
Enabling and Exploiting 
Partition-Level Parallelism (PALP) 

in Phase Change Memories

Presenter: Dr. Anup K. Das
Shihao Song, Anup Das, Drexel University
Onur Mutlu, ETH Zurich
Nagarajan Kandasamy, Drexel University

1

CASES 2019, New York



• Observations
– Memory bank conflicts reduce system performance by lowering bank 

utilization, causing CPU cores to stall
– A PCM bank’s peripheral structures allow to read and program 128 PCM 

cells in parallel, providing opportunity to resolve bank conflicts 
• Idea: PArtition-Level Parallelism (PALP) in PCM

– Introduce new mechanism to enable read-write parallelism in PCM banks with 
minimum changes to PCM interface and its timing

– Introduce simple circuit modifications to enable read-read parallelism in PCM banks
– Propose new access scheduling mechanism to exploit read-write and read-read 

parallelism in PCM banks

• Design Updates: Analyze internal architecture of PCM banks
– New PCM commands
– New decoupled write driver design

• Performance Evaluation
– Significant bank conflict reduction (28% average system performance improvement for 

SPEC CPU 2017 and MiBench workloads)

Executive Summary

2



• PCM can serve requests in parallel using multiple banks

• Request to the same bank must be served serially
– Called Bank Conflicts

• Bank conflicts reduce performance by lowering bank 
utilization, causing CPU cores to stall

• Our goal: improve performance by resolving bank 
conflicts in PCM devices

PCM Bank Conflicts

3

<0:7> <8:15> <56:63>
Data <0:63>

Rank 0Chip 0 Chip 1 Chip 7



• Bank conflicts are due to the high temporal and spatial 
access locality in workloads that lead to repeated 
access to multiple rows that map to the same bank

Bank Conflict Related Key Observation

4



• Bank conflicts are due to the high temporal and spatial 
access locality in workloads that lead to repeated 
access to multiple rows that map to the same bank

Bank Conflict Related Key Observations

5

• On average, 43% of PCM requests in these workloads generate bank 
conflicts

• Read-read bank conflicts outnumber read-write and write-write bank 
conflicts for all workloads (averaging 79% of all bank conflicts)



• Bank conflicts are due to the high temporal and spatial 
access locality in workloads that lead to repeated 
access to multiple rows that map to the same bank

Bank Conflict Related Key Observations

6

Idea: Enable parallelism in PCM banks to resolve read-
read bank conflicts first, and then other conflicts 
(if possible) 

• On average, 43% of PCM requests in these workloads generate bank 
conflicts

• Read-read bank conflicts outnumber read-write and write-write bank 
conflicts for all workloads (averaging 79% of all bank conflicts)



Bank Conflicts Resolution Techniques

7

Mechanism Read-Read Conflicts Read-Write Conflicts Write-Write Conflicts

Baseline No No No
MultPartition No Yes No

SALP (DRAM) Yes Yes Yes

PALP (PCM) Yes Yes No

Baseline: Arjomand et al. “Boosting access parallelism to PCM-based main memory” in ISCA 2016
MultiPartition: Zhou et al., “An efficient parallel scheduling scheme on multi-partition PCM architecture” in ISLPED 2016
SALP: Kim et al., “A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM” in ISCA 2012



• Introduction
• Motivation
• Background on PCM
• Contribution 1: Enabling read-write parallelism
• Contribution 2: Enabling read-read parallelism
• Contribution 3: Exploiting parallelism
• Evaluation
• Conclusion

Outline

8



• A PCM bank is implemented as a collection of partitions 
that operate mostly independently; sharing the sense 
amplifiers (to read) and the write drivers (to write)

PCM Bank Structure

9

Peripheral structures in PCM banks 
allow to read and program 
128 PCM cells in parallel



• ACTIVATE(A): activate the wordline and enable the 
access device for the PCM cells to be accessed

• READ(R)/WRITE(W): drive read or write current 
through the PCM cell. After this command executes, the 
data stored in the PCM cell is available at the output 
terminal of the sense amplifier, or the write data is 
programmed to the PCM cell

• PRECHARGE(P): deactivate the wordline and bitline, 
and prepare the bank for the next access

Baseline PCM Commands

10



Internal Architecture of PCM Banks

11



Transistor Configuration for Read/Write

12



Transistor Configuration for Read/Write

13

Observation: Only one transistor ON at once for any 
given operation 
Idea: Make two transistors ON to do parallel operations



• Introduction
• Motivation
• Background on PCM
• Contribution 1: Enabling read-write parallelism
• Contribution 2: Enabling read-read parallelism
• Contribution 3: Exploiting parallelism
• Evaluation
• Conclusion

Outline

14



Internal Architecture of PCM Banks

15



New Transistor Configuration

16

Potential to resolve read-write bank conflicts without
additional hardware



• New PCM command 
READ-WITH-WRITE (RWW): connect the PCM bank’s 
sense amplifiers and write drivers to the two decoded 
partitions

PCM Interface Changes

17

1

2



• New PCM command 
READ-WITH-WRITE (RWW): connect the PCM bank’s 
sense amplifiers and write drivers to the two decoded 
partitions

PCM Interface Changes

18

Performance improvement 27%

1

2



• To serve a write and a read request from two different 
partitions in a PCM bank

PCM Commands: Baseline vs. New

19



• Introduction
• Motivation
• Background on PCM
• Contribution 1: Enabling read-write parallelism
• Contribution 2: Enabling read-read parallelism
• Contribution 3: Exploiting parallelism
• Evaluation
• Conclusion

Outline

20



• Write drivers internally implement logic to verify the 
correctness of write operation
– Program & Verify Write Scheme in PCM

PCM bank Related Key Observation

21



• Write drivers internally implement logic to verify the 
correctness of write operation
– Program & Verify Write Scheme in PCM

PCM bank Related Key Observation

22

Idea: Decouple the verify logic and use it to serve a read 
request when needed



• Write drivers internally implement logic to verify the 
correctness of write operation
– Program & Verify Write Scheme in PCM

PCM bank Related Key Observation

23



• Introduce two operating modes for the write driver

• In the decoupled mode, write driver can serve a read 
request and the sense amplifier can serve another read 
request
– Resolve read-read bank conflicts in PCM

New Operating Modes for Write Driver

24



• 3 New PCM Commands

READ-WITH-READ (RWR): connect the sense amplifiers 
and verify logic of the write drivers to the two decoded 
partitions
DECOUPLE (D): set M4 = OFF, to enter in decoupled 
model
TRANSFER (T): sets M5 = ON and M6 = OFF to facilitate 
arbitration of the data bus to transfer two sets of data to 
the CPU

PCM Interface Changes to Exploit 
Read-Read Parallelism

25



• To serve two read requests from two different partitions 
in a PCM bank

PCM Commands: Baseline vs. New

26

Performance improvement 21%



• To serve two read requests from two different partitions 
in a PCM bank

PCM Commands: Baseline vs. New

27



• Introduction
• Motivation
• Background on PCM
• Contribution 1: Enabling read-write parallelism
• Contribution 2: Enabling read-read parallelism
• Contribution 3: Exploiting parallelism
• Evaluation
• Conclusion

Outline

28



• Design changes
– Four new PCM commands
– Three new transistors per peripheral structure

• Impact
– Resolve read-write bank conflicts in PCM banks when using different 

partitions
– Resolve read-read bank conflicts in PCM banks when using different 

partitions

• Contribution 3: Develop a new access scheduler to 
explicitly prioritize resolving bank conflicts

Summary of Changes and Impact

29



• Motivation

Exploiting Partition-Level Parallelism

30



• Key considerations
– Ensures that no request is starved, i.e., backlogged excessively

• Starvation-freedom

– Ensure power consumption of the active partitions within the bank is 
not too high

• Running average power limit (RAPL)

Exploiting Partition-Level Parallelism

31



• Algorithm

Exploiting Partition-Level Parallelism

32



• Introduction
• Motivation
• Background on PCM
• Contribution 1: Enabling read-write parallelism
• Contribution 2: Enabling read-read parallelism
• Contribution 3: Exploiting parallelism
• Evaluation
• Conclusion

Outline

33



• Gem5 frontend to simulate ARMv8-A (aarch64) with 8 
cores

• Hybrid DRAM-PCM memory system
• In-house cycle-level PCM simulator for 8GB, 16GB, and 

32GB PCM with DDR4 interface

Evaluation Methodology

34



• Execution time (lower is better)

Performance Comparison

35



• Execution time (lower is better)

Performance Comparison

36

51% lower execution time vs. MultiPartition and 
28% lower execution time vs. Baseline



• Average Power (lower is better)
• Peak Power (lower is better)

Power Consumption

37



• Average Power (lower is better)
• Peak Power (lower is better)

Power Consumption

38

Both average and peak power within RAPL ratings



Design Overhead

39

On average, critical path delay increases by 25.3%
On average, power consumption increases by 17%



• 8GB, 16GB, and 32GB PCM capacity

Performance Impact of PCM Capacity

40



• 8GB, 16GB, and 32GB PCM capacity

Performance Impact of PCM Capacity

41

Most workloads have small working sets for which 
8GB PCM is sufficient. No significant performance in 
increasing the PCM capacity from 8GB to 32GB



• Introduction
• Motivation
• Background on PCM
• Contribution 1: Enabling read-write parallelism
• Contribution 2: Enabling read-read parallelism
• Contribution 3: Exploiting parallelism
• Evaluation
• Conclusion

Outline

42



• Observations
– Memory bank conflicts reduce system performance by lowering bank 

utilization, causing CPU cores to stall
– A PCM bank’s peripheral structures allow to read and program 128 PCM 

cells in parallel, providing opportunity to resolve bank conflicts 
• Idea: PArtition-Level Parallelism (PALP) in PCM

– Introduce new mechanism to enable read-write parallelism in PCM banks with 
minimum changes to PCM interface and its timing

– Introduce simple circuit modifications to enable read-read parallelism in PCM banks
– Propose new access scheduling mechanism to exploit read-write and read-read 

parallelism in PCM banks

• Design Updates: Analyze internal architecture of PCM banks
– New PCM commands
– New decoupled write driver design

• Performance Evaluation
– Significant bank conflict reduction (28% average system performance improvement for 

SPEC CPU 2017 and MiBench workloads)

Conclusion

43



Open source tool
https://github.com/drexel-DISCO/PALP

Email: shihao.song@drexel.edu

Open-Source Tool

44

https://github.com/drexel-DISCO/PALP
mailto:shihao.song@drexel.edu


Enabling and Exploiting 
Partition-Level Parallelism (PALP) 

in Phase Change Memories

Presenter: Dr. Anup K. Das
Shihao Song, Anup Das, Drexel University
Onur Mutlu, ETH Zurich
Nagarajan Kandasamy, Drexel University

45

CASES 2019, New York


