
A Low-Power Low-Cost Microcontroller
 for Security Systems

 Nai Ka Chung, Tufan C. Karalar, Pak Hei M. Leung, Onur Mutlu, Cheongyuen Tsang
University of Michigan

1301 Beal Avenue
Ann Arbor, MI 48109

(734) 994-8958

427group@umich.edu

ABSTRACT
The aim of this paper is to describe the implementation of a low-
power, low-cost 16-bit RISC microcontroller that will act as the
core of a stand-alone security system. The controller is designed
to provide moderate-high security at very low cost and to be able
to operate independent of a database. It is designed using 1.5-µm
SCMOS process from MOSIS and operates at a frequency of 12.5
MHz.

Keywords
Card readers, ASICs, security systems, low-power

1. INTRODUCTION
Current access control systems that authorize access to a building
or a room are either relatively insecure or costly to implement and
set up. Many of the security systems used to provide secure access
to a site require database access to check the authentication status
of the user, which requires the system to have network
compatibilit y. This increases not only the setup cost of the
security system but also the implementation cost of the
microcontroller used in the security system. Besides, such systems
are vulnerable to network failures and congestion, which may be
quite disconcerting to the users if not criti cal to the security and
successful operation of the system. On the other hand, many of
the existing stand-alone systems fail to provide a high level of
security. These systems usually only consist of a single card
reader. If the card user is authorized to access the site, access will
be granted without requiring any further identification. There are
systems that require some kind of identification, such as
fingerprint matching, but these systems are too costly to
implement.

 The aim of this paper is to present a microcontroller that
will provide high security without the need for any database

access, hence eliminating the high cost disadvantage of a network-
based system but providing a moderate to high level of security
depending on the data encryption algorithm used. The
microcontroller is designed for consumers that need moderate to
high degree of security without the need for a networked access
control system. The microprocessor is also designed as a low
power system using the low power static CMOS design with
several chip-specific low-power components and features.

2. OPERATION
The microcontroller-based system described in this paper is to be
set up at the site which needs authorization before entry. The user
needs to swipe his/her card through the card reader and then enter
a 4-digit PIN on the keypad in order to enter the site. The users of
the site are to be given a card, which is preloaded with a 32-bit.
When the card is swiped, the data on the card is read serially via
an RS-232 interface into two special registers inside the
microcontroller. After reading in the data, the controller waits for
the user to enter the 4-digit PIN. If the PIN is not entered in a
specific amount of time determined by the program running on the
microcontroller, the card reader ignores the data in the card
registers and waits for another swipe. If the PIN is entered in time,
the microcontroller reads in the PIN via the serial RS-232
interface, converts each digit to a 4-bit number in two’s
complement and stores the whole PIN in a single special register.
Then the controller operates on the input data from the card as
well as the PIN and carry out a decryption process. If the result of
the decryption matches the processed PIN entered by the user,
access to the site will be granted by sending an “open” signal to
the door which lasts for 10 seconds.

2.1 Data Encryption/Decryption Algorithms
It is obvious that the security of such a system highly depends on
the encryption algorithm used in the process of assigning PIN’s to
the site users. The requirement of a PIN (password) after the user
swipes the card is an important high-security feature of the
system. In case the card is stolen or lost, any unauthorized user
will not be able to enter the system without the acknowledgment
of the password. This feature is similar to the authentication
mechanisms used in the bank ATM’s to provide more security
than a bare card reader, but different from the ATM’s in that it
does not require a network for access authorization.

2.1.1 A Sample Algorithm
In our system, we employ a data encryption scheme based on the
DES (Data Encryption Standard) algorithm [1]. The original DES
algorithm is targeted to encode and decode a 64-bit number,
encoding and decoding in 16 steps each. However, in our system
we operate on 32-bit numbers since the code coming from the
card is 32-bit. We limit the number of steps to 4 since this level of
encryption provides us with suff icient level of security in our
system (For more security, more sophisticated techniques can be
used).

For our application, the 32-bit number, acquired when the
user swipes his/her card, is split i nto 16 left-hand bits (L1) and 16
right-hand bits (R1). At each step, the 16 right-hand bits are
assigned to be the 16 left-hand bits of the next step. The 16 right-
hand bits of the next step come from the current 16 left-hand bits
added to the current 16 right-hand bits processed with a key (Kn).
This Kn is a function of the current step. The equations we use are
as follows:

 for n=2, 3,4 5.

Ln=Rn-1 (Eq. 1)

Rn=Ln-1 + (Rn-1 ⊕ Kn) (Eq. 2)

where K2, 3, 4, 5= { 0x000a, 0x00a0, 0x0a00, 0xa000} ,
respectively.

After completion of these four steps, we obtain a 32-bit
encrypted version of the original reading. We can then obtain a
16-bit number by taking the alternating bits of this encrypted
version. Logically shifting this number three bits to the right will
ensure that four decimal digits are suff icient to represent the
result, which is password of the card user. Finally, in order to
compare the result of encryption with the keypad entry we need to
convert the BCD number storing in the key-input register into a
binary number.

Using this scheme, we can determine 32-bit codes and map
them into 4-digit passwords. Although there is considerable
redundancy in this mapping, our simulations proved that we could
obtain at least 350 of these unique code-password pairs
(Appendix A).

3. ARCHITECTURE
3.1 Overview
The chip proposed is built as a 16-bit load-store architecture
which uses two-operand instructions. The ISA for the processor is
shown in Table 1. Memory operations use register indirect
addressing. PC-relative addressing is used by conditional and
unconditional branches. Several instructions are to be noted in the
ISA. ADDC (add with carry) and SUBC instructions are
implemented in order to be able to manipulate 32-bit quantities on
our 16-bit architecture. This allows the processor to decrypt the
32-bit data more easily. Arithmetic shift instructions (ASHU,
ASHUI) are included in the instruction set to allow the use of
more complex decryption schemes. There is also a multiply
instruction which will speed up the complex decryption process.

 Table 1. Instruction Set Architecture

Instruction Type (Uses) Comments

ADD, ADDI Arithmetic (alu)

ADDU,ADDUI Arithmetic (alu) Does not affect psr

ADDC,ADDCI Arithmetic (alu) Add with carry

MUL, POSMUL Multiplier Only register ops.

SUB, SUBI Arithmetic (alu)

SUBC, SUBCI Arithmetic (alu) Subtract w/ carry

CMP, CMPI Arithmetic (alu) Compare

AND, ANDI Logic (ALU)

OR, ORI Logic (ALU)

XOR, XORI Logic (ALU)

MOV, MOVI Data Manip.

LSH, LSHI Shifter Logical left/right

ASHU, ASHUI Shifter Arithmetic left/right

LUI Data manip. Load upper imm.

LOAD Data manip. Load from mem.

STOR Data manip. Store to mem.

Bcond Reg+displacem. 16 conditions

Jcond Reg. Indirect 16 conditions

JAL Reg. Indirect Jump and link

KRD Special Input ready

PEND Special Switch to idlemode

The processor has eight general purpose registers and three
special purpose registers. Two of the special registers are used to
hold the 32-bit input from the card, whereas the third one is used
to hold the input from the keypad. These special purpose registers
cannot be used as general purpose registers.

Our RISC processor is two-stage pipelined. In the first stage,
instruction is fetched from memory and in the second stage it is
decoded and executed, and register file or memory is accessed for
write or read operation. For the specific modules in each stage
please refer to the system-level block diagram of Figure 1.

3.2 Architectural Components
The datapath of the processor was designed using a full -custom
design technique in order to achieve low power consumption,
higher speed (for fast decryption), and smaller area. Included in
the datapath are the program counter, instruction register, register
file, ALU, and shifter (See Figure 1 and 2).

The ALU of the processor embodies a carry-lookahead
adder to increase the clock frequency at which the processor can
run at. Although this makes the area occupied by the ALU larger,
it is necessary that we make fast the decryption process, which
heavily relies on the ALU.

Figure 1. Block diagram of the microcontroller

 Figure 2. Layout of the card reader microcontroller

3.2.1 Low-Power Features
Aside from the low-power characteristics of the static CMOS
family used for most of the parts in the microprocessor, there are
several components and features that are specifically customized
for low energy consumption.

The shifter used is a power-on/off logarithmic shifter. Since
the shifter consumes unnecessary power when it is not being used,
it is turned on only when the instruction is a shift. This reduces
the overall dynamic power consumption of the chip by zeroing
out the unnecessary switching activity in the shifter when no shift
is being executed. The same mechanism is used to avoid
unnecessary energy consumption by turning off the counters in
the serial input interface when the serial input is not performed.

To further reduce the power consumption of the processor,
two operation modes are introduced. In the idle mode, the
processor executes NOOP’s, which reduces the switching activity
to a minimum according to the following average power
estimation equation for CMOS and hence reduces the power
consumption.

 Pav = CLVDD
2 f ,where f is operating frequency [2]

The shifter is also turned off in the idle mode. The processor starts
in the idle mode and stays in that mode until the user swipes the
card and enters the PIN. Once all the required data is placed in the
special registers, the processor starts to execute the program. KRD
instruction is used to check whether all required data is ready.
When the data is ready, an interrupt signal is sent to the PC and
the instruction register to start executing the decryption program.
The processor returns to idle mode after the execution of the
PEND (program end) instruction, which sends another interrupt
signal to the instruction register.

Our processor also performs simple static branch prediction
in order to reduce power dissipation. Although branch prediction
is used to increase performance in deeply-pipelined high-
performance general purpose microprocessors, it can also serve to
reduce the power consumption in application specific processors.
Branches are assumed not taken in our system. When a branch is
predicted correctly, the processor will not incur the overhead of
inserting a noop after the branch. Hence, the overall power
consumption in the flow of the program will be reduced. The
effectiveness of this approach depends on the behavior of
branches in the program. If most of the branches are taken, then
the usefulness of such a prediction scheme is minimal. More
complicated branch prediction mechanism is not implemented
because that requires considerable amount of logic, which is
unfeasible for a two-stage pipelined application-specific
processor.

3.2.2 Memory
The microcontroller includes an on-chip DRAM-based memory of
512 words. An on-chip memory is included to facilit ate the data
manipulations during the decryption process and also perhaps to
store the input from the card temporarily. The proposed system
does not need a large amount of storage, because it is mainly used
for data manipulation. Therefore, having an off-chip data memory

and interfacing it to the chip is not cost eff icient. For that reason,
a small -sized on-chip memory is preferred. The memory used is a
word-addressible DRAM of 1 Kbytes.

On the other hand, the instruction memory of the system is
kept off the chip. The suggested instruction memory to be used by
the microcontroller is an EEPROM (Electrically Erasable
Programmable Read Only Memory) memory so that it can easily
be re-programmed in case encryption/decryption algorithm is to
be changed. As there is a possibilit y that these algorithms (hence
the programs) need to be changed, it is more feasible to leave the
instruction memory off-chip to increase the flexibilit y of the
system. An EEPROM instruction memory meets the flexibilit y
and low-cost goals of our design. The size of the instruction
memory depends on the encryption scheme used in the program,
but a memory of 8 Kbytes would suff ice.

3.2.3 Serial I/O
The microcontroller receives serial input from two different
devices. One is the card reader which sends the 32-bit information
stored in the card. The other is the keypad, which sends the 4
characters PIN in ASCII format. It is necessary that the card
reader and the keypad interfaced to the system using the RS-232
protocol.

The ASCII input sent by the keypad is converted into a
binary representation of each number by truncating the higher 4
bit of the ASCII code and then storing the resulting 16 bits in a
special register for further manipulation.

3.2.4 Multiplier
A two’s complement 8-bit by 8-bit multiplier is included in the
microcontroller in order to facilit ate the password decryption
process. The multiplier uses a modified version of Booth’s
algorithm to produce a series of partial products, which are then
summed by a Wallace-tree adder circuit.

3.3 Timing Information
The proposed system has a criti cal path delay of 48 ns. However,
in order to synchronize the system clock with the frequency of the
serial input, we have decided to run the system at a slower rate
which is 12.5 MHz. The timing information of the criti cal path is
in show in Table 2 below.

 Table 2. Timing information for the critical path

COMPONENT DELAY (NS)

Instruction register 2

Control Unit 15

Register File 3

ALU 23

Writeback Tristate Buffers 5

Total delay 48

The multiplier, which has a delay of 45 ns, is not included in
the criti cal path, because we allow the multiply instruction to take
two clock cycles to complete in exchange of a faster clock speed.

3.4 Chip Specifications
The specifications of the chip are given in Table 3 below.

 Table 3. Specifications for the microcontroller

Die Size 5.298 mm x 4.491 mm

Core transistor density 3441 transistors/mm2

Datapath Size (full -custom) 1.104 mm x 1.908 mm

Datapath transistor density 6842 transistors/ mm2

Datapath Transistor Count 14,412

Total Transistor Count 81,887

Total Number of Pins 53

Operation Voltage 0-5 V

Operation Frequency 12.5 MHz

Power Consumption 89.5 mW

3.5 Add-On Components
Besides the instruction memory there are several components that
need to be interfaced to our system for proper operation. Four
LED’s that indicate the status of the system are useful in terms of
communicating with the user who tries to enter the site. A yellow
LED indicates that the system is ready. A blue LED indicates that
the user has swiped the card and the system is waiting for
password (PIN) input. A red LED indicates that access is denied
(password incorrect) and a green one indicates that access is
granted. Although these components add to the pin count of our
chip, it is an informative and low-cost way to communicate with
the user and is therefore necessary.

Also, as mentioned before, a keypad and a card reader which
use the RS-232 serial interface need to be connected to the
microcontroller.

4. DESIGN FLOW AND METHODOLOGY
Our chip was designed and fully simulated by a five-member
group using the 1.5-µm AMI ABN process. The datapath of the
processor was designed with a full -custom design methodology.
Mentor Graphics Design Arhitect was utili zed for creating top-
level and transistor-level schematics. ICStation was used for the
layout construction, Accusim was used for analog simulation and
Quicksim was used for the digital simulation and functional
verification of the design. Delays of the datapath components
were generated at each stage using the capacitance extraction tools
of Mentor Graphics and added to all criti cal points. Each
component of the datapath was then simulated and functionally
verified using Accusim and Quicksim. The whole datapath was
verified using the same tools.

The layout of the control unit, on-chip data memory,
multiplier, and the serial interface were created using the Verilog
Hardware Description Language and Epoch design compiler from
Cascade Design Automation. The Verilog modules for the
components were functionally verified using Signalscan. After the
generation of the layouts of all components, the controller,
datapath, and memory were automatically routed and floor-
planned using Epoch design compiler. All parts created by the
Epoch design compiler were functionally verified using
QuicksimPro.

The whole chip was extensively simulated and functionally
verified using QuicksimPro. Input and output pads were added
from Epoch’s cell li brary and simulations were done on the final
schematic with the input and output pads. The simulations were
done for each instruction as well as for several complicated test
programs. From the simulations, the optimal operable frequency
of the chip was determined to be 12.5 MHz.

5. TESTING
5.1 Verification
As mentioned in the previous section, the microcontroller was
extensively simulated at each stage, component by component and
as a whole using both analog and digital simulation tools.
Furthermore, specific choices were made during the layout
process to enhance testabilit y before and after fabrication. These
choices are described in the next subsection.

5.2 Design for Testability
Design for testabilit y was an important concern in the design of
our microcontroller. We have adopted a systematic approach to
ease the testing of our chip. Scan design method was used to
separate the memory modules from combinational modules during
testing. Each register in the microcontroller was laid out as a
scannable register using multiplexers to select between the scan
chain input and normal input. General purpose registers and
special purpose registers are exceptions to this, because their
outputs can easily be determined by reading from them. Program
counter, instruction register (which acts as the single pipeline
latch) and program status register (which stores the state of the
machine) were all i ncluded in the single scan chain. The inclusion
of the scan chain inside the chip increases the number of pins by
three and increases the criti cal path delay of the circuit, but
considering the importance of testing of microprocessors, it is a
crucial tradeoff that is necessary to make. An important advantage
of having a scan chain on the microcontroller is the fact that it

makes the test pattern generation relatively easy using automatic
test pattern generation.

5.3 Final Testing
As the proposed microcontroller is yet to be fabricated, the final
testing has not been done on the chip. However, due to the design
for testabilit y and small number of pins, we expect the final
functional verification of the chip to be fairly straightforward after
fabrication.

In the test mode, specific bit patterns (test vectors) will be
fed to the scan chain input of the chip. Results coming out of the
scan chain output will be monitored for correctness and analysis.
Automatic test pattern generation equipment is planned to be used
for test vector generation for the testing of the combinational
blocks of the microcontroller.

Upon the fabrication of the microcontroller, we plan to test it
using an HP82000 IC Development System. For the generation of
the test vectors to be used by the HP82000, we plan to use the
TDS Software System by Fluence Technology.

Eventually, after the complete functional verification
following the fabrication, we plan to connect the microcontroller
to a compatible card-reader, keypad and LED’s. The real testing
will be completed when it is verified with all the input output
interfaces.

6. CONCLUSION
In this paper, a low-cost low-power microcontroller for a stand-
alone security access control system is presented. This system is
proposed to be a convenient alternative to other systems for
consumers that need moderate to high level security without any
networking considerations and at a low cost. It is crucial to
reiterate that the level of security provided by such a system
heavily depends on the security of the encryption algorithm used
in the encryption/decryption process. Therefore, a good selection
of the encryption algorithm, similar to the one proposed in this
paper is essential for the reliabilit y of the security system.

7. REFERENCES
[1] Van Der Lubbe, Jan C. A., Basic Methods of Cryptography,

Trans: Steve Gee, Cambridge University Press,p.62, (1998)

[2] Rabaey, J. M., Digital Integrated Circuits: A Design
Perspective, Prentice Hall , Upper saddle River, NJ, p.235
(1996).

Appendix A.

We implemented a MATLAB program that can be used to determine the codes and assign the passwords for a given number of users.
Codes are randomly generated until the required number of codes, each of which map to a unique password key, are obtained.

The program also plots the relationship between number of redundancies and requested number of codes. Each code corresponds to a user

 Figure 1.

100 150 200 250 300 350
0

2

4

6

8

10

12

14

number of keys required

nu
m

be
r

of
 r

ed
un

da
nc

ie
s

Number of Redundancies vs. Number of Randomly Generated Codes

SAMPLE MATLAB PROGRAM

clear

factors=fliplr(pow2([0:15]));

count=1;

track=1;

passwords =[];

limit(1)=100;

iteration=1;

as(1,:)=[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1];%0x000a

as(2,:)=[0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0];%0x00a0

as(3,:)=[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0];%0x0a00

as(4,:)=[1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0];%0xa000

while(track-count<=10)

 while (count <=limit(iteration))

 initial_left=(normrnd(0,1,1,16)>=0);

 initial_right=(normrnd(0,1,1,16)>=0);

 left(1,:)=initial_left;

 right(1,:)=initial_right;

 num(1,:)=[left(1,:) , right(1,:)];

 for i=2:5

 left(i,:)=right(i-1,:);

 xor_res = bitxor(right(i-1,:),as(i-1,:));

 xor_result_dec=sum(factors.* xor_res);

 left_dec=sum(factors .* left(i-1,:));

 i;

 dec2bin(left_dec) - num2str(0);

 result_dec=xor_result_dec+left_dec;

 if(result_dec <= pow2(16))

 right(i,:)= [zeros(1,16-ceil(log2(result_dec))) (dec2bin(result_dec) - num2str(0))];

 else

 dec2bin(result_dec) - num2str(0);

 while(result_dec>pow2(16))

 result_dec=result_dec-pow2(floor(log2(result_dec)));%this effectively takes just 16
bits

 % which is effectively the case in our adder;

 end

 dec2bin(result_dec) - num2str(0);

 right(i,:)=[zeros(1,16-ceil(log2(result_dec))) (dec2bin(result_dec) - num2str(0))];

 end

 end

 final = [left(5,1:2:16) right(5,1:2:16)];

 final_dec=sum(factors .* [zeros(1,2) final(1:14)]);

 while (final_dec>pow2(13))

 final_dec=final_dec-pow2(floor(log2(final_dec)));

 end

 final_dec;

 if(~isempty(passwords))

 present=0;

 for q=1:length(passwords)

 if(final_dec==passwords(q))

 present=1;

 end

 end

 if(present==0)

 passwords(count,:) = final_dec;

 codes(count,:)=[initial_left initial_right];

 count=count+1;

 end

 else

 passwords(count,:)= final_dec;

 codes(count,:)=[initial_left initial_right];

 count=count+1;

 end

 [left(5,:) right(5,:)];

 track=track+1;

end

tracks(iteration)=track;

counts(iteration)=count;

limit(iteration+1)=limit(iteration)+50;

iteration=iteration+1;

end

%display the codes

passwords

codes;

