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DRAM

MEMORY	IN	TODAY’S	SYSTEM

Processor

Memory

Storage

DRAM	is	a	critical	for	performance
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MAIN	MEMORY	CAPACITY

Gigabytes	of	DRAM

Increasing	demand	for	high	capacity
1.	More	cores
2.	Data-intensive	applications	
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How	did	we	get	more	capacity?



DRAM	SCALING

Technology
Scaling

DRAM	Cells DRAM	Cells

DRAM	scaling	enabled	high	capacity	
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DRAM	SCALING	TREND

Technology
Scaling

DRAM	Cells DRAM	Cells

More	interference	results	in	
more	failures
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Scaling	places	cells	in	close	proximity,
increasing	cell-to-cell	interference



How	can	we	enable	DRAM	scaling	
without	sacrificing	reliability?
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SYSTEM-LEVEL	
DETECTION	AND	MITIGATION
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Detect	and	mitigate	failures	after	
the	system	has	become	operational	

Unreliable
DRAM	Cells

Detect
and	

Mitigate

Reliable	System

Manufacturers	can	make	cells	smaller
without	mitigating	all	failures



SYSTEM-LEVEL	
DETECTION	AND	MITIGATION
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ü Enables	scalability	[SIGMETRICS’14,	DSN’14,	DSN’15]
• Lets	vendors	manufacture	smaller,	unreliable	

cells

ü Improves	reliability	[ISCA’13,	ISCA’14,	DSN’14,	DSN’15]
• Can	detect	failures	that	escape	the	

manufacturing	 tests

ü Improves	latency	[HPCA’15,	HPCA’16,	 SIGMETRICS’16]
• Reduces	 latency	for	cells	that	do	not	fail	at	

lower	latency

ü Enables	refresh	optimizations	[ASPLOS’11,	 ISCA’12,	DSN’15]
• Reduces	refresh	operations	by	using	 low	refresh	

rate	for	robust	cells



CHALLENGE
System-level	detection	and	mitigation

faces	a	major	challenge	due	to	
a	specific	type	of	failure:

DATA-DEPENDENT	FAILURES
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0 0 0 FAILURENO 
FAILURE11INTERFERENCE

DATA-DEPENDENT	FAILURES

Some	cells	can	fail	depending	on	the	
data	stored	in	neighboring	cells

10JSSC’88,	MDTD’02

Data-dependent	failure	is	a	major	type	
of	cell-to-cell	interference	failure	



CHALLENGE	IN	DETECTING	
DATA-DEPENDENT	FAILURES

Detect	failures	by	writing	specific	patterns	
in	the	neighboring	cell	addresses

LINEAR
ADDRESS																					 X-1 X X+1

L D R
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PROBLEM:	Scrambled	address	is	not
visible	to	system	(e.g.	memory	controller)	

0 1 0

SCRAMBLED
ADDRESS																					 X-4 X X+2

0 1 00 1 0
X-1 X+1



CAN	WE	DETERMINE	THE	LOCATION	
OF	PHYSICALLY	ADJACENT	CELLS?

NAÏVE	SOLUTION
For	a	given	failure	X,	

test	every	combination	of	two	bit	addresses	in	the	row

Not	feasible	in	a	real	system

O(n2)
8192*8192	tests,	49	days	for	a	row	with	8K	cells
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SCRAMBLED
ADDRESS																					 X-? X X+?

L D R



OUR	APPROACH:	PARBOR
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Goal: 
A fast and efficient way to determine the 

locations of neighboring cells 



PARBOR:	Summary
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• Reduces	test	time	using	two	key	ideas:

• Exploits heterogeneity	in	cell	interference	
to	reduce	test	time	by	detecting	only	one	
neighbor	

• Exploits DRAM	regularity	and	parallelism	
to	detect all	neighbor	locations	by	running	
parallel	tests	in	multiple	rows

Detects	neighboring	locations	
within	60-99	tests	in	144	real	DRAM	chips,	

a	745,654X	reduction	compared	to	naïve	tests

A new technique to determine 
the locations of neighboring DRAM cells



OUTLINE
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Data-Dependent Failures

Challenges in System-Level Detection

Our Mechanism: PARBOR

Experimental Results from Real Chips

Use Cases



A	DRAM	cell

Capacitor

Transistor

Contact

Transistor

Bitline

Capacitor

LOGICAL	VIEW VERTICAL	CROSS	SECTION

A	DRAM	CELL
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DATA-DEPENDENT	FAILURES

Failures	depend	on	the	data	content	
in	neighboring	cells

Indirect	path
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Indirect	path

Coupled	Cells

0 1 0



DETECTING	
DATA-DEPENDENT	FAILURES

X-1 X X+1
L D R
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Need	to	write	specific	data	patterns	
in	neighboring	addresses	

0 1 0

To	test	cell	at address	X,	write 1	at	address	X	
and 0s	at	address	X+1	and	X-1



OUTLINE
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Data-Dependent Failures

Challenges in System-Level Detection

Our Mechanism: PARBOR

Experimental Results from Real Chips

Use Cases



CHALLENGE:	
SCRAMBLED	ADDRESS	SPACE	
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SCRAMBLED
ADDRESS																					 X-4 X X+2

0 1 00 1 0
X-1 X+1

SCRAMBLED
ADDRESS																					 X-? X X+?

0 1 0

• Scrambled	address	not	visible	to	system
• Cannot	detect	failures	without	the	address	

mapping	information



• Different	for	each	generation	and	vendor
• Need	a	dynamic	way	to	detect	address	

mapping	information	in	the	system	

CHALLENGE:
SCRAMBLED	ADDRESS	SPACE	
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SCRAMBLED
ADDRESS																					 X-2 X X+5

0 1 0

SCRAMBLED
ADDRESS																					 X-4 X X+2

0 1 00 1 0



NAIVE	SOLUTION

Determine	the	location	of	neighboring	cells
NAÏVE	SOLUTION:	O(n2)
• For	a	given	failure	X,	test	every	combination	of	two	
bit	addresses in	the	row
– Address	bits:	(0,	0),	(0,	1),	…	(X-1,	X),	(X,	X+1)	...	(n-1,	n)

• For	vendor	A
– X	will	fail	onlywhen	X-4,	X+2	tested

8192*8192	tests,	49	days	for	a	row	with	8K	cells
Not	feasible	in	a	real	system
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SCRAMBLED
ADDRESS																					 X-? X X+?

L D R



A fast and efficient way 
to determine 

the locations of neighboring cells 

GOAL
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OUTLINE
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Data-Dependent Failures

Challenges in System-Level Detection

Our Mechanism: PARBOR

Experimental Results from Real Chips

Use Cases



PARBOR:	KEY	OBSERVATIONS

Key	observation	1:
• Data-dependent	failures	depend	on the	
heterogeneity	 in	coupled	cells
– Some	cells	are	strongly	coupled	and	fail	based	on	
the	data	content	in	just	one	neighbor
–Reduce	test	time	by	detecting	only	one	neighbor

• CHALLENGE:	Detecting	failures	with	only	one	
neighbor	information	cannot	find	all	failures
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Reduces	test	time	based	on	two	key	observations:



PARBOR:	KEY	OBSERVATIONS

Key	observation	2:
• DRAM	exhibits	regularity	and	parallelism
–Neighbors	are	located	at	the	same	distance	in	
different	rows	of	DRAM
–Detect all	neighbor	 locations	by	running	parallel	
tests	in	multiple	rows
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Reduces	test	time	based	on	two	key	observations:



STRONGLY	COUPLED	CELL
Fails	even	if	only	one	neighbor’s	data	changes	

WEAKLY	COUPLED	CELL
Fails	if	both	neighbors’	data	change

KEY	OBSERVATION	1:
STRONGLY	VS.	WEAKLY	COUPLED	CELLS
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• Instead	of	detecting	both	neighbors,	reduce	test	
time by	detecting	only	one	neighbor	location	in	
strongly	coupled	cells	
–Does	not	need	to	detect	every	two	bit	addresses
– Linearly	tests	every	bit	address	
– 0,	1,	…	,	X,	X+1,	X+2,	…	n

ADVANTAGES
• Reduces	test	time	to	linear	O(n)
• Can	reduce	test	time	further	by	applying	recursive	tests	to	linear	tests

KEY	IDEA	1:	
EXPLOITING	STRONGLY	COUPLED	CELLS
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SCRAMBLED
ADDRESS																					 XX-?

L A R
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RECURSIVE	TEST

LINEAR	
TESTING																					0				1			2 3				4 5			6				7

RECURSIVE
TESTING																				0,	1,	2, 3

0 1
4,	5

2 3 4 5
2, 30,	1

6 7

SCRAMBLED
ADDRESS																					

X-4
L A

4,	5,	6,	7
6,	7

X
2 6

Recursive	test	reduces	test	time	
compared	to	linear	testing
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CHALLENGE:	
Detecting	failures	with	

only	one	neighbor	information	cannot	find	
*all*	data-dependent	failures



PARBOR:	KEY	OBSERVATIONS

Key	observation	1:
• Data-dependent	failures	depend	on	the	
heterogeneity	 in	coupled	cells
– Some	cells	are	strongly	coupled	and	fail	based	on	
the	data	content	in	just	one	neighbor
–Reduce	test	time	by	detecting	only	one	neighbor

Key	observation	2:
• DRAM	exhibits	regularity	and	parallelism
–Neighbors	are	located	at	the	same	distance	in	
different	rows	of	DRAM
–Detect all	neighbor	 locations	by	running	parallel	
tests	in	multiple	rows
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Reduces	test	time	based	on	two	key	observations:



KEY	OBSERVATION	2:
REGULARITY	AND	PARALLELISM	IN	DRAM

32

DRAM	Bank

A
B
C
D

+1 +5

+1
+1

+1

+5
+5
+5

DRAM	Tile

• DRAM	is	internally	organized	as	a	2D	array	of	
similar	and	repetitive	tiles.

This	regularity	results	in	
regularity	in	address	mapping



KEY	OBSERVATION	2:
REGULARITY	AND	PARALLELISM	IN	DRAM
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1			0			5			4			9			8						3			2			7			6		11	10
±1 ±5	±1	±5	±1								±1	±5	±1	±5		±1

Due	to	regularity	in	tiles,	neighbors	can	occur	
only	in	fixed	distances



KEY	OBSERVATION	2:
REGULARITY	AND	PARALLELISM	IN	DRAM
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A

D

B
C

1			0			5			4			9			8						3			2			7			6		11	10
±1 ±5	±1	±5	±1								±1	±5	±1	±5		±1

+1 +5

+1 +5
-5 -1

-1-5

A,	B,	C,	D	provide	all	neighbor	distances
{+1,	-5,	+5,	-1}



KEY	IDEA	2:
PARALLEL	TESTS	IN	MULTIPLE	ROWS
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• Due	to	regularity	in	mapping,	it	is	possible	
to	determine	the	neighbor	locations	from	
different	rows

• Run parallel	tests	in	multiple	rows

• Detect	the	neighbors’	distances	in	these	
rows	

• Aggregate the	locations	from	different	
rows

Provides	the	neighbor	distances	for	all	cells
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A

D

B
C

1			0			5			4			9			8						3			2			7			6		11	10
±1 ±5	±1	±5	±1								±1	±5	±1	±5		±1

+5

-5
-1

Aggregated	neighbor	locations	{+1,	-5,	+5,	-1}

KEY	IDEA	2:
PARALLEL	TESTS	IN	MULTIPLE	ROWS

A+1
B-5

C-1
D+5

+1



OUTLINE
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Data-Dependent Failures

Challenges in System-Level Detection

Our Mechanism: PARBOR

Experimental Results from Real Chips

Use Cases



METHODOLOGY

Evaluated	144	chips	from	three	major	vendors

An	FPGA-based	testing	infrastructure
[ISCA’13,	SIGMETRICS’14,	ISCA’14,	HPCA’15,	DSN’15,	SIGMETRICS’16]
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PARBOR:	TEST	CHARACTERISTICS

A B C
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NUM	TEST
REDUCED 745654X 1016800X 745654X

Can	detect	neighbor	locations	
in	66-90	tests	



±8,	±16,	
±48 ±1,	±64 ±16,	±33,	

±49

PARBOR:	TEST	CHARACTERISTICS

A B C

NEIGHBOR	
LOCATIONS

40

NUM	TEST
REDUCED 745654X 1016800X 745654X

Can	detect	different	address	mapping	
in	different	chips



OUTLINE
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Data-Dependent Failures

Challenges in System-Level Detection

Our Mechanism: PARBOR

Experimental Results from Real Chips

Use Cases



USE	CASES
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USE	CASE:	PHYSICAL	NEIGHBOR	AWARE	TEST
• Use	neighbor	information	to	efficiently		
detect	all	data-dependent	failures

USE	CASE:	DATA-CONTENT	BASED	REFRESH
• Use	neighbor	information	and	program	
content	to	reduce	refresh	count
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• Use	neighbor	information	to	efficiently		
detect	all	data-dependent	failures

• Use	PARBOR to	detect	neighbor	locations
• Neighbor	locations	at	{±1	±5}	

• Can	test	every	11	bits	in	parallel
• Reduces	test	time,	needs	only	11	tests

• At	each	test,	write	data	pattern	at	the	
neighboring	cells	of	each	address
• X-5,	X+1,	X,	X-1,	X+5	-->	0,	0,	1,	0,	0

USE	CASE:
PHYSICAL	NEIGHBOR-AWARE	TEST



42% 7% 18%

USE	CASE:
PHYSICAL	NEIGHBOR-AWARE	TEST

A B C
EXTRA	

FAILURES
DETECTED
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NUM	
TESTS 32 32 16

Detects	more	failures	
with	small	number	of	tests	

leveraging	neighboring	information	



USE	CASES
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USE	CASE:	PHYSICAL	NEIGHBOR	AWARE	TEST
• Use	neighbor	information	to	efficiently		
detect	all	data-dependent	failures

USE	CASE:	DATA-CONTENT	BASED	REFRESH
• Use	neighbor	information	and	program	
content	to	reduce	refresh	count



PROBLEM	WITH	
TRADITIONAL	REFRESH	OPTIMIZATION
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Does	not	take	into	account	that	
failures	occur	only	with	specific	content

• Traditional	refresh	optimization:	[RAIDR	ISCA’12]
• High	refresh	rate with	rows	with failures
• Low	refresh	rate	for	rows	with	no	failure

Hi-REF
Lo-REF
Lo-REF

Lo-REF



• DC-REF	optimization:
• Builds	on	top	of	PARBOR to	track	locations	of	

data-dependent	failures	and	data	patterns	
that	cause	the	failures

• High	refresh	rate for	rows	whose	data	content	
exhibits failures

• Low	refresh	rate	for	rows	with	no	failure

A	NEW	USE	CASE:
DATA-CONTENT	AWARE	REFRESH
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0 1 0 Hi-REF	only	when	
contains	010
Lo-REF
Lo-REF

Lo-REF



DATA-CONTENT	AWARE	REFRESH:
Fraction	of	Rows	with	High	Refresh	Rate
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DC-REF	significantly	reduces	
the	number	of	high	refresh	operations
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DATA-CONTENT	AWARE	REFRESH:
PREFORMANCE	IMPACT
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DC-REF	improves	performance	by	
reducing	refresh	operations
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• Exploits heterogeneity	 in	data-dependent	cells
to	reduce	test	time	by	detecting	only	one	
neighbor	

• Exploits DRAM	regularity	and	parallelism	 to
aggregate	neighbor	 locations	from	multiple	
rows	to	identify	all	neighbor	 locations

• Enables new	uses	cases	to	improve	
performance,	reliability,	and	energy	efficiency
• Physical	neighbor-aware	 test
• Data-content	aware	refresh

PARBOR:	Summary

50

A new technique to determine 
the locations of neighboring DRAM cells
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USE	CASE:
PHYSICAL	NEIGHBOR-AWARE	TEST

A B C
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Common
Only	in	Random	Test
Only	in	Coupling-Aware	Test

Common
Only	in	Random	Test
Only	in	Coupling-Aware	Test

Common
Only	in	Random	Test
Only	in	Coupling-Aware	Test

A significant	fraction	of	failures	
can	be	detected	only by	PARBOR	(20-30%)


