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Design Principles

• Critical path design

• Bread and Butter design

• Balanced design

from Yale Patt’s EE 382N lecture notes



(Micro)architecture Design Principles
n Bread and butter design

q Spend time and resources on where it matters (i.e. improving 
what the machine is designed to do)

q Common case vs. uncommon case

n Balanced design
q Balance instruction/data flow through uarch components
q Design to eliminate bottlenecks

n Critical path design
q Find the maximum speed path and decrease it

n Break a path into multiple cycles?
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from my ECE 740 lecture notes



This Talk

n Design Principles

n How We Violate Those Principles Today

n Principled Intelligent Architectures

n Concluding Remarks
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The Problem

Computing
is Bottlenecked by Data
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Data is Key for AI, ML, Genomics, …

n Important workloads are all data intensive

n They require rapid and efficient processing of large amounts 
of data

n Data is increasing
q We can generate more than we can process
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Data is Key for Future Workloads

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]



Data Overwhelms Modern Machines 

In-Memory Data Analytics 
[Clapp+ (Intel), IISWC’15;  
Awan+, BDCloud’15]

Datacenter Workloads 
[Kanev+ (Google), ISCA’15]

In-memory Databases 
[Mao+, EuroSys’12; 
Clapp+ (Intel), IISWC’15]

Graph/Tree Processing 
[Xu+, IISWC’12; Umuroglu+, FPL’15]

Data → performance & energy bottleneck



Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Data is Key for Future Workloads



Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Data Overwhelms Modern Machines 

Data → performance & energy bottleneck



Data is Key for Future Workloads
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development of high-throughput 
sequencing (HTS) technologies

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped

Number of Genomes 
Sequenced

http://www.economist.com/news/21631808-so-much-genetic-data-so-many-uses-genes-unzipped
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3 4Variant Calling Scientific Discovery

Data → performance & energy bottleneck



New Genome Sequencing Technologies

14

Senol Cali+, “Nanopore Sequencing Technology and Tools for Genome 
Assembly: Computational Analysis of the Current State, Bottlenecks 
and Future Directions,” Briefings in Bioinformatics, 2018.
[Preliminary arxiv.org version]

Oxford Nanopore MinION

Data → performance & energy bottleneck

https://arxiv.org/pdf/1711.08774.pdf


Data Overwhelms Modern Machines …

n Storage/memory capability

n Communication capability

n Computation capability

n Greatly impacts robustness, energy, performance, cost
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A Computing System

n Three key components
n Computation 
n Communication
n Storage/memory

16

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



Perils of Processor-Centric Design

17

Most of the system is dedicated to storing and moving data 
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Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec

Data Overwhelms Modern Machines 

Data → performance & energy bottleneck



n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

Data Movement Overwhelms Modern Machines 

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


Axiom

An Intelligent Architecture
Handles Data Well

20



How to Handle Data Well

n Ensure data does not overwhelm the components
q via intelligent algorithms
q via intelligent architectures
q via whole system designs: algorithm-architecture-devices

n Take advantage of vast amounts of data and metadata
q to improve architectural & system-level decisions 

n Understand and exploit properties of (different) data
q to improve algorithms & architectures in various metrics

21



Corollaries: Architectures Today …
n Architectures are terrible at dealing with data

q Designed to mainly store and move data vs. to compute 
q They are processor-centric as opposed to data-centric

n Architectures are terrible at taking advantage of vast 
amounts of data (and metadata) available to them
q Designed to make simple decisions, ignoring lots of data 
q They make human-driven decisions vs. data-driven decisions

n Architectures are terrible at knowing and exploiting 
different properties of application data
q Designed to treat all data as the same
q They make component-aware decisions vs. data-aware

22



Data-Centric (Memory-Centric) 
Architectures

23



Data-Centric Architectures: Properties

n Process data where it resides (where it makes sense)
q Processing in and near memory structures

n Low-latency and low-energy data access
q Low latency memory
q Low energy memory

n Low-cost data storage and processing
q High capacity memory at low cost: hybrid memory, compression

n Intelligent data management
q Intelligent controllers handling robustness, security, cost

24



Processing Data 
Where It Makes Sense

25



Do We Want This?

26Source: V. Milutinovic



Or This?

27Source: V. Milutinovic



Challenge and Opportunity for Future

High Performance,
Energy Efficient,

Sustainable

28



The Problem

Data access is the major performance and energy bottleneck

Our current
design principles 

cause great energy waste
(and great performance loss)
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The Problem

Processing of data 
is performed 

far away from the data

30



A Computing System
n Three key components
n Computation 
n Communication
n Storage/memory

31

Burks, Goldstein, von Neumann, “Preliminary discussion of the
logical design of an electronic computing instrument,” 1946.

Image source: https://lbsitbytes2010.wordpress.com/2013/03/29/john-von-neumann-roll-no-15/



Yet …
n “It’s the Memory, Stupid!” (Richard Sites, MPR, 1996)

Mutlu+, “Runahead Execution: An Alternative to Very Large Instruction Windows for Out-of-Order Processors,” HPCA 2003.



The Performance Perspective (Today)
n All of Google’s Data Center Workloads (2015): 

33Kanev+, “Profiling a Warehouse-Scale Computer,” ISCA 2015.



Data Movement vs. Computation Energy

34

Dally, HiPEAC 2015

A memory access consumes ~100-1000X 
the energy of a complex addition 



Energy Waste in Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul 

Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming 
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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62.7% of the total system energy 
is spent on data movement

https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


We Do Not Want to Move Data!

36

Dally, HiPEAC 2015

A memory access consumes ~1000X 
the energy of a complex addition 



We Need A Paradigm Shift To …

n Enable computation with minimal data movement

n Compute where it makes sense (where data resides)

n Make computing architectures more data-centric

37



Goal: Processing Inside Memory

n Many questions … How do we design the:
q compute-capable memory & controllers?
q processor chip and in-memory units?
q software and hardware interfaces?
q system software and languages?
q algorithms?

Cache

Processor
Core

Interconnect

Memory
Database

Graphs

Media 
Query

Results

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons



Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

39



Starting Simple: Data Copy and Initialization

40

Forking

00000
00000
00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration
Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ ISCA’15]



Today’s Systems: Bulk Data Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

411046ns, 3.6uJ    (for 4KB page copy via DMA)



Future Systems: In-Memory Copy

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

421046ns, 3.6uJ à 90ns, 0.04uJ



RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer 
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
Idea: Two consecutive ACTivates



RowClone: Latency and Energy Savings
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44
Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” MICRO 2013.



More on RowClone
n Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. 
Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and 
Initialization"
Proceedings of the 46th International Symposium on Microarchitecture
(MICRO), Davis, CA, December 2013. [Slides (pptx) (pdf)] [Lightning Session 
Slides (pptx) (pdf)] [Poster (pptx) (pdf)] 

45

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13_lightning-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pptx
http://users.ece.cmu.edu/~omutlu/pub/rowclone_seshadri_micro13-poster.pdf


Memory as an Accelerator

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Memory similar to a “conventional” accelerator



In-Memory Bulk Bitwise Operations
n We can support in-DRAM COPY, ZERO, AND, OR, NOT, MAJ
n At low cost
n Using analog computation capability of DRAM

q Idea: activating multiple rows performs computation
n 30-60X performance and energy improvement

q Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations 
Using Commodity DRAM Technology,” MICRO 2017.

n New memory technologies enable even more opportunities
q Memristors, resistive RAM, phase change mem, STT-MRAM, …
q Can operate on data with minimal movement

47



In-DRAM AND/OR: Triple Row Activation

48

½VDD

½VDD

dis

A

B

C

Final State
AB + BC + AC

½VDD+δ

C(A + B) + 
~C(AB)en

0

VDD

Seshadri+, “Fast Bulk Bitwise AND and OR in DRAM”, IEEE CAL 2015.



In-DRAM NOT: Dual Contact Cell

49

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

Idea: 
Feed the 

negated value 
in the sense amplifier

into a special row



Bulk Bitwise Operations in Workloads

[1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017



Performance: Bitmap Index on Ambit

51
Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

>5.4-6.6X Performance Improvement



Performance: BitWeaving on Ambit

52

Seshadri+, “Ambit: In-Memory Accelerator for Bulk Bitwise Operations using Commodity DRAM Technology,” MICRO 2017.

>4-12X Performance Improvement



More on Ambit

n Vivek Seshadri et al., “Ambit: In-Memory Accelerator 
for Bulk Bitwise Operations Using Commodity DRAM 
Technology,” MICRO 2017.

53

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf


Sounds Good, No?

54

Review from ISCA 2016



Another Review 

55

Another Review from ISCA 2016



Yet Another Review

56

Yet Another Review from ISCA 2016



We Have a Mindset Issue…

n There are many other similar examples from reviews…
q For many other papers…

n And, we are not even talking about JEDEC yet…

n How do we fix the mindset problem?

n By doing more research, education, implementation in 
alternative processing paradigms

57

We need to work on enabling the better future…



Processing in Memory:
Two Approaches

1. Minimally changing memory chips
2. Exploiting 3D-stacked memory

58



Opportunity: 3D-Stacked Logic+Memory

59

Logic

Memory

Other “True 3D” technologies
under development



Tesseract System for Graph Processing

Crossbar Network

…
…

…
…

DRAM
 Controller

NI

In-Order Core

Message Queue

PF Buffer

MTP

LP

Host Processor

Memory-Mapped
Accelerator Interface

(Noncacheable, Physically Addressed)

Interconnected set of 3D-stacked memory+logic chips with simple cores

Logic

Memory

Ahn+, “A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing” ISCA 2015.

>13X Speedup

>8X Energy 
Reduction



More on Tesseract
n Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, 

and Kiyoung Choi,
"A Scalable Processing-in-Memory Accelerator for 
Parallel Graph Processing"
Proceedings of the 42nd International Symposium on 
Computer Architecture (ISCA), Portland, OR, June 2015. 
[Slides (pdf)] [Lightning Session Slides (pdf)]
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http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
http://www.ece.cmu.edu/calcm/isca2015/
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-talk.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15-lightning-talk.pdf


Another Example: PIM on Mobile Devices
n Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata

Ausavarungnirun, Eric Shiu, Rahul Thakur, Daehyun Kim, Aki 
Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data 
Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural 
Support for Programming Languages and Operating 
Systems (ASPLOS), Williamsburg, VA, USA, March 2018.
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
https://www.asplos2018.org/


Four Important Workloads

Chrome
Google’s web browser

TensorFlow Mobile
Google’s machine learning 

framework

Video Playback
Google’s video codec

Video Capture
Google’s video codec



Simple PIM on Mobile Workloads

2nd key observation: a significant fraction of the
data movement often comes from simple functions

PIM 
Core

PIM 
Accelerator

PIM 
Accelerator

PIM 
Accelerator

We can design lightweight logic to implement
these simple functions in memory

Small embedded
low-power core

Small fixed-function 
accelerators

Offloading to PIM logic reduces energy and 
execution time, on average, by 55.4% and 54.2%



Eliminating the Adoption Barriers

How to Enable Adoption 
of Processing in Memory

65



Barriers to Adoption of PIM

1. Functionality of and applications & software for PIM

2. Ease of programming (interfaces and compiler/HW support)

3. System support: coherence & virtual memory

4. Runtime and compilation systems for adaptive scheduling, 
data mapping, access/sharing control

5. Infrastructures to assess benefits and feasibility

66

All can be solved with change of mindset



We Need to Revisit the Entire Stack

67

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

We can get there step by step



PIM Review and Open Problems

68

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory 
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf


Challenge and Opportunity for Future

Computing Architectures
with 

Minimal Data Movement

69



Corollaries: Architectures Today …
n Architectures are terrible at dealing with data

q Designed to mainly store and move data vs. to compute 
q They are processor-centric as opposed to data-centric

n Architectures are terrible at taking advantage of vast 
amounts of data (and metadata) available to them
q Designed to make simple decisions, ignoring lots of data 
q They make human-driven decisions vs. data-driven decisions

n Architectures are terrible at knowing and exploiting 
different properties of application data
q Designed to treat all data as the same
q They make component-aware decisions vs. data-aware

70



Exploiting Data to Design 
Intelligent Architectures

71



System Architecture Design Today

n Human-driven
q Humans design the policies (how to do things)

n Many (too) simple, short-sighted policies all over the system

n No automatic data-driven policy learning

n (Almost) no learning: cannot take lessons from past actions

72

Can we design 
fundamentally intelligent architectures?



An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents

73

How do we start?



Self-Optimizing 
Memory Controllers



Memory Controller

How to schedule requests to maximize system performance?

75

Memory 
Controller

Core Core

Core Core
Memory

Resolves memory contention 
by scheduling requests



Why are Memory Controllers Difficult to Design?

n Need to obey DRAM timing constraints for correctness
q There are many (50+) timing constraints in DRAM
q tWTR: Minimum number of cycles to wait before issuing a read command after 

a write command is issued
q tRC: Minimum number of cycles between the issuing of two consecutive 

activate commands to the same bank
q …

n Need to keep track of many resources to prevent conflicts
q Channels, banks, ranks, data bus, address bus, row buffers, …

n Need to handle DRAM refresh
n Need to manage power consumption
n Need to optimize performance & QoS (in the presence of constraints)

q Reordering is not simple
q Fairness and QoS needs complicates the scheduling problem

n … 
76



Many Memory Timing Constraints

n From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing 
Write-Caused Interference in Memory Systems,” HPS Technical Report, 
April 2010.

77



Many Memory Timing Constraints
n Kim et al., “A Case for Exploiting Subarray-Level Parallelism 

(SALP) in DRAM,” ISCA 2012.
n Lee et al., “Tiered-Latency DRAM: A Low Latency and Low 

Cost DRAM Architecture,” HPCA 2013.
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Memory Controller Design Is Becoming More Difficult

n Heterogeneous agents: CPUs, GPUs, and HWAs 
n Main memory interference between CPUs, GPUs, HWAs
n Many timing constraints for various memory types
n Many goals at the same time: performance, fairness, QoS, 

energy efficiency, …
79

CPU CPU CPU CPU

Shared Cache

GPU
HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories



Reality and Dream
n Reality: It difficult to design a policy that maximizes 

performance, QoS, energy-efficiency, … 
q Too many things to think about
q Continuously changing workload and system behavior

n Dream: Wouldn’t it be nice if the DRAM controller 
automatically found a good scheduling policy on its own?

80



Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers
n Problem: DRAM controllers are difficult to design

q It is difficult for human designers to design a policy that can adapt 
itself very well to different workloads and different system conditions

n Idea: A memory controller that adapts its scheduling policy to 
workload behavior and system conditions using machine learning.

n Observation: Reinforcement learning maps nicely to memory 
control.

n Design: Memory controller is a reinforcement learning agent
q It dynamically and continuously learns and employs the best 

scheduling policy to maximize long-term performance.



Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich 

Caruana, 
"Self Optimizing Memory Controllers: A 
Reinforcement Learning Approach"
Proceedings of the 35th International Symposium on 
Computer Architecture (ISCA), pages 39-50, Beijing, 
China, June 2008.

82

Goal: Learn to choose actions to maximize r0 + gr1 + g2r2 + … ( 0 £ g < 1) 

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


Self-Optimizing DRAM Controllers
n Dynamically adapt the memory scheduling policy via 

interaction with the system at runtime 
q Associate system states and actions (commands) with long term 

reward values: each action at a given state leads to a learned reward
q Schedule command with highest estimated long-term reward value in 

each state
q Continuously update reward values for <state, action> pairs based on 

feedback from system

83



Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.
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http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


States, Actions, Rewards

85

❖ Reward function

• +1 for scheduling 
Read and Write 
commands

• 0 at all other 
times

Goal is to maximize 
long-term       
data bus 
utilization

❖ State attributes

• Number of reads, 
writes, and load 
misses in 
transaction queue

• Number of pending 
writes and ROB 
heads waiting for 
referenced row

• Request’s relative 
ROB order

❖ Actions

• Activate

• Write

• Read - load miss

• Read - store miss

• Precharge - pending

• Precharge - preemptive

• NOP



Performance Results

86

Large, robust performance improvements 
over many human-designed policies 



Self Optimizing DRAM Controllers
+ Continuous learning in the presence of changing environment

+ Reduced designer burden in finding a good scheduling policy. 
Designer specifies:

1) What system variables might be useful
2) What target to optimize, but not how to optimize it

-- How to specify different objectives? (e.g., fairness, QoS, …)

-- Hardware complexity?

-- Design mindset and flow

87



More on Self-Optimizing DRAM Controllers
n Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana, 

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

88

http://users.ece.cmu.edu/~omutlu/pub/rlmc_isca08.pdf
http://isca2008.cs.princeton.edu/


An Intelligent Architecture

n Data-driven
q Machine learns the “best” policies (how to do things)

n Sophisticated, workload-driven, changing, far-sighted policies

n Automatic data-driven policy learning

n All controllers are intelligent data-driven agents

89

We need to rethink design
(of all controllers)



Challenge and Opportunity for Future

Self-Optimizing
(Data-Driven)

Computing Architectures

90



Corollaries: Architectures Today …
n Architectures are terrible at dealing with data

q Designed to mainly store and move data vs. to compute 
q They are processor-centric as opposed to data-centric

n Architectures are terrible at taking advantage of vast 
amounts of data (and metadata) available to them
q Designed to make simple decisions, ignoring lots of data 
q They make human-driven decisions vs. data-driven decisions

n Architectures are terrible at knowing and exploiting 
different properties of application data
q Designed to treat all data as the same
q They make component-aware decisions vs. data-aware

91



Data-Aware Architectures
n A data-aware architecture understands what it can do with 

and to each piece of data

n It makes use of different properties of data to improve 
performance, efficiency and other metrics
q Compressibility
q Approximability
q Locality
q Sparsity
q Criticality for Computation X
q Access Semantics
q …
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One Problem: Limited Interfaces

93



A Solution: More Expressive Interfaces
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Expressive (Memory) Interfaces
n Nandita Vijaykumar, Abhilasha Jain, Diptesh Majumdar, Kevin Hsieh, Gennady 

Pekhimenko, Eiman Ebrahimi, Nastaran Hajinazar, Phillip B. Gibbons and Onur Mutlu,
"A Case for Richer Cross-layer Abstractions: Bridging the Semantic Gap 
with Expressive Memory"
Proceedings of the 45th International Symposium on Computer Architecture (ISCA), 
Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]
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https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18.pdf
http://iscaconf.org/isca2018/
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/X-MEM_Expressive-Memory-for-Rich-Cross-Layer-Abstractions_isca18-lightning-talk.pdf
https://youtu.be/hasM-p7Ag_g


Expressive (Memory) Interfaces for GPUs
n Nandita Vijaykumar, Eiman Ebrahimi, Kevin Hsieh, Phillip B. Gibbons and Onur Mutlu,

"The Locality Descriptor: A Holistic Cross-Layer Abstraction to Express 
Data Locality in GPUs"
Proceedings of the 45th International Symposium on Computer Architecture (ISCA), 
Los Angeles, CA, USA, June 2018.
[Slides (pptx) (pdf)] [Lightning Talk Slides (pptx) (pdf)]
[Lightning Talk Video]
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https://people.inf.ethz.ch/omutlu/pub/LocalityDescriptor-Cross-Layer-GPU-Data-Locality-Abstraction_isca18.pdf
http://iscaconf.org/isca2018/
https://people.inf.ethz.ch/omutlu/pub/LocalityDescriptor-Cross-Layer-GPU-Data-Locality-Abstraction_isca18-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/LocalityDescriptor-Cross-Layer-GPU-Data-Locality-Abstraction_isca18-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/LocalityDescriptor-Cross-Layer-GPU-Data-Locality-Abstraction_isca18-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/LocalityDescriptor-Cross-Layer-GPU-Data-Locality-Abstraction_isca18-lightning-talk.pdf
https://youtu.be/M_0qvO97_hM


An Example: Hybrid Memory Management

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon+, “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 2012 Best 
Paper Award.

SoC
DRAM
Ctrl

Fast, durable
Small, 

leaky, volatile, 
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM 
CtrlDRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement 
to achieve the best of multiple technologies



An Example: Heterogeneous-Reliability Memory
n Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin Meza, Aman

Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur Mutlu,
"Characterizing Application Memory Error Vulnerability to Optimize 
Data Center Cost via Heterogeneous-Reliability Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. [Summary] 
[Slides (pptx) (pdf)] [Coverage on ZDNet] 
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http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://2014.dsn.org/
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory_dsn14-summary.pdf
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
http://www.zdnet.com/how-good-does-memory-need-to-be-7000031853/
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Exploiting Memory Error Tolerance 
with Hybrid Memory Systems

Heterogeneous-Reliability Memory [DSN 2014]

Low-cost memoryReliable memory

Vulnerable 
data

Tolerant 
data

Vulnerable 
data

Tolerant 
data

• ECC protected
• Well-tested chips

• NoECC or Parity
• Less-tested chips
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On Microsoft’s Web Search workload
Reduces server hardware cost by 4.7 %
Achieves single server availability target of 99.90 %



Another Example: EDEN
n Deep Neural Network evaluation is very DRAM-intensive 

(especially for large networks)

1. Some data and layers in DNNs are very tolerant to errors

2. We can reduce DRAM latency and voltage on such data and 
layers (intermediate feature maps and weights)

3. While still achieving a user-specified DNN accuracy target 
by making training DRAM-error-aware

Data-aware management of DRAM latency and voltage
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Challenge and Opportunity for Future

Data-Aware
(Expressive)

Computing Architectures
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Recap: Corollaries: Architectures Today 
…
n Architectures are terrible at dealing with data

q Designed to mainly store and move data vs. to compute 
q They are processor-centric as opposed to data-centric

n Architectures are terrible at taking advantage of vast 
amounts of data (and metadata) available to them
q Designed to make simple decisions, ignoring lots of data 
q They make human-driven decisions vs. data-driven decisions

n Architectures are terrible at knowing and exploiting 
different properties of application data
q Designed to treat all data as the same
q They make component-aware decisions vs. data-aware
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Concluding Remarks

n It is time to design principled system architectures to solve 
the data handling (i.e., memory/storage) problem

n Design complete systems to be truly balanced, high-
performance, and energy-efficient à intelligent architectures

n Data-centric, data-driven, data-aware

n This can
q Lead to orders-of-magnitude improvements 
q Enable new applications & computing platforms
q Enable better understanding of nature
q …
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Architectures for Intelligent Machines

Data-centric

Data-driven

Data-aware
104



105Source: http://spectrum.ieee.org/image/MjYzMzAyMg.jpeg



We Need to Revisit the Entire Stack

106

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

We can get there step by step



Finally, people are always telling you:
Think outside the box

from Yale Patt’s EE 382N lecture notes



I prefer: Expand the box

from Yale Patt’s EE 382N lecture notes



109



Onur Mutlu
omutlu@gmail.com

https://people.inf.ethz.ch/omutlu
1 July 2019
Yale @ 80 

Principled Architectures
for 

Intelligent Machines

mailto:omutlu@gmail.com
https://people.inf.ethz.ch/omutlu


Aside: A Recommended Book
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Raj Jain, “The Art of 
Computer Systems 
Performance Analysis,” 
Wiley, 1991.
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Raj Jain, “The Art of 
Computer Systems 
Performance Analysis,” 
Wiley, 1991.
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Raj Jain, “The Art of 
Computer Systems 
Performance Analysis,” 
Wiley, 1991.



Low Latency Data Access
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Data-Centric Architectures: Properties

n Process data where it resides (where it makes sense)
q Processing in and near memory structures

n Low-latency & low-energy data access
q Low latency memory
q Low energy memory

n Low-cost data storage & processing
q High capacity memory at low cost: hybrid memory, compression

n Intelligent data management
q Intelligent controllers handling robustness, security, cost, scaling
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Low-Latency & Low-Energy
Data Access

116
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Retrospective: Conventional Latency Tolerance Techniques

n Caching [initially by Wilkes, 1965]
q Widely used, simple, effective, but inefficient, passive
q Not all applications/phases exhibit temporal or spatial locality

n Prefetching [initially in IBM 360/91, 1967]
q Works well for regular memory access patterns
q Prefetching irregular access patterns is difficult, inaccurate, and hardware-

intensive

n Multithreading [initially in CDC 6600, 1964]
q Works well if there are multiple threads
q Improving single thread performance using multithreading hardware is an 

ongoing research effort

n Out-of-order execution [initially by Tomasulo, 1967]
q Tolerates cache misses that cannot be prefetched
q Requires extensive hardware resources for tolerating long latencies



Two Major Sources of Latency Inefficiency

n Modern DRAM is not designed for low latency
q Main focus is cost-per-bit (capacity)

n Modern DRAM latency is determined by worst case 
conditions and worst case devices
q Much of memory latency is unnecessary
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Why is Latency High?

119

• DRAM latency: Delay as specified in DRAM standards
– Doesn’t reflect true DRAM device latency

• Imperfect manufacturing process →	latency variation
• High standard latency chosen to increase yield

HighLow
DRAM Latency

DRAM A DRAM B DRAM C

Manufacturing
Variation

Standard
Latency
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Adaptive-Latency DRAM

• Key idea
– Optimize DRAM timing parameters online

• Two components
– DRAM manufacturer provides multiple sets of 

reliable DRAM timing parameters at different 
temperatures for each DIMM

– System monitors DRAM temperature & uses 
appropriate DRAM timing parameters

reliable DRAM timing parameters

DRAM temperature

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 
2015.
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Latency Reduction Summary of 115 DIMMs

• Latency reduction for read & write (55°C)
– Read Latency: 32.7%
– Write Latency: 55.1%

• Latency reduction for each timing 
parameter (55°C) 
– Sensing: 17.3%
– Restore: 37.3% (read), 54.8% (write)
– Precharge: 35.2%

Lee+, “Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” HPCA 
2015.
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Reducing Latency Also Reduces Energy

n AL-DRAM reduces DRAM power consumption

n Major reason: reduction in row activation time
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More on Adaptive-Latency DRAM
n Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan, 

Vivek Seshadri, Kevin Chang, and Onur Mutlu,
"Adaptive-Latency DRAM: Optimizing DRAM Timing for 
the Common-Case"
Proceedings of the 21st International Symposium on High-
Performance Computer Architecture (HPCA), Bay Area, CA, 
February 2015. 
[Slides (pptx) (pdf)] [Full data sets] 
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http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_hpca15.pdf
http://darksilicon.org/hpca/
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pptx
http://users.ece.cmu.edu/~omutlu/pub/adaptive-latency-dram_donghyuk_hpca15-talk.pdf
http://www.ece.cmu.edu/~safari/tools/aldram-hpca2015-fulldata.html


Tackling the Fixed Latency Mindset
n Reliable operation latency is actually very heterogeneous

q Across temperatures, chips, parts of a chip, voltage levels, …

n Idea: Dynamically find out and use the lowest latency one 
can reliably access a memory location with
q Adaptive-Latency DRAM [HPCA 2015]
q Flexible-Latency DRAM [SIGMETRICS 2016]
q Design-Induced Variation-Aware DRAM [SIGMETRICS 2017]
q Voltron [SIGMETRICS 2017]
q DRAM Latency PUF [HPCA 2018]
q Solar DRAM [ICCD 2018]
q DRAM Latency True Random Number Generator [HPCA 2019]
q ...

n We would like to find sources of latency heterogeneity and 
exploit them to minimize latency (or create other benefits)
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Analysis of Latency Variation in DRAM Chips
n Kevin Chang, Abhijith Kashyap, Hasan Hassan, Samira Khan, Kevin Hsieh, 

Donghyuk Lee, Saugata Ghose, Gennady Pekhimenko, Tianshi Li, and 
Onur Mutlu,
"Understanding Latency Variation in Modern DRAM Chips: 
Experimental Characterization, Analysis, and Optimization"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Antibes Juan-Les-Pins, 
France, June 2016. 
[Slides (pptx) (pdf)] 
[Source Code] 
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https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_sigmetrics16.pdf
http://www.sigmetrics.org/sigmetrics2016/
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pptx
https://users.ece.cmu.edu/~omutlu/pub/understanding-latency-variation-in-DRAM-chips_kevinchang_sigmetrics16-talk.pdf
https://github.com/CMU-SAFARI/DRAM-Latency-Variation-Study


Analysis of Latency-Voltage in DRAM Chips
n Kevin Chang, A. Giray Yaglikci, Saugata Ghose, Aditya Agrawal, Niladrish

Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike O'Connor, Hasan 
Hassan, and Onur Mutlu,
"Understanding Reduced-Voltage Operation in Modern DRAM 
Devices: Experimental Characterization, Analysis, and 
Mechanisms"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Urbana-Champaign, IL, 
USA, June 2017. 

127

https://people.inf.ethz.ch/omutlu/pub/Voltron-reduced-voltage-DRAM-sigmetrics17-paper.pdf
http://www.sigmetrics.org/sigmetrics2017/


VAMPIRE DRAM Power Model
n Saugata Ghose, A. Giray Yaglikci, Raghav Gupta, Donghyuk Lee, Kais 

Kudrolli, William X. Liu, Hasan Hassan, Kevin K. Chang, Niladrish
Chatterjee, Aditya Agrawal, Mike O'Connor, and Onur Mutlu,
"What Your DRAM Power Models Are Not Telling You: Lessons 
from a Detailed Experimental Study"
Proceedings of the ACM International Conference on Measurement and 
Modeling of Computer Systems (SIGMETRICS), Irvine, CA, USA, June 
2018.
[Abstract]
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http://www.sigmetrics.org/sigmetrics2018/
https://people.inf.ethz.ch/omutlu/pub/VAMPIRE-DRAM-power-characterization-and-modeling_sigmetrics18-abstract.pdf


EDEN
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EDEN Flow
n Goal: reduce energy consumption and improve performance of DNNs 

by reducing voltage and timing parameters in DRAM
n Key Ideas:

q Build an error model by profiling the target DRAM module with 
reduced voltage and timing 

q Boost DNN accuracy by introducing the error model in training
q Profile the boosted DNN to understand the network’s error 

tolerance
q Map DNN components to DRAM partitions and DRAM settings 
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EDEN Power, Performance, Accuracy

n ~15-20% power savings, 8% perf improvement, <1% 
accuracy loss
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EDEN Power, Performance, Accuracy

n ~15-20% power savings, 8% perf improvement, <1% 
accuracy loss
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Other Backup Slides
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Readings, Videos, Reference Materials



Accelerated Memory Course (~6.5 hours)

n ACACES 2018 
q Memory Systems and Memory-Centric Computing Systems
q Taught by Onur Mutlu July 9-13, 2018
q ~6.5 hours of lectures

n Website for the Course including Videos, Slides, Papers
q https://people.inf.ethz.ch/omutlu/acaces2018.html
q https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-

HXxomthrpDpMJm05P6J9x

n All Papers are at:
q https://people.inf.ethz.ch/omutlu/projects.htm
q Final lecture notes and readings (for all topics)
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https://people.inf.ethz.ch/omutlu/acaces2018.html
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-HXxomthrpDpMJm05P6J9x
https://people.inf.ethz.ch/omutlu/projects.htm


Reference Overview Paper I

135

Onur Mutlu, Saugata Ghose, Juan Gomez-Luna, and Rachata Ausavarungnirun,
"Processing Data Where It Makes Sense: Enabling In-Memory 
Computation"
Invited paper in Microprocessors and Microsystems (MICPRO), June 2019.
[arXiv version]

https://arxiv.org/pdf/1903.03988.pdf

https://people.inf.ethz.ch/omutlu/pub/ProcessingDataWhereItMakesSense_micpro19-invited.pdf
https://doi.org/10.1016/j.micpro.2019.01.009
https://arxiv.org/pdf/1903.03988.pdf
https://arxiv.org/pdf/1903.03988.pdf


Reference Overview Paper II

Saugata Ghose, Kevin Hsieh, Amirali Boroumand, Rachata Ausavarungnirun, Onur Mutlu,
"Enabling the Adoption of Processing-in-Memory: Challenges, Mechanisms, 
Future Research Directions"
Invited Book Chapter, to appear in 2018.
[Preliminary arxiv.org version]

136https://arxiv.org/pdf/1802.00320.pdf

https://people.inf.ethz.ch/omutlu/acaces2018.html
https://arxiv.org/pdf/1802.00320.pdf
https://arxiv.org/pdf/1802.00320.pdf


Reference Overview Paper III
n Onur Mutlu and Lavanya Subramanian,

"Research Problems and Opportunities in Memory 
Systems"
Invited Article in Supercomputing Frontiers and Innovations
(SUPERFRI), 2014/2015. 

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf
http://superfri.org/superfri
https://people.inf.ethz.ch/omutlu/pub/memory-systems-research_superfri14.pdf


Reference Overview Paper IV

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf

n Onur Mutlu,
"The RowHammer Problem and Other Issues We May Face as 
Memory Becomes Denser"
Invited Paper in Proceedings of the Design, Automation, and Test in 
Europe Conference (DATE), Lausanne, Switzerland, March 2017. 
[Slides (pptx) (pdf)] 

https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
https://people.inf.ethz.ch/omutlu/pub/rowhammer-and-other-memory-issues_date17.pdf
http://www.date-conference.com/
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Rowhammer-Memory-Security_date17-invited-talk.pdf


Reference Overview Paper V
n Onur Mutlu,

"Memory Scaling: A Systems Architecture 
Perspective"
Technical talk at MemCon 2013 (MEMCON), Santa Clara, 
CA, August 2013. [Slides (pptx) (pdf)]
[Video] [Coverage on StorageSearch] 

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf

https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf
http://www.memcon.com/
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pptx
https://people.inf.ethz.ch/omutlu/pub/mutlu_memory-scaling_memcon13_talk.pdf
http://www.memcon.com/video1.aspx?vfile=2708052590001&federated_f9=61773537001&videoPlayer=999&playerID=61773537001&w=520&h=442&oheight=550
http://www.storagesearch.com/ram-new-thinking.html
https://people.inf.ethz.ch/omutlu/pub/memory-scaling_memcon13.pdf


Reference Overview Paper VI

140https://arxiv.org/pdf/1706.08642

Proceedings of the IEEE, Sept. 2017

https://arxiv.org/pdf/1706.08642


Related Videos and Course Materials (I)
n Undergraduate Computer Architecture Course Lecture 

Videos (2015, 2014, 2013)
n Undergraduate Computer Architecture Course 

Materials (2015, 2014, 2013)

n Graduate Computer Architecture Course Lecture 
Videos (2018, 2017, 2015, 2013)

n Graduate Computer Architecture Course 
Materials (2018, 2017, 2015, 2013)

n Parallel Computer Architecture Course Materials
(Lecture Videos)
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https://www.youtube.com/playlist?list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/watch?v=zLP_X4wyHbY&list=PL5PHm2jkkXmi5CxxI7b3JCL1TWybTDtKq
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgFdD9x7RsjQC4a8KQjmUkQ
https://www.youtube.com/watch?v=BJ87rZCGWU0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s14/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece447/s13/doku.php?id=schedule
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/watch?v=g3yH68hAaSk&list=PL5Q2soXY2Zi9JXe3ywQMhylk_d5dI-TM7
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi9OhoVQBXYFIZywZXCPl4M_
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgVhh8CHAu9N76TShJqfYDt
https://www.youtube.com/playlist?list=PL5PHm2jkkXmgDN1PLwOY_tGtUlynnyV6D
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2018/doku.php?id=schedule
https://safari.ethz.ch/architecture/fall2017/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece740/f15/doku.php?id=schedule
http://www.archive.ece.cmu.edu/~ece740/f13/doku.php?id=schedule
http://www.ece.cmu.edu/~ece742/f12/doku.php?id=lectures
https://www.youtube.com/playlist?feature=edit_ok&list=PLSEZzvupP7hNjq3Tuv2hiE5VvR-WRYoW4


Related Videos and Course Materials (II)
n Freshman Digital Circuits and Computer Architecture 

Course Lecture Videos (2018, 2017)
n Freshman Digital Circuits and Computer Architecture 

Course Materials (2018)

n Memory Systems Short Course Materials
(Lecture Video on Main Memory and DRAM Basics)
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https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi_QedyPWtRmFUJ2F8DdYP7l
https://www.youtube.com/playlist?list=PL5Q2soXY2Zi-IXWTT7xoNYpst5-zdZQ6y
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
https://safari.ethz.ch/digitaltechnik/spring2018/doku.php?id=schedule
http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
https://www.youtube.com/watch?v=ZLCy3pG7Rc0


Some Open Source Tools (I)
n Rowhammer – Program to Induce RowHammer Errors

q https://github.com/CMU-SAFARI/rowhammer
n Ramulator – Fast and Extensible DRAM Simulator

q https://github.com/CMU-SAFARI/ramulator
n MemSim – Simple Memory Simulator

q https://github.com/CMU-SAFARI/memsim
n NOCulator – Flexible Network-on-Chip Simulator

q https://github.com/CMU-SAFARI/NOCulator
n SoftMC – FPGA-Based DRAM Testing Infrastructure

q https://github.com/CMU-SAFARI/SoftMC

n Other open-source software from my group
q https://github.com/CMU-SAFARI/
q http://www.ece.cmu.edu/~safari/tools.html
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https://github.com/CMU-SAFARI/rowhammer
https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/memsim
https://github.com/CMU-SAFARI/NOCulator
https://github.com/CMU-SAFARI/SoftMC
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html


Some Open Source Tools (II)
n MQSim – A Fast Modern SSD Simulator 

q https://github.com/CMU-SAFARI/MQSim
n Mosaic – GPU Simulator Supporting Concurrent Applications

q https://github.com/CMU-SAFARI/Mosaic
n IMPICA – Processing in 3D-Stacked Memory Simulator

q https://github.com/CMU-SAFARI/IMPICA
n SMLA – Detailed 3D-Stacked Memory Simulator

q https://github.com/CMU-SAFARI/SMLA
n HWASim – Simulator for Heterogeneous CPU-HWA Systems

q https://github.com/CMU-SAFARI/HWASim

n Other open-source software from my group
q https://github.com/CMU-SAFARI/
q http://www.ece.cmu.edu/~safari/tools.html
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https://github.com/CMU-SAFARI/MQSim
https://github.com/CMU-SAFARI/Mosaic
https://github.com/CMU-SAFARI/IMPICA
https://github.com/CMU-SAFARI/SMLA
https://github.com/CMU-SAFARI/HWASim
https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html


More Open Source Tools (III)
n A lot more open-source software from my group

q https://github.com/CMU-SAFARI/
q http://www.ece.cmu.edu/~safari/tools.html
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https://github.com/CMU-SAFARI/
http://www.ece.cmu.edu/~safari/tools.html


Referenced Papers

n All are available at

https://people.inf.ethz.ch/omutlu/projects.htm

http://scholar.google.com/citations?user=7XyGUGkAAAAJ&hl=en

https://people.inf.ethz.ch/omutlu/acaces2018.html
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