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Abstract
Most applications manipulate persistent data, yet traditional sys-

tems decouple data manipulation from persistence in a two-level
storage model. Programming languages and system software manip-
ulate data in one set of formats in volatile main memory (DRAM)
using a load/store interface, while storage systems maintain persis-
tence in another set of formats in non-volatile memories, such as
Flash and hard disk drives in traditional systems, using a file system
interface. Unfortunately, such an approach suffers from the system
performance and energy overheads of locating data, moving data,
and translating data between the different formats of these two levels
of storage that are accessed via two vastly different interfaces.

Yet today, new non-volatile memory (NVM) technologies show
the promise of storage capacity and endurance similar to or better
than Flash at latencies comparable to DRAM, making them prime
candidates for providing applications a persistent single-level store
with a single load/store interface to access all system data. Our
key insight is that in future systems equipped with NVM, the energy
consumed executing operating system and file system code to access
persistent data in traditional systems becomes an increasingly large
contributor to total energy. The goal of this work is to explore
the design of a Persistent Memory Manager that coordinates the
management of memory and storage under a single hardware unit
in a single address space. Our initial simulation-based exploration
shows that such a system with a persistent memory can improve
energy efficiency and performance by eliminating the instructions
and data movement traditionally used to perform I/O operations.

1. Introduction and Motivation

Applications—whether those running on a mobile platform or on a
server in a warehouse-scale computer—create, modify, and process
persistent data. Yet, though manipulating persistent data is a funda-
mental property of most applications, traditional systems decouple
data manipulation from persistence, and provide different program-
ming interfaces for each. For example, programming languages and
system software manipulate data in one set of formats using load
and store instructions issued to volatile memory (DRAM), while
storage systems maintain persistence in another set of file system
formats in non-volatile memories, such as hard disk drives and Flash.
Unfortunately, such a decoupled memory/storage model suffers from
large inefficiencies in locating data, moving data, and translating data
between the different formats of these two levels of storage that are
accessed via two vastly different interfaces—leading to potentially
large amounts of wasted work and energy. Such wasted energy sig-
nificantly affects modern devices. Cell phones need to be energy
efficient to minimize battery usage, and servers must be energy ef-
ficient as the cost of energy in data centers is a substantial portion
of the total cost [8]. With energy as a key constraint, and in light
of modern high-density, non-volatile devices, we believe it is time
to rethink the relationship between storage and memory to improve
system performance and energy efficiency.

While such disparate memory and storage interfaces arose in sys-
tems due to the widely different access latencies of traditional mem-
ory and storage devices (i.e., fast but low capacity DRAM versus

slow but high capacity hard disk drives), such stereotypical device
characteristics are being challenged by new research in non-volatile
memory (NVM) devices. New byte-addressable NVM technologies
such as phase-change memory (PCM) [46], spin-transfer torque RAM
(STT-RAM) [12, 25], and resistive RAM (RRAM), are expected to
have storage capacity and endurance similar to Flash—at latencies
comparable to DRAM. These characteristics make them prime candi-
dates for use in new system designs that provide applications with a
byte-addressable interface to both volatile memory and non-volatile
storage devices.

In this way, emerging high-performance NVM technologies en-
able a renewed focus on the unification of storage and memory:
a hardware-accelerated single-level store, or persistent memory,
which exposes a large, persistent virtual address space supported
by hardware-accelerated management of heterogeneous storage and
memory devices. The implications of such an interface for system
efficiency are immense: A persistent memory can provide a unified
load/store-like interface to access all data in a system without the
overhead of software-managed metadata storage and retrieval and
with hardware-assisted data persistence guarantees. Previous single-
level store proposals either focused on providing persistence through
the software layer (e.g., [4, 16, 42, 45]), or were inefficient in pro-
viding hardware support for fast and cheap data access, migration,
and protection (e.g., [9, 24, 40, 41, 43]). As we will show, with the
use of emerging NVM technologies, the energy required to execute
operating system and file system code to access persistent data will
consume a large amount of total system energy, presenting an op-
portunity for coordinating the management of memory and storage
between hardware and software in a single address space. Such a sys-
tem can improve energy efficiency by reducing the amount of work
performed by the operating system and file system when accessing
persistent data, and also reduce execution time.

For example, Figure 1 shows a breakdown of how energy is con-
sumed in three systems running an I/O-intensive program on Linux
with: (left) a traditional HDD-based storage system, (middle) a sys-
tem with the HDD replaced with NVM, and (right) a persistent mem-
ory system with NVM for all storage and memory (our experimental
methodology is discussed in Section 3). It shows the number of cy-
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Figure 1: A breakdown of energy consumption for an I/O-intensive
benchmark, PostMark.
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cles spent executing user code (User CPU), stalling on user memory
requests (User Memory), executing system call code (Syscall CPU),
and performing device I/O during a system call (Syscall I/O).

While the HDD-based system’s energy consumption is dominated
by accessing the disk and the static energy of DRAM, in the NVM-
based system, this fraction of energy is greatly reduced (as seen in
the Normalized Total Energy), due to the energy-efficient nature of
the device, causing the energy to execute OS and file system code
(Syscall CPU), and buffer large amounts of data in DRAM (DRAM),
to arise as large contributors to system energy. Using a persistent
memory can eliminate the fraction of energy consumed by these
operations by reducing the overhead of accessing persistent data, re-
ducing the energy to access the same amount of data (which reduces
User CPU). Note that we assume a scenario where the management
of the persistent memory has a negligible overhead in terms of per-
formance and energy in order to isolate this trend from a specific
implementation.

However, integrating a persistent memory into systems poses sev-
eral key challenges. How can data storage and retrieval be done
efficiently using a unified, single address space? How can consis-
tency, persistence, and security of data be maintained? How can
such a system be backwards-compatible with applications written
with traditional file operations, and be supported efficiently? How
can applications be designed to efficiently leverage such a system?
In this paper, we explore some of these questions and provide an
initial evaluation of how an efficient hardware/software cooperative
persistent memory can mitigate the energy overheads of traditional
two-level stores.

2. Hardware/Software Cooperative Management of Stor-
age and Memory

Our key idea is to coordinate the management of memory and storage
under a single hardware unit in a single address space to leverage the
high capacity and byte-addressability of new persistent memories, to
eliminate the operating system and file system overheads of managing
persistent data. Instead of executing operating system and file system
code to manipulate persistent data, programs can issue loads and
stores—just as if the files were mapped in memory (except their
contents will remain persistent). This can improve performance
and reduce energy by reducing the amount of work that must be
performed (i.e., the number of instructions that must be executed, or
the amount of data moved when performing a direct memory access)
in order to access and manipulate persistent data.

Figure 2 shows one potential strategy for enabling efficient hard-
ware support for persistent memory. A hardware-accelerated Per-
sistent Memory Manager (PMM) is used to coordinate the storage
and retrieval of data in a persistent memory. The PMM provides a
load/store interface for accessing data, and is responsible for handling
data layout and migration among devices, persistence management
and journaling, metadata storage and retrieval, and encryption and
security. In addition, it exposes hooks and interfaces for the soft-
ware, the OS, and the language runtime to exploit the devices in the
persistent memory.

As an example, in the code listing at the top of Figure 2, the main
function creates a new persistent object (we use a similar notation to
C’s FILE structure) with the handle “file.dat”∗ and sets its contents
to a newly-allocated array of 64 integers. Later (perhaps in between

∗Note that the underlying hardware may choose to assign this handle a more
machine-friendly form, such as a fixed n-bit value.

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.
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Figure 2: Hardware-based storage and memory management.

executions of the same program, or after restarting the system), in the
updateValue function, the persistent object with the same handle
(“file.dat”) is accessed, and the value of one of its elements is updated,
just as it would be if it were allocated in memory, except that now the
PMM ensures that its data is mapped to persistent memory, can be lo-
cated efficiently, and will remain persistent even if the machine were
to crash after the program updates the value. This behavior should
be satisfied even in the presence of a storage area network (SAN),
or other storage in a distributed system, as well, and could extend
existing software-based work in persistent main memories [33] with
more efficient hardware support.

A hardware/software cooperative approach to providing persistent
memory yields three major benefits. First, it can eliminate the ex-
ecution of instructions in the operating system and file system that
are typically used to manipulate persistent data (i.e., system calls
such as open, read, and write, and file system management code
such as that responsible for inode lookup and journaling). Second,
employing persistent memory reduces the data movement associated
with accessing persistent data from block-based devices such as HDD
or Flash, which typically involves copying data from the device to a
buffer in DRAM—even if it is then immediately written back to the
persistent device. Third, it can help exploit the full parallelism and
bandwidth of the underlying devices in the persistent memory. All
of these benefits can lead to significant improvements in system per-
formance and energy consumption for applications that manipulate
persistent data.

2.1. Comparison to Related Work

To our knowledge, this is the first paper that explores the implications
of efficient hardware-based coordinated management of storage and
memory for improved system energy efficiency and performance.

Prior works proposed to take advantage of emerging non-volatile
memory by integrating file systems with persistent memory (e.g.,
[6, 7, 13, 15, 17, 28]), providing software support for checkpoint-
ing distributed system states (e.g., [48]) and providing hardware
support to manage Flash devices [47] or NVM devices for storage
purposes [11]. To fully exploit the advantages of these technologies
and reduce programmer burden, optimized hardware-software coop-
erative support needs to be designed for systems that are aware of the
various trade-offs and limitations of their non-volatile devices.

Providing programming language support for persistent objects
has been proposed previously (e.g., [2–5, 10, 14, 23, 34, 39, 45]).
None of these works take into account hardware management of
persistent objects. Persistence guarantees within the software layer
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result in slower memory access latency due to the overhead of the
extra indirection. Our work considers designs geared toward hard-
ware with faster and cheaper persistent memory that can achieve high
performance in the presence of volatile and non-volatile memory.

Previous works examined single-level stores where data was ac-
cessed through load and store instructions (e.g., [9, 16, 20, 24, 40–
43]). Some of these works focused on a software interface for ac-
cessing data from a single-level store [16, 42], while others (e.g.,
[9, 20, 24, 40, 41, 43]) provided a unified address space through
hardware (e.g., data indexed using hardware-based hierarchical ta-
bles [9, 20]). However, these works did not focus on how to provide
efficient and fast hardware support for address translation, efficient
file indexing, or fast reliability and protection guarantees. The goal
of our work is to provide cheap and fast hardware support in persis-
tent memories that enable high energy efficiency and performance.
Oikawa [35] provides a good evaluation of one design point, and we
quantify the potential benefits of research in this direction.

Others have shown that the OS contributes significantly to the
latency required to service accesses to Flash devices [44]. Our study
corroborates their findings, and shows even larger consequences
for emerging NVM devices in terms of performance and energy-
efficiency.

We discuss several opportunities, benefits, and challenges from
using a hardware-based approach to managing storage and memory
that affect performance, energy, security, and reliability next, and
later complete our discussion with some open questions and potential
downsides in Section 3.4. It is important to note that this initial work
is primarily focused on an exploration of the potential for employing
persistent memory in future systems; we plan to explore more detailed
implementation strategies in future works.

Eliminating system calls for file operations. A persistent mem-
ory allows all data to reside in a linear, byte-addressable virtual
address space. This allows data elements to be directly manipulated
using traditional load/store instructions, while still remaining persis-
tent. This eliminates the need for using layers of operating system
code (associated with system calls such as open, read, and write)
for managing metadata associated with files, such as file descriptors
(metadata about open files), file buffers (space allocated in volatile
memory for manipulating small portions of files), and so on.

Eliminating file system operations. Locating data in a persis-
tent memory can be done quickly with efficient hardware support.
Just as processors use Memory Management Units (MMUs) to effi-
ciently traverse operating system managed page tables, and Trans-
lation Lookaside Buffers (TLBs) to cache virtual-to-physical page
address translations to efficiently access memory, we envision future
systems that employ hardware techniques to efficiently store and
retrieve persistent data from memory. This can eliminate the code
required by traditional file systems that, for example, locates a file’s
inode, or performs journaling to improve reliability.

Efficient data mapping. A persistent memory gives the illusion
of a single, persistent store for manipulating data. Yet, the underlying
hardware that comprises the persistent memory may actually consist
of a diverse array of devices: from fast, but low-capacity volatile
devices such as DRAM; to slower, but high-capacity non-volatile
devices such as non-volatile memories, Flash, and hard disk drives.
With such an assortment of device characteristics, it will become in-
creasingly challenging for the programmer to decide how to partition
their data among them, and we believe the software and hardware
together can help here by observing access patterns and tailoring data

placement on devices based on its access characteristics.
Figure 3 shows two axes we may consider when making deci-

sions about mapping data in a persistent memory—locality and
persistence—and suggests examples of data in applications that might
be classified in each category†. By monitoring how the data in
a program is accessed, with hints from the operating system and
programming language runtime (e.g., by tagging or classifying I/O
requests [19, 29]), we think that a hardware structure such as the Per-
sistent Memory Manager can be used to make intelligent data place-
ment decisions, at runtime. For example, a frequently-referenced and
frequently-updated index may be placed on a DRAM cache, but the
persistent data it indexes may reside on non-volatile memory.

Less Locality

More Locality

Temporary Persistent

A complex index
built over a large

table in a database

A mapping of
keys to data
cached in
memory

Columns in a
column store

database

Diagnostic data
tracked during
program run

Figure 3: The locality and persistence traits of data affect placement
among devices in a persistent memory. This figure gives a potential
example categorization.

2.2. Opportunities, Benefits, and Challenges

Providing security and reliability. Using a persistent memory can
provide opportunities for maintaining data security at a granularity
smaller than files, and potentially even smaller than existing pages in
virtual memory. Finding the right balance between security metadata
storage and security guarantees will be a key challenge. Integrat-
ing volatile storage into the persistent memory will improve system
performance, but will also require careful coordination among the
devices to ensure that any hardware-managed volatile copies of persis-
tent data obey the ACID properties (atomicity, consistency, isolation,
and durability). In systems where a persistent memory is distributed
across multiple machines, ensuring data security and reliability will
also be an important challenge.

Hardware/software cooperative data management. By provid-
ing the appropriate hooks and interfaces to applications, the OS, and
the runtime, persistent memories can enable improved system robust-
ness and efficiency. As a simple example, persistent memories can
enable fast checkpointing and fast reboots raising the question of how
system availability mechanisms can be designed to take advantage of
this behavior. It will be important to examine application-transparent
(hardware/software cooperative) mechanisms for checkpointing and
fast restart as well as application, OS, and runtime hooks and inter-
faces to take advantage of fast checkpointing and bootup features.
Such techniques can enhance distributed system availability and
reliability by making use of persistent locks and other persistent
synchronization constructs that can survive system power events.

†Note that we have highlighted two salient axes, though others also exist (such as
reliability, latency sensitivity, or bandwidth requirement).
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3. Initial Exploration

We have begun examining the effects of eliminating the code and
data movement traditionally required to manage persistent data. Our
early experimentation along these lines has focused on studying the
effects of eliminating the overhead of performing system calls in
the operating system and file system code used to manage persistent
data. We use a hybrid real system/simulation-based approach for
performing our initial persistent memory evaluation because it makes
future studies involving hardware modifications feasible.

In our study, we simulate the execution of several applications
using the Multi2Sim simulator [1]. We have modified the simulator
so that when a file I/O system call is performed in the program
(our programs use open, close, read, write, pread, pwrite, and
mmap), we track the number of cycles spent servicing the system call
on the host machine. On our baseline system that does not employ a
persistent memory, these cycles spent in the OS and file system code
are then added to the simulation after the system call is performed,
and execution continues. Detailed simulation and system parameters
are listed in Table 1.

To estimate the effects of using an emerging non-volatile memory
as a storage device, we separated the time spent performing file
I/O system calls into two categories: (1) executing the system call

Processor 16 cores, 4-wide issue, 128-entry instruction win-
dow, 1.6GHz.

L1 cache Private 32KB per core, 2-way, 64B blocks, 3-cycle
latency.

L2 cache Shared 4MB, 8-way, 128B blocks, 16 MSHRs, 25-
cycle latency.

Memory DRAM: 4GB, 4KB pages, 100-cycle latency.
NVM: 4GB, 4KB pages, 160-/480-cycle
(read/write) latency. [26]
HDD: 4ms seek, 6Gbps bus rate.

Power Processor and caches: 1.41W average dynamic
power per core / 149W peak power [27].
DRAM: 100mW/chip static power [32],

row buffer read (write): 0.93 (1.02) pJ/bit,
array read (write): 1.17 (0.39) pJ/bit. [26]

NVM: 45mW/chip static power [18],
row buffer read (write): 0.93 (1.02) pJ/bit,
array read (write): 2.47 (16.82) pJ/bit. [26]

HDD: 1W average power

Table 1: Major simulation parameters.

cp Copy an 80MB file.
cp -r Copy a directory that contains 700 folders and 700

1-byte files.
grep Read through a 10MB file and search for a keyword.
grep -r Read through a directory that contains 700 folders

and 700 1-byte files and search for a keyword.
PostMark Perform 512B random reads/writes 500 times on 500
[22] files that are between 500B and 10KB in size.
MySQL MySQL server; OLTP queries generated by Sys-
[36] Bench. 1M-entry database; 200B per entry.

simple: Repeatedly reads random table entries.
complex: Reads/writes 1 to 100 table entries.

Table 2: Benchmark characteristics.

and (2) accessing the I/O device. The cycles needed to execute the
system call, as well as the effect of a buffer cache, are measured on
a real system that has the same configuration as the simulator. The
benchmarks we used are shown in Table 2‡, and include a variety
of workloads of varying I/O and compute intensity. In addition to
examining microbenchmarks composed of common Unix utilities, we
also examined PostMark, a file system benchmark from NetApp [22],
and the MySQL database server. We show the average across five runs
of each experiment and the standard deviation is reported above each
bar. We cleared the disk buffer cache before running each experiment
and we warmed up the system’s state through the initialization of
MySQL server before collecting results. For MySQL (simple) and
MySQL (complex), we cleared the disk cache in between each request
to simulate the effects of querying a much larger database in the
random way that that our workload, Sysbench, does. For this reason,
our MySQL results do not have a standard deviation associated with
them.

We considered four system configurations in our study:
HDD Baseline (HB): This system is similar to modern systems

that employ volatile DRAM memory and hard disk drives for storage.
When a file operation like fread or fwrite is performed, file system
code is used to locate the file on the disk, and operating system code
acts on behalf of the program to perform a direct memory access to
transfer data from the disk to a DRAM buffer.

HDD without OS/FS (HW): This system is similar to the HDD
Baseline, but represents a situation where all operating system and
file system code executes instantly. File operations still work on
buffered copies of data in DRAM and device access latencies are the
same as the HDD Baseline.

NVM Baseline (NB): In this system, the HDD is replaced with
NVM. All other operations are similar to the HDD Baseline case (i.e.,
OS and file system code are still executed).

Persistent Memory (PM): In this system, to achieve full-memory
persistence, only NVM is used (i.e., there is no DRAM) and ap-
plications access data using loads and stores directly from and to
NVM (i.e., there is no operating system and file system code, and
data is manipulated directly where it is located on the NVM device).
In our simulator, whenever a system call is performed in the pro-
gram, we executed the system call on the host machine (so that our
simulation would behave functionally the same as before), but did
not add the time spent performing the system call to the simulation,
and only included the time to access the NVM device. This design
would use a hardware-based Persistent Memory Manager, like we
are proposing, to coordinate accesses to the NVM device and has the
potential for much optimization. We will suggest potential directions
for improving this system in Section 3.4.

3.1. Performance

Figure 4 shows how these configurations fare in terms of execution
time, normalized to the HDD Baseline for our benchmarks. For
each of the systems on the x axis, we show the number of cycles
spent executing user code (User CPU), stalling on user memory
requests (User Memory), executing system call code (Syscall CPU),
and performing device I/O during a system call (Syscall I/O).

Looking at the HDD Baseline (HB) and the HDD without OS/FS
(HW) data points, we see that eliminating operating system and file

‡We are actively exploring a larger-scale evaluation of popular databases and key-
value stores, where we expect our findings to hold due to the scale at which they
manipulate persistent data.
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Figure 4: Normalized execution time (standard deviation shown above bars).
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Figure 5: Normalized energy consumption.

system code—in the ideal case—leads to performance improvement
by reducing the amount of work performed to manipulate the same
amount of data, though not by a very large amount, because the
execution time on these systems is dominated by the HDD access
time. Notice that grep hardly benefits from eliminating the work
performed in OS/FS code, because its execution is dominated by its
string-matching computation.

Comparing the HDD Baseline (HB) to the NVM Baseline (NB),
we see that replacing the hard disk drive with NVM can greatly
reduce execution time for I/O-bound workloads (those besides grep).
Yet such an approach still inherits the inefficiency from HDD-based
systems of executing system call and file system code, allocating
buffers in DRAM for managing file data, and moving data between
NVM and DRAM, as seen in the Syscall CPU and Syscall I/O time.
Using a Persistent Memory (PM) causes some of the Syscall I/O
time to instead be spent by User Memory accesses, but in general
performance is greatly improved for I/O-intensive workloads, such
as PostMark, compared to the NVM Baseline (NB) by eliminating the
traditional two-level storage interface.

Though both MySQL simple and complex benefit from using a Persis-
tent Memory, the benefits are more pronounced with MySQL complex,
due to its more I/O-intensive nature. For the CPU-bound benchmark
grep, the PM system hardly improves performance because it does
not employ DRAM, and grep makes good use of locality in DRAM.

This negative effect can be mitigated with intelligent management of
a DRAM cache, as others have shown in the context of heterogeneous
main memories [21, 30, 31, 37, 38, 49]. Developing policies for data
placement in heterogeneous memories employing some amount of
fast DRAM is a promising direction.

From this preliminary analysis, we conclude that a system with a
persistent memory can significantly improve performance by elim-
inating the instructions and data movement traditionally used to
perform I/O operations and also reducing average storage access
latency.

3.2. Energy

Energy is an increasingly important constraint in devices from cell
phones (where battery life is essential), to data centers (where energy
costs can be a substantial portion of total cost of ownership [8]).
By improving performance and reducing the number of instructions
executed by the processor (i.e., those that would have been executed
for system call or for file system code) programs executing on a
persistent memory can finish more quickly and perform less work,
consuming less static and dynamic device energy.

We modeled energy using the McPAT [27] framework and the
values assumed for device power are shown in Table 1. Figure 5
breaks down the energy consumed by the system configurations we
evaluated for each of the benchmarks, normalized to the energy of
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Figure 6: Execution time compared to the NVM Baseline (NB) system with different PMM latencies.

the HDD Baseline configuration. For each of the configurations
labeled on the x axis, we show the energy consumed by the processor
on user code (User CPU), system call code (Syscall CPU), DRAM,
NVM, and HDD (when these devices are used in a system). Note that
storage device (HDD or NVM) energy consumption is dominated
by static device energy, even under I/O-intensive operation. For the
CPU, neither static nor dynamic energy consumption dominates total
energy.

In the HDD-based systems (HB and HW), energy consumption
is dominated by the energy of the HDD device. While eliminating
system call code can reduce static energy consumption by improving
performance, it does not greatly reduce total system energy. For
I/O-bound benchmarks, using NVM instead of disk (NB) helps per-
formance and energy by using a much faster storage device (in this
case, PCM). Interestingly, in these systems, the overheads for energy
of the CPU and the code it has to execute to perform I/O operations
becomes a significant portion of total system energy. Switching from
a traditional storage model (NB) to a persistent memory (PM) helps
tackle this overhead and reduces energy significantly for two main
reasons:

1. Reduced code footprint. Eliminating system call code re-
duces CPU dynamic energy consumption because there are fewer
instructions for the CPU to execute to perform the same amount of
work. This leads to energy benefits (even for grep, despite its small
improvement in execution time).

2. Reduced data movement. Eliminating device access though
the OS reduces the amount of data movement in the system (i.e.,
accessing persistent data does not require a direct memory access
operation to transfer data into a buffer in memory), reducing the
execution time of the benchmark, and improving static device en-
ergy consumption. As NVM energy is dominated by static energy
consumption, this can be seen on most of the benchmarks in the
reduction of NVM energy.

We believe that the adoption of persistent memory can help sig-
nificantly reduce system energy consumption, while providing full-
memory persistence in future devices.

3.3. Scalability

So far, we have shown results for a PMM with no additional latency,
in order to quantify the potential benefits of a persistent memory.
We now look at the impact of various fixed-cycle PMM latencies on
program performance.

Figure 6 shows the normalized execution time (compared to the
NB system) broken down in the same way as Figure 4, but with an
added category for PMM latency (PMM), for our benchmarks on the
Persistent Memory system assuming a PMM latency of 1, 10, and
50 cycles. We account for the PMM latency on every memory refer-
ence, and our estimates are pessimistic in the sense that they do not
consider the possibility of overlapping the PMM latency of multiple
outstanding requests. Even so, with a 1- or 10-cycle latency per ref-
erence, performance is only slightly degraded on most benchmarks.
At a 50-cycle latency per reference, however, the more I/O-intensive
benchmarks (grep and MySQL (simple)), spend a considerable amount
of their time in the PMM. Still, in most cases, this does not lead to
performance degradation compared to the NVM Baseline system.
As we will discuss next, designing an efficient PMM will be a key
concern, though our results suggest that there exists a wide range of
PMM latencies that lead to overall system efficiency improvements.

3.4. Open Research Questions and Challenges

There are several open research questions that arise and downsides
that must be mitigated when providing efficient hardware support for
persistent memory, which we discuss next.

Q1. How to tailor applications for systems with persistent
memory? To fully achieve the potential energy and performance
benefits of a persistent memory, we would like full support from
applications. This leads to several questions, such as: (1) How should
the runtime system (and the programmer/compiler) partition data
into persistent versus temporary data and marshal the communica-
tion among different storage, memory, and computation components
in a system? (2) How can data be more efficiently transmitted be-
tween storage and memory? (3) How can software be designed to
improve the reliability and fault-tolerance of systems with persis-
tent memories? (4) How does persistent memory change the way
high availability is provided in modern applications and systems,
especially distributed systems?

Q2. How can hardware and software cooperate to support a
scalable, persistent single-level address space? Like virtual mem-
ory in modern systems, we envision future persistent memory systems
will tightly integrate system hardware and software, leading to several
key design questions, such as: (1) What is the appropriate interface
between a persistent memory manager and system and application
software? (2) What application-, OS-, and runtime-level hooks and
interfaces will be most useful for enabling efficient persistent memo-
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ries? (3) How can software provide hints to the hardware regarding
the characteristics of data (e.g., locality, persistence, security, latency,
and bandwidth requirements)? (4) How can system software provide
consistency, reliability, and protection for data in a persistent memory
system when the memory hierarchy consists of both volatile and
non-volatile storage?

Q3. How to provide efficient backward compatibility on per-
sistent memory systems? (1) How do we efficiently support legacy
page table and file system functionality in a persistent memory with
hardware support to reduce system software overhead? (2) How can
the devices that comprise a persistent memory best be used to store
the data and metadata associated with existing memory and storage
interfaces?

Q4. How to mitigate potential hardware performance and en-
ergy overheads? By supporting persistent memory in hardware, we
may introduce performance and energy overheads due to the addition
of new hardware structures. A key question is how to mitigate these
overheads. We plan to examine how these overheads can be kept low,
making persistent memory a desirable option.

We believe at least these questions are important to investigate in
enabling efficient hardware support for persistent memories, and we
intend to explore these questions in our future work.

4. Summary

Energy is a key constraint in future devices from cell phones to
servers, and efficient storage organizations can drastically improve
the performance and reduce the energy consumption of such systems.
We have shown that in future systems employing NVM devices for
persistence, the energy required to execute OS and file system code,
as well as the energy required to transfer data to and from DRAM and
persistent memory, constitutes a large portion of total energy. Based
on this observation, we explored the design of a hardware/software
cooperative Persistent Memory Manager that coordinates the man-
agement of memory and storage in a single address space, taking into
account main memory data layout, migration, persistence manage-
ment, metadata storage and retrieves, encryption/security, and so on,
for improved system energy efficiency. We identified several research
questions along these lines, which we intend to explore in our future
work.
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