
Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
15 April 2019

Mubadala-SRC AI Hardware Systems Forum Keynote Talk

(Intelligent) Architectures
for

Intelligent Machines

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

The Problem

Computing
is Bottlenecked by Data

2

Data is Key for AI, ML, Genomics, …

n Important workloads are all data intensive

n They require rapid and efficient processing of large amounts
of data

n Data is increasing
q We can generate more than we can process

3

Data is Key for Future Workloads

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Data Overwhelms Modern Machines

In-Memory Data Analytics
[Clapp+ (Intel), IISWC’15;
Awan+, BDCloud’15]

Datacenter Workloads
[Kanev+ (Google), ISCA’15]

In-memory Databases
[Mao+, EuroSys’12;
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Data → performance & energy bottleneck

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Data is Key for Future Workloads

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Data Overwhelms Modern Machines

Data → performance & energy bottleneck

Data is Key for Future Workloads

8

development of high-throughput
sequencing (HTS) technologies

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

Number of Genomes
Sequenced

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

Genome
Analysis

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read
Alignment

 CC T AT AAT ACG
C
C
A
T
A
T
A
T
A
C
G

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery

Data → performance & energy bottleneck

New Genome Sequencing Technologies

10

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome
Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions,” Briefings in Bioinformatics, 2018.
[Preliminary arxiv.org version]

Oxford Nanopore MinION

Data → performance & energy bottleneck

https://arxiv.org/pdf/1711.08774.pdf

Data Overwhelms Modern Machines …

n Storage/memory capability

n Communication capability

n Computation capability

11

A Computing System

n Three key components
n Computation
n Communication
n Storage/memory

12

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

Perils of Processor-Centric Design

13

Most of the system is dedicated to storing and moving data

14

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Data Overwhelms Modern Machines

Data → performance & energy bottleneck

n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

15

62.7% of the total system energy
is spent on data movement

Data Movement Overwhelms Modern Machines

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Axiom

An Intelligent Architecture
Handles Data Well

16

How to Handle Data Well

n Ensure data does not overwhelm the components
q via intelligent algorithms
q via intelligent architectures
q via whole system designs: algorithm-architecture-devices

n Take advantage of vast amounts of data and metadata
q to improve architectural & system-level decisions

n Understand and exploit properties of (different) data
q to improve algorithms & architectures in various metrics

n …
17

Corollaries: Architectures Today …
n Architectures are terrible at dealing with data

q Designed to mainly store and move data vs. to compute
q They are processor-centric as opposed to data-centric

n Architectures are terrible at taking advantage of vast
amounts of data (and metadata) available to them
q Designed to make simple decisions, ignoring lots of data
q They make human-driven decisions vs. data-driven decisions

n Architectures are terrible at knowing and exploiting
different properties of application data
q Designed to treat all data as the same
q They make component-aware decisions vs. data-aware

18

Processing Data
Where It Makes Sense

19

Three Key Systems Trends

1. Data access is a major bottleneck
q Applications are increasingly data hungry

2. Energy consumption is a key limiter

3. Data movement energy dominates compute
q Especially true for off-chip to on-chip movement

20

Do We Want This?

21Source: V. Milutinovic

Or This?

22Source: V. Milutinovic

Challenge and Opportunity for Future

High Performance,
Energy Efficient,

Sustainable

23

The Problem

Data access is the major performance and energy bottleneck

Our current
design principles

cause great energy waste
(and great performance loss)

24

The Problem

Processing of data
is performed

far away from the data

25

A Computing System
n Three key components
n Computation
n Communication
n Storage/memory

26

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

A Computing System
n Three key components
n Computation
n Communication
n Storage/memory

27

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/

Today’s Computing Systems
n Are overwhelmingly processor centric
n All data processed in the processor à at great system cost
n Processor is heavily optimized and is considered the master
n Data storage units are dumb and are largely unoptimized

(except for some that are on the processor die)

28

Yet …
n “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.

The Performance Perspective

n Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), pages 129-140, Anaheim, CA, February
2003. Slides (pdf)

30

https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03.pdf
http://www.cs.arizona.edu/hpca9/
https://people.inf.ethz.ch/omutlu/pub/mutlu_hpca03_talk.pdf

The Performance Perspective (Today)
n All of Google’s Data Center Workloads (2015):

31Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

The Performance Perspective (Today)
n All of Google’s Data Center Workloads (2015):

32Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.

Perils of Processor-Centric Design

n Grossly-imbalanced systems
q Processing done only in one place
q Everything else just stores and moves data: data moves a lot
à Energy inefficient
à Low performance
à Complex

n Overly complex and bloated processor (and accelerators)
q To tolerate data access from memory
q Complex hierarchies and mechanisms
à Energy inefficient
à Low performance
à Complex

33

Perils of Processor-Centric Design

34

Most of the system is dedicated to storing and moving data

The Energy Perspective

35

Dally, HiPEAC 2015

Data Movement vs. Computation Energy

36

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

Data Movement vs. Computation Energy
n Data movement is a major system energy bottleneck

q Comprises 41% of mobile system energy during web browsing [2]
q Costs ~115 times as much energy as an ADD operation [1, 2]

37

[1]: Reducing data Movement Energy via Online Data Clustering and Encoding (MICRO’16)
[2]: Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms (IISWC’14)

Energy Waste in Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

38

62.7% of the total system energy
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

We Do Not Want to Move Data!

39

Dally, HiPEAC 2015

A memory access consumes ~1000X
the energy of a complex addition

We Need A Paradigm Shift To …

n Enable computation with minimal data movement

n Compute where it makes sense (where data resides)

n Make computing architectures more data-centric

40

Goal: Processing Inside Memory

n Many questions … How do we design the:
q compute-capable memory & controllers?
q processor chip and in-memory units?
q software and hardware interfaces?
q system software and languages?
q algorithms?

Cache

Processor
Core

Interconnect

Memory
Database

Graphs

Media
Query

Results

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Why In-Memory Computation Today?

n Push from Technology
q DRAM Scaling at jeopardy
à Controllers close to DRAM
à Industry open to new memory architectures

42

Why In-Memory Computation Today?

n Push from Technology
q DRAM Scaling at jeopardy
à Controllers close to DRAM
à Industry open to new memory architectures

43

Why In-Memory Computation Today?

n Push from Technology
q DRAM Scaling at jeopardy
à Controllers close to DRAM
à Industry open to new memory architectures

n Pull from Systems and Applications
q Data access is a major system and application bottleneck
q Systems are energy limited
q Data movement much more energy-hungry than computation

44

Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

45

Approach 1: Minimally Changing DRAM
n DRAM has great capability to perform bulk data movement and

computation internally with small changes
q Can exploit internal connectivity to move data
q Can exploit analog computation capability
q …

n Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
q RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)
q Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
q Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial

Locality of Non-unit Strided Accesses (Seshadri et al., MICRO 2015)
q "Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity

DRAM Technology” (Seshadri et al., MICRO 2017)

46

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Starting Simple: Data Copy and Initialization

47

Forking

00000
00000
00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration
Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]

Today’s Systems: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

481046ns, 3.6uJ (for 4KB page copy via DMA)

Future Systems: In-Memory Copy

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

491046ns, 3.6uJ à 90ns, 0.04uJ

RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
Idea: Two consecutive ACTivates

RowClone: Latency and Energy Savings

0

0.2

0.4

0.6

0.8

1

1.2

Latency Energy

No
rm

al
ize

d
Sa

vi
ng

s

Baseline Intra-Subarray
Inter-Bank Inter-Subarray

11.6x 74x

51
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” MICRO 2013.

More on RowClone
n Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A.
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session
Slides (pptx) (pdf)] [Poster (pptx) (pdf)]

52

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf

Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core
GPU

(throughput)
core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator

In-Memory Bulk Bitwise Operations
n We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
n At low cost

n Using analog computation capability of DRAM
q Idea: activating multiple rows performs computation

n 30-60X performance and energy improvement
q Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations

Using Commodity DRAM Technology,” MICRO 2017.

n New memory technologies enable even more opportunities
q Memristors, resistive RAM, phase change mem, STT-MRAM, …
q Can operate on data with minimal movement

54

In-DRAM AND/OR: Triple Row Activation

55

½VDD

½VDD

dis

A

B

C

Final State
AB + BC + AC

½VDD+δ

C(A + B) +
~C(AB)en

0

VDD

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.

In-DRAM NOT: Dual Contact Cell

56

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Idea:
Feed the

negated value
in the sense amplifier

into a special row

Ambit vs. DDR3: Performance and Energy

57

0

10

20

30

40

50

60

70

not and/or nand/nor xor/xnor mean

Performance Improvement Energy Reduction

32X 35X

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Bulk Bitwise Operations in Workloads

[1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017

Performance: Bitmap Index on Ambit

59

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Performance: BitWeaving on Ambit

60

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

>4-12X Performance Improvement

More on Ambit

n Vivek Seshadri et al., “Ambit: In-Memory Accelerator
for Bulk Bitwise Operations Using Commodity DRAM
Technology,” MICRO 2017.

61

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf

Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

62

Opportunity: 3D-Stacked Logic+Memory

63

Logic

Memory

Other “True 3D” technologies
under development

DRAM Landscape (circa 2015)

64
Kim+, “Ramulator: A Flexible and Extensible DRAM Simulator”, IEEE CAL 2015.

Two Key Questions in 3D-Stacked PIM

n What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?
q By changing the entire system
q By performing simple function offloading

n What is the minimal processing-in-memory support we can
provide?
q With minimal changes to system and programming

65

Graph Processing

66

n Large graphs are everywhere (circa 2015)

n Scalable large-scale graph processing is challenging

36 Million
Wikipedia Pages

1.4 Billion
Facebook Users

300 Million
Twitter Users

30 Billion
Instagram Photos

+42%

0 1 2 3 4

128…

32 Cores

Speedup

Key Bottlenecks in Graph Processing

67

for (v: graph.vertices) {
for (w: v.successors) {

w.next_rank += weight * v.rank;
}

}

weight * v.rank

v

w

&w

1. Frequent random memory accesses

2. Little amount of computation

w.rank
w.next_rank

w.edges
…

Tesseract System for Graph Processing

Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Logic

Memory

Tesseract System for Graph Processing

69

Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Communications via
Remote Function Calls

Logic

Memory

Tesseract System for Graph Processing

70

Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Prefetching

Evaluated Systems

HMC-MC

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

128
In-Order
2GHz

102.4GB/s 640GB/s 640GB/s 8TB/s

HMC-OoO

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

8 OoO
4GHz

DDR3-OoO Tesseract

32
Tesseract

Cores

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

Tesseract Graph Processing Performance

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-
LP

Tesseract-
LP-MTP

Sp
ee
du

p

>13X Performance Improvement

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

On five graph processing algorithms

Tesseract Graph Processing Performance

73

+56% +25%

9.0x

11.6x

13.8x

0

2

4

6

8

10

12

14

16

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-

LP

Tesseract-

LP-MTP

S
p

e
e

d
u

p

80GB/s
190GB/s 243GB/s

1.3TB/s

2.2TB/s

2.9TB/s

0

0.5

1

1.5

2

2.5

3

3.5

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract-

LP

Tesseract-

LP-MTP

M
e

m
o

r
y

 B
a

n
d

w
id

t
h

 (
T

B
/
s
)

Memory Bandwidth Consumption

Tesseract Graph Processing System Energy

0

0.2

0.4

0.6

0.8

1

1.2

HMC-OoO Tesseract with Prefetching

Memory Layers Logic Layers Cores

> 8X Energy Reduction

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

More on Tesseract
n Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu,

and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

75

http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf

Two Key Questions in 3D-Stacked PIM

n What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?
q By changing the entire system
q By performing simple function offloading

n What is the minimal processing-in-memory support we can
provide?
q With minimal changes to system and programming

76

PIM on Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata

Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data
Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

77

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Consumer Devices

Consumer devices are everywhere!

Energy consumption is
a first-class concern in consumer devices

Popular Google Consumer Workloads

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Energy Cost of Data Movement

Data Movement

1st key observation: 62.7% of the total system
energy is spent on data movement

Potential solution: move computation close to data

Challenge: limited area and energy budget

Processing-In-Memory (PIM)

SoC

DRAML2L1
CPU

CPUCPUCPU
Compute

Unit

Using PIM to Reduce Data Movement

2nd key observation: a significant fraction of the
data movement often comes from simple functions

PIM
Core

PIM
Accelerator

PIM
Accelerator

PIM
Accelerator

We can design lightweight logic to implement
these simple functions in memory

Small embedded
low-power core

Small fixed-function
accelerators

Offloading to PIM logic reduces energy and improves
performance, on average, by 55.4% and 54.2%

Workload Analysis

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

TensorFlow Mobile

57.3% of the inference energy is spent on
data movement

54.4% of the data movement energy comes from
packing/unpacking and quantization

Inference Prediction

Packing

Reorders elements of matrices to minimize
cache misses during matrix multiplication

Up to 40% of the
inference energy and 31% of

inference execution time

Packing’s data movement
accounts for up to

35.3% of the inference energy

PackingMatrix Packed Matrix

A simple data reorganization process
that requires simple arithmetic

Quantization

Converts 32-bit floating point to 8-bit integers to improve
inference execution time and energy consumption

Up to 16.8% of the
inference energy

and 16.1% of
inference execution time

Majority of quantization
energy comes from

data movement

Quantizationfloating point integer

A simple data conversion operation that requires
shift, addition, and multiplication operations

Normalized Energy

0

0.2

0.4

0.6

0.8

1

Texture
Tiling

Color
Blitting

Com-
pression

Decom-
pression

Packing Quantization Sub-Pixel
Interpolation

Deblocking
Filter

Motion
Estimation

N
or

m
al

iz
ed

 E
ne

rg
y

CPU-Only PIM-Core PIM-Acc

Chrome Browser Video Playback and
Capture

TensorFlow
Mobile

PIM core and PIM accelerator reduce
energy consumption on average by 49.1% and 55.4%

Normalized Runtime

0.0

0.2

0.4

0.6

0.8

1.0

Texture
Tiling

Color
Blitting

Comp-
ression

Decomp-
ression

Sub-Pixel
Interpolation

Deblocking
Filter

Motion
Estimation

TensorFlowNo
rm

al
ize

d
Ru

nt
im

e

CPU-Only PIM-Core PIM-Acc

Chrome Browser Video Playback
and Capture

TensorFlow
Mobile

Offloading these kernels to PIM core and PIM accelerator
improves performance on average by 44.6% and 54.2%

More on PIM for Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

88

62.7% of the total system energy
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/

Truly Distributed GPU Processing with PIM?

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack) SM (Streaming Multiprocessor)

Accelerating GPU Execution with PIM (I)
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

90

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Accelerating GPU Execution with PIM (II)
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

91

https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

92

Barriers to Adoption of PIM

1. Functionality of and applications for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,

access/sharing control

5. Infrastructures to assess benefits and feasibility

93

We Need to Revisit the Entire Stack

94

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Open Problems: PIM Adoption

Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, Onur Mutlu,
"Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms,
Future Research Directions"
Invited Book Chapter, to appear in 2018.
[Preliminary arxiv.org version]

95https://arxiv.org/pdf/1802.00320.pdf

https://people.inf.ethz.ch/omutlu/acaces2018.html
https://arxiv.org/pdf/1802.00320.pdf
https://arxiv.org/pdf/1802.00320.pdf

PIM Review and Open Problems

96

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

Challenge and Opportunity for Future

Computing Architectures
with

Minimal Data Movement

97

Corollaries: Architectures Today …
n Architectures are terrible at dealing with data

q Designed to mainly store and move data vs. to compute
q They are processor-centric as opposed to data-centric

n Architectures are terrible at taking advantage of vast
amounts of data (and metadata) available to them
q Designed to make simple decisions, ignoring lots of data
q They make human-driven decisions vs. data-driven decisions

n Architectures are terrible at knowing and exploiting
different properties of application data
q Designed to treat all data as the same
q They make component-aware decisions vs. data-aware

98

Exploiting Data to Design
Intelligent Architectures

99

System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions

100

Can we design
fundamentally intelligent architectures?

An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents

101

How do we start?

Self-Optimizing
Memory Controllers

Memory Controller

How to schedule requests to maximize system performance?

103

Memory
Controller

Core Core

Core Core
Memory

Resolves memory contention
by scheduling requests

Why are Memory Controllers Difficult to Design?

n Need to obey DRAM timing constraints for correctness
q There are many (50+) timing constraints in DRAM
q tWTR: Minimum number of cycles to wait before issuing a read command after

a write command is issued
q tRC: Minimum number of cycles between the issuing of two consecutive

activate commands to the same bank
q …

n Need to keep track of many resources to prevent conflicts
q Channels, banks, ranks, data bus, address bus, row buffers, …

n Need to handle DRAM refresh
n Need to manage power consumption
n Need to optimize performance & QoS (in the presence of constraints)

q Reordering is not simple
q Fairness and QoS needs complicates the scheduling problem

n …
104

Many Memory Timing Constraints

n From Lee et al., �DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,� HPS Technical Report,
April 2010.

105

Many Memory Timing Constraints
n Kim et al., “A Case for Exploiting Subarray-Level Parallelism

(SALP) in DRAM,” ISCA 2012.
n Lee et al., “Tiered-Latency DRAM: A Low Latency and Low

Cost DRAM Architecture,” HPCA 2013.

106

Memory Controller Design Is Becoming More Difficult

n Heterogeneous agents: CPUs, GPUs, and HWAs
n Main memory interference between CPUs, GPUs, HWAs
n Many timing constraints for various memory types
n Many goals at the same time: performance, fairness, QoS,

energy efficiency, …
107

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Reality and Dream
n Reality: It difficult to design a policy that maximizes

performance, QoS, energy-efficiency, …
q Too many things to think about
q Continuously changing workload and system behavior

n Dream: Wouldn’t it be nice if the DRAM controller
automatically found a good scheduling policy on its own?

108

Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers
n Problem: DRAM controllers are difficult to design

q It is difficult for human designers to design a policy that can adapt
itself very well to different workloads and different system conditions

n Idea: A memory controller that adapts its scheduling policy to
workload behavior and system conditions using machine learning.

n Observation: Reinforcement learning maps nicely to memory
control.

n Design: Memory controller is a reinforcement learning agent
q It dynamically and continuously learns and employs the best

scheduling policy to maximize long-term performance.

Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich

Caruana,
"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on
Computer Architecture (ISCA), pages 39-50, Beijing,
China, June 2008.

110

Goal: Learn to choose actions to maximize r0 + gr1 + g2r2 + … (0 £ g < 1)

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

Self-Optimizing DRAM Controllers
n Dynamically adapt the memory scheduling policy via

interaction with the system at runtime
q Associate system states and actions (commands) with long term

reward values: each action at a given state leads to a learned reward
q Schedule command with highest estimated long-term reward value in

each state
q Continuously update reward values for <state, action> pairs based on

feedback from system

111

Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

112

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

States, Actions, Rewards

113

❖ Reward function

• +1 for scheduling
Read and Write
commands

• 0 at all other
times

Goal is to maximize
long-term
data bus
utilization

❖ State attributes

• Number of reads,
writes, and load
misses in
transaction queue

• Number of pending
writes and ROB
heads waiting for
referenced row

• Request’s relative
ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP

Performance Results

114

Large, robust performance improvements
over many human-designed policies

Self Optimizing DRAM Controllers
+ Continuous learning in the presence of changing environment

+ Reduced designer burden in finding a good scheduling policy.
Designer specifies:

1) What system variables might be useful
2) What target to optimize, but not how to optimize it

-- How to specify different objectives? (e.g., fairness, QoS, …)

-- Hardware complexity?

-- Design mindset and flow

115

More on Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

116

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/

An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents

117

We need to rethink design
(of all controllers)

Challenge and Opportunity for Future

Self-Optimizing
(Data-Driven)

Computing Architectures

118

Corollaries: Architectures Today …
n Architectures are terrible at dealing with data

q Designed to mainly store and move data vs. to compute
q They are processor-centric as opposed to data-centric

n Architectures are terrible at taking advantage of vast
amounts of data (and metadata) available to them
q Designed to make simple decisions, ignoring lots of data
q They make human-driven decisions vs. data-driven decisions

n Architectures are terrible at knowing and exploiting
different properties of application data
q Designed to treat all data as the same
q They make component-aware decisions vs. data-aware

119

Data-Aware Architectures
n A data-aware architecture understands what it can do with

and to each piece of data

n It makes use of different properties of data to improve
performance, efficiency and other metrics
q Compressibility
q Approximability
q Locality
q Sparsity
q Criticality for Computation X
q Access Semantics
q …

120

One Problem: Limited Interfaces

121

A Solution: More Expressive Interfaces

122

Expressive (Memory) Interfaces
n Nandita Vijaykumar, Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady

Pekhimenko, Eiman Ebrahimi, Nastaran Hajinazar, Phillip B. Gibbons and Onur Mutlu,
"A Case for Richer Cross-layer Abstractions: Bridging the Semantic Gap
with Expressive Memory"
Proceedings of the 45th International Symposium on Computer Architecture (ISCA),
Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]

123

https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18.pdf
http://iscaconf.org/isca2018/
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-lightning-talk.pdf
https://youtu.be/hasM-p7Ag_g

An Example: Heterogeneous-Reliability Memory
n Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman

Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary]
[Slides (pptx) (pdf)] [Coverage on ZDNet]

124

http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://2014.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory_dsn14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
http://www.zdnet.com/how-good-does-memory-need-to-be-7000031853/

App/Data A App/Data B App/Data C

M
em

or
y

er
ro

r v
ul

ne
ra

bi
lit

y

Vulnerable
data

Tolerant
data

Exploiting Memory Error Tolerance
with Hybrid Memory Systems

Heterogeneous-Reliability Memory [DSN 2014]

Low-cost memoryReliable memory

Vulnerable
data

Tolerant
data

Vulnerable
data

Tolerant
data

• ECC protected
• Well-tested chips

• NoECC or Parity
• Less-tested chips

125

On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %

Another Example: EDEN
n Deep Neural Network evaluation is very DRAM-intensive

(for large networks)

1. Some data and layers in DNNs are very tolerant to errors

2. We can reduce DRAM latency and voltage on such data and
layers (intermediate feature maps and weights)

3. While still achieving a user-specified DNN accuracy target

Data-aware management of DRAM latency and voltage

126

EDEN Flow

127

EDEN Power, Performance, Accuracy

n ~15-20% power savings, 8% perf improvement, <1%
accuracy loss

128

Challenge and Opportunity for Future

Data-Aware
(Expressive)

Computing Architectures

129

Recap: Corollaries: Architectures Today
…
n Architectures are terrible at dealing with data

q Designed to mainly store and move data vs. to compute
q They are processor-centric as opposed to data-centric

n Architectures are terrible at taking advantage of vast
amounts of data (and metadata) available to them
q Designed to make simple decisions, ignoring lots of data
q They make human-driven decisions vs. data-driven decisions

n Architectures are terrible at knowing and exploiting
different properties of application data
q Designed to treat all data as the same
q They make component-aware decisions vs. data-aware

130

Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware
131

132Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg

We Need to Revisit the Entire Stack

133

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
15 April 2019

Mubadala-SRC AI Hardware Systems Forum Keynote Talk

(Intelligent) Architectures
for

Intelligent Machines

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu

Concluding Remarks

n It is time to design principled system architectures to solve
the data handling problem

n Design complete systems to be truly balanced, high-
performance, and energy-efficient à intelligent architectures

n Data-centric, data-driven, data-aware

n This can
q Lead to orders-of-magnitude improvements
q Enable new applications & computing platforms
q Enable better understanding of nature
q …

135

Backup Slides

136

More on Processing in Memory

137

Performance: In-DRAM Bitwise Operations

138

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Energy of In-DRAM Bitwise Operations

139

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Example Data Structure: Bitmap Index

n Alternative to B-tree and its variants
n Efficient for performing range queries and joins
n Many bitwise operations to perform a query

Bi
tm

ap
 1

Bi
tm

ap
 2

Bi
tm

ap
 4

Bi
tm

ap
 3

age < 18 18 < age < 25 25 < age < 60 age > 60

More on In-DRAM Bulk AND/OR

n Vivek Seshadri, Kevin Hsieh, Amirali Boroumand, Donghyuk
Lee, Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and
Todd C. Mowry,
"Fast Bulk Bitwise AND and OR in DRAM"
IEEE Computer Architecture Letters (CAL), April 2015.

141

http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
http://www.computer.org/web/cal

Effect of Bandwidth & Programming Model

142

2.3x
3.0x

6.5x

0

1

2

3

4

5

6

7

HMC-MC HMC-MC +
PIM BW

Tesseract +
Conventional BW

Tesseract

Sp
ee

du
p

HMC-MC Bandwidth (640GB/s) Tesseract Bandwidth (8TB/s)

Bandwidth

Programming Model

(No Prefetching)

Google Workloads
for Consumer Devices:

Mitigating Data Movement Bottlenecks

Amirali Boroumand
Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,

Eric Shiu, RahulThakur, Daehyun Kim, Aki Kuusela,
Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

Quantization

37

Converts 32-bit floating point to 8-bit integers to improve
inference execution time and energy consumption

Up to 16.8% of the
inference energy

and 16.1% of
inference execution time

Majority of quantization
energy comes from

data movement

Quantizationfloating point integer

A simple data conversion operation that requires
shift, addition, and multiplication operations

Based on our analysis, we conclude that:
• Both functions are good candidates for PIM execution
• It is feasible to implement them in PIM logic

Evaluation Methodology
• System Configuration (gem5 Simulator)
– SoC: 4 OoO cores, 8-wide issue, 64 kB L1cache,

2MB L2 cache

– PIM Core: 1 core per vault, 1-wide issue, 4-wide SIMD,
32kB L1 cache

– 3D-Stacked Memory: 2GB cube, 16 vaults per cube
• Internal Bandwidth: 256GB/S
• Off-Chip Channel Bandwidth: 32 GB/s

– Baseline Memory: LPDDR3, 2GB, FR-FCFS scheduler

• We study each target in isolation and emulate each
separately and run them in our simulator

40

Google Workloads
for Consumer Devices:

Mitigating Data Movement Bottlenecks
Amirali Boroumand

Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun,
Eric Shiu, RahulThakur, Daehyun Kim, Aki Kuusela,

Allan Knies, Parthasarathy Ranganathan, Onur Mutlu

ASPLOS 2018

Truly Distributed GPU Processing with PIM?

Logic layer
SM

Crossbar switch

Vault
Ctrl

…. Vault
Ctrl

Logic layer

Main GPU

3D-stacked memory
(memory stack) SM (Streaming Multiprocessor)

Accelerating GPU Execution with PIM (I)
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

148

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Accelerating GPU Execution with PIM (II)
n Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K.

Mishra, Mahmut T. Kandemir, Onur Mutlu, and Chita R. Das,
"Scheduling Techniques for GPU Architectures with Processing-
In-Memory Capabilities"
Proceedings of the 25th International Conference on Parallel
Architectures and Compilation Techniques (PACT), Haifa, Israel,
September 2016.

149

https://users.ece.cmu.edu/~omutlu/pub/scheduling-for-GPU-processing-in-memory_pact16.pdf
http://pactconf.org/

Accelerating Linked Data Structures
n Kevin Hsieh, Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali

Boroumand, Saugata Ghose, and Onur Mutlu,
"Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation"
Proceedings of the 34th IEEE International Conference on Computer
Design (ICCD), Phoenix, AZ, USA, October 2016.

150

https://users.ece.cmu.edu/~omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf
http://www.iccd-conf.com/

Accelerating Dependent Cache Misses
n Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

151

https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

Two Key Questions in 3D-Stacked PIM

n What are the performance and energy benefits of using
3D-stacked memory as a coarse-grained accelerator?
q By changing the entire system
q By performing simple function offloading

n What is the minimal processing-in-memory support we can
provide?
q With minimal changes to system and programming

152

PIM-Enabled Instructions
n Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

PEI: PIM-Enabled Instructions (Ideas)
n Goal: Develop mechanisms to get the most out of near-data

processing with minimal cost, minimal changes to the system, no
changes to the programming model

n Key Idea 1: Expose each PIM operation as a cache-coherent,
virtually-addressed host processor instruction (called PEI) that
operates on only a single cache block
q e.g., __pim_add(&w.next_rank, value) à pim.add r1, (r2)
q No changes sequential execution/programming model
q No changes to virtual memory
q Minimal changes to cache coherence
q No need for data mapping: Each PEI restricted to a single memory module

n Key Idea 2: Dynamically decide where to execute a PEI (i.e., the
host processor or PIM accelerator) based on simple locality
characteristics and simple hardware predictors
q Execute each operation at the location that provides the best performance

154

Simple PIM Operations as ISA Extensions (II)

155

Main Memory

w.next_rankw.next_rank

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;
}

}
Host Processor

w.next_rankw.next_rank
64 bytes in

64 bytes out

Conventional Architecture

Simple PIM Operations as ISA Extensions (III)

156

Main Memory

w.next_rankw.next_rank

Host Processor

value
8 bytes in

0 bytes out

In-Memory Addition

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

__pim_add(&w.next_rank, value);
}

}

pim.add r1, (r2)

Always Executing in Memory? Not A Good Idea

157

-20%

-10%

0%

10%

20%

30%

40%

50%

60%

p
2

p
-G

n
u

t
e

ll
a
3

1

s
o

c
-S

la
s
h

d
o

t
0

8
1

1

w
e

b
-

S
t
a
n

fo
r
d

a
m

a
z
o

n
-

2
0

0
8

fr
w

ik
i-

2
0

1
3

w
ik

i-

T
a
lk

c
it

-

P
a

t
e

n
t
s

s
o

c
-L

iv
e

Jo
u

r
n

a
l1

lj
o

u
r
n

a
l-

2
0

0
8

S
p

e
e

d
u

p

More Vertices

Increased
Memory Bandwidth

Consumption
Caching very effective

Reduced Memory Bandwidth
Consumption due to

In-Memory Computation

PEI: PIM-Enabled Instructions (Example)

158

n Executed either in memory or in the processor: dynamic decision
q Low-cost locality monitoring for a single instruction

n Cache-coherent, virtually-addressed, single cache block only
n Atomic between different PEIs
n Not atomic with normal instructions (use pfence for ordering)

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

__pim_add(&w.next_rank, value);
}

}
pfence();

pim.add r1, (r2)

pfence

Example (Abstract) PEI uArchitecture

159

Out-Of-Order
Core

L1
 C

ac
he

L2
 C

ac
he

La
st

-L
ev

el

Ca
ch

e

HM
C

Co
nt

ro
lle

r

Ne
tw

or
k

DRAM
Controller

DRAM
Controller

DRAM
Controller

Host Processor 3D-stacked Memory
…

PCU (PEI
Computation Unit)

PCU

PCU

PCU

PIM
Directory

Locality
Monitor

PMU (PEI
Mgmt Unit)

Example PEI uArchitecture

PEI: Initial Evaluation Results
n Initial evaluations with 10 emerging data-intensive workloads

q Large-scale graph processing
q In-memory data analytics
q Machine learning and data mining
q Three input sets (small, medium, large)

for each workload to analyze the impact
of data locality

n Pin-based cycle-level x86-64 simulation

n Performance Improvement and Energy Reduction:
n 47% average speedup with large input data sets
n 32% speedup with small input data sets
n 25% avg. energy reduction in a single node with large input data sets

160

Simpler PIM: PIM-Enabled Instructions
n Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi,

"PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware Processing-in-Memory Architecture"
Proceedings of the 42nd International Symposium on
Computer Architecture (ISCA), Portland, OR, June 2015.
[Slides (pdf)] [Lightning Session Slides (pdf)]

http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-lightning-talk.pdf

Automatic Code and Data Mapping
n Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike

O'Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W. Keckler,
"Transparent Offloading and Mapping (TOM): Enabling
Programmer-Transparent Near-Data Processing in GPU
Systems"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

162

https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/TOM-programmer-transparent-GPU-near-date-processing_kevinhsieh_isca16-lightning-talk.pdf

Automatic Offloading of Critical Code
n Milad Hashemi, Khubaib, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt,

"Accelerating Dependent Cache Misses with an Enhanced
Memory Controller"
Proceedings of the 43rd International Symposium on Computer
Architecture (ISCA), Seoul, South Korea, June 2016.
[Slides (pptx) (pdf)]
[Lightning Session Slides (pptx) (pdf)]

163

https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_isca16.pdf
http://isca2016.eecs.umich.edu/
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-talk.pdf
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/enhanced-memory-controller-for-dependent-loads_milad_isca16-lightning-talk.pdf

Automatic Offloading of Prefetch Mechanisms
n Milad Hashemi, Onur Mutlu, and Yale N. Patt,

"Continuous Runahead: Transparent Hardware Acceleration for
Memory Intensive Workloads"
Proceedings of the 49th International Symposium on
Microarchitecture (MICRO), Taipei, Taiwan, October 2016.
[Slides (pptx) (pdf)] [Lightning Session Slides (pdf)] [Poster (pptx) (pdf)]

164

https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16.pdf
http://www.microarch.org/micro49/
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-lightning-session-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pptx
https://people.inf.ethz.ch/omutlu/pub/continuous-runahead-engine_micro16-poster.pdf

Efficient Automatic Data Coherence Support

n Amirali Boroumand, Saugata Ghose, Minesh Patel, Hasan
Hassan, Brandon Lucia, Kevin Hsieh, Krishna T. Malladi,
Hongzhong Zheng, and Onur Mutlu,
"LazyPIM: An Efficient Cache Coherence Mechanism
for Processing-in-Memory"
IEEE Computer Architecture Letters (CAL), June 2016.

165

https://users.ece.cmu.edu/~omutlu/pub/LazyPIM-coherence-for-processing-in-memory_ieee-cal16.pdf
http://www.computer.org/web/cal

Eliminating the Adoption Barriers

How to Enable Adoption
of Processing in Memory

166

Barriers to Adoption of PIM

1. Functionality of and applications for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime systems for adaptive scheduling, data mapping,

access/sharing control

5. Infrastructures to assess benefits and feasibility

167

We Need to Revisit the Entire Stack

168

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Open Problems: PIM Adoption

Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, Onur Mutlu,
"Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms,
Future Research Directions"
Invited Book Chapter, to appear in 2018.
[Preliminary arxiv.org version]

169https://arxiv.org/pdf/1802.00320.pdf

https://people.inf.ethz.ch/omutlu/acaces2018.html
https://arxiv.org/pdf/1802.00320.pdf
https://arxiv.org/pdf/1802.00320.pdf

Open Problems: PIM Adoption

170

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf

Readings, Videos, Reference Materials

Accelerated Memory Course (~6.5 hours)

n ACACES 2018
q Memory Systems and Memory-Centric Computing Systems
q Taught by Onur Mutlu July 9-13, 2018
q ~6.5 hours of lectures

n Website for the Course including Videos, Slides, Papers
q https://people.inf.ethz.ch/omutlu/acaces2018.html
q https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-

HXxomthrpDpMJm05P6J9x

n All Papers are at:
q https://people.inf.ethz.ch/omutlu/projects.htm
q Final lecture notes and readings (for all topics)

172

https://people.inf.ethz.ch/omutlu/acaces2018.html
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-HXxomthrpDpMJm05P6J9x
https://people.inf.ethz.ch/omutlu/projects.htm

Reference Overview Paper I

173

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf

Reference Overview Paper II

Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, Onur Mutlu,
"Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms,
Future Research Directions"
Invited Book Chapter, to appear in 2018.
[Preliminary arxiv.org version]

174https://arxiv.org/pdf/1802.00320.pdf

https://people.inf.ethz.ch/omutlu/acaces2018.html
https://arxiv.org/pdf/1802.00320.pdf
https://arxiv.org/pdf/1802.00320.pdf

Reference Overview Paper III
n Onur Mutlu and Lavanya Subramanian,

"Research Problems and Opportunities in Memory
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2014/2015.

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf
http://superfri.org/superfri
https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf

Reference Overview Paper IV

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

n Onur Mutlu,

"The RowHammer Problem and Other Issues We May Face as
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in

Europe Conference (DATE), Lausanne, Switzerland, March 2017.

[Slides (pptx) (pdf)]

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf

Reference Overview Paper V
n Onur Mutlu,

"Memory Scaling: A Systems Architecture
Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara,
CA, August 2013. [Slides (pptx) (pdf)]
[Video] [Coverage on StorageSearch]

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com/
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://www.storagesearch.com/ram-new-thinking.html
https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

Reference Overview Paper VI

178https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642

Related Videos and Course Materials (I)

n Undergraduate Computer Architecture Course Lecture
Videos (2015, 2014, 2013)

n Undergraduate Computer Architecture Course
Materials (2015, 2014, 2013)

n Graduate Computer Architecture Course Lecture
Videos (2018, 2017, 2015, 2013)

n Graduate Computer Architecture Course
Materials (2018, 2017, 2015, 2013)

n Parallel Computer Architecture Course Materials
(Lecture Videos)

179

https://www.youtube.com/playlist?list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/watch?v=zLP_X4wyHbY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgFdD9x7RsjQC4a8KQjmUkQ
https://www.youtube.com/watch?v=BJ87rZCGWU0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s14/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/watch?v=g3yH68hAaSk&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2018/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece740/f15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece740/f13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece742/f12/doku.php?id=lectures
https://www.youtube.com/playlist?feature=edit_ok&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4

Related Videos and Course Materials (II)
n Freshman Digital Circuits and Computer Architecture

Course Lecture Videos (2018, 2017)
n Freshman Digital Circuits and Computer Architecture

Course Materials (2018)

n Memory Systems Short Course Materials
(Lecture Video on Main Memory and DRAM Basics)

180

https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi_QedyPWtRmFUJ2F8DdYP7l
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
https://www.youtube.com/watch?v=ZLCy3pG7Rc0

Some Open Source Tools (I)
n Rowhammer – Program to Induce RowHammer Errors

q https://github.com/CMU-SAFARI/rowhammer
n Ramulator – Fast and Extensible DRAM Simulator

q https://github.com/CMU-SAFARI/ramulator
n MemSim – Simple Memory Simulator

q https://github.com/CMU-SAFARI/memsim
n NOCulator – Flexible Network-on-Chip Simulator

q https://github.com/CMU-SAFARI/NOCulator
n SoftMC – FPGA-Based DRAM Testing Infrastructure

q https://github.com/CMU-SAFARI/SoftMC

n Other open-source software from my group
q https://github.com/CMU-SAFARI/
q http://www.ece.cmu.edu/~safari/tools.html

181

https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/memsim
https://github.com/CMU-SAFARI/NOCulator
https://github.com/CMU-SAFARI/SoftMC
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html

Some Open Source Tools (II)
n MQSim – A Fast Modern SSD Simulator

q https://github.com/CMU-SAFARI/MQSim
n Mosaic – GPU Simulator Supporting Concurrent Applications

q https://github.com/CMU-SAFARI/Mosaic
n IMPICA – Processing in 3D-Stacked Memory Simulator

q https://github.com/CMU-SAFARI/IMPICA
n SMLA – Detailed 3D-Stacked Memory Simulator

q https://github.com/CMU-SAFARI/SMLA
n HWASim – Simulator for Heterogeneous CPU-HWA Systems

q https://github.com/CMU-SAFARI/HWASim

n Other open-source software from my group
q https://github.com/CMU-SAFARI/
q http://www.ece.cmu.edu/~safari/tools.html

182

https://github.com/CMU-SAFARI/MQSim
https://github.com/CMU-SAFARI/Mosaic
https://github.com/CMU-SAFARI/IMPICA
https://github.com/CMU-SAFARI/SMLA
https://github.com/CMU-SAFARI/HWASim
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html

More Open Source Tools (III)
n A lot more open-source software from my group

q https://github.com/CMU-SAFARI/
q http://www.ece.cmu.edu/~safari/tools.html

183

https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html

Referenced Papers

n All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en

https://people.inf.ethz.ch/omutlu/acaces2018.html

184

https://people.inf.ethz.ch/omutlu/projects.htm
http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en
https://people.inf.ethz.ch/omutlu/acaces2018.html

