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ABSTRACT 
The aim of this paper is to describe the implementation of a low-
power, low-cost 16-bit RISC microcontroller that will act as the 
core of a stand-alone security system. The controller is designed 
to provide moderate-high security at very low cost and to be able 
to operate independent of a database. It is designed using 1.5-µm 
SCMOS process from MOSIS and operates at a frequency of 12.5 
MHz.      
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1. INTRODUCTION 
Current access control systems that authorize access to a building 
or a room are either relatively insecure or costly to implement and 
set up. Many of the security systems used to provide secure access 
to a site require database access to check the authentication status 
of the user, which requires the system to have network 
compatibilit y. This increases not only the setup cost of the 
security system but also the implementation cost of the 
microcontroller used in the security system. Besides, such systems 
are vulnerable to network failures and congestion, which may be 
quite disconcerting to the users if not criti cal to the security and 
successful operation of the system. On the other hand, many of 
the existing stand-alone systems fail to provide a high level of 
security. These systems usually only consist of a single card 
reader. If the card user is authorized to access the site, access will 
be granted without requiring any further identification. There are 
systems that require some kind of identification, such as 
fingerprint matching, but these systems are too costly to 
implement. 

   The aim of this paper is to present a microcontroller that 
will provide high security without the need for any database 

access, hence eliminating the high cost disadvantage of a network-
based system but providing a moderate to high level of security 
depending on the data encryption algorithm used. The 
microcontroller is designed for consumers that need moderate to 
high degree of security without the need for a networked access 
control system. The microprocessor is also designed as a low 
power system using the low power static CMOS design with 
several chip-specific low-power components and features.  

2. OPERATION 
The microcontroller-based system described in this paper is to be 
set up at the site which needs authorization before entry. The user 
needs to swipe his/her card through the card reader and then enter 
a 4-digit PIN on the keypad in order to enter the site. The users of 
the site are to be given a card, which is preloaded with a 32-bit. 
When the card is swiped, the data on the card is read serially via 
an RS-232 interface into two special registers inside the 
microcontroller. After reading in the data, the controller waits for 
the user to enter the 4-digit PIN. If the PIN is not entered in a 
specific amount of time determined by the program running on the 
microcontroller, the card reader ignores the data in the card 
registers and waits for another swipe. If the PIN is entered in time, 
the microcontroller reads in the PIN via the serial RS-232 
interface, converts each digit to a 4-bit number in two’s 
complement and stores the whole PIN in a single special register. 
Then the controller operates on the input data from the card as 
well as the PIN and carry out a decryption process. If the result of 
the decryption matches the processed PIN entered by the user, 
access to the site will be granted by sending an “open” signal to 
the door which lasts for 10 seconds.  

2.1 Data Encryption/Decryption Algorithms 
It is obvious that the security of such a system highly depends on 
the encryption algorithm used in the process of assigning PIN’s to 
the site users. The requirement of a PIN (password) after the user 
swipes the card is an important high-security feature of the 
system. In case the card is stolen or lost, any unauthorized user 
will not be able to enter the system without the acknowledgment 
of the password. This feature is similar to the authentication 
mechanisms used in the bank ATM’s to provide more security 
than a bare card reader, but different from the ATM’s in that it 
does not require a network for access authorization. 

 

 
 
 
 

 

 



2.1.1 A Sample Algorithm 
In our system, we employ a data encryption scheme based on the 
DES (Data Encryption Standard) algorithm [1]. The original DES 
algorithm is targeted to encode and decode a 64-bit number, 
encoding and decoding in 16 steps each. However, in our system 
we operate on 32-bit numbers since the code coming from the 
card is 32-bit. We limit the number of steps to 4 since this level of 
encryption provides us with suff icient level of security in our 
system (For more security, more sophisticated techniques can be 
used).  

For our application, the 32-bit number, acquired when the 
user swipes his/her card, is split i nto 16 left-hand bits (L1) and 16 
right-hand bits (R1). At each step, the 16 right-hand bits are 
assigned to be the 16 left-hand bits of the next step. The 16 right-
hand bits of the next step come from the current 16 left-hand bits 
added to the current 16 right-hand bits processed with a key (Kn). 
This Kn is a function of the current step. The equations we use are 
as follows: 

 for n=2, 3,4 5. 

Ln=Rn-1     (Eq. 1) 

Rn=Ln-1 + (Rn-1 ⊕ Kn)   (Eq. 2) 

where K2, 3, 4, 5= { 0x000a, 0x00a0, 0x0a00, 0xa000} , 
respectively. 

After completion of these four steps, we obtain a 32-bit 
encrypted version of the original reading. We can then obtain a 
16-bit number by taking the alternating bits of this encrypted 
version. Logically shifting this number three bits to the right will 
ensure that four decimal digits are suff icient to represent the 
result, which is password of the card user. Finally, in order to 
compare the result of encryption with the keypad entry we need to 
convert the BCD number storing in the key-input register into a 
binary number.  

Using this scheme, we can determine 32-bit codes and map 
them into 4-digit passwords. Although there is considerable 
redundancy in this mapping, our simulations proved that we could 
obtain at least 350 of these unique code-password pairs 
(Appendix A).  

3. ARCHITECTURE 
3.1 Overview 
The chip proposed is built as a 16-bit load-store architecture 
which uses two-operand instructions. The ISA for the processor is 
shown in Table 1. Memory operations use register indirect 
addressing. PC-relative addressing is used by conditional and 
unconditional branches. Several instructions are to be noted in the 
ISA. ADDC (add with carry) and SUBC instructions are 
implemented in order to be able to manipulate 32-bit quantities on 
our 16-bit architecture. This allows the processor to decrypt the 
32-bit data more easily. Arithmetic shift instructions (ASHU, 
ASHUI) are included in the instruction set to allow the use of 
more complex decryption schemes. There is also a multiply 
instruction which will speed up the complex decryption process.  

                 Table 1.  Instruction Set Architecture 

Instruction Type (Uses) Comments 

ADD, ADDI Arithmetic (alu)  

ADDU,ADDUI Arithmetic (alu) Does not affect psr 

ADDC,ADDCI Arithmetic (alu) Add with carry 

MUL, POSMUL Multiplier Only register ops. 

SUB, SUBI Arithmetic (alu)  

SUBC, SUBCI Arithmetic (alu) Subtract w/ carry 

CMP, CMPI Arithmetic (alu) Compare 

AND, ANDI Logic (ALU)  

OR, ORI Logic (ALU)  

XOR, XORI Logic (ALU)  

MOV, MOVI Data Manip.  

LSH, LSHI Shifter Logical left/right 

ASHU, ASHUI Shifter Arithmetic left/right 

LUI Data manip. Load upper imm. 

LOAD Data manip. Load from mem. 

STOR Data manip. Store to mem. 

Bcond Reg+displacem. 16 conditions  

Jcond Reg. Indirect 16 conditions 

JAL Reg. Indirect Jump and link 

KRD Special Input ready 

PEND Special Switch to idlemode 

 

The processor has eight general purpose registers and three 
special purpose registers. Two of the special registers are used to 
hold the 32-bit input from the card, whereas the third one is used 
to hold the input from the keypad. These special purpose registers 
cannot be used as general purpose registers.  

Our RISC processor is two-stage pipelined. In the first stage, 
instruction is fetched from memory and in the second stage it is 
decoded and executed, and register file or memory is accessed for 
write or read operation. For the specific modules in each stage 
please refer to the system-level block diagram of Figure 1. 

3.2 Architectural Components 
The datapath of the processor was designed using a full -custom 
design technique in order to achieve low power consumption, 
higher speed (for fast decryption), and smaller area. Included in 
the datapath are the program counter, instruction register, register 
file, ALU, and shifter (See Figure 1 and 2).   



The ALU of the processor embodies a carry-lookahead 
adder to increase the clock frequency at which the processor can 
run at. Although this makes the area occupied by the ALU larger, 
it is necessary that we make fast the decryption process, which 
heavily relies on the ALU. 

 

Figure 1. Block diagram of the microcontroller 

 

 

 

       Figure 2. Layout of the card reader microcontroller 

 

3.2.1 Low-Power Features 
Aside from the low-power characteristics of the static CMOS 
family used for most of the parts in the microprocessor, there are 
several components and features that are specifically customized 
for low energy consumption. 

The shifter used is a power-on/off logarithmic shifter. Since 
the shifter consumes unnecessary power when it is not being used, 
it is turned on only when the instruction is a shift. This reduces 
the overall dynamic power consumption of the chip by zeroing 
out the unnecessary switching activity in the shifter when no shift 
is being executed. The same mechanism is used to avoid 
unnecessary energy consumption by turning off the counters in 
the serial input interface when the serial input is not performed. 

To further reduce the power consumption of the processor, 
two operation modes are introduced. In the idle mode, the 
processor executes NOOP’s, which reduces the switching activity 
to a minimum according to the following average power 
estimation equation for CMOS and hence reduces the power 
consumption. 

  Pav  = CLVDD
2 f ,where f is operating frequency [2] 

The shifter is also turned off in the idle mode. The processor starts 
in the idle mode and stays in that mode until the user swipes the 
card and enters the PIN. Once all the required data is placed in the 
special registers, the processor starts to execute the program. KRD 
instruction is used to check whether all required data is ready. 
When the data is ready, an interrupt signal is sent to the PC and 
the instruction register to start executing the decryption program. 
The processor returns to idle mode after the execution of the 
PEND (program end) instruction, which sends another interrupt 
signal to the instruction register. 

Our processor also performs simple static branch prediction 
in order to reduce power dissipation. Although branch prediction 
is used to increase performance in deeply-pipelined high-
performance general purpose microprocessors, it can also serve to 
reduce the power consumption in application specific processors. 
Branches are assumed not taken in our system. When a branch is 
predicted correctly, the processor will not incur the overhead of 
inserting a noop after the branch. Hence, the overall power 
consumption in the flow of the program will be reduced. The 
effectiveness of this approach depends on the behavior of 
branches in the program. If most of the branches are taken, then 
the usefulness of such a prediction scheme is minimal. More 
complicated branch prediction mechanism is not implemented 
because that requires considerable amount of logic, which is 
unfeasible for a two-stage pipelined application-specific 
processor.  

3.2.2 Memory 
The microcontroller includes an on-chip DRAM-based memory of 
512 words. An on-chip memory is included to facilit ate the data 
manipulations during the decryption process and also perhaps to 
store the input from the card temporarily. The proposed system 
does not need a large amount of storage, because it is mainly used 
for data manipulation. Therefore, having an off-chip data memory 



and interfacing it to the chip is not cost eff icient. For that reason, 
a small -sized on-chip memory is preferred. The memory used is a 
word-addressible DRAM of 1 Kbytes.   

On the other hand, the instruction memory of the system is 
kept off the chip. The suggested instruction memory to be used by 
the microcontroller is an EEPROM (Electrically Erasable 
Programmable Read Only Memory) memory so that it can easily 
be re-programmed in case encryption/decryption algorithm is to 
be changed. As there is a possibilit y that these algorithms (hence 
the programs) need to be changed, it is more feasible to leave the 
instruction memory off-chip to increase the flexibilit y of the 
system. An EEPROM instruction memory meets the flexibilit y 
and low-cost goals of our design. The size of the instruction 
memory depends on the encryption scheme used in the program, 
but a memory of 8 Kbytes would suff ice. 

3.2.3 Serial I/O 
The microcontroller receives serial input from two different 
devices. One is the card reader which sends the 32-bit information 
stored in the card. The other is the keypad, which sends the 4 
characters PIN in ASCII format. It is necessary that the card 
reader and the keypad interfaced to the system using the RS-232 
protocol.  

The ASCII input sent by the keypad is converted into a 
binary representation of each number by truncating the higher 4 
bit of the ASCII code and then storing the resulting 16 bits in a 
special register for further manipulation. 

3.2.4 Multiplier 
A two’s complement 8-bit by 8-bit multiplier is included in the 
microcontroller in order to facilit ate the password decryption 
process. The multiplier uses a modified version of Booth’s 
algorithm to produce a series of partial products, which are then 
summed by a Wallace-tree adder circuit.  

3.3 Timing Information 
The proposed system has a criti cal path delay of 48 ns. However, 
in order to synchronize the system clock with the frequency of the 
serial input, we have decided to run the system at a slower rate 
which is 12.5 MHz. The timing information of the criti cal path is 
in show in Table 2 below. 

 

    Table 2.  Timing information for the critical path 

COMPONENT DELAY (NS) 

Instruction register 2 

Control Unit  15 

Register File 3 

ALU 23 

Writeback Tristate Buffers 5 

Total delay 48 

The multiplier, which has a delay of 45 ns, is not included in 
the criti cal path, because we allow the multiply instruction to take 
two clock cycles to complete in exchange of a faster clock speed. 

3.4 Chip Specifications 
The specifications of the chip are given in Table 3 below. 

 

        Table 3. Specifications for the microcontroller 

Die Size 5.298 mm x 4.491 mm 

Core transistor density 3441 transistors/mm2 

Datapath Size (full -custom) 1.104 mm x 1.908 mm 

Datapath transistor density 6842 transistors/ mm2 

Datapath Transistor Count 14,412 

Total Transistor Count 81,887 

Total Number of Pins 53 

Operation Voltage 0-5 V 

Operation Frequency 12.5 MHz 

Power Consumption 89.5 mW 

 

3.5 Add-On Components 
Besides the instruction memory there are several components that 
need to be interfaced to our system for proper operation. Four 
LED’s that indicate the status of the system are useful in terms of 
communicating with the user who tries to enter the site. A yellow 
LED indicates that the system is ready. A blue LED indicates that 
the user has swiped the card and the system is waiting for 
password (PIN) input. A red LED indicates that access is denied 
(password incorrect) and a green one indicates that access is 
granted. Although these components add to the pin count of our 
chip, it is an informative and low-cost way to communicate with 
the user and is therefore necessary.  

Also, as mentioned before, a keypad and a card reader which 
use the RS-232 serial interface need to be connected to the 
microcontroller. 

4. DESIGN FLOW AND METHODOLOGY 
Our chip was designed and fully simulated by a five-member 
group using the 1.5-µm AMI ABN process. The datapath of the 
processor was designed with a full -custom design methodology. 
Mentor Graphics Design Arhitect was utili zed for creating top- 
level and transistor-level schematics. ICStation was used for the 
layout construction, Accusim was used for analog simulation and 
Quicksim was used for the digital simulation and functional 
verification of the design. Delays of the datapath components 
were generated at each stage using the capacitance extraction tools 
of Mentor Graphics and added to all criti cal points. Each 
component of the datapath was then simulated and functionally 
verified using Accusim and Quicksim. The whole datapath was 
verified using the same tools. 



The layout of the control unit, on-chip data memory, 
multiplier, and the serial interface were created using the Verilog 
Hardware Description Language and Epoch design compiler from 
Cascade Design Automation. The Verilog modules for the 
components were functionally verified using Signalscan. After the 
generation of the layouts of all components, the controller, 
datapath, and memory were automatically routed and floor-
planned using Epoch design compiler. All parts created by the 
Epoch design compiler were functionally verified using 
QuicksimPro.   

The whole chip was extensively simulated and functionally 
verified using QuicksimPro. Input and output pads were added 
from Epoch’s cell li brary and simulations were done on the final 
schematic with the input and output pads. The simulations were 
done for each instruction as well as for several complicated test 
programs. From the simulations, the optimal operable frequency 
of the chip was determined to be 12.5 MHz. 

5. TESTING 
5.1 Verification 
As mentioned in the previous section, the microcontroller was 
extensively simulated at each stage, component by component and 
as a whole using both analog and digital simulation tools. 
Furthermore, specific choices were made during the layout 
process to enhance testabilit y before and after fabrication. These 
choices are described in the next subsection. 

5.2 Design for Testability 
Design for testabilit y was an important concern in the design of 
our microcontroller. We have adopted a systematic approach to 
ease the testing of our chip. Scan design method was used to 
separate the memory modules from combinational modules during 
testing. Each register in the microcontroller was laid out as a 
scannable register using multiplexers to select between the scan 
chain input and normal input. General purpose registers and 
special purpose registers are exceptions to this, because their 
outputs can easily be determined by reading from them. Program 
counter, instruction register (which acts as the single pipeline 
latch) and program status register (which stores the state of the 
machine) were all i ncluded in the single scan chain. The inclusion 
of the scan chain inside the chip increases the number of pins by 
three and increases the criti cal path delay of the circuit, but 
considering the importance of testing of microprocessors, it is a 
crucial tradeoff that is necessary to make. An important advantage 
of having a scan chain on the microcontroller is the fact that it 

makes the test pattern generation relatively easy using automatic 
test pattern generation. 

5.3 Final Testing 
As the proposed microcontroller is yet to be fabricated, the final 
testing has not been done on the chip.  However, due to the design 
for testabilit y and small number of pins, we expect the final 
functional verification of the chip to be fairly straightforward after 
fabrication.   

In the test mode, specific bit patterns (test vectors) will be 
fed to the scan chain input of the chip. Results coming out of the 
scan chain output will be monitored for correctness and analysis. 
Automatic test pattern generation equipment is planned to be used 
for test vector generation for the testing of the combinational 
blocks of the microcontroller.  

Upon the fabrication of the microcontroller, we plan to test it 
using an HP82000 IC Development System. For the generation of 
the test vectors to be used by the HP82000, we plan to use the 
TDS Software System by Fluence Technology. 

Eventually, after the complete functional verification 
following the fabrication, we plan to connect the microcontroller 
to a compatible card-reader, keypad and LED’s. The real testing 
will be completed when it is verified with all the input output 
interfaces.   

6. CONCLUSION 
In this paper, a low-cost low-power microcontroller for a stand-
alone security access control system is presented. This system is 
proposed to be a convenient alternative to other systems for 
consumers that need moderate to high level security without any 
networking considerations and at a low cost. It is crucial to 
reiterate that the level of security provided by such a system 
heavily depends on the security of the encryption algorithm used 
in the encryption/decryption process. Therefore, a good selection 
of the encryption algorithm, similar to the one proposed in this 
paper is essential for the reliabilit y of the security system. 
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Appendix A. 
 

We implemented a MATLAB program that can be used to determine the codes and assign the passwords for a given number of users. 
Codes are randomly generated until the required number of codes, each of which map to a unique password key, are obtained. 

The program also plots the relationship between number of redundancies and requested number of codes. Each code corresponds to a user  

 

 
 Figure 1. 
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SAMPLE MATLAB PROGRAM 
 

clear 

factors=fliplr(pow2([0:15])); 

count=1; 

track=1; 

passwords =[]; 

limit(1)=100; 

iteration=1; 

as(1,:)=[0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1];%0x000a 

as(2,:)=[0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0];%0x00a0 

as(3,:)=[0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0];%0x0a00 

as(4,:)=[1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0];%0xa000 

  

while(track-count<=10) 

    

 while (count <=limit(iteration)) 

    

  initial_left=(normrnd(0,1,1,16)>=0); 

  initial_right=(normrnd(0,1,1,16)>=0); 

 

  left(1,:)=initial_left; 

  right(1,:)=initial_right; 

  num(1,:)=[left(1,:) , right(1,:)]; 

  

  for i=2:5 

     left(i,:)=right(i-1,:); 

     xor_res = bitxor(right(i-1,:),as(i-1,:)); 

             

     xor_result_dec=sum( factors.* xor_res); 

     left_dec=sum(factors .* left(i-1,:)); 

     i; 

     dec2bin(left_dec) - num2str(0); 

     

     result_dec=xor_result_dec+left_dec; 

     if(result_dec <= pow2(16)) 

  right(i,:)= [zeros(1,16-ceil(log2(result_dec))) (dec2bin(result_dec) - num2str(0))]; 

           

     else 

           

       dec2bin(result_dec ) - num2str(0); 

         while(result_dec>pow2(16)) 

          result_dec=result_dec-pow2(floor(log2(result_dec)));%this effectively takes just 16 
bits 

             % which is effectively the case in our adder; 

          end 

           

          dec2bin(result_dec) - num2str(0); 



       right(i,:)=[zeros(1,16-ceil(log2(result_dec))) (dec2bin(result_dec) - num2str(0))]; 

     end 

    

  end 

  final = [left(5,1:2:16) right(5,1:2:16)]; 

  final_dec=sum(factors .* [zeros(1,2) final(1:14)]); 

 

  while (final_dec>pow2(13)) 

     final_dec=final_dec-pow2(floor(log2(final_dec))); 

  end 

 

  final_dec; 

 

  

 if(~isempty(passwords)) 

     present=0; 

     for q=1:length(passwords) 

         if(final_dec==passwords(q)) 

            present=1; 

         end 

       end 

       

     if(present==0) 

        passwords(count,:) = final_dec; 

          codes(count,:)=[initial_left initial_right]; 

          count=count+1; 

       end 

       

 else 

    passwords(count,:)= final_dec; 

      codes(count,:)=[initial_left initial_right]; 

      count=count+1; 

   end 

    

 [left(5,:) right(5,:)]; 

 track=track+1; 

end 

tracks(iteration)=track; 

counts(iteration)=count; 

 

limit(iteration+1)=limit(iteration)+50; 

iteration=iteration+1; 

end 

%display the codes 

passwords 

codes; 


