensive workloads
o Large-scale graph processing

QO In- memory data ana Iytlcs Table 2: Baseline Simulation Configuration
o Machine learning and data mining Component _ Configuration
Core 16 out-of-order cores, 4 GHz, 4-issue
1 1 L1 I/D-Cache Private, 32 KB, 4/8-way, 64 B blocks, 16 MSHRs
J Th ree In pUt SetS (Sma I ll med Iu ml Ia rge) L2 Cache Private, 256 KB, 8-way, 64 B blocks, 16 MSHRs
1 L3 Cache Shared, 16 MB, 16-way, 64 B blocks, 64 MSHRs
for eaCh Workload to a na Iyze the I m paCt On-Chip Network Crossbar, 2 GHz, 144-bit links
i Main Memory 32 GB, 8 HMCs, daisy-chain (80 GB/s full-duplex)
Of data Ioca I Ity HMC 4 GB, 16 vaults, 256 DRAM banks [20]
- DRAM FR-FCFS, tCL = tRCD = tRP = 13.75 ns [27]

— Vertical Links 64 TSVs per vault with 2 Gb/s signaling rate [23]

= Pin-based cycle-level x86-64 simulation

= Performance Improvement and Energy Reduction:
= 47% average speedup with large input data sets
= 32% speedup with small input data sets
= 25% avg. energy reduction in a single node with large input data sets

SAFARI 107

Evaluated Data-Intensive Applications

Ten emerging data-intensive workloads

o Large-scale graph processing

Average teenage follower, BFS, PageRank, single-source shortest
path, weakly connected components

o In-memory data analytics
Hash join, histogram, radix partitioning
o Machine learning and data mining
Streamcluster, SVM-RFE

Three input sets (small, medium, large) for each workload
to show the impact of data locality

SAFARI

PEI Performance Delta: Large Data Sets

(Large Inputs, Baseline: Host-Only)
70%

60%

50%

40%

30%

20%

0%
WCC

B PIM-Only @ Locality-Aware

SVM GM

SAFARI 109

Normalized Amount of Off-chip Transfer

ATF BFS PR SP WCC HJ HG RP SC
B Host-Only ®PIM-Only [Locality-Aware

PEI Performance Delta: Small Data Sets

(Small Inputs, Baseline: Host-Only)
60%

40%

20%

—

0% e - T
| I I - B . r I
-20%
-40%

-60%

ATF BFS PR SP WCC HJ HG RP SC SVM GM
B PIM-Only @ Locality-Aware

SAFARI t

Normalized Amount of Off-chip Transfer

8
7
6
5
4
3
2
1
0

dhlddl.d

B Host-Only ®PIM-Only [Locality-Aware

SC

PEI Performance Delta: Medium Data Sets

(Medium Inputs, Baseline: Host-Only)
70%

60%

50%
40%

30%

~ § 11 i

ATF BFS PR SP WCC HJ HG RP SC SVM GM
-10%

B PIM-Only @ Locality-Aware

SAFARI 3

PEI Energy Consumption

1.5 Host-OnIy
PIM-Only
Locality-Aware
1
0.5
0
Small Medium Large
MW Cache B HMC Link m DRAM
[Host-side PCU 0 Memory-side PCU O PMU

SAFARI 114

PEI: Advantages & Disadvantages

Advantages

+ Simple and low cost approach to PIM

+ No changes to programming model, virtual memory
+ Dynamically decides where to execute an instruction

Disadvantages

- Does not take full advantage of PIM potential
- Single cache block restriction is limiting

SAFARI s

Simpler PIM: PIM-Enabled Instructions

= Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,
"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture”
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn Sungjoo Yoo Onur Mutlu’ Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi @snu.ac.kr

Seoul National University TCarnegie Mellon University

SAFARI

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

Automatic Code and Data Mapping

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim* Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

ICarnegie Mellon University 'NVIDIA *KAIST SETH Ziirich

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Automatic Offloading of Critical Code

= Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

'Accelerating Dependent Cache Misses with an Enhanced

Memory Controller”
Proceedings of the 43rd International Symposium on Computer

Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Accelerating Dependent Cache Misses with an
Enhanced Memory Controller

Milad Hashemi*, Khubaib', Eiman Ebrahimi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin TApple *NVIDIA SETH Ziirich & Carnegie Mellon University

SAFARI 18

https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

Automatic Ottloading ot Pretetch Mechanisms

= Milad Hashemi, Onur Mutlu, and Yale N. Patt,

'Continuous Runahead: Transparent Hardware Acceleration for

Memory Intensive Workloads"
Proceedings of the 49th International Symposium on

Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

Continuous Runahead: Transparent Hardware Acceleration
for Memory Intensive Workloads

Milad Hashemi*, Onur Mutlu®, Yale N. Patt*

*The University of Texas at Austin SETH Ziirich

SAFARI 19

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Eftficient Automatic Data Coherence Support

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
TEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'$, Brandon Lucia’,
Kevin Hsieht, Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f

f Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich

SAFARI 120

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

Eftficient Automatic Data Coherence Support

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutluy,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators”
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand" Saugata Ghose' Minesh Patel* Hasan Hassan™
Brandon Lucia’ Rachata Ausavarungnirun’* Kevin Hsieh'
Nastaran Hajinazar®" Krishna T. Malladi® Hongzhong Zheng® Onur Mutlu**

"Carnegie Mellon University *ETH Zurich *KMUTNB
°Simon Fraser University $Samsung Semiconductor, Inc.

SAFARI 121

https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity for Future

Fundamentally
High-Performance
(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI

Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory

The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices

o Top Down: Pull from Systems and Applications
Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI 125

Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

SAFARI

Barriers to Adoption of PIM

1. Functionality of and applications & software for PIM

2. Ease of programming (interfaces and compiler/HW support)
3. System support: coherence & virtual memory

4. Runtime and compilation systems for adaptive scheduling,
data mapping, access/sharing control

5. Infrastructures to assess benefits and feasibility

All can be solved with change of mindset

SAFARI 127

We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step

SAFARI 128

PIM Review and Open Problems

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan Gémez-Luna?, Rachata Ausavarungnirun®®

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory

Computation”
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf 129

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

Key Challenge 1: Code Mapping

* Challenge 1: Which operations should be executed
in memory vs.in CPU!? ey

3D-stacked memory
(memory stack)

void applyScaleFactorsKernel(uint8_ T * const out,
uint8_T const * const in, const double *factor,
size_t const numRows, size_t const numCols)
{
e // Work out which pixel we are working on.
const int rowIdx = blockIdx.x * blockDim.x + threadIdx.x:;
EEEEEEEERENm const int colldx = blockIdx.y:
const int sliceldx = threadIdx.z;

// Check this thread isn't off the image
if(rowIdx >= numRows) return;

// Compute the index of my element

size_t linearIdx = rowIdx + colIdx*numRows +
sliceIdx*numRows*numCols;

SM (Streaming Multiprocessor)

*
*
*
*

?

JIIIIIIIIIIII

<. Logic layer

, ¥

P Logic layer

Main GPU

/ SM
|
Crossbar switch

[I
. Vault| ... [Vault
N Ctrl Ctrl

Key Challenge 2: Data Mapping

* Challenge 2: How should data be mapped to
different 3D memory stacks!?

3D-stacked memory
(memory stack) SM (Streammg Multiprocessor)

\
<-.!Logic layer
P g y'

SM

Logic layer

Crossbar switch

Vault
Ctrl

Vault
Ctrl

How to Do the Code and Data Mapping?

= Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems”
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

Transparent Offloading and Mapping (TOM):
Enabling Programmer-Transparent Near-Data Processing in GPU Systems

Kevin Hsieh! Eiman Ebrahimi Gwangsun Kim* Niladrish Chatterjee]L Mike O’Connor'
Nandita Vij aykumari Onur Mutlu$? Stephen W. Keckler!

ICarnegie Mellon University 'NVIDIA *KAIST SETH Ziirich

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

How to Schedule Code?

= Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.
Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities”

Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

Scheduling Techniques for GPU Architectures
with Processing-In-Memory Capabilities

Ashutosh Pattnaik® Xulong Tang* Adwait Jog> Onur Kayiran?
Asit K. Mishra* Mahmut T. Kandemir® ~ Onur Mutlu?¢ Chita R. Das!

'Pennsylvania State University = *College of William and Mary
3Advanced Micro Devices, Inc. “Intel Labs °ETH Zirich ¢Carnegie Mellon University

SAFARI 133

https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

Coherence for Hybrid CPU-PIM Apps

Challenge

Traditional

o > = S
°___E HE R
a | L o
S o m O 28|z C%
o > =
BN B B|E|O m 2
....... UEBIAID
===- 8¢I-dV1lH 0
[a)
=
95¢-dV1H =
)ueyasded
G
lipey =
Ll
sjuauodwo)
AL e T T T -L V—cmzmmm&
S
npey =
| o=
G
sjuauodwo)
T ToE77%)ueyoSeq
=
lipey x
©
sjuauodwo)

134

SAFARI

How to Maintain Coherencer (I)

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
TEEE Computer Architecture Letters (CAL), June 2016.

LazyPIM: An Efficient Cache Coherence Mechanism for Processing-in-Memory

Amirali Boroumand', Saugata Ghose', Minesh Patel’, Hasan Hassan'$, Brandon Lucia’,
Kevin Hsieht, Krishna T. Malladi*, Hongzhong Zheng*, and Onur Mutlu*f

f Carnegie Mellon University *Samsung Semiconductor, Inc. $TOBB ETU *ETH Ziirich

SAFARI 135

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

How to Maintain Coherencer (I1)

= Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutluy,
"CoNDA: Efficient Cache Coherence Support for Near-
Data Accelerators”
Proceedings of the 46th International Symposium on Computer
Architecture (ISCA), Phoenix, AZ, USA, June 2019.

CoNDA: Efficient Cache Coherence Support
for Near-Data Accelerators

Amirali Boroumand" Saugata Ghose' Minesh Patel* Hasan Hassan™
Brandon Lucia’ Rachata Ausavarungnirun’* Kevin Hsieh'
Nastaran Hajinazar®" Krishna T. Malladi® Hongzhong Zheng® Onur Mutlu**

"Carnegie Mellon University *ETH Zurich *KMUTNB
°Simon Fraser University $Samsung Semiconductor, Inc.

SAFARI 136

https://people.inf.ethz.ch/omutlu/pub/CONDA-coherence-for-near-data-accelerators_isca19.pdf
http://iscaconf.org/isca2019/

How to Support Virtual Memory?

= Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali
Boroumand, Saugata Ghose, and Onur Mutlu,

"Accelerating Pointer Chasing in 3D-Stacked Memory:

Challenges, Mechanisms, Evaluation”
Proceedings of the 34th IEEE International Conference on Computer

Design (ICCD), Phoenix, AZ, USA, October 2016.

Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation

Kevin Hsieh! Samira Khan* Nandita Vijaykumar!
Kevin K. Chang' Amirali Boroumand' Saugata Ghose! Onur Mutlu®!

"Carnegie Mellon University — *University of Virginia SETH Ziirich

SAFARI 157

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

How to Design Data Structures tor PIM?

= Zhiyu Liu, Irina Calciu, Maurice Herlihy, and Onur Mutlu,
"Concurrent Data Structures for Near-Memory Computing"
Proceedings of the 29th ACM Symposium on Parallelism in Algorithims
and Architectures (SPAA), Washington, DC, USA, July 2017.
[Slides (pptx) (pdf)]

Concurrent Data Structures for Near-Memory Computing

Zhiyu Liu Irina Calciu
Computer Science Department VMware Research Group
Brown University icalciu@vmware.com
zhiyu_liu@brown.edu
Maurice Herlihy Onur Mutlu
Computer Science Department Computer Science Department
Brown University ETH Ziirich
mph@cs.brown.edu onur.mutlu@inf.ethz.ch

SAFARI 138

https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17.pdf
https://spaa.acm.org/
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/concurrent-data-structures-for-PIM_spaa17-talk.pdf

Simulation Infrastructures for PIM

Ramulator extended for PIM
o Flexible and extensible DRAM simulator
o Can model many different memory standards and proposals

o Kim+, "Ramulator: A Flexible and Extensible DRAM
Simulator”, IEEE CAL 2015.

o https://github.com/CMU-SAFARI/ramulator

Ramulator: A Fast and Extensible DRAM Simulator

Yoongu Kim! Weikun Yang'-? Onur Mutlu®
ICarnegie Mellon University ~ ?Peking University

SAFARI 159

https://github.com/CMU-SAFARI/ramulator

An FPGA-based Test-bed for PIM?

= Hasan Hassan et al., SoftMC: A o H;at/ t
Flexible and Practical Open- Chamber '
Source Infrastructure for ’\ »
Enabling Experimental DRAM Epy }! i
Studies HPCA 2017. - =Ga,
keS| Host
/"%]E Machme
= Flexible "
¥ iTlemp> ﬂ,
= Easy to Use (C++ API) Controller
= Open-source Heater : T

i

github.com/CMU-SAFARI/SoftMC

SAFARI 140

https://people.inf.ethz.ch/omutlu/pub/softMC_hpca17.pdf

Simulation Infrastructures for PIM (in SSDs)

= Arash Tavakkol, Juan Gomez-Luna, Mohammad Sadrosadati,
Saugata Ghose, and Onur Mutlu,

"MQOSim: A Framework for Enabling Realistic Studies of
Modern Multi-Queue SSD Devices"

Proceedings of the 16th USENIX Conference on File and Storage

lechnologies (FAST), Oakland, CA, USA, February 2018.
Slides (pptx) (pdf)]
[Source Code]

MQSim: A Framework for Enabling Realistic Studies of

Modern Multi-Queue SSD Devices

Arash Tavakkol”, Juan Gémez-Luna’, Mohammad Sadrosadati’, Saugata Ghose*, Onur Mutlu*
YETH Ziirich *Carnegie Mellon University

SAFARI 14

https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18.pdf
https://www.usenix.org/conference/fast18
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/MQSim-SSD-simulation-framework_fast18-talk.pdf
https://github.com/CMU-SAFARI/MQSim

New Applications and Use Cases for PIM

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose,
Mohammed Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu,
"GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using
Processing-in-Memory Technologies"

BMC Genomics, 2018.

Proceedings of the 16th Asia Pacific Bioinformatics Conference (APBC),
Yokohama, Japan, January 2018.

arxiv.org Version (pdf)

GRIM-Filter: Fast seed location filtering in
DNA read mapping using

processing-in-memory technologies

Jeremie S. Kim'®", Damla Senol Cali', Hongyi Xin?, Donghyuk Lee3, Saugata Ghose',
Mohammed Alser*, Hasan Hassan®, Oguz Ergin®, Can Alkan*" and Onur Mutlu®'”

From The Sixteenth Asia Pacific Bioinformatics Conference 2018
Yokohama, Japan. 15-17 January 2018

SAFARI 142

http://www.biomedcentral.com/bmcgenomics/
http://apbc2018.bio.keio.ac.jp/
https://arxiv.org/pdf/1711.01177.pdf

SAFARI

Genome Read In-Memory (GRIM) Filter:

Fast Seed Location Filtering in DNA Read Mapping
using Processing-in-Memory Technologies

Jeremie Kim,
Damla Senol, Hongyi Xin, Donghyuk Lee,
Saugata Ghose, Mohammed Alser, Hasan Hassan,
Oguz Ergin, Can Alkan, and Onur Mutlu

AN Emzicich

TOBB
UNIVERSITY OF
ECONOMICS AND TECHNOLOGY

Carnegie Mellon

Executive Summary

Genome Read Mapping is a very important problem and is the first
step in many types of genomic analysis

o Could lead to improved health care, medicine, quality of life

Read mapping is an approximate string matching problem
o Find the best fit of 100 character strings into a 3 billion character dictionary

o Alignment is currently the best method for determining the similarity between
two strings, but is very expensive

We propose an in-memory processing algorithm GRIM-Filter for
accelerating read mapping, by reducing the number of required
alignments

We implement GRIM-Filter using in-memory processing within 3D-
stacked memory and show up to 3.7x speedup.

SAFARI 4

Google Workloads

for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, Rahul Thakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

SAFARI CarnegieMellon Google

PSnmsuncg

\?;
A 0

WER® SEOUL
ghy Lo ETH:..

77 UNIVERSITY

\d,&««r

PIM Review and Open Problems

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan Gémez-Luna?, Rachata Ausavarungnirun®®

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory

Computation”
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf 146

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

Challenge and Opportunity for Future

Fundamentally
Energy-Efficient
(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity for Future

Fundamentally
High-Performance
(Data-Centric)
Computing Architectures

SAFARI

Challenge and Opportunity for Future

Computing Architectures
with
Minimal Data Movement

SAFARI

One Important Takeaway

Main Memory Needs
Intelligent Controllers

SAFARI

Sub-Agenda: In-Memory Computation

Major Trends Affecting Main Memory
The Need for Intelligent Memory Controllers

o Bottom Up: Push from Circuits and Devices
o Top Down: Pull from Systems and Applications

Processing in Memory: Two Directions

o Minimally Changing Memory Chips

o Exploiting 3D-Stacked Memory

How to Enable Adoption of Processing in Memory

Conclusion

SAFARI 151

PIM: Concluding Remarks

Concluding Remarks

= It is time to design principled system architectures to solve
the memory problem

= Design complete systems to be balanced, high-performance,
and energy-efficient, i.e., data-centric (or memory-centric)

= Enable computation capability inside and close to memory

= This can

o Lead to orders-of-magnitude improvements

o Enable new applications & computing platforms
o Enable better understanding of nature
Q

153

The Future of Processing in Memory 1s Bright

= Regardless of challenges
a in underlying technology and overlying problems/requirements

Problem
Can enable: Yet, we have to
- Orders of magnitude Program/Language - Think across the stack
improvements System Software

SW/HW Interface - Design enabling systems

- New applications and
computing systems

SAFARI 154

We Need to Revisit the Entire Stack

SW/HW Interface

We can get there step by step

SAFARI 155

If In Doubt, See Other Doubttul Technologies

A very “doubtful” emerging technology
o for at least two decades

§H'H+ S Proceedings of the IEFE, Sept. 2017

Error Characterization,
Mitigation, and Recovery
in Flash-Memory-Based
Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error
characterization, mitigation, and data recovery techniques to improve both SSD’s

reliability and lifetime.

By Yu Cai, SaucaTta GHOsE, EricH F. HARATSCH, YIXIN Luo, AND ONUR MUTLU

SAFARI https:/ /arxiv.org/pdf/1706.08642 156

https://arxiv.org/pdf/1706.08642

PIM Review and Open Problems

Processing Data Where It Makes Sense:
Enabling In-Memory Computation

Onur Mutlu®®, Saugata Ghose®, Juan Gémez-Luna?, Rachata Ausavarungnirun®®

“ETH Ziirich
bCarnegie Mellon University
“King Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory

Computation”
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

SAFARI https: / /arxiv.org/pdf/1903.03988.pdf 157

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

Memory Systems

and Memory-Centric Computing Systems

Part 3: Computation in Memory

Prof. Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
7 July 2019
SAMOS Tutorial

SAFARI ETHZzurich cCarnegieMellon

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

