
PALP: Enabling and Exploiting Partition-Level Parallelism in Phase Change Memories

Background: Bank Conflicts

Shihao Song, Anup Das, Onur Mutlu and Nagarajan Kandasamy

Key Observations
1st key observation: On average, 43% of PCM requests in

SPEC 2017 workloads generate bank conflicts

2nd key observation: A PCM bank is implemented as a
collection of partitions that operate mostly independently;

sharing the sense amplifiers (to read) and
the write drivers (to write)

• PCM devices can serve multiple requests in parallel
using bank-level parallelism 1

2

Analyze parallelism in PCM bank’s partition through
detailed circuit analysis

Analyze the potential performance impact of enabling
parallelism in a bank’s partitions
Resolve read-read and read-write PCM bank
conflicts to improve PCM performance3

Bank conflicts occur due temporal and spatial access
locality in a workload that lead to repeated access to
multiple memory rows that map to the same bank

Goals

Our Contributions

PCM Commands

PCM Access Scheduling

Evaluation

Enabling and Exploiting Partition-Level Parallelism in PCM

Evaluation Methodology
1. Gem5 frontend to simulate ARMv8-

A (aarch64) with 8 cores
2. Hybrid DRAM-PCM memory system
3. In-house cycle-level PCM simulator

for 8GB, 16GB, and 32GB PCM with
DDR4 interface

<0:7> <8:15> <56:63>
Data <0:63>

Rank 0Chip 0 Chip 1 Chip 7

• Requests to the same bank have to be served serially,
known as bank conflict

• Memory bank conflicts reduce system performance by
lowering bank utilization, causing CPU cores to stall

1 New mechanism to resolve read-write PCM bank
conflicts using a new PCM command called
READ-WITH-WRITE (RWW)

2 Simple circuit modification to resolve read-read PCM
bank conflicts using a new PCM command called
READ-WITH-READ (RWR)

3 New memory access scheduling to prioritize PCM
requests that exploit a PCM bank’s partition-level
parallelism, over other requests, including
the long outstanding ones

• ACTIVATE(A): activate the wordline and enable the
access device for the PCM cells to be accessed

• READ(R)/WRITE(W): drive read or write current
through the PCM cell. After this command executes,
the data stored in the PCM cell is available at the
output terminal of the sense amplifier, or the write
data is programmed to the PCM cell

• PRECHARGE(P): deactivate the wordline and bitline,
and prepare the bank for the next access

We introduce the following new commands
• READ-WITH-WRITE (RWW): connect the PCM bank’s

sense amplifiers and write drivers to the two decoded
partitions

• READ-WITH-READ (RWR): connect the sense
amplifiers and verify logic of the write drivers to the
two decoded partitions

• DECOUPLE (D): set M4 = OFF
• TRANSFER (T): sets M5 = ON and M6 = OFF

Decoupled Write Driver

Performance Improvement vs. Baseline

Performance improvement 27% Performance improvement 21%

On average, execution time reduces by
51% vs. Baseline and 28% vs. MultiPartition

Both average and peak PCM power consumption of
PALP is within the RAPL limit
The average PCM power is at least 0.08pJ/access lower
than the RAPL limit while the peak PCM power is at
least 0.03pJ/access lower than the RAPL limit

Baseline: Arjomand et al. “Boosting access parallelism to PCM-based main memory” in ISCA 2016
MultiPartition: Zhou et al., “An efficient parallel scheduling scheme on multi-partition PCM architecture” in ISLPED 2016

On average, critical path delay increases by 25.3%
On average, power consumption increases by 17%

On average, execution time reduces by
33% with DDR2 and 51% with DDR4

Open source tool
https://github.com/drexel-DISCO/PALP

1

2

• The peripheral structures in
PCM banks allow to read
and program 128 PCM cells
in parallel

https://github.com/drexel-DISCO/PALP

