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Runahead Execution [HPCA 2003]

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), Anaheim, CA, February 2003. Slides (pdf)

One of the 15 computer architecture papers of 2003 selected as Top
Picks by IEEFE Micro.
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Small Windows: Full-Window Stalls

8-entry instruction window:

Oldest HOV\ RSN [REIIM L2 Miss! Takes 100s of cycles.
BEQ R1, RO, target
ADD R2 < R2, 8
LOAD R3 € mem[R2]

Independent of the L2 miss,
MUL R4 € R4, R3 executed out of program order,

ADD R4 €< R4, R5 but cannot be retired.
STOR mem[R2] €< R4
ADD R2 € R2, 64

Younger instructions cannot be executed
because there is no space in the instruction window.

The processor stalls until the L2 Miss is serviced.

= Long-latency cache misses are responsible for most
full-window stalls.




Impact of Long-Latency Cache Misses
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The Problem

Out-of-order execution requires large instruction windows
to tolerate today’s main memory latencies.

As main memory latency increases, instruction window size
should also increase to fully tolerate the memory latency.

Building a large instruction window is a challenging task
if we would like to achieve

a Low power/energy consumption (tag matching logic,
load/store buffers)

a Short cycle time (wakeup/select, redfile, bypass latencies)
a Low design and verification complexity



Runahead Execution

A technigue to obtain the memory-level parallelism benefits
of a large instruction window

When the oldest instruction is a long-latency cache miss:
o Checkpoint architectural state and enter runahead mode

In runahead mode:

a Speculatively pre-execute instructions

a The purpose of pre-execution is to generate prefetches

o L2-miss dependent instructions are marked INV and dropped
When the original miss returns:

o Restore checkpoint, flush pipeline, resume normal execution

Mutlu et al., “Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors,” HPCA 2003.



Porfect Caches: Runahead Example
Load 1 Hit  Load 2 Hit

e

Small Window:
Load 1 Miss Load 2 Miss

Runahead: s
Load 1 Miss  Load 2 Miss Load 1 Hit Load 2 Hit i

Saved Cycles

Miss 1




Benefits of Runahead Execution

Instead of stalling during an L2 cache miss:

Pre-executed loads and stores independent of L2-miss
instructions generate very accurate data prefetches:

o For both regular and irregular access patterns

Instructions on the predicted program path are prefetched
into the instruction/trace cache and L2.

Hardware prefetcher and branch predictor tables are trained
using future access information.



Runahead Execution Pros and Cons

Advantages:
+ Very accurate prefetches for data/instructions (all cache levels)
+ Follows the program path
+ Simple to implement: most of the hardware is already built in
+ No waste of context: uses the main thread context for prefetching
+ No need to construct a pre-execution thread

Disadvantages/Limitations

-- Extra executed instructions

-- Limited by branch prediction accuracy

-- Cannot prefetch dependent cache misses

-- Effectiveness limited by available “memory-level parallelism” (MLP)

-- Prefetch distance (how far ahead to prefetch) limited by memory latency

Implemented in Sun ROCK, IBM POWER6, NVIDIA Denver
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Performance of Runahead Execution

Micro-operations Per Cycle
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Runahead Execution vs. Large Windows

Micro-operations Per Cycle
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Runahead on In-order vs. Out-of-order

Micro-operations Per Cycle
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More on Runahead Execution

= Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt,
"Runahead Execution: An Alternative to Very Large Instruction
Windows for Out-of-order Processors"
Proceedings of the 9th International Symposium on High-Performance
Computer Architecture (HPCA), Anaheim, CA, February 2003. Slides (pdf)

One of the 15 computer architecture papers of 2003 selected as Top
Picks by IEEFE Micro.

Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-of-order Processors
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Effect of Runahead in Sun ROCK

= Shailender Chaudhry talk, Aug 2008.
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More on Runahead in Sun ROCK

HIGH-PERFORMANCE
THROUGHPUT COMPUTING

THROUGHPUT COMPUTING, ACHIEVED THROUGH MULTITHREADING AND
MULTICORE TECHNOLOGY, CAN LEAD TO PERFORMANCE IMPROVEMENTS
THAT ARE 10 TO 30x THOSE OF CONVENTIONAL PROCESSORS AND SYSTEMS.
HOWEVER, SUCH SYSTEMS SHOULD ALSO OFFER GOOD SINGLE-THREAD
PERFORMANCE. HERE, THE AUTHORS SHOW THAT HARDWARE SCOUTING
INCREASES THE PERFORMANCE OF AN ALREADY ROBUST CORE BY UP TO 40

PERCENT FOR COMMERCIAL BENCHMARKS.

Chaudhry+, “High-Performance Throughput Computing,” IEEE Micro 2005. 17



More on Runahead in Sun ROCK

Simultaneous Speculative Threading: A Novel Pipeline
Architecture Implemented in Sun’s ROCK Processor

Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karlsson,

Anders Landin, Sherman Yip, Hakan Zeffer, and Marc Tremblay
Sun Microsystems, Inc.
4180 Network Circle, Mailstop SCA18-211
_ Santa Clara, CA 95054, USA _
{shailender.chaudhry, robert.cypher, magnus.ekman, martin.karlsson,

anders.landin, sherman.yip, haakan.zeffer, marc.tremblay}@sun.com

Chaudhry+, “Simultaneous Speculative Threading,” ISCA 20009. 18



Runahead Execution in IBM POWERG

Runahead Execution vs. Conventional Data Prefetching
in the IBM POWERG6 Microprocessor

Harold W. Cain Priya Nagpurkar

IBM T.J. Watson Research Center
Yorktown Heights, NY
{tcain, pnagpurkar}@us.ibm.com

Cain+, “"Runahead Execution vs. Conventional Data Prefetching
in the IBM POWER6 Microprocessor,” ISPASS 2010.
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Runahead Execution in IBM POWERG

Abstract

After many years of prefetching research, most commercially
available systems support only two types of prefetching:
software-directed prefetching and hardware-based prefetchers
using simple sequential or stride-based prefetching
algorithms. More sophisticated prefetching proposals, despite
promises of improved performance, have not been adopted
by industry. In this paper, we explore the efficacy of both
hardware and software prefetching in the context of an IBM
POWERG commercial server. Using a variety of applications
that have been compiled with an aggressively optimizing
compiler to use software prefetching when appropriate, we
perform the first study of a new runahead prefetching feature
adopted by the POWERG design, evaluating it in isolation
and in conjunction with a conventional hardware-based
sequential stream prefetcher and compiler-inserted software
prefetching.

We find that the POWERG implementation of runahead
prefetching is quite effective on many of the memory intensive
applications studied; in isolation it improves performance
as much as 36% and on average 10%. However, it outper-
forms the hardware- based stream prefetcher on only two Of

When used in conjunction with the conventional prefetchmg

mechanisms, the runahead feature adds an additional 6% on
average, and 39% in the best case (GemsFDTD).

20



Runahead Execution in NVIDIA Denver

DENVER: NVIDIA'S FIRST 64-BIT ARM
PROCESSOR

NVIDIA'S FIRST 64-BIT ARM PROCESSOR, CODE-NAMED DENVER, LEVERAGES A HOST OF
NEW TECHNOLOGIES, SUCH AS DYNAMIC CODE OPTIMIZATION, TO ENABLE HIGH-
PERFORMANCE MOBILE COMPUTING. IMPLEMENTED IN A 28-NM PROCESS, THE DENVER
CPU CAN ATTAIN CLOCK SPEEDS OF UP TO 2.5 GHZ. THIS ARTICLE OUTLINES THE DENVER
ARCHITECTURE, DESCRIBES ITS TECHNOLOGICAL INNOVATIONS, AND PROVIDES RELEVANT

COMPARISONS AGAINST COMPETING MOBILE PROCESSORS.

Boggs+, “"Denver: NVIDIA's First 64-Bit ARM Processor,” IEEE Micro 2015.
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Runahead Execution in NVIDIA Denver

Reducing the effects of long cache-miss
penalties has been a major focus of the micro-
architecture, using techniques like prefetch-
ing and run-ahead. An aggressive hardware
prefetcher implementation detects L2 cache
requests and tracks up to 32 streams, each
with complex stride patterns.

Run-ahead uses the idle time that a CPU
spends waiting on a long latency operation to
discover cache and DTLB misses further
down the instruction stream and generates
prefetch requests for these misses." These pre-
fetch requests warm up the data cache and
DTLB well before the actual execution of
the instructions that require the data. Run-
ahead complements the hardware prefetcher
because it’s better at prefetching nonstrided
streams, and it trains the hardware prefetcher

faster than normal execution to yield a com-
bined benefit of 13 percent on SPECint2000
and up to 60 percent on SPECfp2000.

Boggs+, “"Denver: NVIDIA's First 64-Bit ARM Processor,”
IEEE Micro 2015.

Gwennap, “NVIDIA’s First CPU is a Winner,” MPR 2014.

The core includes a hardware prefetch unit that Boggs
describes as aggresswe in preloadlng the data cache but

nnplements a “run-ahead” feature that continues to execute
microcode speculatively after a data-cache miss; this exe-
cution can trigger additional cache misses that resolve in
the shadow of the first miss. Once the data from the original
miss returns, the results of this speculative execution are

discarded and execution restarts with the bundle containing
the original miss, but run-ahead can preload subsequent
data into the cache, thus avoiding a string of time-wasting
cache misses. These and other features help Denver out-
score Cortex-A15 by more than 2.6x on a memory-read test
even when both use the same SoC framework (Tegra K1).
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Runahead Enhancements




Runahead Enhancements

Mutlu et al., “Techniques for Efficient Processing in Runahead
Execution Engines,” ISCA 2005, IEEE Micro Top Picks 2006.

Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.

Armstrong et al., "Wrong Path Events,” MICRO 2004.

Mutlu et al., "An Analysis of the Performance Impact of
Wrong-Path Memory References on Out-of-Order and
Runahead Execution Processors,” IEEE TC 2005.
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Limitations of the Baseline Runahead Mechanism

Energy Inefficiency
o A large number of instructions are speculatively executed
o Efficient Runahead Execution [ISCA'05, IEEE Micro Top Picks'06]

Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
o Address-Value Delta (AVD) Prediction [MICRO'05]

Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
o Wrong Path Events [MICRO'04]

o Wrong Path Memory Reference Analysis [IEEE TC'05]



More on Efficient Runahead Execution

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Techniques for Efficient Processing in Runahead Execution
Engines”
Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides
(ppt) Slides (pdf)
One of the 13 computer architecture papers of 2005 selected as
Top Picks by IEEE Micro.

Techniques for Efficient Processing in Runahead Execution Engines

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin

{onur,hyesoon,patt} @ece.utexas.edu
26
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More on Efficient Runahead Execution

Onur Mutlu, Hyesoon Kim, and Yale N. Patt,

"Efficient Runahead Execution: Power-Efficient Memory Latency
Tolerance"

IEEE Micro, Special Issue.: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20,

January/February 2006.

EFFICIENT RUNAHEAD EXECUTION:
POWER-EFFICIENT
MEMORY LATENCY TOLERANCE

27
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At the Time...

Large focus on increasing the size of the window...
o And, designing bigger, more complicated machines

Runahead was a different way of thinking
a Keep the 000 core simple and small
o At the expense of non-MLP benefits

o Use aggressive “automatic speculative execution” solely for
prefetching

o Synergistic with prefetching and branch prediction methods

A lot of interesting and innovative ideas ensued...

SAFARI 29
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Important Precedent [Dundas & Mudge, ICS 1997]

Improving Data Cache Performance by Pre-executing Instructions Under a Cache Miss

James Dundas and Trevor Mudge
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122

{dundas, tnm} @eecs.umich.edu

Abstract

In this paper we propose and evaluate a technique that
improves first level data cache performance by pre-executing future
instructions under a data cache miss. We show that these pre-
executed instructions can generate highly accurate data prefetches,
particularly when the first level cache is small. The technique is
referred to as runahead processing. The hardware required to
implement runahead is modest, because, when a miss occurs, it
makes use of an otherwise idle resource, the execution logic. The
principal hardware cost is an extra register file. To measure the
impact of runahead, we simulated a processor executing five integer
Spec95 benchmarks. Our results show that runahead was able to
significantly reduce data cache CPI for four of the five benchmarks.
We also compared runahead to a simple form of prefetching,
sequential prefetching, which would seem to be suitable for
scientific benchmarks. We confirm this by enlarging the scope of
our experiments to include a scientific benchmark. However, we
show that runahead was also able to outperform sequential
prefetching on the scientific benchmark. We also conduct studics
that demonstrate that runahead can generate many useful prefetches
for lines that show little spatial locality with the misses that initiate
runahead episodes. Finally, we discuss some further enhancements
of our baseline runahead prefetching scheme.

are allocated by the software. This hybrid hardware-software tech-
nique was presented in [8]. Their instruction stride table (IST) selec-
tively generates cache miss initiated prefetches for accesses chosen
beforehand by the compiler. This resulted in multiprocessor perfor-
mance for scientific benchmarks comparable in some cases to soft-
ware prefetching, with an instruction stride table as small as 4
entries. The IST concept was subsequently combined with the
prefetch predicates of [2] in [9]. Another hardware prefetching
scheme that avoids the need for significant amounts of hardware is
the “wrong path” prefetching described in [10]. This actually
prefetches instructions from the not-taken path, in the expectation
that they will be executed during a later iteration.

Most prefetching techniques, software- or hardware-based,
tend to perform poorly on an important class of applications having
recursive data structures such as linked-lists. A software technique
that overcomes this limitation was presented recently in [11], in
which software prefetches were inserted at subroutine call sites that
passed pointers as arguments. Another pointer-based approach was
described in [12}. This approach uses pointers stored within the data
structures to generate software prefetches.

The runahead prefetching approach presented in this paper is a
hardware approach, that requires only a modest amount of hard-
ware, because, when a miss occurs, it makes use of an otherwise

30

Dundas+, “Improving Data Cache Performance by Pre-Executing Instructions Under a Cache Miss,” ICS 1997.



An Inspiration [Glew, ASPLOS-WACI 1998]

MLP yes! ILP no!

Memory Level Parallelism, or why I no longer care about Instruction Level Parallelism

Andrew Glew
Intel Microcomputer Research Labs and University of Wisconsin, Madison

Problem Description: It should be well known that processors are outstripping memory performance: specifically that memory
latencies are not improving as fast as processor cycle time or IPC or memory bandwidth.

Thought experiment: imagine that a cache miss takes 10000 cycles to execute. For such a processor instruction level
parallelism is useless, because most of the time is spent waiting for memory. Branch prediction is also less effective, since most
branches can be determined with data already in registers or in the cache; branch prediction only helps for branches which depend on
outstanding cache misses.

At the same time, pressures for reduced power consumption mount.

Given such trends, some computer architects in industry (although not Intel EPIC) are talking seriously about retreating from
out-of-order superscalar processor architecture, and instead building simpler, faster, dumber, 1-wide in-order processors with high
degrees of speculation. Sometimes this is proposed in combination with multiprocessing and multithreading: tolerate long memory
latencies by switching to other processes or threads.

I propose something different: build narrow fast machines but use intelligent logic inside the CPU to increase the number of
outstanding cache misses that can be generated from a single program.

Solution: First, change the mindset: MLP, Memory Level Parallelism, is what matters, not ILP, Instruction Level
Parallelism.

By MLP I mean simply the number of outstanding cache misses that can be generated (by a single thread, task, or program)
and executed in an overlapped manner. It does not matter what sort of execution engine generates the multiple outstanding cache
misses. An out-of-order superscalar ILP CPU may generate multiple outstanding cache misses, but 1-wide processors can be just as
effective.

Change the metrics: total execution time remains the overall goal, but instead of reporting IPC as an approximation to this, we
must report MLP. Limit studies should be in terms of total number of non-overlapped cache misses on critical path.

Now do the research: Many present-day hot topics in computer architecture help ILP, but do not help MLP. As mentioned
above, predicting branch directions for branches that can be determined from data already in the cache or in registers does not help
MLP for extremely long latencies. Similarly, prefetching of data cache misses for array processing codes does not help MLP — it just
moves it around.

Instead, investigate microarchitectures that help MLP:

0) Trivial case — explicit multithreading, like SMT.

1) Slightly less trivial case — implicitly multithread single programs, either by compiler software on an MT machine, or by a
hybrid, such as Wisconsin Multiscalar, or entirely in hardware, as in Intel’s Dynamic Multi-Threading.

?2) Build 1-wide processors that are as fast as possible: use circuit tricks, as well as logic tricks such as redundant encoding
for numeric computation and memory addressing.

A3) Allow the hardware dynamic scheduling mechanisms to use sequential algorithms implemented by this narrow, fast,
processor, rather than limiting it to parallel algorithms implementable in associative logic.

“) Build very large instruction windows allowing speculation tens of thousands of instructions ahead. Avoid circuit speed
issues by caching the instruction window. Remove small arbitrary limits on the number of cache misses outstanding allowed.

%) Further reduce the cost of very large instruction windows by throwing away anything that can be recomputed based on
data in registers or cache.

(6) Don’t stall speculation because the oldest instruction in the machine is a cache miss. Let the front of the machine continue
executing branches, forgetting data dependent on cache misses.

) Parallelize linked data structure traversals by building skip lists in hardware — converting sequential data structures into

parallel ones. Store these extra skip pointers in main memory.

Call such a processor microarchitecture a “super-non-blocking” microarchitecture.

Justification: The processor/memory trend is well known. Theoretically optimal cache studies show only limited headroom.
Barring a revolution in memory technology, the Memory Wall is real, and getting closer. Multithreading and multiprocessing have
some hope of tolerating memory latency, but only if there are parallel workloads. If single thread performance is still an issue, the only
potentially MLP enhancing technologies are what I describe here, or data value prediction — and data value prediction seems to only do
well for stuff that fits in the cache.

“Super-non-blocking” processors extends dynamic, out-of-order, execution to maximize MLP, but simplifies it by discarding
superscalar ILP as unnecessary.

SAFARI

Glew, “MLP yes! ILP no!,” ASPLOS WACI 1998.
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A Look into the Future...

= Microarchitecture is still critically important
a And, fun...

o And, impactful...

= Runahead is a great example of harmonious industry-
academia collaboration

= Fundamental problems will remain fundamental
o And will require fundamental solutions

SAFARI
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One Final Note

Our purpose was (and is) to advance the state of the art
That should be the sole purpose of any scientific effort

There is a dangerous tendency (especially today) that
increasingly goes against the scientific purpose

o In reviews & paper acceptance decisions

o In paper formatting rules

o In publication processes

o In the bureaucracy academics have created
d

Conferences are not a competition = Let’s respect science

SAFARI 34



Suggestions to Reviewers

= Be fair; you do not know it all
= Be open-minded; you do not know it all

= Be accepting of diverse research methods: there is no
single way of doing research or writing a paper

= Be constructive, not destructive
= Enable heterogeneity, but not double standards

Do not block or delay scientific progress for non-reasons

SAFARI



Suggestion to Community

We Need to Fix the
Reviewer Accountability
Problem

SAFARI



Suggestion to Researchers: Principle: Passion

Follow Your Passion
(Do not get derailed
by naysayers)




Suggestion to Researchers: Principle: Resilience

Be Resilient




Principle: Learning and Scholarship

Focus on
learning and scholarship

SAFARI



Principle: Learning and Scholarship

The quality of your work
defines your impact

SAFARI



Runahead Execution
A Short Retrospective

Onur Mutlu, Jared Stark, Chris Wilkerson, Yale Patt
HPCA 2021 ToT Award Talk
2 March 2021
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Citation for the ToT Award

Runahead Execution is a pioneering paper that opened up
new avenues in dynamic prefetching. The basic idea of run
ahead execution effectively increases the instruction window
very significantly, without having to increase physical resource
size (e.g. the issue queue). This seminal paper spawned off a
new area of ILP-enhancing microarchitecture research. This
work has had strong industry impact as evidenced by IBM's
POWERG6 - Load Lookahead, NVIDIA Denver, and Sun ROCK's
hardware scouting.
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More on Runahead Execution

= Lecture video from Fall 2020, Computer Architecture:
o https://www.youtube.com/watch?v=zPewo6lal 8

= Lecture video from Fall 2017, Computer Architecture:
o https://www.youtube.com/watch?v=Kj3relihGF4

= Onur Mutluy,
"Efficient Runahead Execution Processors"
Ph.D. Dissertation, HPS Technical Report, TR-HPS-2006-007, July
2006. Slides (ppt)
Nominated for the ACM Doctoral Dissertation Award by
the University of Texas at Austin.

https://www.youtube.com/onurmutlulectures 44
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Runahead Execution Mechanism

Entry into runahead mode
o Checkpoint architectural register state

Instruction processing in runahead mode

Exit from runahead mode
o Restore architectural register state from checkpoint



Instruction Processing in Runahead Mode

Load 1 Miss

h

Miss 1

Runahead mode processing is the same as
normal instruction processing, EXCEPT:

= It is purely speculative: Architectural (software-visible)
register/memory state is NOT updated in runahead mode.

= L2-miss dependent instructions are identified and treated
specially.
o They are quickly removed from the instruction window.
o Their results are not trusted.




[.2-Miss Dependent Instructions

Load 1 Miss

Miss 1

= Two types of results produced: INV and VALID
= INV = Dependent on an L2 miss

= INV results are marked using INV bits in the register file and
store buffer.

= INV values are not used for prefetching/branch resolution.




Removwval of Instructions from Window

Load 1 Miss

h

Miss 1

= Oldest instruction is examined for pseudo-retirement
2 An INV instruction is removed from window immediately.
o A VALID instruction is removed when it completes execution.

s Pseudo-retired instructions free their allocated resources.
o This allows the processing of later instructions.

= Pseudo-retired stores communicate their data to
dependent loads.




Store/LLoad Handling in Runahead Mode

Load 1 Miss

h

Miss 1

= A pseudo-retired store writes its data and INV status to a
dedicated memory, called runahead cache.

= Purpose: Data communication through memory in runahead mode.
= A dependent load reads its data from the runahead cache.

= Does not need to be always correct - Size of runahead cache is
very small.




Branch Handling in Runahead Mode

Load 1 Miss

h

Miss 1

= INV branches cannot be resolved.

o A mispredicted INV branch causes the processor to stay on the wrong
program path until the end of runahead execution.

= VALID branches are resolved and initiate recovery if mispredicted.




A Runahead Processor Diagram

Mutlu+, “Runahead Execution,”
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Limitations of the Baseline Runahead Mechanism

Energy Inefficiency
o A large number of instructions are speculatively executed
o Efficient Runahead Execution [ISCA'05, IEEE Micro Top Picks'06]

Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
o Address-Value Delta (AVD) Prediction [MICRO'05]

Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
o Wrong Path Events [MICRO'04]

o Wrong Path Memory Reference Analysis [IEEE TC'05]
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Causes of Inetficiency

Short runahead periods
Overlapping runahead periods
Useless runahead periods

Mutlu et al., “Efficient Runahead Execution: Power-Efficient
Memory Latency Tolerance,” ISCA 2005, IEEE Micro Top
Picks 2006.



Short Runahead Periods

= Processor can initiate runahead mode due to an already in-flight L2
miss generated by

o the prefetcher, wrong-path, or a previous runahead period

Load 1 Miss Load 2 Miss Load 1 Hit Load 2 Miss

commlrwaesl W W

Miss 1

= Short periods
o are less likely to generate useful L2 misses
o have high overhead due to the flush penalty at runahead exit




Overlapping Runahead Periods

Two runahead periods that execute the same instructions

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

Compute OVERLAP I OVERLAP | ]

Miss 1 Miss 2

Second period is inefficient



Useless Runahead Periods

Periods that do not result in prefetches for normal mode

Load 1 Miss Load 1 Hit

Compute Runahead J

Miss 1

They exist due to the lack of memory-level parallelism
Mechanism to eliminate useless periods:

a Predict if a period will generate useful L2 misses

o Estimate a period to be useful if it generated an L2 miss that
cannot be captured by the instruction window

Useless period predictors are trained based on this estimation



Overall Impact on Executed Instructions
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Overall Impact on IPC

Increase in IPC
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More on Efficient Runahead Execution

=  Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Techniques for Efficient Processing in Runahead Execution
Engines”
Proceedings of the 32nd International Symposium on Computer
Architecture (ISCA), pages 370-381, Madison, WI, June 2005. Slides
(ppt) Slides (pdf)
One of the 13 computer architecture papers of 2005 selected as
Top Picks by IEEE Micro.

Techniques for Efficient Processing in Runahead Execution Engines

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin

{onur,hyesoon,patt} @ece.utexas.edu
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https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05.pdf
http://www.cs.wisc.edu/~isca2005/
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_isca05_talk.pdf

More on Efficient Runahead Execution

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Efficient Runahead Execution: Power-Efficient Memory Latency
Tolerance"
IEEE Micro, Special Issue.: Micro's Top Picks from Microarchitecture
Conferences (MICRO TOP PICKS), Vol. 26, No. 1, pages 10-20,

January/February 2006.

EFFICIENT RUNAHEAD EXECUTION:
POWER-EFFICIENT
MEMORY LATENCY TOLERANCE

61


https://people.inf.ethz.ch/omutlu/pub/mutlu_ieee_micro06.pdf
http://doi.ieeecomputersociety.org/10.1109/MM.2006.10

Limitations of the Baseline Runahead Mechanism

Energy Inefficiency
o A large number of instructions are speculatively executed
o Efficient Runahead Execution [ISCA'05, IEEE Micro Top Picks'06]

Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
o Address-Value Delta (AVD) Prediction [MICRO'05]

Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
o Wrong Path Events [MICRO'04]

o Wrong Path Memory Reference Analysis [IEEE TC'05]



The Problem: Dependent Cache Misses

Runahead: Load 2 is dependent on Load 1

@not Compute Its Add@

e

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

= Runahead execution cannot parallelize dependent misses
o wasted opportunity to improve performance
o wasted energy (useless pre-execution)

= Runahead performance would improve by 25% if this
limitation were ideally overcome




Parallelizing Dependent Cache Misses

= Idea: Enable the parallelization of dependent L2 cache
misses in runahead mode with a low-cost mechanism

= How: Predict the values of L2-miss address (pointer)
loads

= Address load: loads an address into its destination register,
which is later used to calculate the address of another load

= as opposed to data load

= Read:

o Mutlu et al., "Address-Value Delta (AVD) Prediction,” MICRO
2005.




Parallelizing Dependent Cache Misses

@not Compute Its Add@

Load 1 Miss Load 2 INV Load 1 Hit Load 2 Miss

Miss 1

Value Predicted> <Can Compute lts Address>

Load 1 Miss Load 2Miss Load 1 Hit Load 2 Hit Saved Speculative

5 Instructions

Saved Cycles
Miss 1




More on AVD Prediction

= Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of
Runahead Execution by Exploiting Regular Memory Allocation Patterns"
Proceedings of the 38th International Symposium on Microarchitecture (MICRO),
pages 233-244, Barcelona, Spain, November 2005. Slides (ppt) Slides (pdf)

One of the five papers nominated for the Best Paper Award by the
Program Committee.

Address-Value Delta (AVD) Prediction: Increasing the Effectiveness of Runahead
Execution by Exploiting Regular Memory Allocation Patterns

Onur Mutlu Hyesoon Kim Yale N. Patt

Department of Electrical and Computer Engineering
University of Texas at Austin
{onur,hyesoon,patt} @ece.utexas.edu
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https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05.pdf
http://pcsostres.ac.upc.edu/micro38/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.ppt
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro05_talk.pdf

More on AVD Prediction (II)

Onur Mutlu, Hyesoon Kim, and Yale N. Patt,
"Address-Value Delta (AVD) Prediction: A Hardware Technique
for Efficiently Parallelizing Dependent Cache Misses"

[EEE Transactions on Computers (TC), Vol. 55, No. 12, pages 1491-1508,
December 2006.

Address-Value Delta (AVD) Prediction:
A Hardware Technique for Efficiently
Parallelizing Dependent Cache Misses

Onur Mutlu, Member, IEEE, Hyesoon Kim, Student Member, IEEE, and
Yale N. Patt, Fellow, IEEE
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http://www.computer.org/tc/

Limitations of the Baseline Runahead Mechanism

Energy Inefficiency
o A large number of instructions are speculatively executed
o Efficient Runahead Execution [ISCA'05, IEEE Micro Top Picks'06]

Ineffectiveness for pointer-intensive applications
o Runahead cannot parallelize dependent L2 cache misses
o Address-Value Delta (AVD) Prediction [MICRO'05]

Irresolvable branch mispredictions in runahead mode
o Cannot recover from a mispredicted L2-miss dependent branch
o Wrong Path Events [MICRO'04]

o Wrong Path Memory Reference Analysis [IEEE TC'05]



Wrong Path Events

= David N. Armstrong, Hyesoon Kim, Onur Mutlu, and Yale N. Patt,
"Wrong Path Events: Exploiting Unusual and Illegal Program
Behavior for Early Misprediction Detection and Recovery"
Proceeedings of the 3/th International Symposium on
Microarchitecture (MICRO), pages 119-128, Portland, OR, December
2004. Slides (pdf)Slides (ppt)

Wrong Path Events: Exploiting Unusual and Illegal Program Behavior for Early
Misprediction Detection and Recovery

David N. Armstrong Hyesoon Kim Onur Mutlu Yale N. Patt

Department of Electrical and Computer Engineering
The University of Texas at Austin
{dna,hyesoon,onur,patt} @ece.utexas.edu
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https://people.inf.ethz.ch/omutlu/pub/armstrong_micro04.pdf
http://www.microarch.org/micro37/
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro04_talk.pdf
https://people.inf.ethz.ch/omutlu/pub/mutlu_micro04_talk.ppt

Ettects of Wrong Path Execution (I)

= Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"Understanding the Effects of Wrong-Path Memory References on
Processor Performance”
Proceedings of the 3rd Workshop on Memory Performance
Issues (WMPI), pages 56-64, Munchen, Germany, June 2004. Slides

(pdf)

Understanding The Effects of Wrong-Path Memory
References on Processor Performance

Onur Mutlu Hyesoon Kim David N. Armstrong Yale N. Patt

Department of Electrical and Computer Engineering
The University of Texas at Austin
{onur,hyesoon,dna,patt}@ece.utexas.edu
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https://people.inf.ethz.ch/omutlu/pub/mutlu_wmpi04.pdf
http://doi.acm.org/10.1145/1054943.1054951
https://people.inf.ethz.ch/omutlu/pub/mutlu_wmpi04_talk.pdf

Ettects of Wrong Path Execution (II)

= Onur Mutlu, Hyesoon Kim, David N. Armstrong, and Yale N. Patt,
"An Analysis of the Performance Impact of Wrong-Path Memory
References on Out-of-Order and Runahead Execution Processors"

[EEE Transactions on Computers (TC), Vol. 54, No. 12, pages 1556-1571,
December 2005.

An Analysis of the Performance Impact of
Wrong-Path Memory References on Out-of-
Order and Runahead Execution Processors

Onur Mutlu, Student Member, IEEE, Hyesoon Kim, Student Member, IEEE,
David N. Armstrong, and Yale N. Patt, Fellow, IEEE
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