Memory Systems
and Memory-Centric Computing Systems

Part 5: Principles and Conclusion

Prof. Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
7 July 2019
SAMOS Tutorial
Four Key Directions

- Fundamentally **Secure/Reliable/Safe** Architectures
- Fundamentally **Energy-Efficient** Architectures
 - Memory-centric (Data-centric) Architectures
- Fundamentally **Low-Latency** Architectures
- Architectures for **Genomics, Medicine, Health**
Guiding Principles
Some Solution Principles (So Far)

- **Data-centric system design & intelligence spread around**
 - Do not center everything around traditional computation units

- **Better cooperation across layers of the system**
 - Careful co-design of components and layers: system/arch/device
 - Better, richer, more expressive and flexible interfaces

- **Better-than-worst-case design**
 - Do not optimize for the worst case
 - Worst case should not determine the common case

- **Heterogeneity in design (specialization, asymmetry)**
 - Enables a more efficient design (No one size fits all)
Some Solution Principles (More Compact)

- Data-centric design
- All components intelligent
- Better cross-layer communication, better interfaces
- Better-than-worst-case design
- Heterogeneity
- Flexibility, adaptability

Open minds
Data-Aware Architectures

- A data-aware architecture understands what it can do with and to each piece of data.

- It makes use of different properties of data to improve performance, efficiency and other metrics:
 - Compressibility
 - Approximability
 - Locality
 - Sparsity
 - Criticality for Computation
 - Access Semantics
 - ...

SAFARI
One Problem: Limited Interfaces

Higher-level information is not visible to HW

Software

Hardware

100011111...
101010011...

Instructions
Memory Addresses
A Solution: More Expressive Interfaces

Performance

Software

Functionality

Hardware

ISA

Virtual Memory

Higher-level Program Semantics

Expressive Memory “XMem”
Expressive (Memory) Interfaces

[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]
Expressive (Memory) Interfaces for GPUs

-The Locality Descriptor: A Holistic Cross-Layer Abstraction to Express Data Locality in GPUs

Nandita Vijaykumar†§, Eiman Ebrahimi‡, Kevin Hsieh†, Phillip B. Gibbons†, Onur Mutlu§†

†Carnegie Mellon University, ‡NVIDIA, §ETH Zürich
Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware
Concluding Remarks
A Quote from A Famous Architect

“architecture [...] based upon principle, and not upon precedent”
Precedent-Based Design?

- “architecture [...] based upon principle, and not upon precedent”
Principled Design

“architecture [...] based upon principle, and not upon precedent”
Organic architecture is a philosophy of architecture which promotes harmony between human habitation and the natural world through design approaches so sympathetic and well integrated with its site, that buildings, furnishings, and surroundings become part of a unified, interrelated composition.

A well-known example of organic architecture is Fallingwater, the residence Frank Lloyd Wright designed for the Kaufmann family in rural Pennsylvania. Wright had many choices to locate a home on this large site, but chose to place the home directly over the waterfall and creek creating a close, yet noisy dialog with the rushing water and the steep site. The horizontal striations of stone masonry with daring cantilevers of colored beige concrete blend with native rock outcroppings and the wooded environment.
Another Example: Precedent-Based Design

Source: http://cookiemagik.deviantart.com/art/Train-station-207266944
Principled Design

Source: By Toni_V, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4087256
Another Principled Design

Source: http://www.archspace.com/exhibitions/unsorted/santiago-calatrava/
Another Principled Design
Principle Applied to Another Structure

Source: By Forgemind ArchiMedia - Flickr: IMG_2489 JPG, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=31493356
The Overarching Principle

Zoomorphic architecture
From Wikipedia, the free encyclopedia

Zoomorphic architecture is the practice of using animal forms as the inspirational basis and blueprint for architectural design. "While animal forms have always played a role adding some of the deepest layers of meaning in architecture, it is now becoming evident that a new strand of biomorphism is emerging where the meaning derives not from any specific representation but from a more general allusion to biological processes."[1]

Some well-known examples of Zoomorphic architecture can be found in the TWA Flight Center building in New York City, by Eero Saarinen, or the Milwaukee Art Museum by Santiago Calatrava, both inspired by the form of a bird’s wings.[3]
Overarching Principle for Computing?

Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg
Concluding Remarks

- It is time to design principled system architectures to solve the memory problem.

- Discover design principles for fundamentally secure and reliable computer architectures.

- Design complete systems to be balanced and energy-efficient, i.e., low latency and data-centric (or memory-centric).

- Enable new and emerging memory architectures.

- This can lead to orders-of-magnitude improvements.

- Enable new applications & computing platforms.

- Enable better understanding of nature.
We Need to Think Across the Stack

We can get there step by step
A very “doubtful” emerging technology

for at least two decades

Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD’s reliability and lifetime.

By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu

https://arxiv.org/pdf/1706.08642
Accelerated Memory Course (~6.5 hours)

- ACACES 2018
 - Memory Systems and Memory-Centric Computing Systems
 - Taught by Onur Mutlu July 9-13, 2018
 - ~6.5 hours of lectures

- Website for the Course including Videos, Slides, Papers
 - https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-HXxomthrpDpMJm05P6J9x

- All Papers are at:
 - https://people.inf.ethz.ch/omutlu/projects.htm
 - Final lecture notes and readings (for all topics)
A Final Detour
In-Memory Bulk Bitwise Operations

- We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
- At low cost
- Using analog computation capability of DRAM
 - Idea: activating multiple rows performs computation
- 30-60X performance and energy improvement

- New memory technologies enable even more opportunities
 - Memristors, resistive RAM, phase change mem, STT-MRAM, ...
 - Can operate on data with minimal movement
More on Ambit

Ambit Sounds Good, No?

Review from ISCA 2016

Paper summary
The paper proposes to extend DRAM to include bulk, bit-wise logical operations directly between rows within the DRAM.

Strengths
- Very clever/novel idea.
- Great potential speedup and efficiency gains.

Weaknesses
- Probably won't ever be built. Not practical to assume DRAM manufacturers with change DRAM in this way.
Strengths
The proposed mechanisms effectively exploit the operation of the DRAM to perform efficient bitwise operations across entire rows of the DRAM.

Weaknesses
This requires a modification to the DRAM that will only help this type of bitwise operation. It seems unlikely that something like that will be adopted.
Weaknesses

The core novelty of Buddy RAM is almost all circuits-related (by exploiting sense amps). I do not find architectural innovation even though the circuits technique benefits architecturally by mitigating memory bandwidth and relieving cache resources within a subarray. The only related part is the new ISA support for bitwise operations at DRAM side and its induced issue on cache coherence.
We Have a Mindset Issue…

- There are many other similar examples from reviews...
 - For many other papers...

- And, we are not even talking about JEDEC yet...

- How do we fix the mindset problem?

- By doing more research, education, implementation in alternative processing paradigms

We need to work on enabling the better future…
Aside: A Recommended Book

Even if the performance analysis is correctly done and presented, it may not be enough to persuade your audience—the decision makers—to follow your recommendations. The list shown in Box 10.2 is a compilation of reasons for rejection heard at various performance analysis presentations. You can use the list by presenting it immediately and pointing out that the reason for rejection is not new and that the analysis deserves more consideration. Also, the list is helpful in getting the competing proposals rejected!

There is no clear end of an analysis. Any analysis can be rejected simply on the grounds that it produced results that may need more analysis. This is the first reason listed in Box 10.2. The second most common reason for rejection of an analysis and for endless debate is the workload. Since workloads are always based on the past measurements, their applicability to the current or future environment can always be questioned. Actually, workload is one of the four areas of discussion that lead a performance presentation into an endless debate. These “rat holes” and their relative sizes in terms of time consumed are shown in Figure 10.26. Presenting this cartoon at the beginning of a presentation helps to avoid these areas.

Box 10.2 Reasons for Not Accepting the Results of an Analysis

1. This needs more analysis.
2. You need a better understanding of the workload.
3. It improves performance only for long I/O's, packets, jobs, and files, and most of the I/O's, packets, jobs, and files are short.
4. It improves performance only for short I/O's, packets, jobs, and files, but who cares for the performance of short I/O's, packets, jobs, and files; its the long ones that impact the system.
5. It needs too much memory/CPU/bandwidth and memory/CPU/bandwidth isn’t free.
6. It only saves us memory/CPU/bandwidth and memory/CPU/bandwidth is cheap.
7. There is no point in making the networks (similarly, CPUs/disks/--) faster; our CPUs/disks (any component other than the one being discussed) aren’t fast enough to use them.
8. It improves the performance by a factor of \(x \), but it doesn’t really matter at the user level because everything else is so slow.
9. It is going to increase the complexity and cost.
10. Let us keep it simple stupid (and your idea is not stupid).
11. It is not simple. (Simplicity is in the eyes of the beholder.)
12. It requires too much state.
13. Nobody has ever done that before. (You have a new idea.)
14. It is not going to raise the price of our stock by even an eighth. (Nothing ever does, except rumors.)
15. This will violate the IEEE, ANSI, CCITT, or ISO standard.
16. It may violate some future standard.
17. The standard says nothing about this and so it must not be important.
18. Our competitors don’t do it. If it was a good idea, they would have done it.
19. Our competition does it this way and you don’t make money by copying others.
20. It will introduce randomness into the system and make debugging difficult.
21. It is too deterministic; it may lead the system into a cycle.
22. It’s not interoperable.
23. This impacts hardware.
24. That’s beyond today’s technology.
25. It is not self-stabilizing.
26. Why change—it’s working OK.
Initial RowHammer Reviews

Disturbance Errors in DRAM: Demonstration, Characterization, and Prevention

Rejected (R2) 863kB
Friday 31 May 2013 2:00:53pm PDT

You are an **author** of this paper.

<table>
<thead>
<tr>
<th>Review #66A</th>
<th>Review #66B</th>
<th>Review #66C</th>
<th>Review #66D</th>
<th>Review #66E</th>
<th>Review #66F</th>
</tr>
</thead>
<tbody>
<tr>
<td>OveMer</td>
<td>Nov</td>
<td>WriQua</td>
<td>RevExp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This is an excellent test methodology paper, but there is no micro-architectural or architectural content.

- Whereas they show disturbance may happen in DRAM array, authors don't show it can be an issue in realistic DRAM usage scenario.
- Lacks architectural/microarchitectural impact on the DRAM disturbance analysis.

The mechanism investigated by the authors is one of many well known disturb mechanisms. The paper does not discuss the root causes to sufficient depth and the importance of this mechanism compared to others. Overall the length of the sections restating known information is much too long in relation to new work.
More ...

Reviews from ISCA 2014

Paper Weaknesses

1) The disturbance error (a.k.a coupling or cross-talk noise induced error) is a known problem to the DRAM circuit community.

2) What you demonstrated in this paper is so called DRAM row hammering issue - you can even find a Youtube video showing this! - http://www.youtube.com/watch?v=i3-gQSnBcdo

2) The architectural contribution of this study is too insignificant.

Paper Weaknesses

- Row Hammering appears to be well-known, and solutions have already been proposed by industry to address the issue.

- The paper only provides a qualitative analysis of solutions to the problem. A more robust evaluation is really needed to know whether the proposed solution is necessary.
Suggestions to Reviewers

- Be fair; you do not know it all
- Be open-minded; you do not know it all
- Be accepting of diverse research methods: there is no single way of doing research
- Be constructive, not destructive
- Do not have double standards...

Do not block or delay scientific progress for non-reasons
Suggestion to Community

We Need to Fix the Reviewer Accountability Problem
Suggestion to Community

Eliminate Double Standards
Suggestion to Researchers: Principle: Passion

Follow Your Passion
(Do not get derailed by naysayers)
Suggestion to Researchers: Principle: Resilience

Be Resilient
Focus on learning and scholarship
The quality of your work defines your impact
Memory Systems and Memory-Centric Computing Systems

Part 5: Principles and Conclusion

Prof. Onur Mutlu
omutlu@gmail.com
https://people.inf.ethz.ch/omutlu
7 July 2019
SAMOS Tutorial
Acknowledgments

- **My current and past students and postdocs**
 - Rachata Ausavarungnirun, Abhishek Bhowmick, Amirali Boroumand, Rui Cai, Yu Cai, Kevin Chang, Saugata Ghose, Kevin Hsieh, Tyler Huberty, Ben Jaiyen, Samira Khan, Jeremie Kim, Yoongu Kim, Yang Li, Jamie Liu, Lavanya Subramanian, Donghyuk Lee, Yixin Luo, Justin Meza, Gennady Pekhimenko, Vivek Seshadri, Lavanya Subramanian, Nandita Vijaykumar, HanBin Yoon, Jishen Zhao, ...

- **My collaborators**
 - Can Alkan, Chita Das, Phil Gibbons, Sriram Govindan, Norm Jouppi, Mahmut Kandemir, Mike Kozuch, Konrad Lai, Ken Mai, Todd Mowry, Yale Patt, Moinuddin Qureshi, Partha Ranganathan, Bikash Sharma, Kushagra Vaid, Chris Wilkerson, ...
Funding Acknowledgments

- NSF
- GSRC
- SRC
- CyLab
- Alibaba, AMD, Google, Facebook, HP Labs, Huawei, IBM, Intel, Microsoft, Nvidia, Oracle, Qualcomm, Rambus, Samsung, Seagate, VMware
Slides Not Covered
But Could Be Useful
End of Backup Slides
Readings, Videos, Reference Materials
Accelerated Memory Course (~6.5 hours)

- ACACES 2018
 - Memory Systems and Memory-Centric Computing Systems
 - Taught by Onur Mutlu July 9-13, 2018
 - ~6.5 hours of lectures

- Website for the Course including Videos, Slides, Papers
 - https://safari.ethz.ch/memory_systems/ACACES2018/
 - https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-HXxomthrpDpMJm05P6J9x

- All Papers are at:
 - https://people.inf.ethz.ch/omutlu/projects.htm
 - Final lecture notes and readings (for all topics)
Processing Data Where It Makes Sense: Enabling In-Memory Computation

Onur Mutlua,b, Saugata Ghoseb, Juan Gómez-Lunaa, Rachata Ausavarungnirunb,c

aETH Zürich
bCarnegie Mellon University
cKing Mongkut’s University of Technology North Bangkok

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun, "Processing Data Where It Makes Sense: Enabling In-Memory Computation"
[arXiv version]
Onur Mutlu and Jeremie Kim, "RowHammer: A Retrospective"
[Preliminary arXiv version]
Onur Mutlu and Lavanya Subramanian, "Research Problems and Opportunities in Memory Systems"
Invited Article in Supercomputing Frontiers and Innovations (SUPERFRI), 2014/2015.
Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, Future Research Directions

SAUGATA GHOSE, KEVIN HSIEH, AMIRALI BOROUMAND, RACHATA AUSAVARUNGNIRUN
Carnegie Mellon University

ONUR MUTLU
ETH Zürich and Carnegie Mellon University

[Preliminary arxiv.org version]

Onur Mutlu, "The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser"

[Slides (pptx) (pdf)]

The RowHammer Problem and Other Issues We May Face as Memory Becomes Denser

Onur Mutlu
ETH Zürich
onur.mutlu@inf.ethz.ch
https://people.inf.ethz.ch/omutlu

Onur Mutlu,
"Memory Scaling: A Systems Architecture Perspective"

Technical talk at MemCon 2013 (MEMCON), Santa Clara, CA, August 2013. [Slides (pptx) (pdf)] [Video] [Coverage on StorageSearch]
Error Characterization, Mitigation, and Recovery in Flash-Memory-Based Solid-State Drives

This paper reviews the most recent advances in solid-state drive (SSD) error characterization, mitigation, and data recovery techniques to improve both SSD’s reliability and lifetime.

By Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo, and Onur Mutlu

https://arxiv.org/pdf/1706.08642
Related Videos and Course Materials (I)

- Graduate Computer Architecture Course Lecture Videos (2017, 2015, 2013)
- Parallel Computer Architecture Course Materials (Lecture Videos)
Related Videos and Course Materials (II)

- **Memory Systems Short Course Materials**
 (Lecture Video on Main Memory and DRAM Basics)
Some Open Source Tools (I)

- **Rowhammer** – Program to Induce RowHammer Errors
 - https://github.com/CMU-SAFARI/rowhammer

- **Ramulator** – Fast and Extensible DRAM Simulator
 - https://github.com/CMU-SAFARI/ramulator

- **MemSim** – Simple Memory Simulator
 - https://github.com/CMU-SAFARI/memsim

- **NOCulator** – Flexible Network-on-Chip Simulator
 - https://github.com/CMU-SAFARI/NOCulator

- **SoftMC** – FPGA-Based DRAM Testing Infrastructure
 - https://github.com/CMU-SAFARI/SoftMC

- **Other open-source software from my group**
 - https://github.com/CMU-SAFARI/
 - http://www.ece.cmu.edu/~safari/tools.html
Some Open Source Tools (II)

- MQSim – A Fast Modern SSD Simulator
 - https://github.com/CMU-SAFARI/MQSim

- Mosaic – GPU Simulator Supporting Concurrent Applications
 - https://github.com/CMU-SAFARI/Mosaic

- IMPICA – Processing in 3D-Stacked Memory Simulator
 - https://github.com/CMU-SAFARI/IMPICA

- SMLA – Detailed 3D-Stacked Memory Simulator
 - https://github.com/CMU-SAFARI/SMLA

- HWASim – Simulator for Heterogeneous CPU-HWA Systems
 - https://github.com/CMU-SAFARI/HWASim

- Other open-source software from my group
 - https://github.com/CMU-SAFARI/
 - http://www.ece.cmu.edu/~safari/tools.html
More Open Source Tools (III)

- A lot more open-source software from my group
 - https://github.com/CMU-SAFARI/
 - http://www.ece.cmu.edu/~safari/tools.html
Referenced Papers

- All are available at

 https://people.inf.ethz.ch/omutlu/projects.htm

 http://scholar.google.com/citations?user=7XyGUGkAAAAAJ&hl=en

Ramulator: A Fast and Extensible DRAM Simulator

[IEEE Comp Arch Letters’15]
Ramulator Motivation

- DRAM and Memory Controller landscape is changing
- Many new and upcoming standards
- Many new controller designs
- A fast and easy-to-extend simulator is very much needed

<table>
<thead>
<tr>
<th>Segment</th>
<th>DRAM Standards & Architectures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commodity</td>
<td>DDR3 (2007) [14]; DDR4 (2012) [18]</td>
</tr>
<tr>
<td>Performance</td>
<td>eDRAM [28], [32]; RLDRAM3 (2011) [29]</td>
</tr>
<tr>
<td>3D-Stacked</td>
<td>WIO (2011) [16]; WIO2 (2014) [21]; MCDRAM (2015) [13];</td>
</tr>
<tr>
<td>Academic</td>
<td>SBA/SSA (2010) [38]; Staged Reads (2012) [8]; RAIDR (2012) [27];</td>
</tr>
<tr>
<td></td>
<td>SALP (2012) [24]; TL-DRAM (2013) [26]; RowClone (2013) [37];</td>
</tr>
<tr>
<td></td>
<td>Half-DRAM (2014) [39]; Row-Buffer Decoupling (2014) [33];</td>
</tr>
</tbody>
</table>

Table 1. Landscape of DRAM-based memory
Ramulator

- Provides out-of-the-box support for many DRAM standards:
 - DDR3/4, LPDDR3/4, GDDR5, WIO1/2, HBM, plus new proposals (SALP, AL-DRAM, TLDRAm, RowClone, and SARP)
- ~2.5X faster than fastest open-source simulator
- Modular and extensible to different standards

<table>
<thead>
<tr>
<th>Simulator</th>
<th>Cycles (10^6)</th>
<th>Runtime (sec.)</th>
<th>Req/sec (10^3)</th>
<th>Memory (MB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Random</td>
<td>Stream</td>
<td>Random</td>
<td>Stream</td>
</tr>
<tr>
<td>Ramulator</td>
<td>652</td>
<td>411</td>
<td>752</td>
<td>249</td>
</tr>
<tr>
<td>DRAMSim2</td>
<td>645</td>
<td>413</td>
<td>2,030</td>
<td>876</td>
</tr>
<tr>
<td>USIMM</td>
<td>661</td>
<td>409</td>
<td>1,880</td>
<td>750</td>
</tr>
<tr>
<td>DrSim</td>
<td>647</td>
<td>406</td>
<td>18,109</td>
<td>12,984</td>
</tr>
<tr>
<td>NVMMain</td>
<td>666</td>
<td>413</td>
<td>6,881</td>
<td>5,023</td>
</tr>
</tbody>
</table>

Table 3. Comparison of five simulators using two traces
Case Study: Comparison of DRAM Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Rate (MT/s)</th>
<th>Timing</th>
<th>Data-Bus</th>
<th>Rank-per-Chan</th>
<th>BW (GB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDR3</td>
<td>1,600</td>
<td>11-11-11</td>
<td>64-bit x 1</td>
<td>1</td>
<td>11.9</td>
</tr>
<tr>
<td>DDR4</td>
<td>2,400</td>
<td>16-16-16</td>
<td>64-bit x 1</td>
<td>1</td>
<td>17.9</td>
</tr>
<tr>
<td>SALP†</td>
<td>1,600</td>
<td>11-11-11</td>
<td>64-bit x 1</td>
<td>1</td>
<td>11.9</td>
</tr>
<tr>
<td>LPDDR3</td>
<td>1,600</td>
<td>12-15-15</td>
<td>64-bit x 1</td>
<td>1</td>
<td>11.9</td>
</tr>
<tr>
<td>LPDDR4</td>
<td>2,400</td>
<td>22-22-22</td>
<td>32-bit x 2*</td>
<td>1</td>
<td>17.9</td>
</tr>
<tr>
<td>GDDR5 [12]</td>
<td>6,000</td>
<td>18-18-18</td>
<td>64-bit x 1</td>
<td>1</td>
<td>44.7</td>
</tr>
<tr>
<td>HBM</td>
<td>1,000</td>
<td>7-7-7</td>
<td>128-bit x 8*</td>
<td>1</td>
<td>119.2</td>
</tr>
<tr>
<td>WIO</td>
<td>266</td>
<td>7-7-7</td>
<td>128-bit x 4*</td>
<td>1</td>
<td>15.9</td>
</tr>
<tr>
<td>WIO2</td>
<td>1,066</td>
<td>9-10-10</td>
<td>128-bit x 8*</td>
<td>1</td>
<td>127.2</td>
</tr>
</tbody>
</table>

Across 22 workloads, simple CPU model.

Figure 2. Performance comparison of DRAM standards
Ramulator Paper and Source Code

- Source code is released under the liberal MIT License
 - https://github.com/CMU-SAFARI/ramulator

Ramulator: A Fast and Extensible DRAM Simulator

Yoongu Kim\(^1\) Weikun Yang\(^1,2\) Onur Mutlu\(^1\)
\(^1\)Carnegie Mellon University \(^2\)Peking University
Optional Assignment

- **Review the Ramulator paper**
 - Email me your review (omutlu@gmail.com)

- **Download and run Ramulator**
 - Compare DDR3, DDR4, SALP, HBM for the libquantum benchmark (provided in Ramulator repository)
 - Email me your report (omutlu@gmail.com)

- This **will** help you get into **memory systems research**
Some More Suggested Readings
Some Key Readings on DRAM (I)

- DRAM Organization and Operation
Some Key Readings on DRAM (II)

- **DRAM Refresh**
Reading on Simulating Main Memory

- How to evaluate future main memory systems?
- An open-source simulator and its brief description

 [Source Code]
Some Key Readings on Memory Control

 https://people.inf.ethz.ch/omutlu/pub/parbs_isca08.pdf

Some Key Readings on Memory Control 2

 https://people.inf.ethz.ch/omutlu/pub/rlmc_isca08.pdf

More Readings

- To come as we cover the future topics

- Search for “DRAM” or “Memory” in:
 - https://people.inf.ethz.ch/omutlu/projects.htm